1
|
Leone F, Gori A, Cinicola BL, Brindisi G, Maglione V, Anania C, Zicari AM. Extra X, extra questions: Trisomy X syndrome and IgA deficiency - a case report. Front Immunol 2024; 15:1518076. [PMID: 39712011 PMCID: PMC11659227 DOI: 10.3389/fimmu.2024.1518076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
While Trisomy X syndrome is typically characterized by developmental and cognitive variations, it is not commonly associated with immunodeficiencies. We report the unique case of a 6-year-old girl with Trisomy X presenting with selective IgA deficiency, challenging the conventional understanding of this chromosomal condition. The patient exhibited recurrent respiratory infections and gastrointestinal symptoms, evaluated in the context of her genetic background of Trisomy X and significantly low levels of IgA (0.03 g/L), yet normal IgG and IgM levels. Immunological assessment revealed a poor response to vaccination to HBV, necessitating an adapted vaccination strategy. Gastrointestinal investigations indicated paradoxical diarrhea secondary to chronic constipation, managed with dietary interventions. The presence of an extra X chromosome raises questions about the potential over-expression of genes that escape X-chromosome inactivation, such as FOXP3, which is crucial for the regulation of regulatory T cells. An abnormal expression of FOXP3 could lead to either heightened immune regulation, increasing susceptibility to infections, or to immune dysregulation. Although Trisomy X is not typically associated with immunodeficiencies, this case, paralleled by another patient with Trisomy X and CVID, suggests a need for further speculative research into possible genetic links. Moreover, a 1969 study reported lower IgA levels in women with an extra X chromosome. In conclusion, this case aims to underscore the necessity for a deeper genetic and immunological evaluation in chromosomal anomalies like Trisomy X to fully understand their speculative impact on immune function.
Collapse
Affiliation(s)
- Fabrizio Leone
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Maglione
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Jones K, Plotkin L, Loukogeorgakis S, Cytter-Kuint R, Worth A, Turner D. The Management of Internal Fistulizing Crohn's Disease in a Child: More Than Meets the Eye. Gastroenterology 2024:S0016-5085(24)05644-0. [PMID: 39477027 DOI: 10.1053/j.gastro.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Kelsey Jones
- Paediatric Gastroenterology, Great Ormand Street Hospital, London, UK
| | - Luba Plotkin
- Juliet Keidan Institute of Pediatric Gastroenterology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel
| | - Stavros Loukogeorgakis
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, Research and Teaching Department of Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London UK
| | - Ruth Cytter-Kuint
- Pediatric Radiology Unit, Radiology department, The Eisenberg R&D Authority, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel
| | - Austen Worth
- Department of Pediatric Immunology and Gene Therapy, Great Ormand Street Hospital, London, UK
| | - Dan Turner
- Paediatric Gastroenterology, Great Ormand Street Hospital, London, UK; Juliet Keidan Institute of Pediatric Gastroenterology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
3
|
Luo J, He L, Guo Y, Wang J, Liu H, Li Z. MCPIP1 Elicits a Therapeutic Effect on Cervical Cancer by Facilitating XIAP mRNA Decay via Its Endoribonuclease Activity. Int J Mol Sci 2024; 25:10285. [PMID: 39408613 PMCID: PMC11477132 DOI: 10.3390/ijms251910285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Cervical cancer is the fourth most common malignancy in women globally. Chemotherapies, targeted therapies, and immunotherapies in the treatment of cervical cancer are usually accompanied by effective and adverse effects. Therefore, finding other efficient and accurate molecular targets remains essential to improve the treatment benefits of cervical cancer patients. MCPIP1 (monocyte chemoattractant protein-induced protein 1) is a kind of endonuclease with a CCCH zinc finger domain and a PilT-N-terminal (PIN) domain, and its function in cervical cancer is unknown. We found that MCPIP1 inhibits cell proliferation and promotes cell apoptosis of cervical cancer. Additionally, MCPIP1 suppresses mRNA and protein expression of the apoptotic inhibitor XIAP by decreasing its mRNA stability. Mechanically, MCPIP1 binds to the XIAP mRNA via its CCCH zinc finger domain and degrades the XIAP mRNA via the endonuclease activity coming from its PIN domain. Our study clarifies that MCPIP1 promotes cervical cancer cell apoptosis by suppressing the expression of XIAP, thereby impeding cervical cancer progression. Moreover, targeted delivery of MCPIP1 with engineered Salmonella typhimurium leads to tumor growth retardation in the HeLa xenograft tumor model in mice. Therefore, our study may provide a theoretical basis for formulating clinical treatment strategies for cervical cancer.
Collapse
Affiliation(s)
- Junyun Luo
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Ling He
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Junzhi Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Zhaoyong Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
4
|
Machowicz R. An important step in the BIRC4 forest. Blood 2024; 144:1136-1137. [PMID: 39264611 DOI: 10.1182/blood.2024025480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
|
5
|
Dissanayake D, Firouzabady A, Massumi M, de Paz Linares GA, Marshall C, Freeman SA, Laxer RM, Yeung RSM. Interleukin-1-mediated hyperinflammation in XIAP deficiency is associated with defective autophagy. Blood 2024; 144:1183-1192. [PMID: 38820590 DOI: 10.1182/blood.2023023707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is a rare genetic condition that can present with recurrent episodes of hemophagocytic lymphohistiocytosis (HLH), though the exact mechanisms leading to this hyperinflammatory disorder are unclear. Understanding its biology is critical to developing targeted therapies for this potentially fatal disease. Here, we report on a novel multiexonic intragenic duplication leading to XIAP deficiency with recurrent HLH that demonstrated complete response to interleukin (IL)-1β blockade. We further demonstrate using both primary patient cells and genetically modified THP-1 monocyte cell lines that, contrary to what has previously been shown in mouse cells, XIAP-deficient human macrophages do not produce excess IL-1β when stimulated under standard conditions. Instead, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated hyperproduction of IL-1β is observed only when the XIAP-deficient cells are stimulated under autophagy-promoting conditions and this correlates with defective autophagic flux as measured by decreased accumulation of the early autophagy marker LC3-II. This work, therefore, highlights IL-1β blockade as a therapeutic option for patients with XIAP deficiency experiencing recurrent HLH and identifies a critical role for XIAP in promoting autophagy as a means of limiting IL-1β-mediated hyperinflammation during periods of cellular stress.
Collapse
Affiliation(s)
- Dilan Dissanayake
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Mohammad Massumi
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | | | - Christian Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ronald M Laxer
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
An J, Marwaha A, Laxer RM. Autoinflammatory Diseases: A Review. J Rheumatol 2024; 51:848-861. [PMID: 38879186 DOI: 10.3899/jrheum.2023-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Autoinflammatory disease (AID) is a vast spectrum of disorders characterized by recurrent attacks of sterile inflammation. Since the first cloning of the familial Mediterranean fever gene in 1997, there has been a rapid rate of discovery of new AIDs. As of 2022, there have been 485 inborn errors of immunity documented by the International Union of Immunological Societies, for which many display aspects of autoinflammation. The pathophysiology of AIDs is complex. Although many are caused by rare mutations in genes that govern innate immunity, others are polygenic, where disease expression is thought to be triggered by environmental factors in genetically predisposed hosts. AIDs range in prevalence from common entities like gout to ultrarare monogenic diseases. Whereas AIDs were initially studied in pediatric populations, it is now apparent that they can present in adulthood and even in the elderly. AIDs can be clinically challenging given their rarity, as well as the heterogeneity in presentation and underlying etiology. Although the care of AIDs can span medical disciplines, the rheumatologist often plays a central role given the inflammatory nature of these illnesses. In this review, we explore the current understanding of the pathophysiology of these complex conditions and propose a classification system for AIDs. We place an emphasis on AIDs that present to the adult rheumatologist and discuss important AIDs that can mimic more classic rheumatic diseases such as systemic lupus erythematosus and inflammatory arthritis. Finally, we offer an approach to the clinical assessment, diagnosis, and management of AIDs.
