1
|
Homanics GE. Exploratory studies of ethanol drinking in the white-tufted marmoset (Callithrix jacchus). Alcohol 2024; 120:99-107. [PMID: 38971210 DOI: 10.1016/j.alcohol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The white-tufted marmoset is a small, nonhuman primate that is rapidly gaining popularity as a model organism, especially for neuroscience research. To date, little work in the alcohol research field has utilized the marmoset. As a step toward establishing the marmoset as a research model for alcohol experimentation, a series of exploratory studies were undertaken to characterize ethanol drinking behavior. A voluntary drinking paradigm was established whereby the common marmoset would consume pharmacologically relevant amounts of ethanol. To facilitate ethanol consumption, ethanol was mixed with a marshmallow flavored solution (hereafter called marshmallow juice) to mask the presumed adverse taste of ethanol. Using marshmallow juice flavored solutions, marmosets readily consumed ethanol up to 1 g/kg during 10 min binge-like drinking sessions or up to 5 g/kg during ∼4 h drinking sessions. Consumption of 1.0-1.5 g/kg during a 30 min session resulted in blood ethanol concentrations of 49-73 mg/dl, which are predicted to be pharmacologically relevant. In animals that were stably consuming ethanol in marshmallow juice, gradually reducing the concentration of the marshmallow juice flavoring resulted in markedly reduced ethanol consumption. Lastly, when offered a choice between ethanol in marshmallow juice and marshmallow juice alone, marmosets displayed a very strong preference for the marshmallow juice solution without ethanol. From these studies, it is concluded that marmosets will voluntarily consume ethanol if the taste is masked with a sweet solution such as marshmallow juice. These studies represent the first report of alcohol consumption and preference in the white-tufted marmoset.
Collapse
Affiliation(s)
- Gregg E Homanics
- Departments of Anesthesiology & Perioperative Medicine, Neurobiology, and Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Ghasoub M, Perdue M, Long X, Donnici C, Kar P, Gibbard B, Tortorelli C, McMorris C, Dewey D, Lebel C. The brain's structural connectivity and pre-reading abilities in young children with prenatal alcohol exposure. Dev Cogn Neurosci 2024; 70:101467. [PMID: 39486389 DOI: 10.1016/j.dcn.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Children with prenatal alcohol exposure (PAE) may develop a range of neurological and behavioral deficits, including reading and language disorders. Studying the brain's structural connectivity and its relationship to pre-reading/reading skills in young children with PAE can help understand the roots of reading deficits associated with PAE. 363 diffusion MRI scans from 135 children (114 scans from 53 children with PAE) were collected between ages 3-7 years. Children completed NEPSY-II Phonological Processing and Speeded Naming to assess pre-reading skills at each scan. Structural brain network properties were assessed in 16 regions from both hemispheres using graph theory. Linear mixed models were used to account for repeated measures within participants. Children with PAE had significantly lower pre-reading scores than unexposed children, and significantly lower graph theory metrics across bilateral reading networks. Moreover, PAE significantly moderated the associations between Phonological Processing and global efficiency and nodal degree in the bilateral and left hemisphere reading networks, such that children with PAE had stronger associations than unexposed controls. No significant associations were found for Speeded Naming. Our results suggest that brain alterations may underlie early pre-reading difficulties in children with PAE.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Meaghan Perdue
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada
| | - Xiangyu Long
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada
| | - Claire Donnici
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Preeti Kar
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Ben Gibbard
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Pediatrics, University of Calgary, Canada
| | | | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Werklund School of Education, University of Calgary, Canada
| | - Deborah Dewey
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Pediatrics, University of Calgary, Canada; Departments of Community Health Sciences, University of Calgary, Canada
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada.
| |
Collapse
|
3
|
Kunz Godói A, Canever L, Pacheco Rico E, Mastella G, Tonello M, Veadrigo N, de Bem Tomé B, da Silva Lemos I, Luiz Streck E, Zugno AL. The relationship between alcohol bingeing in the gestational period of wistar rats and the development of schizophrenia in the offspring adult life. Brain Res 2024; 1845:149270. [PMID: 39389527 DOI: 10.1016/j.brainres.2024.149270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The incidence of schizophrenia in young adulthood may be associated with intrauterine factors, such as gestational alcohol consumption. This study investigated the relationship between a single high dose of alcohol during pregnancy in Wistar rats and the development of schizophrenia in the adult life of the offspring. On the 11th day of gestation, pregnant rats received either water or alcohol via intragastric gavage. Male and female offspring were subjected to behavioral tests at 30 days of age according to the maternal group. At 60 days of age, offspring received intraperitoneal injections of ketamine (ket) or saline (SAL). After the final ketamine administration, the adult offspring underwent behavioral tests, and their brain structures were removed for biochemical analysis. Alcohol binge drinking during pregnancy induces hyperlocomotion in both young female and male offspring, with males of alcohol-exposed mothers showing reduced social interactions. In adult offspring, ketamine induced hyperlocomotion; however, only females in the alcohol + ket group exhibited increased locomotor activity, and a decrease in the time to first contact was observed in the alcohol group. Cognitive impairment was exclusively observed in male animals in the alcohol group. Increased serotonin and dopamine levels were observed in male rats in the alcohol + ket group. Biochemical alterations indicate the effects of intrauterine alcohol exposure associated with ketamine in adult animals. These behavioral and biochemical changes suggest that the impact of prenatal stressors such as alcohol persists throughout the animals' lives and may be exacerbated by a second stressor in adulthood, such as ketamine.