Collapse
Affiliation(s)
- Jason An
- J. An, MD, MSc, Division of Rheumatology, Hospital for Sick Children, University of Toronto, Toronto, Ontario;
| | - Ashish Marwaha
- A. Marwaha, MD, PhD, Department of Medical Genetics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta
| | - Ronald M Laxer
- R.M. Laxer, MDCM, Division of Rheumatology, Hospital for Sick Children, University of Toronto, and Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Mertz P, Hentgen V, Boursier G, Elhani I, Calas L, Delon J, Georgin-Lavialle S. [Autoinflammatory diseases associated with IL-18]. Rev Med Interne 2024:S0248-8663(24)00736-7. [PMID: 39155178 DOI: 10.1016/j.revmed.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Autoinflammatory diseases (AIDs) are conditions characterized by dysfunction of innate immunity, causing systemic inflammation and various clinical symptoms. The field of AIDs has expanded due to improved comprehension of pathophysiological mechanisms and advancements in genomics techniques. A new emerging category of AIDs is characterized by a significant increase in interleukin 18 (IL-18), a pro-inflammatory cytokine synthesized in macrophages and activated by caspase 1 via various inflammasomes. IL-18 plays a role in the regulation of innate and adaptive immunity. IL-18 is involved in various functions, such as the proliferation, survival, and differentiation of immune cells, tissue infiltration of immune cells, polarization of immune responses, and production of other pro-inflammatory cytokines. This review analyzes the literature on IL-18 regarding its functions and its implications in the diagnosis and treatment of AIDs. IL-18-associated AIDs comprise Still's disease and diseases associated with mutations in NLRC4, XIAP, CDC42, and PSTPIP1, as well as IL-18BP deficiencies. With the exception of PSTPIP1-associated diseases, these conditions all carry a risk of macrophagic activation syndrome. Measuring IL-18 levels in serum can aid in the diagnosis, prognosis, and monitoring of these diseases. Therapies targeting IL-18 and its signaling pathways are currently under investigation.
Collapse
Affiliation(s)
- Philippe Mertz
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Centre hospitalier de Versailles, 78150 le Chesnay, France; Institut Cochin, Inserm, CNRS, université Paris Cité, F-75014 Paris, France
| | - Véronique Hentgen
- Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Centre hospitalier de Versailles, 78150 le Chesnay, France
| | - Guilaine Boursier
- Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Service de génétique moléculaire et cytogénomique, laboratoire de référence des maladies rares et auto-inflammatoires, IRMB, Inserm, CHU de Montpellier, université de Montpellier, Montpellier, France
| | - Ines Elhani
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France
| | - Laure Calas
- Laboratoire de biochimie et hormonologie, hôpital Tenon, APHP, Sorbonne université, 4, rue de la Chine, 75020 Paris, France; Inserm, UMRS 1155 UPMC, hôpital Tenon, Sorbonne université, Paris, France
| | - Jerome Delon
- Institut Cochin, Inserm, CNRS, université Paris Cité, F-75014 Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France.
| |
Collapse
|
8
|
Santoro L, Grillo F, D'Armiento M, Buccoliero AM, Rocco M, Ferro J, Vanoli A, Cafferata B, Macciomei MC, Mescoli C, Cananzi M, Alaggio R, Fassan M, Mastracci L, Francalanci P, Parente P. Clinicopathologic Features of Primary Immunodeficiency Monogenic Disease-related Very Early Onset Inflammatory Bowel Disease: Focus on Gastrointestinal Histologic Features in IFIH1 Mutations. Adv Anat Pathol 2024:00125480-990000000-00113. [PMID: 39140676 DOI: 10.1097/pap.0000000000000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is a clinical term referring to IBD-like symptomatology arising in children younger than 6 years. VEO-IBD may be due to polygenic etiology in "pure" IBD (Crohn disease-CD and ulcerative colitis-UC), or it may be caused by primary immunodeficiency underlined by monogenic disease. Primary immunodeficiency monogenic diseases have a Mendelian inheritance and affect the immune system with multiorgan morbidity and possible effects on the gastrointestinal system. Primary Immunodeficiency monogenic diseases differ from "pure" IBD as the latter primarily affect the gastrointestinal tract with mitigated extraintestinal symptomatology. Since their first description, primary immunodeficiency monogenic diseases, although rare, have been the subject of increasing interest due to their dramatic phenotype, difficulty in reaching a timely diagnosis, and specific therapeutic approach. In this paper, we present a brief review of primary immunodeficiency monogenic diseases, focusing on to their clinicopathologic features as well as delving, in greater detail, into monogenic diseases caused by IFIH1 mutations. The clinicopathologic features of 4 patients with IFIH1, a gene involved in interferon pathway deficiency, will be described using a histologic pattern of damage approach confirming the need to avoid the histologic diagnosis of VEO-IBD in children younger than 6 years.
Collapse
Affiliation(s)
- Luisa Santoro
- Pathology Unit, Azienda Ospedaliera Padova, Via Ospedale Vecchio
| | - Federica Grillo
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova
| | - Maria D'Armiento
- Pathology Unit, Department of Public Health, University of Naples Federico II, Via Sergio Pansini, Napoli
| | | | - Michele Rocco
- Department of Pathology, Santobono-Pausilipon, Children's Hospital, Naples
| | - Jacopo Ferro
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo, Genova
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, Viale Camillo, Pavia
| | - Barbara Cafferata
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo, Genova
| | | | - Claudia Mescoli
- Pathology Unit, Azienda Ospedaliera Padova, Via Ospedale Vecchio
| | - Mara Cananzi
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Via Ospedale Vecchio, Padova, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, IRCCS Bambino Gesù Children's Hospital, Roma
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University Hospital of Padua, Via Aristide Gabelli
- Veneto Institute of Oncology IOV-IRCCS, Viale Gattamelata, Padua
| | - Luca Mastracci
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova
| | - Paola Francalanci
- Pathology Unit, Department of Laboratories, IRCCS Bambino Gesù Children's Hospital, Roma
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
9
|
Jafarpour S, Banerjee AK, Khoshnood MM, Vogel BN, Boyd NK, Nguyen L, Partridge R, Santoro SL, Gombolay GY, Fisher KS, de Asua DR, Del Ortega MC, Franklin C, Rafii MS, Santoro JD. De novo variants in immune regulatory genes in Down syndrome regression disorder. J Neurol 2024; 271:5567-5576. [PMID: 38909119 PMCID: PMC11319504 DOI: 10.1007/s00415-024-12521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Down Syndrome Regression Disorder (DSRD) is a rare and poorly understood disorder of the central nervous system, characterized by acute or subacute neuropsychiatric symptoms in previously healthy individuals with Down syndrome (DS). Many patients exhibit immunotherapy-responsiveness, indicative of immune dysregulation as a potential underlying etiology. While hypotheses are emerging regarding the role of interferon signaling in DSRD and other autoimmune conditions associated with DS, it is unclear why a small subset of individuals with DS develop DSRD. The aim of this study was to investigate genes of immune regulation in persons with DSRD. METHODS This study included individuals with DSRD aged 10-30 years with trio exome sequencing performed during the diagnostic work up. Descriptive statistics and univariate analysis (Chi-square and Fisher's exact test) were used to describe and compare the characteristics of individuals with and without variants. RESULTS Forty-one individuals with DSRD had trio exome sequencing results. Eight (20%) had heterozygous de novo variants of immune regulatory genes, with four variants being pathogenic or likely pathogenic (UNC13D, XIAP, RNASEH2A, and DNASE1L3). All genes harboring pathogenic variants were associated with interferon type-1 inflammatory response. Individuals harboring variants were more likely to have a preceding trigger (p = 0.03, 95% CI 1.21-97.06), rapid clinical decline in less than 1 month (p = 0.01, 95% CI 1.67-52.06), and MRI abnormalities (p < 0.001, 95% CI 4.89-527.71). DISCUSSION A distinct subset of individuals with DSRD exhibited pathogenic variants in immune regulation genes associated with interferon-mediated inflammatory response, coinciding with previously established links between these genes and interferonopathies such as Aicardi-Goutieres syndrome. Our observations suggest that these variants might potentially contribute to the development of DSRD in individuals with DS.
Collapse
Affiliation(s)
- Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Abhik K Banerjee
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Mellad M Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Los Angeles General Hospital, Los Angeles, CA, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | | | - Stephanie L Santoro
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Down Syndrome Program, Massachusetts General Hospital, Boston, MA, USA
| | - Grace Y Gombolay
- Division of Neurology, Department of Pediatrics, Emory School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kristen S Fisher
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Diego Real de Asua
- Adult Down Syndrome Outpatient Clinic, Department of Internal Medicine, Fundación de Investigación Biomédica, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Cathy Franklin
- Department of Psychiatry, Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA.
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Kim D, Liu S, Zolotov E, Padalkar R. X-linked Inhibitor of Apoptosis (XIAP) Deficiency Complicated by Hemophagocytic Lymphohistiocytosis on Immunotherapy Leading to Acute Respiratory Distress Syndrome and Multiorgan Failure Secondary to Opportunistic Infections. Cureus 2024; 16:e62703. [PMID: 38912075 PMCID: PMC11190967 DOI: 10.7759/cureus.62703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency is a rare primary immunodeficiency with a broad spectrum of clinical manifestations, including susceptibility to hemophagocytic lymphohistiocytosis (HLH), inflammatory bowel disease (IBD), hypogammaglobulinemia, and severe infections. We present a case of a 39-year-old male with a past medical history of XIAP deficiency complicated by HLH, Crohn's disease, and hypogammaglobulinemia, who developed acute respiratory distress syndrome (ARDS) due to Pneumocystis jiroveci pneumonia (PJP) and concurrent multiorgan failure due to disseminated Mycobacterium avium intracellulare (MAI) infection. This case highlights the challenges in managing XIAP deficiency, emphasizing the importance of early recognition, and the need for further research to improve outcomes in this population.
Collapse
Affiliation(s)
- David Kim
- Internal Medicine, Hackensack University Medical Center, Hackensack, USA
| | - Stephanie Liu
- Family Medicine, JFK University Medical Center, Edison, USA
| | - Eli Zolotov
- Internal Medicine, Hackensack University Medical Center, Hackensack, USA
| | - Roma Padalkar
- Internal Medicine, Hackensack University Medical Center, Hackensack, USA
| |
Collapse
|
11
|
Giardino G, Lanni V, Mascolo M, Russo D, Cirillo E, Romano R, Cillo F, Grilli L, Prencipe MR, Iuliano A, Uccello G, De Fusco C, Menna G, Scalia G, Portella G, Pignata C. Case report: EBV-related eye orbits and sinuses lymphohistiocytic infiltration responsive to rituximab in a patient with X lymphoproliferative syndrome type 1. Front Immunol 2024; 15:1370991. [PMID: 38633254 PMCID: PMC11021630 DOI: 10.3389/fimmu.2024.1370991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
Background and aims X lymphoproliferative syndrome type 1 (XLP1) is a rare inborn error of immunity due to mutations of SH2D1A, encoding for slam-associated protein (SAP). The clinical phenotype includes severe mononucleosis, hemophagocytic lymphohistiocytosis (HLH), and B-cell lymphomas. Methods We report the case of a child affected with XLP1 who presented with an incomplete HLH, triggered by Epstein-Barr virus (EBV) and treated with rituximab, involving orbits and paranasal sinuses. Results The lesion was indistinguishable from lymphoma, complicating diagnosis and treatment. In addition, considering the high incidence of lymphoma in patients with XLP1, histology helped define its nature, driving therapeutic choices. Conclusion We described an unusual presentation of incomplete HLH in a patient affected with XLP1: an EBV-driven infiltration of the orbits and paranasal sinuses. This led us to a challenging differential diagnosis of lymphoma-associated hemophagocytic syndrome, which can be frequently observed in patients with XLP1. Considering the extremely poor prognosis of this clinical finding, we sought for a prompt diagnosis and managed to obtain it and to immediately establish the right treatment on the basis of the pathological finding.
Collapse
Affiliation(s)
- Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Vittoria Lanni
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Massimo Mascolo
- Department of Advanced Biomedical Sciences, Pathology Unit, Federico II University of Naples, Naples, Italy
| | - Daniela Russo
- Department of Advanced Biomedical Sciences, Pathology Unit, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Francesca Cillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Laura Grilli
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Maria Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Adriana Iuliano
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giovanni Uccello
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Carmela De Fusco
- Pediatric Hematology and Oncology, Pausilipon Hospital, Naples, Italy
| | - Giuseppe Menna
- Pediatric Hematology and Oncology, Pausilipon Hospital, Naples, Italy
| | - Giulia Scalia
- Clinical and Experimental Cytometry Unit, Centre for Advanced Biotechnology Franco Salvatore, CEINGE, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, Virology Section, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| |
Collapse
|
12
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
13
|
Oshima M, Matsukawa Y, Ikeda Y, Sakamoto K, Taga T, Maruo Y. Allogeneic Hematopoietic Cell Transplantation Ameliorated Asymptomatic Granulomatous and Lymphocytic Interstitial Lung Disease in a Patient With XIAP Deficiency. J Pediatr Hematol Oncol 2024; 46:e191-e194. [PMID: 38277621 DOI: 10.1097/mph.0000000000002819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) deficiency is an inborn error of immunity (IEI). Allogeneic hematopoietic cell transplantation (HCT) is currently the only curative therapy available for XIAP deficiency. Granulomatous and lymphocytic interstitial lung disease (GLILD) is a common immune-related lung complication of IEIs. We present a 6-year-old boy with XIAP deficiency and GLILD. Computed tomography showed lung nodes but no symptoms. Before HCT, GLILD was not managed with immunosuppressive therapy, because he was asymptomatic. The HCT procedure was subsequently performed. The post-HCT course was uneventful; follow-up computed tomography on day 46 showed nodules had disappeared. HCT could potentially ameliorate GLILD like other inflammatory processes associated with the underlying IEIs.