Collapse
Affiliation(s)
- Amanda Kunz Godói
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Gustavo Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Marina Tonello
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Natália Veadrigo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Beatriz de Bem Tomé
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Isabela da Silva Lemos
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emílio Luiz Streck
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Alexandra L Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Gamba BFG, Pickler KDP, Lodetti G, Farias ACSD, Teixeira AG, Bernardo HT, Dondossola ER, Cararo JH, Luchiari AC, Rosemberg DB, Rico EP. Embryonic alcohol exposure alters cholinergic neurotransmission and memory in adult zebrafish. Behav Brain Res 2024; 474:115176. [PMID: 39098400 DOI: 10.1016/j.bbr.2024.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Alcohol is the most consumed addictive substance worldwide that elicits multiple health problems. Consumption of alcoholic beverages by pregnant women is of great concern because pre-natal exposure can trigger fetal alcohol spectrum disorder (FASD). This disorder can significantly change the embryo's normal development, mainly by affecting the central nervous system (CNS), leading to neurobehavioral consequences that persist until adulthood. Among the harmful effects of FASD, the most reported consequences are cognitive and behavioral impairments. Alcohol interferes with multiple pathways in the brain, affecting memory by impairing neurotransmitter systems, increasing the rate of oxidative stress, or even activating neuroinflammation. Here, we aimed to evaluate the deleterious effects of alcohol on the cholinergic signaling and memory in a FASD zebrafish model, using inhibitory avoidance and novel object recognition tests. Four months after the embryonic exposure to ethanol, the behavioral tests indicated that ethanol impairs memory. While both ethanol concentrations tested (0.5 % and 1 %) disrupted memory acquisition in the inhibitory avoidance test, 1 % ethanol impaired memory in the object recognition test. Regarding the cholinergic system, 0.5 % ethanol decreased ChAT and AChE activities, but the relative gene expression did not change. Overall, we demonstrated that FASD model in zebrafish impairs memory in adult individuals, corroborating the memory impairment associated with embryonic exposure to ethanol. In addition, the cholinergic system was also affected, possibly showing a relation with the cognitive impairment observed.
Collapse
Affiliation(s)
- Bárbara Fiorentin Giordani Gamba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Denis Broock Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
5
|
Su Y, Yu Y, Quan J, Zhang J, Xu Y. Alcohol exposure during pregnancy induces cardiac mitochondrial damage in offspring mice. Birth Defects Res 2024; 116:e2369. [PMID: 38877673 DOI: 10.1002/bdr2.2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has been linked to congenital heart disease and fetal alcohol syndrome. The heart primarily relies on mitochondria to generate energy, so impaired mitochondrial function due to alcohol exposure can significantly affect cardiac development and function. Our study aimed to investigate the impact of PAE on myocardial and mitochondrial functions in offspring mice. METHODS We administered 30% alcohol (3 g/kg) to pregnant C57BL/6 mice during the second trimester. We assessed cardiac function by transthoracic echocardiography, observed myocardial structure and fibrosis through staining tests and electron transmission microscopy, and detected cardiomyocyte apoptosis with dUTP nick end labeling assay and real-time quantitative PCR. Additionally, we measured the reactive oxygen species content, ATP level, and mitochondrial DNA copy number in myocardial mitochondria. Mitochondrial damage was evaluated by assessing the level of mitochondrial membrane potential and the opening degree of mitochondrial permeability transition pores. RESULTS Our findings revealed that PAE caused cardiac systolic dysfunction, ventricular enlargement, thinned ventricular wall, cardiac fibrosis in the myocardium, scattered loss of cardiomyocytes, and disordered arrangement of myocardial myotomes in the offspring. Furthermore, we observed a significant increase in mitochondrial reactive oxygen species content, a decrease in mitochondrial membrane potential, ATP level, and mitochondrial DNA copy number, and sustained opening of mitochondrial permeability transition pores in the heart tissues of the offspring. CONCLUSIONS These results indicated that PAE had adverse effects on the cardiac structure and function of the newborn mice and could trigger oxidative stress in their myocardia and contribute to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yujuan Yu
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjun Quan
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Zhang
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Imamura F. Effects of prenatal alcohol exposure on the olfactory system development. Front Neural Circuits 2024; 18:1408187. [PMID: 38818309 PMCID: PMC11138157 DOI: 10.3389/fncir.2024.1408187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Hwang HM, Yamashita S, Matsumoto Y, Ito M, Edwards A, Sasaki J, Dutta DJ, Mohammad S, Yamashita C, Wetherill L, Schwantes-An TH, Abreu M, Mahnke AH, Mattson SN, Foroud T, Miranda RC, Chambers C, Torii M, Hashimoto-Torii K. Reduction of APOE accounts for neurobehavioral deficits in fetal alcohol spectrum disorders. Mol Psychiatry 2024:10.1038/s41380-024-02586-6. [PMID: 38734844 DOI: 10.1038/s41380-024-02586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
A hallmark of fetal alcohol spectrum disorders (FASD) is neurobehavioral deficits that still do not have effective treatment. Here, we present that reduction of Apolipoprotein E (APOE) is critically involved in neurobehavioral deficits in FASD. We show that prenatal alcohol exposure (PAE) changes chromatin accessibility of Apoe locus, and causes reduction of APOE levels in both the brain and peripheral blood in postnatal mice. Of note, postnatal administration of an APOE receptor agonist (APOE-RA) mitigates motor learning deficits and anxiety in those mice. Several molecular and electrophysiological properties essential for learning, which are altered by PAE, are restored by APOE-RA. Our human genome-wide association study further reveals that the interaction of PAE and a single nucleotide polymorphism in the APOE enhancer which chromatin is closed by PAE in mice is associated with lower scores in the delayed matching-to-sample task in children. APOE in the plasma is also reduced in PAE children, and the reduced level is associated with their lower cognitive performance. These findings suggest that controlling the APOE level can serve as an effective treatment for neurobehavioral deficits in FASD.
Collapse
Affiliation(s)
- Hye M Hwang
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Yu Matsumoto
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Mariko Ito
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Alex Edwards
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Junko Sasaki
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Dipankar J Dutta
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Shahid Mohammad
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Chiho Yamashita
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marco Abreu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Christina Chambers
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Masaaki Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
8
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
9
|
Margolis ET, Gabard-Durnam LJ. Prenatal influences on postnatal neuroplasticity: Integrating DOHaD and sensitive/critical period frameworks to understand biological embedding in early development. INFANCY 2024. [PMID: 38449347 DOI: 10.1111/infa.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Early environments can have significant and lasting effects on brain, body, and behavior across the lifecourse. Here, we address current research efforts to understand how experiences impact neurodevelopment with a new perspective integrating two well-known conceptual frameworks - the Developmental Origins of Health and Disease (DOHaD) and sensitive/critical period frameworks. Specifically, we consider how prenatal experiences characterized in the DOHaD model impact two key neurobiological mechanisms of sensitive/critical periods for adapting to and learning from the postnatal environment. We draw from both animal and human research to summarize the current state of knowledge on how particular prenatal substance exposures (psychoactive substances and heavy metals) and nutritional profiles (protein-energy malnutrition and iron deficiency) each differentially impact brain circuits' excitation/GABAergic inhibition balance and myelination. Finally, we highlight new research directions that emerge from this integrated framework, including testing how prenatal environments alter sensitive/critical period timing and learning and identifying potential promotional/buffering prenatal exposures to impact postnatal sensitive/critical periods. We hope this integrative framework considering prenatal influences on postnatal neuroplasticity will stimulate new research to understand how early environments have lasting consequences on our brains, behavior, and health.