Collapse
Affiliation(s)
- Mai Oshima
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Papadakos S, Issa H, Alamri A, Alamri A, Semlali A. Rapamycin as a Potential Alternative Drug for Squamous Cell Gingiva Carcinoma (Ca9-22): A Focus on Cell Cycle, Apoptosis and Autophagy Genetic Profile. Pharmaceuticals (Basel) 2024; 17:131. [PMID: 38276004 PMCID: PMC10818555 DOI: 10.3390/ph17010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Oral cancer is considered as one of the most common malignancies worldwide. Its conventional treatment primarily involves surgery with or without postoperative adjuvant therapy. The targeting of signaling pathways implicated in tumorigenesis is becoming increasingly prevalent in the development of new anticancer drug candidates. Based on our recently published data, Rapamycin, an inhibitor of the mTOR pathway, exhibits selective antitumor activity in oral cancer by inhibiting cell proliferation and inducing cancer cell apoptosis, autophagy, and cellular stress. In the present study, our focus is on elucidating the genetic determinants of Rapamycin's action and the interaction networks accountable for tumorigenesis suppression. To achieve this, gingival carcinoma cell lines (Ca9-22) were exposed to Rapamycin at IC50 (10 µM) for 24 h. Subsequently, we investigated the genetic profiles related to the cell cycle, apoptosis, and autophagy, as well as gene-gene interactions, using QPCR arrays and the Gene MANIA website. Overall, our results showed that Rapamycin at 10 µM significantly inhibits the growth of Ca9-22 cells after 24 h of treatment by around 50% by suppression of key modulators in the G2/M transition, namely, Survivin and CDK5RAP1. The combination of Rapamycin with Cisplatin potentializes the inhibition of Ca9-22 cell proliferation. A P1/Annexin-V assay was performed to evaluate the effect of Rapamycin on cell apoptosis. The results obtained confirm our previous findings in which Rapamycin at 10 μM induces a strong apoptosis of Ca9-22 cells. The live cells decreased, and the late apoptotic cells increased when the cells were treated by Rapamycin. To identify the genes responsible for cell apoptosis induced by Rapamycin, we performed the RT2 Profiler PCR Arrays for 84 apoptotic genes. The blocked cells were believed to be directed towards cell death, confirmed by the downregulation of apoptosis inhibitors involved in both the extrinsic and intrinsic pathways, including BIRC5, BNIP3, CD40LG, DAPK1, LTA, TNFRSF21 and TP73. The observed effects of Rapamycin on tumor suppression are likely to involve the autophagy process, evidenced by the inhibition of autophagy modulators (TGFβ1, RGS19 and AKT1), autophagosome biogenesis components (AMBRA1, ATG9B and TMEM74) and autophagy byproducts (APP). Identifying gene-gene interaction (GGI) networks provided a comprehensive view of the drug's mechanism and connected the studied tumorigenesis processes to potential functional interactions of various kinds (physical interaction, co-expression, genetic interactions etc.). In conclusion, Rapamycin shows promise as a clinical agent for managing Ca9-22 gingiva carcinoma cells.
Collapse
Affiliation(s)
- Sofia Papadakos
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| | - Hawraa Issa
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| | - Abdulaziz Alamri
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Abdullah Alamri
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| |
Collapse
|
15
|
Lee J, Sim KM, Kang M, Oh HJ, Choi HJ, Kim YE, Pack CG, Kim K, Kim KM, Oh SH, Kim I, Chang I. Understanding the molecular mechanism of pathogenic variants of BIR2 domain in XIAP-deficient inflammatory bowel disease. Sci Rep 2024; 14:853. [PMID: 38191507 PMCID: PMC10774423 DOI: 10.1038/s41598-023-50932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) deficiency causes refractory inflammatory bowel disease. The XIAP protein plays a pivotal role in the pro-inflammatory response through the nucleotide-binding oligomerization domain-containing signaling pathway that is important in mucosal homeostasis. We analyzed the molecular mechanism of non-synonymous pathogenic variants (PVs) of XIAP BIR2 domain. We generated N-terminally green fluorescent protein-tagged XIAP constructs of representative non-synonymous PVs. Co-immunoprecipitation and fluorescence cross-correlation spectroscopy showed that wild-type XIAP and RIP2 preferentially interacted in live cells, whereas all non-synonymous PV XIAPs failed to interact properly with RIP2. Structural analysis showed that various structural changes by mutations, such as hydrophobic core collapse, Zn-finger loss, and spatial rearrangement, destabilized the two loop structures (174-182 and 205-215) that critically interact with RIP2. Subsequently, it caused a failure of RIP2 ubiquitination and loss of protein deficiency by the auto-ubiquitination of all XIAP mutants. These findings could enhance our understanding of the role of XIAP mutations in XIAP-deficient inflammatory bowel disease and may benefit future therapeutic strategies.
Collapse
Affiliation(s)
- Juhwan Lee
- iProtein Therapeutics Inc., Munji-ro 281-9, Yuseong-gu, Daejeon, Korea
| | - Kyoung Mi Sim
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Mooseok Kang
- iProtein Therapeutics Inc., Munji-ro 281-9, Yuseong-gu, Daejeon, Korea
| | - Hyun Ju Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Ho Jung Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Yeong Eun Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea.
| | - Inki Kim
- Department of Convergence Medicine, Asan Medical Center, Asan Institutes for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.
- Department of Pharmacology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea.
| | - Iksoo Chang
- Creative Research Initiatives Center for Proteome Biophysics, Department of Brain Sciences and Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
- Department of Brain Sciences and Supercomputing Big Data Center, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
16
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Chen LN, Shou ZX, Jin X. Interaction Between Genetic Susceptibility and COVID-19 Pathogenesis in Pediatric Multisystem Inflammatory Disorders: The Role of Immune Responses. Viral Immunol 2024; 37:1-11. [PMID: 38271561 DOI: 10.1089/vim.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Numerous studies have highlighted the emergence of coronavirus disease (COVID-19) symptoms reminiscent of Kawasaki disease in children, including fever, heightened multisystem inflammation, and multiorgan involvement, posing a life-threatening complication. Consequently, extensive research endeavors in pediatric have aimed to elucidate the intricate relationship between COVID-19 infection and the immune system. COVID-19 profoundly impacts immune cells, culminating in a cytokine storm that particularly inflicts damage on the pulmonary system. The gravity and vulnerability to COVID-19 are closely intertwined with the vigor of the immune response. In this context, the human leukocyte antigen (HLA) molecule assumes pivotal significance in shaping immune responses. Genetic scrutiny of HLA has unveiled the presence of at least one deleterious allele in children afflicted with multisystem inflammatory syndrome in children (MIS-C). Furthermore, research has demonstrated that COVID-19 exploits the angiotensin-converting enzyme 2 (ACE-2) receptor, transmembrane serine protease type 2, and various other genes to gain entry into host cells, with individuals harboring ACE-2 polymorphisms being at higher risk. Pediatric studies have employed diverse genetic methodologies, such as genome-wide association studies (GWAS) and whole exome sequencing, to scrutinize target genes. These investigations have pinpointed two specific genomic loci linked to the severity and susceptibility of COVID-19, with the HLA locus emerging as a notable risk factor. In this comprehensive review article, we endeavor to assess the available evidence and consolidate data, offering insights into current clinical practices and delineating avenues for future research. Our objective is to advance early diagnosis, stabilization, and appropriate management strategies to mitigate genetic susceptibility's impact on the incidence of COVID-19 in pediatric patients with multisystem inflammation.
Collapse
Affiliation(s)
- Li-Na Chen
- Department of Pediatric, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhang-Xuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
18
|
Landy E, Carol H, Ring A, Canna S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 2024; 20:33-47. [PMID: 38081945 DOI: 10.1038/s41584-023-01053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Emily Landy
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hallie Carol
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron Ring
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott Canna
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Failing C, Blase JR, Walkovich K. Understanding the Spectrum of Immune Dysregulation Manifestations in Autoimmune Lymphoproliferative Syndrome and Autoimmune Lymphoproliferative Syndrome-like Disorders. Rheum Dis Clin North Am 2023; 49:841-860. [PMID: 37821199 DOI: 10.1016/j.rdc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As a disorder of immune dysregulation, autoimmune lymphoproliferative syndrome (ALPS) stems from pathogenic variants in the first apoptosis signal-mediated apoptosis (Fas) and Fas-ligand pathway that result in elevations of CD3+ TCRαβ+ CD4- CD8- T cells along with chronic lymphoproliferation, a heightened risk for malignancy, and importantly for the rheumatologist, increased risk of autoimmunity. While immune cytopenias are the most encountered autoimmune phenomena, there is increasing appreciation for ocular, musculoskeletal, pulmonary and renal inflammatory manifestations similar to more common rheumatology diseases. Additionally, ALPS-like conditions that share similar clinical features and opportunities for targeted therapy are increasingly recognized via genetic testing, highlighting the need for rheumatologists to be facile in the recognition and diagnosis of this spectrum of disorders. This review will focus on clinical and laboratory features of both ALPS and ALPS-like disorders with the intent to provide a framework for rheumatologists to understand the pathophysiologic drivers and discriminate between diagnoses.
Collapse
Affiliation(s)
- Christopher Failing
- Sanford Health, Fargo, ND, USA; University of North Dakota School of Medicine and Health Sciences, Grand Folks, ND, USA.
| | - Jennifer R Blase
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| | - Kelly Walkovich
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Inoue T, Watabe D, Akasaka K, Sasaki T, Sasahara Y, Amano H. Refractory atopic dermatitis in a child with hypomorphic mutation in XIAP gene and low serum IgG. J Dermatol 2023; 50:e363-e365. [PMID: 37334779 DOI: 10.1111/1346-8138.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Affiliation(s)
- Tsuyoshi Inoue
- Department of Dermatology, Iwate Medical University, Yahaba-cho, Japan
| | - Daisuke Watabe
- Department of Dermatology, Iwate Medical University, Yahaba-cho, Japan
| | - Kiyomi Akasaka
- Department of Dermatology, Iwate Medical University, Yahaba-cho, Japan
| | - Tomoko Sasaki
- Department of Pediatrics, National Hospital Organization Morioka Medical Center, Morioka, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroo Amano
- Department of Dermatology, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
21
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Chen JH, Arceri T, Datta R, Sullivan KE. Delayed post-COVID-19 hemophagocytic lymphohistiocytosis in patient with XIAP deficiency. Pediatr Allergy Immunol 2023; 34:e14028. [PMID: 37747746 DOI: 10.1111/pai.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Jonathan H Chen
- Department of Internal Medicine, Lankenau Medical Center, Main Line Health, Wynnewood, Pennsylvania, USA
| | - Talia Arceri
- Division of Allergy and Immunology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahul Datta
- Division of Allergy and Immunology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Peng C, Jiang Y, Ou X, Liao L, Yang C, Zhou Q, Wei Y, Chang L, Fan X. Novel XIAP mutation with early-onset Crohn's disease complicated with acute heart failure: a case report. BMC Cardiovasc Disord 2023; 23:368. [PMID: 37479963 PMCID: PMC10362603 DOI: 10.1186/s12872-023-03386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis (XIAP) protein is encoded by the XIAP gene and is critical for multiple cell responses and plays a role in preventing cell death. XIAP mutations are associated with several diseases, primarily including hemophagocytic lymphohistiocytosis and inflammatory bowel disease (IBD). We report the clinical features and results associated with hemizygous mutation of the XIAP gene in a young male with Crohn's disease complicated with acute heart failure.This 16-year-old patient ultimately died of heart failure. CASE PRESENTATION A young male of 16 years of age was initially diagnosed with Crohn's disease based on evidences from endoscopic and histological findings. Although supportive care, anti-infective drugs and biologics were administered consecutively for 11 months, his clinical manifestations and laboratory indices (patient's condition) did not improved. Additionally, the patient exhibited a poor nutritional status and sustained weight loss. Subsequently, acute heart failure led to the exacerbation of the patient's condition. He was diagnosed with wet beriberi according to thiamine deficiency, but the standard medical therapy for heart failure and thiamine supplementation did not reverse the adverse outcomes. Comprehensive genetic analysis of peripheral blood-derived DNA revealed a novel hemizygous mutation of the XIAP gene (c.1259_1262 delACAG), which was inherited from his mother. CONCLUSION A novel XIAP mutation (c.1259_1262 delACAG) was identified in this study. It may be one of the potential pathogenic factors in Crohn's disease and plays an important role in the progression of heart failure. Additionally, thiamine deficiency triggers a vicious cycle.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Yuang Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lei Liao
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Chengying Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Qiao Zhou
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lijia Chang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, 16 Tangu-North Street, Shijiazhuang, 050000, Hebei, China.
| | - Xinrong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
24
|
Zhang Z, Yang C, Wang Z, Guo L, Xu Y, Gao C, Sun Y, Zhang Z, Peng J, Hu M, Jan Lo L, Ma Z, Chen J. Wdr5-mediated H3K4me3 coordinately regulates cell differentiation, proliferation termination, and survival in digestive organogenesis. Cell Death Discov 2023; 9:227. [PMID: 37407577 DOI: 10.1038/s41420-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of β-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.
Collapse
Affiliation(s)
- Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixu Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongpan Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou, 310016, China.
| |
Collapse
|
25
|
Azabdaftari A, Jones KDJ, Kammermeier J, Uhlig HH. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum Genet 2023; 142:599-611. [PMID: 35761107 DOI: 10.1007/s00439-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Over 100 genes are associated with monogenic forms of inflammatory bowel disease (IBD). These genes affect the epithelial barrier function, innate and adaptive immunity in the intestine, and immune tolerance. We provide an overview of newly discovered monogenic IBD genes and illustrate how a recently proposed taxonomy model can integrate phenotypes and shared pathways. We discuss how functional understanding of genetic disorders and clinical genomics supports personalised medicine for patients with monogenic IBD.