Collapse
Affiliation(s)
- Emma T Margolis
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Hu C, Yang S, Zhang T, Ge Y, Chen Z, Zhang J, Pu Y, Liang G. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. ENVIRONMENT INTERNATIONAL 2024; 184:108415. [PMID: 38309193 DOI: 10.1016/j.envint.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.
Collapse
Affiliation(s)
- Chengyu Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
11
|
May PA, Hasken JM, de Vries MM, Marais AS, Abdul-Rahman O, Robinson LK, Adam MP, Manning MA, Kalberg WO, Buckley D, Seedat S, Parry CD, Hoyme HE. Maternal and paternal risk factors for fetal alcohol spectrum disorders: Alcohol and other drug use as proximal influences. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2090-2109. [PMID: 38226752 PMCID: PMC10792253 DOI: 10.1111/acer.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE To explore and analyze the significance of proximal influences of maternal and paternal traits associated with bearing a child with a fetal alcohol spectrum disorder (FASD). METHODS Aggregated, maternal interview-collected data (N = 2515) concerning alcohol, tobacco, and other drug use were examined to determine risk for FASD from seven cross-sectional samples of mothers of first-grade students who were evaluated for a possible diagnosis of FASD. RESULTS Mothers of children with fetal alcohol syndrome (FAS) reported the highest alcohol use throughout pregnancy, proportion of binge drinking, drinks per drinking day (DDD), drinking days per week, and total drinks per week. Mothers of children with FAS also consumed significantly more alcohol than mothers of children with partial FAS (PFAS), alcohol-related neurodevelopmental disorder (ARND), or typically developing controls. Mothers of children with PFAS and ARND reported similar drinking patterns, which exposed fetuses to 3-4 times more alcohol than mothers of controls, but the PFAS group was more likely than the ARND group to abstain in latter trimesters. Fathers of all children were predominantly drinkers (70%-85%), but more fathers of children with FASD binged heavily on more days than fathers of controls. Compared to the few mothers of controls who used alcohol during pregnancy, the ARND group binge drank more (3+ DDD) throughout pregnancy and drank more DDD before pregnancy and first trimester. Regression analysis, controlling for tobacco use, indicated that mothers who reported drinking <1 DDD were significantly more likely than abstainers to bear a child with FASD (OR = 2.75) as were those reporting higher levels such as 5-5.9 DDD (OR = 32.99). Exclusive, first-trimester maternal drinking increased risk for FASD five times over that of abstinence (p < 0.001, OR = 5.05, 95% CI: 3.88-6.58), first- and second-trimester drinking by 12.4 times, and drinking all trimesters by 16 times (p < 0.001, OR = 15.69, 95% CI: 11.92-20.64). Paternal drinking during and prior to pregnancy, without adjustment, increased the likelihood of FASD significantly (OR = 1.06 and 1.11, respectively), but the significance of both relationships disappeared when maternal alcohol and tobacco use were controlled. CONCLUSIONS Differences in FASD risk emerged from the examination of multiple proximal variables of maternal alcohol and tobacco use, reflecting increased FASD risk at greater levels of maternal alcohol consumption.
Collapse
Affiliation(s)
- Philip A. May
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, United States
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
- Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, 2650 Yale SE, Albuquerque, NM 87106, United States
| | - Julie M. Hasken
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, United States
| | - Marlene M. de Vries
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Anna-Susan Marais
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Omar Abdul-Rahman
- Department of Pediatrics, New York- Presbyterian Weill Cornell Medicine, Columbia University, 505 E 70 St, New York, NY 10021
| | - Luther K. Robinson
- Department of Pediatrics, State University of New York, 1001 Main Street, Buffalo, NY 14203, United States
| | - Margaret P. Adam
- Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98175, USA
| | - Melanie A. Manning
- Department of Pathology and Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States
| | - Wendy O. Kalberg
- Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, 2650 Yale SE, Albuquerque, NM 87106, United States
| | - David Buckley
- Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, 2650 Yale SE, Albuquerque, NM 87106, United States
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Charles D.H. Parry
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Francie van Zijl Drive, Parowvallei, Cape Town, 7505, South Africa
| | - H. Eugene Hoyme
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
- Sanford Children’s Genomic Medicine Consortium, Sanford Health, 1600 W. 22 St. Sioux Falls, SD, 57117, United States
| |
Collapse
|
12
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
13
|
Chaudoin TR, Bonasera SJ, Dunaevsky A, Padmashri R. Exploring behavioral phenotypes in a mouse model of fetal alcohol spectrum disorders. Dev Neurobiol 2023; 83:184-204. [PMID: 37433012 PMCID: PMC10546278 DOI: 10.1002/dneu.22922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Fetal alcohol spectrum disorders are one of the leading causes of developmental abnormalities worldwide. Maternal consumption of alcohol during pregnancy leads to a diverse range of cognitive and neurobehavioral deficits. Although moderate-to-heavy levels of prenatal alcohol exposure (PAE) have been associated with adverse offspring outcomes, there is limited data on the consequences of chronic low-level PAE. Here, we use a model of maternal voluntary alcohol consumption throughout gestation in a mouse model to investigate the effects of PAE on behavioral phenotypes during late adolescence and early adulthood in male and female offspring. Body composition was measured by dual-energy X-ray absorptiometry. Baseline behaviors, including feeding, drinking, and movement, were examined by performing home cage monitoring studies. The impact of PAE on motor function, motor skill learning, hyperactivity, acoustic reactivity, and sensorimotor gating was investigated by performing a battery of behavioral tests. PAE was found to be associated with altered body composition. No differences in overall movement, food, or water consumption were observed between control and PAE mice. Although PAE offspring of both sexes exhibited deficits in motor skill learning, no differences were observed in basic motor skills such as grip strength and motor coordination. PAE females exhibited a hyperactive phenotype in a novel environment. PAE mice exhibited increased reactivity to acoustic stimuli, and PAE females showed disrupted short-term habituation. Sensorimotor gating was not altered in PAE mice. Collectively, our data show that chronic low-level exposure to alcohol in utero results in behavioral impairments.