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey D J Jones
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
26
|
Bucciol G, Meyts I. Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. J Allergy Clin Immunol 2023; 151:832-840. [PMID: 36841740 PMCID: PMC9951110 DOI: 10.1016/j.jaci.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic, global sequencing efforts have led in the field of inborn errors of immunity, and inspired particularly by previous research on life-threatening influenza, they have revealed that known and novel inborn errors affecting type I interferon immunity underlie critical COVID-19 in up to 5% of cases. In addition, neutralizing autoantibodies against type I interferons have been identified in up to 20% of patients with critical COVID-19 who are older than 80 years and 20% of fatal cases, with a higher prevalence in men and individuals older than 70 years. Also, inborn errors impairing regulation of type I interferon responses and RNA degradation have been found as causes of multisystem inflammatory syndrome in children, a life-threatening hyperinflammatory condition complicating otherwise mild initial SARS-CoV-2 infection in children and young adults. Better understanding of these immunologic mechanisms can aid in designing treatments for severe COVID-19, multisystem inflammatory syndrome in children, long COVID, and neuro-COVID.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium.
| |
Collapse
|
27
|
Tomomasa D, Yamashita M, Kamiya T, Morio T, Kanegane H. Maternal Gonosomal Mosaicism Causes XIAP Deficiency. J Clin Immunol 2023; 43:525-527. [PMID: 36441290 DOI: 10.1007/s10875-022-01414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Laboratory for Transcriptional Regulation, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takahiro Kamiya
- Clinical Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Deparment of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
28
|
Hughes SA, Lin M, Weir A, Huang B, Xiong L, Chua NK, Pang J, Santavanond JP, Tixeira R, Doerflinger M, Deng Y, Yu C, Silke N, Conos SA, Frank D, Simpson DS, Murphy JM, Lawlor KE, Pearson JS, Silke J, Pellegrini M, Herold MJ, Poon IKH, Masters SL, Li M, Tang Q, Zhang Y, Rashidi M, Geng L, Vince JE. Caspase-8-driven apoptotic and pyroptotic crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP) deficiency. EMBO J 2023; 42:e110468. [PMID: 36647737 PMCID: PMC9975961 DOI: 10.15252/embj.2021110468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1β maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1β release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1β maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.
Collapse
|
29
|
Stallard L, Siddiqui I, Muise A. Beyond IBD: the genetics of other early-onset diarrhoeal disorders. Hum Genet 2023; 142:655-667. [PMID: 36788146 PMCID: PMC10182111 DOI: 10.1007/s00439-023-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
Diarrhoeal disorders in childhood extend beyond the inflammatory bowel diseases. Persistent and severe forms of diarrhoea can occur from birth and are associated with significant morbidity and mortality. These disorders can affect not only the gastrointestinal tract but frequently have extraintestinal manifestations, immunodeficiencies and endocrinopathies. Genomic analysis has advanced our understanding of these conditions and has revealed precision-based treatment options such as potentially curative haematopoietic stem cell transplant. Although many new mutations have been discovered, there is frequently no clear genotype-phenotype correlation. The functional effects of gene mutations can be studied in model systems such as patient-derived organoids. This allows us to further characterise these disorders and advance our understanding of the pathophysiology of the intestinal mucosa. In this review, we will provide an up to date overview of genes involved in diarrhoeal disorders of early onset, particularly focussing on the more recently described gene defects associated with protein loosing enteropathy.
Collapse
Affiliation(s)
- Lorraine Stallard
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iram Siddiqui
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada. .,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
30
|
Topal J, Panchal N, Barroeta A, Roppelt A, Mudde A, Gaspar HB, Thrasher AJ, Houghton BC, Booth C. Lentiviral Gene Transfer Corrects Immune Abnormalities in XIAP Deficiency. J Clin Immunol 2023; 43:440-451. [PMID: 36329240 PMCID: PMC9892131 DOI: 10.1007/s10875-022-01389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) deficiency is a severe immunodeficiency with clinical features including hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) due to defective NOD2 responses. Management includes immunomodulatory therapies and hematopoietic stem cell transplant (HSCT). However, this cohort is particularly susceptible to the chemotherapeutic regimens and acutely affected by graft-vs-host disease (GvHD), driving poor long-term survival in transplanted patients. Autologous HSC gene therapy could offer an alternative treatment option and would abrogate the risks of alloreactivity. METHODS Hematopoietic progenitor (Lin-ve) cells from XIAPy/- mice were transduced with a lentiviral vector encoding human XIAP cDNA before transplantation into irradiated XIAP y/- recipients. After 12 weeks animals were challenged with the dectin-1 ligand curdlan and recovery of innate immune function was evaluated though analysis of inflammatory cytokines, body weight, and splenomegaly. XIAP patient-derived CD14+ monocytes were transduced with the same vector and functional recovery was demonstrated using in vitro L18-MDP/NOD2 assays. RESULTS In treated XIAPy/- mice, ~40% engraftment of gene-corrected Lin-ve cells led to significant recovery of weight loss, splenomegaly, and inflammatory cytokine responses to curdlan, comparable to wild-type mice. Serum IL-6, IL-10, MCP-1, and TNF were significantly reduced 2-h post-curdlan administration in non-corrected XIAPy/- mice compared to wild-type and gene-corrected animals. Appropriate reduction of inflammatory responses was observed in gene-corrected mice, whereas non-corrected mice developed an inflammatory profile 9 days post-curdlan challenge. In gene-corrected patient CD14+ monocytes, TNF responses were restored following NOD2 activation with L18-MDP. CONCLUSION Gene correction of HSCs recovers XIAP-dependent immune defects and could offer a treatment option for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Joseph Topal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amairelys Barroeta
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Roppelt
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Annelotte Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Orchard Therapeutics, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Benjamin C Houghton
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.
| |
Collapse
|
31
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
32
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
33
|
Illig D, Kotlarz D. Dysregulated inflammasome activity in intestinal inflammation - Insights from patients with very early onset IBD. Front Immunol 2022; 13:1027289. [PMID: 36524121 PMCID: PMC9744759 DOI: 10.3389/fimmu.2022.1027289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by imbalances of the microbiome and immune dysregulations in genetically susceptible individuals. Several mouse and human studies have demonstrated that multimeric inflammasomes are critical regulators of host defense and gut homeostasis by modulating immune responses to pathogen- or damage-associated molecular patterns. In the context of IBD, excessive production of pro-inflammatory Interleukin-1β has been detected in patient-derived intestinal tissues and correlated with the disease severity or failure to respond to anti-tumor necrosis factor therapy. Correspondingly, genome-wide association studies have suggested that single nucleotide polymorphisms in inflammasome components might be associated with risk of IBD development. The relevance of inflammasomes in controlling human intestinal homeostasis has been further exemplified by the discovery of very early onset IBD (VEO-IBD) patients with monogenic defects affecting different molecules in the complex regulatory network of inflammasome activity. This review provides an overview of known causative monogenic entities of VEO-IBD associated with altered inflammasome activity. A better understanding of the molecular mechanisms controlling inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues for rare and common inflammatory diseases.
Collapse
Affiliation(s)
- David Illig
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,*Correspondence: Daniel Kotlarz,
| |
Collapse
|
34
|
Tang Y, Xu Q, Luo H, Yan X, Wang G, Hu L, Jin J, Witte DP, Marsh RA, Huang L, Huang G, Zhou J. Excessive IL-10 and IL-18 trigger hemophagocytic lymphohistiocytosis-like hyperinflammation and enhanced myelopoiesis. J Allergy Clin Immunol 2022; 150:1154-1167. [PMID: 35792218 PMCID: PMC9643619 DOI: 10.1016/j.jaci.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hyperinflammation is a life-threatening condition associated with various clinical disorders characterized by excessive immune activation and tissue damage. Multiple cytokines promote the development of hyperinflammation; however, the contribution of IL-10 remains unclear despite emerging speculations for a pathological role. Clinical observations from hemophagocytic lymphohistiocytosis (HLH), a prototypical hyperinflammatory disease, suggest that IL-18 and IL-10 may collectively promote the onset of a hyperinflammatory state. OBJECTIVE We aimed to investigate the collaborative roles of IL-10 and IL-18 in hyperinflammation. METHODS A comprehensive plasma cytokine profile for 87 secondary HLH patients was first depicted and analyzed. We then investigated the systemic and cellular effects of coelevated IL-10 and IL-18 in a transgenic mouse model and cultured macrophages. Single-cell RNA sequencing was performed on the monocytes/macrophages isolated from secondary HLH patients to explore the clinical relevance of IL-10/IL-18-mediated cellular signatures. The therapeutic efficacy of IL-10 blockade was tested in HLH mouse models. RESULTS Excessive circulating IL-10 and IL-18 triggered a lethal hyperinflammatory disease recapitulating HLH-like phenotypes in mice, driving peripheral lymphopenia and a striking shift toward enhanced myelopoiesis in the bone marrow. IL-10 and IL-18 polarized cultured macrophages to a distinct proinflammatory state with pronounced expression of myeloid cell-recruiting chemokines. Transcriptional characterization suggested the IL-10/IL-18-mediated cellular features were clinically relevant with HLH, showing enhanced granzyme expression and proteasome activation in macrophages. IL-10 blockade protected against the lethal disease in HLH mouse models. CONCLUSION Coelevated IL-10 and IL-18 are sufficient to drive HLH-like hyperinflammatory syndrome, and blocking IL-10 is protective in HLH models.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
- Division of Pathology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
| | - Qian Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
- Division of Pathology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
| | - Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
| | - Xiaomei Yan
- Division of Pathology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
| | - Liang Hu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
| | - David P. Witte
- Division of Pathology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
| | - Rebecca A. Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati, OH, 45267, USA
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
| | - Gang Huang
- Division of Pathology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, 45229, USA
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, 430030, China
| |
Collapse
|
35
|
Engelmann C, Schuhmachers P, Zdimerova H, Virdi S, Hauri-Hohl M, Pachlopnik Schmid J, Grundhoff A, Marsh RA, Wong WWL, Münz C. Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1. Cell Death Dis 2022; 13:892. [PMID: 36270981 PMCID: PMC9587222 DOI: 10.1038/s41419-022-05337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.
Collapse
Affiliation(s)
- Christine Engelmann
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sanamjeet Virdi
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Mathias Hauri-Hohl
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Adam Grundhoff
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Rebecca A. Marsh
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati, Cincinnati, OH USA
| | - Wendy Wei-Lynn Wong
- grid.7400.30000 0004 1937 0650Cell Death and Regulation of Inflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Guntiboina VA, Radhakrishnan VS, Kumar J, Bhave SJ, Vinarkar S, Das J, Arun I, Mishra DK, Chandy M, Nair R. Peripheral T-Cell Lymphoma, Hemophagocytic Lymphohistiocytosis, and XIAP Gene Mutations: Getting the Treatment Right! CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:780-784. [PMID: 35697635 DOI: 10.1016/j.clml.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
| | | | - Jeevan Kumar
- Clinical Hematology Oncology and HCT, Tata Medical Center, Kolkata, India
| | - Saurabh J Bhave
- Clinical Hematology Oncology and HCT, Tata Medical Center, Kolkata, India
| | - Sushant Vinarkar
- Laboratory Hematology and Molecular Pathology, Tata Medical Center, Kolkata, India
| | - Jayanta Das
- Nuclear Medicine, Tata Medical Center, Kolkata, India
| | - Indu Arun
- Histopathology, Tata Medical Center, Kolkata, India
| | - Deepak Kumar Mishra
- Laboratory Hematology and Molecular Pathology, Tata Medical Center, Kolkata, India
| | - Mammen Chandy
- Clinical Hematology Oncology and HCT, Tata Medical Center, Kolkata, India
| | - Reena Nair
- Clinical Hematology Oncology and HCT, Tata Medical Center, Kolkata, India
| |
Collapse
|
37
|
Wang Y, Shen L, Li G, Chen J, Ge R. Upregulation of XIAP promotes lung adenocarcinoma brain metastasis by modulating ceRNA network. Front Oncol 2022; 12:946253. [PMID: 35992856 PMCID: PMC9389361 DOI: 10.3389/fonc.2022.946253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of XIAP has been shown to affect the progression of a variety of cancers, including lung adenocarcinoma (LUAD). However, the function and mechanisms of XIAP in lung adenocarcinoma with brain metastasis (LUAD-BM) remains poorly understood. In this study, we analyzed the differential mRNA of 58 lung adenocarcinomas samples and 28 lung adenocarcinomas with brain metastases in GEO database. 191 differentially expressed mRNAs were significantly associated with immune response, the proliferation of the immune cell, cell-cell adhesion. Subsequent analyzed by lasso and SVM found that XIAP was significantly elevated in LUAD-BM and significantly associated with LUAD grade and metastasis. Then we constructed a molecular regulatory network of ncRNA-miRNA-mRNA ceRNA by Cystoscope based on the correlation obtained from Starbase. It was found that SBF2-AS1 or RUNDC3A-AS1, has-miR-338-3p and XIAP may have a regulatory relationship. Furthermore, we also initially found that XIAP was closely correlation with T cells, B cells, Mast cells, macrophages, and dendritic cells. In conclusion, we found that XIAP was significantly higher expressed in LUAD-BM compared with LUAD without brain metastasis, suggesting that XIAP may play an important role in the future prediction and clinical treatment of LUAD-BM.
Collapse
Affiliation(s)
- Yingjing Wang
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Lu Shen
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Geng Li
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Jiayi Chen
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Rong Ge
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
- *Correspondence: Rong Ge,
| |
Collapse
|
38
|
Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol 2022; 18:435-447. [PMID: 35523963 PMCID: PMC9075716 DOI: 10.1038/s41584-022-00778-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Ubiquitylation is an essential post-translational modification that regulates intracellular signalling networks by triggering proteasomal substrate degradation, changing the activity of substrates or mediating changes in proteins that interact with substrates. Hundreds of enzymes participate in reversible ubiquitylation of proteins, some acting globally and others targeting specific proteins. Ubiquitylation is essential for innate immune responses, as it facilitates rapid regulation of inflammatory pathways, thereby ensuring sufficient but not excessive responses. A growing number of inborn errors of immunity are attributed to dysregulated ubiquitylation. These genetic disorders exhibit broad clinical manifestations, ranging from susceptibility to infection to autoinflammatory and/or autoimmune features, lymphoproliferation and propensity to malignancy. Many autoinflammatory disorders result from disruption of components of the ubiquitylation machinery and lead to overactivation of innate immune cells. An understanding of the disorders of ubiquitylation in autoinflammatory diseases could enable the development of novel management strategies.