Collapse
Affiliation(s)
- Tammy R Chaudoin
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stephen J Bonasera
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ragunathan Padmashri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
14
|
Fraize J, Fischer C, Elmaleh-Bergès M, Kerdreux E, Beggiato A, Ntorkou A, Duchesnay E, Bekha D, Boespflug-Tanguy O, Delorme R, Hertz-Pannier L, Germanaud D. Enhancing fetal alcohol spectrum disorders diagnosis with a classifier based on the intracerebellar gradient of volumetric undersizing. Hum Brain Mapp 2023. [PMID: 37209313 DOI: 10.1002/hbm.26348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
In fetal alcohol spectrum disorders (FASD), brain growth deficiency is a hallmark of subjects both with fetal alcohol syndrome (FAS) and with non-syndromic FASD (NS-FASD, i.e., those without specific diagnostic features). However, although the cerebellum was suggested to be more severely undersized than the rest of the brain, it has not yet been given a specific place in the FASD diagnostic criteria where neuroanatomical features still count for little if anything in diagnostic specificity. We applied a combination of cerebellar segmentation tools on a 1.5 T 3DT1 brain MRI dataset from a monocentric population of 89 FASD (52 FAS, 37 NS-FASD) and 126 typically developing controls (6-20 years old), providing 8 volumes: cerebellum, vermis and 3 lobes (anterior, posterior, inferior), plus total brain volume. After adjustment of confounders, the allometric scaling relationship between these cerebellar volumes (Vi ) and the total brain or cerebellum volume (Vt ) was fitted (Vi = bVt a ), and the effect of group (FAS, control) on allometric scaling was evaluated. We then estimated for each cerebellar volume in the FAS population the deviation from the typical scaling (v DTS) learned in the controls. Lastly, we trained and tested two classifiers to discriminate FAS from controls, one based on the total cerebellum v DTS only, the other based on all the cerebellar v DTS, comparing their performance both in the FAS and the NS-FASD group. Allometric scaling was significantly different between FAS and control group for all the cerebellar volumes (p < .001). We confirmed the excess of total cerebellum volume deficit (v DTS = -10.6%) and revealed an antero-inferior-posterior gradient of volumetric undersizing in the hemispheres (-12.4%, 1.1%, 2.0%, repectively) and the vermis (-16.7%, -9.2%, -8.6%, repectively). The classifier based on the intracerebellar gradient of v DTS performed more efficiently than the one based on total cerebellum v DTS only (AUC = 92% vs. 82%, p = .001). Setting a high probability threshold for >95% specificity of the classifiers, the gradient-based classifier identified 35% of the NS-FASD to have a FAS cerebellar phenotype, compared to 11% with the cerebellum-only classifier (pFISHER = 0.027). In a large series of FASD, this study details the volumetric undersizing within the cerebellum at the lobar and vermian level using allometric scaling, revealing an anterior-inferior-posterior gradient of vulnerability to prenatal alcohol exposure. It also strongly suggests that this intracerebellar gradient of volumetric undersizing may be a reliable neuroanatomical signature of FAS that could be used to improve the specificity of the diagnosis of NS-FASD.
Collapse
Affiliation(s)
- Justine Fraize
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, UNIACT, Centre d'études de Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Inserm, U1141 NeuroDiderot, inDEV, Paris, France
| | - Clara Fischer
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, BAOBAB, Centre d'études de Saclay, Gif-sur-Yvette, France
| | - Monique Elmaleh-Bergès
- Université Paris Cité, Inserm, U1141 NeuroDiderot, inDEV, Paris, France
- Department of Pediatric Radiology, Centre of Excellence InovAND, AP-HP, Robert-Debré Hospital, Paris, France
| | - Eliot Kerdreux
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, UNIACT, Centre d'études de Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Inserm, U1141 NeuroDiderot, inDEV, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Centre of Excellence InovAND, AP-HP, Robert-Debré Hospital, Paris, France
| | - Alexandra Ntorkou
- Department of Pediatric Radiology, Centre of Excellence InovAND, AP-HP, Robert-Debré Hospital, Paris, France
| | - Edouard Duchesnay
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, BAOBAB, Centre d'études de Saclay, Gif-sur-Yvette, France
| | - Dhaif Bekha
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, UNIACT, Centre d'études de Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Inserm, U1141 NeuroDiderot, inDEV, Paris, France
| | | | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Centre of Excellence InovAND, AP-HP, Robert-Debré Hospital, Paris, France
| | - Lucie Hertz-Pannier
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, UNIACT, Centre d'études de Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Inserm, U1141 NeuroDiderot, inDEV, Paris, France
| | - David Germanaud
- CEA Paris-Saclay, Joliot Institute, NeuroSpin, UNIACT, Centre d'études de Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Inserm, U1141 NeuroDiderot, inDEV, Paris, France
- Department of Genetics, Centre of Excellence InovAND, AP-HP, Robert-Debré Hospital, Paris, France
| |
Collapse
|
15
|
Andreu-Fernández V, Serra-Delgado M, Almeida-Toledano L, García-Meseguer À, Vieiros M, Ramos-Triguero A, Muñoz-Lozano C, Navarro-Tapia E, Martínez L, García-Algar Ó, Gómez-Roig MD. Effect of Postnatal Epigallocatechin-Gallate Treatment on Cardiac Function in Mice Prenatally Exposed to Alcohol. Antioxidants (Basel) 2023; 12:antiox12051067. [PMID: 37237934 DOI: 10.3390/antiox12051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Prenatal alcohol exposure affects the cardiovascular health of the offspring. Epigallocatechin-3-gallate (EGCG) may be a protective agent against it, but no data are available regarding its impact on cardiac dysfunction. We investigated the presence of cardiac alterations in mice prenatally exposed to alcohol and the effect of postnatal EGCG treatment on cardiac function and related biochemical pathways. C57BL/6J pregnant mice received 1.5 g/kg/day (Mediterranean pattern), 4.5 g/kg/day (binge pattern) of ethanol, or maltodextrin until Day 19 of pregnancy. Post-delivery, treatment groups received EGCG-supplemented water. At post-natal Day 60, functional echocardiographies were performed. Heart biomarkers of apoptosis, oxidative stress, and cardiac damage were analyzed by Western blot. BNP and Hif1α increased and Nrf2 decreased in mice prenatally exposed to the Mediterranean alcohol pattern. Bcl-2 was downregulated in the binge PAE drinking pattern. Troponin I, glutathione peroxidase, and Bax increased in both ethanol exposure patterns. Prenatal alcohol exposure led to cardiac dysfunction in exposed mice, evidenced by a reduced ejection fraction, left ventricle posterior wall thickness at diastole, and Tei index. EGCG postnatal therapy restored the physiological levels of these biomarkers and improved cardiac dysfunction. These findings suggest that postnatal EGCG treatment attenuates the cardiac damage caused by prenatal alcohol exposure in the offspring.
Collapse
Affiliation(s)
- Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biosanitary Research Institute, Valencian International University (VIU), 46002 Valencia, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Àgueda García-Meseguer
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Melina Vieiros
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Anna Ramos-Triguero
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Concha Muñoz-Lozano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Biosanitary Research Institute, Valencian International University (VIU), 46002 Valencia, Spain
| | - Leopoldo Martínez
- Department of Pediatric Surgery, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Óscar García-Algar
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - María D Gómez-Roig
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| |
Collapse
|
16
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
17
|
Sambo D, Gohel C, Yuan Q, Sukumar G, Alba C, Dalgard CL, Goldman D. Cell type-specific changes in Wnt signaling and neuronal differentiation in the developing mouse cortex after prenatal alcohol exposure during neurogenesis. Front Cell Dev Biol 2022; 10:1011974. [PMID: 36544903 PMCID: PMC9761331 DOI: 10.3389/fcell.2022.1011974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2022] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) encompasses an array of effects of prenatal alcohol exposure (PAE), including physical abnormalities and cognitive and behavioral deficits. Disruptions of cortical development have been implicated in multiple PAE studies, with deficits including decreased progenitor proliferation, disrupted neuronal differentiation, aberrant radial migration of pyramidal neurons, and decreased cortical thickness. While several mechanisms of alcohol teratogenicity have been explored, how specific cell types in the brain at different developmental time points may be differentially affected by PAE is still poorly understood. In this study, we used single nucleus RNA sequencing (snRNAseq) to investigate whether moderate PAE from neurulation through peak cortical neurogenesis induces cell type-specific transcriptomic changes in the developing murine brain. Cluster analysis identified 25 neuronal cell types, including subtypes of radial glial cells (RGCs), intermediate progenitor cells (IPCs), projection neurons, and interneurons. Only Wnt-expressing cortical hem RGCs showed a significant decrease in the percentage of cells after PAE, with no cell types showing PAE-induced apoptosis as measured by caspase expression. Cell cycle analysis revealed only a subtype of RGCs expressing the downstream Wnt signaling transcription factor Tcf7l2 had a decreased percentage of cells in the G2/M phase of the cell cycle, suggesting decreased proliferation in this RGC subtype and further implicating disrupted Wnt signaling after PAE at this early developmental timepoint. An increased pseudotime score in IPC and projection neuron cell types indicated that PAE led to increased or premature differentiation of these cells. Biological processes affected by PAE included the upregulation of pathways related to synaptic activity and neuronal differentiation and downregulation of pathways related to chromosome structure and the cell cycle. Several cell types showed a decrease in Wnt signaling pathways, with several genes related to Wnt signaling altered by PAE in multiple cell types. As Wnt has been shown to promote proliferation and inhibit differentiation at earlier stages in development, the downregulation of Wnt signaling may have resulted in premature neuronal maturation of projection neurons and their intermediate progenitors. Overall, these findings provide further insight into the cell type-specific effects of PAE during early corticogenesis.
Collapse
Affiliation(s)
- Danielle Sambo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Chiraag Gohel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Camille Alba
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States,*Correspondence: David Goldman,
| |
Collapse
|
18
|
Zhang X. Magnetic resonance imaging of the monkey fetal brain in utero. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:177-190. [PMID: 36937817 PMCID: PMC10019598 DOI: 10.13104/imri.2022.26.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHPs) are the closest living relatives of the human and play a critical role in investigating the effects of maternal viral infection and consumption of medicines, drugs, and alcohol on fetal development. With the advance of contemporary fast MRI techniques with parallel imaging, fetal MRI is becoming a robust tool increasingly used in clinical practice and preclinical studies to examine congenital abnormalities including placental dysfunction, congenital heart disease (CHD), and brain abnormalities non-invasively. Because NHPs are usually scanned under anesthesia, the motion artifact is reduced substantially, allowing multi-parameter MRI techniques to be used intensively to examine the fetal development in a single scanning session or longitudinal studies. In this paper, the MRI techniques for scanning monkey fetal brains in utero in biomedical research are summarized. Also, a fast imaging protocol including T2-weighted imaging, diffusion MRI, resting-state functional MRI (rsfMRI) to examine rhesus monkey fetal brains in utero on a clinical 3T scanner is introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, Georgia, 30329, USA
| |
Collapse
|
19
|
D’aloisio G, Acevedo MB, Angulo-Alcalde A, Trujillo V, Molina JC. Moderate ethanol exposure during early ontogeny of the rat alters respiratory plasticity, ultrasonic distress vocalizations, increases brain catalase activity, and acetaldehyde-mediated ethanol intake. Front Behav Neurosci 2022; 16:1031115. [DOI: 10.3389/fnbeh.2022.1031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Early ontogeny of the rat (late gestation and postnatal first week) is a sensitive period to ethanol’s positive reinforcing effects and its detrimental effects on respiratory plasticity. Recent studies show that acetaldehyde, the first ethanol metabolite, plays a key role in the modulation of ethanol motivational effects. Ethanol brain metabolization into acetaldehyde via the catalase system appears critical in modulating ethanol positive reinforcing consequences. Catalase system activity peak levels occur early in the ontogeny. Yet, the role of ethanol-derived acetaldehyde during the late gestational period on respiration response, ultrasonic vocalizations (USVs), and ethanol intake during the first week of the rat remains poorly explored. In the present study, pregnant rats were given a subcutaneous injection of an acetaldehyde-sequestering agent (D-penicillamine, 50 mg/kg) or saline (0.9% NaCl), 30 min prior to an intragastric administration of ethanol (2.0 g/kg) or water (vehicle) on gestational days 17–20. Respiration rates (breaths/min) and apneic episodes in a whole-body plethysmograph were registered on postnatal days (PDs) 2 and 4, while simultaneously pups received milk or ethanol infusions for 40-min in an artificial lactation test. Each intake test was followed by a 5-min long USVs emission record. On PD 8, immediately after pups completed a 15-min ethanol intake test, brain samples were collected and kept frozen for catalase activity determination. Results indicated that a moderate experience with ethanol during the late gestational period disrupted breathing plasticity, increased ethanol intake, as well brain catalase activity. Animals postnatally exposed to ethanol increased their ethanol intake and exerted differential affective reactions on USVs and apneic episodes depending on whether the experience with ethanol occur prenatal or postnatally. Under the present experimental conditions, we failed to observe, a clear role of acetaldehyde mediating ethanol’s effects on respiratory plasticity or affective states, nevertheless gestational acetaldehyde was of crucial importance in determining subsequent ethanol intake affinity. As a whole, results emphasize the importance of considering the participation of acetaldehyde in fetal programming processes derived from a brief moderate ethanol experience early in development, which in turn, argues against “safe or harmless” ethanol levels of exposure.