Collapse
Affiliation(s)
- David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University, New York, NY, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Miyazawa H, Wada T. Immune-mediated inflammatory diseases with chronic excess of serum interleukin-18. Front Immunol 2022; 13:930141. [PMID: 35958573 PMCID: PMC9358977 DOI: 10.3389/fimmu.2022.930141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Review: Interleukin-18 (IL-18) is a proinflammatory cytokine that promotes various innate immune processes related to infection, inflammation, and autoimmunity. Patients with systemic juvenile idiopathic arthritis and adult-onset Still’s disease exhibit chronic excess of serum IL-18, which is associated with a high incidence of macrophage activation syndrome (MAS), although the mechanisms of IL-18 regulation in such diseases remain largely unknown. Similar elevation of serum IL-18 and susceptibility to MAS/hemophagocytic lymphohistiocytosis (HLH) have been reported in monogenic diseases such as X-linked inhibitor of apoptosis deficiency (i.e., X-linked lymphoproliferative syndrome type 2) and NLRC4-associated autoinflammatory disease. Recent advances in molecular and cellular biology allow the identification of other genetic defects such as defects in CDC42, PSTPIP1, and WDR1 that result in high serum IL-18 levels and hyperinflammation. Among these diseases, chronic excess of serum IL-18 appears to be linked with severe hyperinflammation and/or predisposition to MAS/HLH. In this review, we focus on recent findings in inflammatory diseases associated with and probably attributable to chronic excess of serum IL-18 and describe the clinical and therapeutical relevance of understanding the pathology of this group of diseases.
Collapse
|
40
|
Schwalm MP, Berger LM, Meuter MN, Vasta JD, Corona CR, Röhm S, Berger BT, Farges F, Beinert SM, Preuss F, Morasch V, Rogov VV, Mathea S, Saxena K, Robers MB, Müller S, Knapp S. A Toolbox for the Generation of Chemical Probes for Baculovirus IAP Repeat Containing Proteins. Front Cell Dev Biol 2022; 10:886537. [PMID: 35721509 PMCID: PMC9204419 DOI: 10.3389/fcell.2022.886537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
E3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins via recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options. Recent efforts have focused on the E3 family of Baculovirus IAP Repeat (BIR) domains that comprise a structurally conserved but diverse 70 amino acid long protein interaction domain. In the human proteome, 16 BIR domains have been identified, among them promising drug targets such as the Inhibitors of Apoptosis (IAP) family, that typically contain three BIR domains (BIR1, BIR2, and BIR3). To date, this target area lacks assay tools that would allow comprehensive evaluation of inhibitor selectivity. As a consequence, the selectivity of current BIR domain targeting inhibitors is unknown. To this end, we developed assays that allow determination of inhibitor selectivity in vitro as well as in cellulo. Using this toolbox, we have characterized available BIR domain inhibitors. The characterized chemical starting points and selectivity data will be the basis for the generation of new chemical probes for IAP proteins with well-characterized mode of action and provide the basis for future drug discovery efforts and the development of PROTACs and molecular glues.
Collapse
Affiliation(s)
- Martin P Schwalm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Lena M Berger
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Maximilian N Meuter
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Sandra Röhm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Benedict-Tilman Berger
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Frederic Farges
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Sebastian M Beinert
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Franziska Preuss
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Viktoria Morasch
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Sebastian Mathea
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Krishna Saxena
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | | | - Susanne Müller
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Peltzer N, Annibaldi A. Cell Death-Related Ubiquitin Modifications in Inflammatory Syndromes: From Mice to Men. Biomedicines 2022; 10:biomedicines10061436. [PMID: 35740456 PMCID: PMC9219782 DOI: 10.3390/biomedicines10061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant cell death can cause inflammation and inflammation-related diseases. While the link between cell death and inflammation has been widely established in mouse models, evidence supporting a role for cell death in the onset of inflammatory and autoimmune diseases in patients is still missing. In this review, we discuss how the lessons learnt from mouse models can help shed new light on the initiating or contributing events leading to immune-mediated disorders. In addition, we discuss how multiomic approaches can provide new insight on the soluble factors released by dying cells that might contribute to the development of such diseases.
Collapse
Affiliation(s)
- Nieves Peltzer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Köln, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Steltzmann-Strasse 26, 50931 Köln, Germany
- Correspondence: (N.P.); (A.A.)
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Köln, Germany
- Correspondence: (N.P.); (A.A.)
| |
Collapse
|
42
|
Marsh RA. Does shining a spotlight on XIAP deficiency bring the role of allogeneic HCT into better focus? J Allergy Clin Immunol 2022; 150:297-298. [PMID: 35716950 DOI: 10.1016/j.jaci.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Rebecca A Marsh
- University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
43
|
Russell LG, Davis LAK, Hunter JE, Perkins ND, Kenneth NS. Increased migration and motility in XIAP-null cells mediated by the C-RAF protein kinase. Sci Rep 2022; 12:7943. [PMID: 35562367 PMCID: PMC9106734 DOI: 10.1038/s41598-022-11438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
The product encoded by the X-linked inhibitor of apoptosis (XIAP) gene is a multi-functional protein which not only controls caspase-dependent cell death, but also participates in inflammatory signalling, copper homeostasis, response to hypoxia and control of cell migration. Deregulation of XIAP, either by elevated expression or inherited genetic deletion, is associated with several human disease states. Reconciling XIAP-dependent signalling pathways with its role in disease progression is essential to understand how XIAP promotes the progression of human pathologies. In this study we have created a panel of genetically modified XIAP-null cell lines using TALENs and CRISPR/Cas9 to investigate the functional outcome of XIAP deletion. Surprisingly, in our genetically modified cells XIAP deletion had no effect on programmed cell death, but instead the primary phenotype we observed was a profound increase in cell migration rates. Furthermore, we found that XIAP-dependent suppression of cell migration was dependent on XIAPdependent control of C-RAF levels, a protein kinase which controls cell signalling pathways that regulate the cytoskeleton. These results suggest that XIAP is not necessary for control of the apoptotic signalling cascade, however it does have a critical role in controlling cell migration and motility that cannot be compensated for in XIAP-knockout cells.
Collapse
Affiliation(s)
- Lauren G Russell
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lydia A K Davis
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jill E Hunter
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Niall S Kenneth
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
44
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This review is meant to describe the genetic associations with pediatric severe COVID-19 pneumonia and the postinfectious complication of the multisystem inflammatory syndrome in children (MIS-C). Multiple genetic approaches have been carried out, primarily in adults with extrapolation to children, including genome-wide association studies (GWAS), whole exome and whole genome sequencing (WES/WGS), and target gene analyses. RECENT FINDINGS Data from adults with severe COVID-19 have identified genomic regions (human leukocyte antigen locus and 3p21.31) as potential risk factors. Genes related to viral entry into cells (ABO blood group locus, ACE2, TMPRS22) have been linked to severe COVID-19 patients by GWAS and target gene approaches. Type I interferon (e.g. IFNAR2) and antiviral gene (e.g. TLR7) associations have been identified by several genetic approaches in severe COVID-19. WES has noted associations with several immune regulatory genes (e.g. SOCS1). Target gene approaches have identified mutations in perforin-mediated cytolytic pathway genes in children and adults with severe COVID-19 and children with MIS-C. SUMMARY Several genetic associations have been identified in individuals with severe COVID-19 and MIS-C via various genetic approaches. Broadly speaking, COVID-19 genetic associations include genes involved with antiviral functions, viral cell entry, immune regulation, chemotaxis of white blood cells, and lymphocyte cytolytic function.
Collapse
Affiliation(s)
- Grant S. Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sydney A. Blum
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center
| | - Randy Q. Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
46
|
Azabdaftari A, Uhlig HH. Paneth cell dysfunction and the intestinal microbiome in XIAP deficiency. Sci Immunol 2021; 6:eabm0293. [PMID: 34739344 DOI: 10.1126/sciimmunol.abm0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|