Collapse
|
20
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Bradley R, Lakpa KL, Burd M, Mehta S, Katusic MZ, Greenmyer JR. Fetal Alcohol Spectrum Disorder and Iron Homeostasis. Nutrients 2022; 14:4223. [PMID: 36296909 PMCID: PMC9607572 DOI: 10.3390/nu14204223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 09/19/2023] Open
Abstract
Prenatal alcohol exposure results in a spectrum of behavioral, cognitive, and morphological abnormalities collectively referred to as fetal alcohol spectrum disorder (FASD). FASD presents with significant phenotypic variability and may be modified by gestational variables such as maternal nutritional status. Iron serves a critical function in the development of and processes within central nervous system (CNS) structures. Gestational iron deficiency alters CNS development and may contribute to neurodevelopmental impairment in FASD. This review explores the relationship between iron deficiency and fetal alcohol spectrum disorder as described in small animal and human studies. Consideration is given to the pathophysiologic mechanisms linking iron homeostasis and prenatal alcohol exposure. Existing data suggest that iron deficiency contributes to the severity of FASD and provide a mechanistic explanation linking these two conditions.
Collapse
Affiliation(s)
- Regan Bradley
- School of Medicine, University of North Dakota, Grand Forks, ND 58201, USA
| | - Koffi L. Lakpa
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Burd
- School of Medicine, University of North Dakota, Grand Forks, ND 58201, USA
| | - Sunil Mehta
- Mayo Clinic, Developmental and Behavioral Pediatrics, Psychiatry and Psychology, Rochester, MN 55905, USA
| | - Maja Z. Katusic
- Mayo Clinic, Pediatric and Adolescent Medicine, Rochester, MN 55905, USA
| | - Jacob R. Greenmyer
- Mayo Clinic, Pediatric and Adolescent Medicine, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Sex-Related Differences in Voluntary Alcohol Intake and mRNA Coding for Synucleins in the Brain of Adult Rats Prenatally Exposed to Alcohol. Biomedicines 2022; 10:biomedicines10092163. [PMID: 36140264 PMCID: PMC9496239 DOI: 10.3390/biomedicines10092163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Maternal alcohol consumption is one of the strong predictive factors of alcohol use and consequent abuse; however, investigations of sex differences in response to prenatal alcohol exposure (PAE) are limited. Here we compared the effects of PAE throughout gestation on alcohol preference, state anxiety and mRNA expression of presynaptic proteins α-, β- and γ-synucleins in the brain of adult (PND60) male and female Wistar rats. Total RNA was isolated from the hippocampus, midbrain and hypothalamus and mRNA levels were assessed with quantitative RT-PCR. Compared with naïve males, naïve female rats consumed more alcohol in “free choice” paradigm (10% ethanol vs. water). At the same time, PAE produced significant increase in alcohol consumption and preference in males but not in females compared to male and female naïve groups, correspondingly. We found significantly lower α-synuclein mRNA levels in the hippocampus and midbrain of females compared to males and significant decrease in α-synuclein mRNA in these brain areas in PAE males, but not in females compared to the same sex controls. These findings indicate that the impact of PAE on transcriptional regulation of synucleins may be sex-dependent, and in males’ disruption in α-synuclein mRNA expression may contribute to increased vulnerability to alcohol-associated behavior.
Collapse
|
23
|
Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci 2022; 12:brainsci12060793. [PMID: 35741678 PMCID: PMC9220802 DOI: 10.3390/brainsci12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation, and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent FASD-like neurobehavioral deficits in mice.
Collapse
|
24
|
Komada M, Nishimura Y. Epigenetics and Neuroinflammation Associated With Neurodevelopmental Disorders: A Microglial Perspective. Front Cell Dev Biol 2022; 10:852752. [PMID: 35646933 PMCID: PMC9133693 DOI: 10.3389/fcell.2022.852752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a cause of neurodevelopmental disorders such as autism spectrum disorders, fetal alcohol syndrome, and cerebral palsy. Converging lines of evidence from basic and clinical sciences suggest that dysregulation of the epigenetic landscape, including DNA methylation and miRNA expression, is associated with neuroinflammation. Genetic and environmental factors can affect the interaction between epigenetics and neuroinflammation, which may cause neurodevelopmental disorders. In this minireview, we focus on neuroinflammation that might be mediated by epigenetic dysregulation in microglia, and compare studies using mammals and zebrafish.
Collapse
Affiliation(s)
- Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Yuhei Nishimura,
| |
Collapse
|
25
|
Gelfo F, Petrosini L. Environmental Enrichment Enhances Cerebellar Compensation and Develops Cerebellar Reserve. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095697. [PMID: 35565093 PMCID: PMC9099498 DOI: 10.3390/ijerph19095697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
The brain is able to change its structure and function in response to environmental stimulations. Several human and animal studies have documented that enhanced stimulations provide individuals with strengthened brain structure and function that allow them to better cope with damage. In this framework, studies based on the exposure of animals to environmental enrichment (EE) have provided indications of the mechanisms involved in such a beneficial action. The cerebellum is a very plastic brain region that responds to every experience with deep structural and functional rearrangement. The present review specifically aims to collect and synthesize the evidence provided by animal models on EE exposure effects on cerebellar structure and function by considering the studies on healthy subjects and on animals exposed to EE both before and after damage involving cerebellar functionality. On the whole, the evidence supports the role of EE in enhancing cerebellar compensation and developing cerebellar reserve. However, since studies addressing this issue are still scarce, large areas of inconsistency and lack of clarity remain. Further studies are required to provide suggestions on possible mechanisms of enhancement of compensatory responses in human patients following cerebellar damage.
Collapse
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy;
- Correspondence:
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy;
| |
Collapse
|
26
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
27
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
28
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
29
|
Mooney SM, Pjetri E, Friday WB, Smith SM. Growth and behavioral differences in a C57BL/6J mouse model of prenatal alcohol exposure. Alcohol 2021; 97:51-57. [PMID: 34592334 DOI: 10.1016/j.alcohol.2021.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce behavioral deficits in the presence or absence of growth and morphological deficits. Here, we describe a murine PAE model having parallels to the clinical diagnosis of alcohol-related neurodevelopmental deficit (ARND). METHODS Pregnant C57BL/6J mice were gavaged with alcohol (ALC, 3 g/kg) or maltodextrin daily on embryonic days (E) E8.5 through E17.5. Blood alcohol levels were 211 ± 14 mg/dL at 30 min post-gavage. Offspring behavior was tested at adolescence. RESULTS ALC dams gained less weight during the alcohol exposure period (p = 0.035). ALC male and female pups weighed more than controls at P15 (p ≤ 0.001) and P22 (p ≤ 0.001), but not at P37, perhaps because their dams were pair-housed. During the training session for accelerating rotarod, control offspring trended to stay longer on the rotarod than did ALC offspring [F(1,54) = 2.892, p = 0.095]. In the Y-maze, ALC offspring had a higher percent alternation than did controls [F(1,54) = 16.577, p < 0.001], but activity level did not appear to differ. In the fear-conditioning test, there was no ALC effect in the training trial. In the contextual test, there was a group × minute effect for males [F(4,120) = 2.94, p = 0.023], and ALC trended to freeze less than controls in minute 1 (p = 0.076) and froze less in minute 2 (p = 0.02). In the cue test, there was a trend for a group-sex interaction [F(1,53) = 3.008, p = 0.089] on overall freezing, such that ALC males (p < 0.05) again froze less than control males, whereas ALC females (p < 0.05) froze more than control females. CONCLUSIONS This mouse model of PAE, using a repeated intermediate exposure, produces modest behavioral impairments that are consistent along the continuum of PAE models, including deficits in associative memory and hyper-responsivity. The lack of growth or morphological deficits suggests these mice may model aspects of ARND.
Collapse
|
30
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
31
|
Little B, Sud N, Nobile Z, Bhattacharya D. Teratogenic effects of maternal drug abuse on developing brain and underlying neurotransmitter mechanisms. Neurotoxicology 2021; 86:172-179. [PMID: 34391795 DOI: 10.1016/j.neuro.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
The aim of this review is to highlight our knowledge of the various drugs of abuse that can prove potential teratogens affecting the brain and cognitive development in an individual exposed to maternal consumption of such agents. Among several drugs of abuse in women, we specifically highlighted the commonly used alcohol, nicotine, opioids, cannabis, cocaine and marijuana. These drugs can affect the fetal development and slow the cognitive maturation apart from physical disabilities. However, no known therapy exists to counter the toxic potential of these drugs. Several researchers used animal models of drug abuse to understand the underlying mechanisms affecting brain development and the relevant neurotransmitter system. Identifying such targets can potentially help in drug discovery research. We reported in depth analysis of such mechanisms and discussed the potential targets for drug development research.
Collapse
Affiliation(s)
- Brianna Little
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States
| | - Neilesh Sud
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States
| | - Zachary Nobile
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States
| | - Dwipayan Bhattacharya
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States.
| |
Collapse
|
32
|
Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients 2021; 13:nu13072232. [PMID: 34209677 PMCID: PMC8308206 DOI: 10.3390/nu13072232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, neurological and neurodegenerative disorders research has focused on altered molecular mechanisms in search of potential pharmacological targets, e.g., imbalances in mechanisms of response to oxidative stress, inflammation, apoptosis, autophagy, proliferation, differentiation, migration, and neuronal plasticity, which occur in less common neurological and neurodegenerative pathologies (Huntington disease, multiple sclerosis, fetal alcohol spectrum disorders, and Down syndrome). Here, we assess the effects of different catechins (particularly of epigalocatechin-3-gallate, EGCG) on these disorders, as well as their use in attenuating age-related cognitive decline in healthy individuals. Antioxidant and free radical scavenging properties of EGCG -due to their phenolic hydroxyl groups-, as well as its immunomodulatory, neuritogenic, and autophagic characteristics, makes this catechin a promising tool against neuroinflammation and microglia activation, common in these pathologies. Although EGCG promotes the inhibition of protein aggregation in experimental Huntington disease studies and improves the clinical severity in multiple sclerosis in animal models, its efficacy in humans remains controversial. EGCG may normalize DYRK1A (involved in neural plasticity) overproduction in Down syndrome, improving behavioral and neural phenotypes. In neurological pathologies caused by environmental agents, such as FASD, EGCG enhances antioxidant defense and regulates placental angiogenesis and neurodevelopmental processes. As demonstrated in animal models, catechins attenuate age-related cognitive decline, which results in improvements in long-term outcomes and working memory, reduction of hippocampal neuroinflammation, and enhancement of neuronal plasticity; however, further studies are needed. Catechins are valuable compounds for treating and preventing certain neurodegenerative and neurological diseases of genetic and environmental origin. However, the use of different doses of green tea extracts and EGCG makes it difficult to reach consistent conclusions for different populations.
Collapse
|
33
|
Almeida-Toledano L, Andreu-Fernández V, Aras-López R, García-Algar Ó, Martínez L, Gómez-Roig MD. Epigallocatechin Gallate Ameliorates the Effects of Prenatal Alcohol Exposure in a Fetal Alcohol Spectrum Disorder-Like Mouse Model. Int J Mol Sci 2021; 22:ijms22020715. [PMID: 33450816 PMCID: PMC7828292 DOI: 10.3390/ijms22020715] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Fetal alcohol spectrum disorder is the main preventable cause of intellectual disability in the Western world. Although binge drinking is the most studied prenatal alcohol exposure pattern, other types of exposure, such as the Mediterranean, are common in specific geographic areas. In this study, we analyze the effects of prenatal alcohol exposure in binge and Mediterranean human drinking patterns on placenta and brain development in C57BL/6J mice. We also assess the impact of prenatal treatment with the epigallocatechin-3-gallate antioxidant in both groups. Study experimental groups for Mediterranean or binge patterns: (1) control; (2) ethanol; (3) ethanol + epigallocatechin-3-gallate. Brain and placental tissue were collected on gestational Day 19. The molecular pathways studied were fetal and placental growth, placental angiogenesis (VEGF-A, PLGF, VEGF-R), oxidative stress (Nrf2), and neurodevelopmental processes including maturation (NeuN, DCX), differentiation (GFAP) and neural plasticity (BDNF). Prenatal alcohol exposure resulted in fetal growth restriction and produced imbalances of placental angiogenic factors. Moreover, prenatal alcohol exposure increased oxidative stress and caused significant alterations in neuronal maturation and astrocyte differentiation. Epigallocatechin-3-gallate therapy ameliorated fetal growth restriction, attenuated alcohol-induced changes in placental angiogenic factors, and partially rescued neuronal nuclear antigen (NeuN), (doublecortin) DCX, and (glial fibrillary acidic protein) GFAP levels. Any alcohol consumption (Mediterranean or binge) during pregnancy may generate a fetal alcohol spectrum disorder phenotype and the consequences may be partially attenuated by a prenatal treatment with epigallocatechin-3-gallate.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
| | - Óscar García-Algar
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| |
Collapse
|
34
|
Dani C, Pratesi S, Mannaioni G, Gerace E. Neurotoxicity of Unconjugated Bilirubin in Neonatal Hypoxic-Ischemic Brain Injury in vitro. Front Pediatr 2021; 9:659477. [PMID: 33959576 PMCID: PMC8093500 DOI: 10.3389/fped.2021.659477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The pathophysiology of bilirubin neurotoxicity in course of hypoxic-ischemic encephalopathy (HIE) in term and preterm infants is still poorly understood. We hypothesized that oxidative stress may be a common mechanism that link hyperbilirubinemia and HIE. Objectives: The objective of the present study was to evaluate whether unconjugated bilirubin (UCB) may enhance the HI brain injury by increasing oxidative stress and to test pioglitazone and allopurinol as new antioxidant therapeutic drugs in vitro. Methods: The effects of UCB were tested on organotypic hippocampal slices subjected to 30 min oxygen-glucose deprivation (OGD), used as in vitro model of HIE. The experiments were performed on mature (14 days in culture) and immature (7 days in culture) slices, to mimic the brains of term and preterm infants, respectively. Mature and immature slices were exposed to UCB, human serum albumin (HSA), pioglitazone, and/or allopurinol for 24 h, immediately after 30 min OGD. Neuronal injury was assessed using propidium iodide (PI) fluorescence. ROS formation was quantified by using the 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) method. Results: In mature slices, we found that the neurotoxicity, as well as oxidative stress, induced by OGD were enhanced by UCB. HSA significantly prevented UCB-increased neurotoxicity, but had a slight reduction on ROS production. Allopurinol, but not pioglitazone, significantly reduced UCB-increased neurotoxicity induced by OGD. In immature slices exposed to OGD, no increase of neuronal death was observed, whereas oxidative stress was detected after UCB exposure. HSA, pioglitazone and allopurinol have no protective effects on both OGD-induced neuronal death and on UCB-induced oxidative stress. For this reason, UCB, pioglitazone and allopurinol was also tested on ischemic preconditioning protocol. We found that UCB abolished the neuroprotection induced by preconditioning and increased oxidative stress. These effects were restored by allopurinol but not pioglitazone. Conclusions: UCB characterized a different path of neuronal damage and oxidative stress in mature and immature hippocampal slice model of HIE. Management of hyperbilirubinemia in a complex pathological condition, such as HIE and hyperbilirubinemia, should be very careful. Allopurinol could deserve attention as a novel pharmacological intervention for hyperbilirubinemia and HIE.
Collapse
Affiliation(s)
- Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Simone Pratesi
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Léger C, Dupré N, Laquerrière A, Lecointre M, Dumanoir M, Janin F, Hauchecorne M, Fabre M, Jégou S, Frébourg T, Cleren C, Leroux P, Marcorelles P, Brasse-Lagnel C, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure exacerbates endothelial protease activity from pial microvessels and impairs GABA interneuron positioning. Neurobiol Dis 2020; 145:105074. [PMID: 32890773 DOI: 10.1016/j.nbd.2020.105074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
In utero alcohol exposure can induce severe neurodevelopmental disabilities leading to long-term behavioral deficits. Because alcohol induces brain defects, many studies have focused on nervous cells. However, recent reports have shown that alcohol markedly affects cortical angiogenesis in both animal models and infants with fetal alcohol spectrum disorder (FASD). In addition, the vascular system is known to contribute to controlling gamma-aminobutyric acid (GABA)ergic interneuron migration in the developing neocortex. Thus, alcohol-induced vascular dysfunction may contribute to the neurodevelopmental defects in FASD. The present study aimed at investigating the effects of alcohol on endothelial activity of pial microvessels. Ex vivo experiments on cortical slices from mouse neonates revealed that in endothelial cells from pial microvessels acute alcohol exposure inhibits both glutamate-induced calcium mobilization and activities of matrix metalloproteinase-9 (MMP-9) and tissue plasminogen activator (tPA). The inhibitory effect of alcohol on glutamate-induced MMP-9 activity was abrogated in tPA-knockout and Grin1flox/VeCadcre mice suggesting that alcohol interacts through the endothelial NMDAR/tPA/MMP-9 vascular pathway. Contrasting with the effects from acute alcohol exposure, in mouse neonates exposed to alcohol in utero during the last gestational week, glutamate exacerbated both calcium mobilization and endothelial protease activities from pial microvessels. This alcohol-induced vascular dysfunction was associated with strong overexpression of the N-methyl-d-aspartate receptor subunit GluN1 and mispositioning of the Gad67-GFP interneurons that normally populate the superficial cortical layers. By comparing several human control fetuses with a fetus chronically exposed to alcohol revealed that alcohol exposure led to mispositioning of the calretinin-positive interneurons, whose density was decreased in the superficial cortical layers II-III and increased in deepest layers. This study provides the first mechanistic and functional evidence that alcohol impairs glutamate-regulated activity of pial microvessels. Endothelial dysfunction is characterized by altered metalloproteinase activity and interneuron mispositioning, which was also observed in a fetus with fetal alcohol syndrome. These data suggest that alcohol-induced endothelial dysfunction may contribute in ectopic cortical GABAergic interneurons, that has previously been described in infants with FASD.
Collapse
Affiliation(s)
- Cécile Léger
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Nicolas Dupré
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maryline Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Marion Dumanoir
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - François Janin
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Michelle Hauchecorne
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maëlle Fabre
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sylvie Jégou
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frébourg
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Carine Cleren
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Philippe Leroux
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Carole Brasse-Lagnel
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Florent Marguet
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|