1
|
Liu M, Du X, Chen H, Bai C, Lan L. Systemic investigation of di-isobutyl phthalate (DIBP) exposure in the risk of cardiovascular via influencing the gut microbiota arachidonic acid metabolism in obese mice model. Regen Ther 2024; 27:290-300. [PMID: 38638558 PMCID: PMC11024931 DOI: 10.1016/j.reth.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
Phthalate esters (PE), a significant class of organic compounds used in industry, can contaminate humans and animals by entering water and food chains. Recent studies demonstrate the influence of PE on the development and progression of heart diseases, particularly in obese people. Di-isobutyl phthalate (DIBP) was administered orally to normal and diet-induced obese mice in this research to assess cardiovascular risk. The modifications in the microbial composition and metabolites were examined using RNA sequencing and mass spectrometry analysis. Based on the findings, lean group rodents were less susceptible to DIBP exposure than fat mice because of their cardiovascular systems. Histopathology examinations of mice fed a high-fat diet revealed lesions and plagues that suggested a cardiovascular risk. In the chronic DIBP microbial remodeling metagenomics Faecalibaculum rodentium was the predominant genera in obese mice. According to metabolomics data, arachidonic acid (AA) metabolism changes caused by DIBP were linked to unfavorable cardiovascular events. Our research offers new understandings of the cardiovascular damage caused by DIBP exposure in obese people and raises the possibility that arachidonic acid metabolism could be used as a regulator of the gut microbiota to avert related diseases.
Collapse
Affiliation(s)
- Min Liu
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Xifeng Du
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Huifang Chen
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Chenkai Bai
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Lizhen Lan
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
2
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
3
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Sayour NV, Tóth VÉ, Nagy RN, Vörös I, Gergely TG, Onódi Z, Nagy N, Bödör C, Váradi B, Ruppert M, Radovits T, Bleckwedel F, Zelarayán LC, Pacher P, Ágg B, Görbe A, Ferdinandy P, Varga ZV. Droplet Digital PCR Is a Novel Screening Method Identifying Potential Cardiac G-Protein-Coupled Receptors as Candidate Pharmacological Targets in a Rat Model of Pressure-Overload-Induced Cardiac Dysfunction. Int J Mol Sci 2023; 24:13826. [PMID: 37762130 PMCID: PMC10531061 DOI: 10.3390/ijms241813826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Nabil V. Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Viktória É. Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Regina N. Nagy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás G. Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Csaba Bödör
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Barnabás Váradi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1085 Budapest, Hungary
| | - Federico Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany
| | - Laura C. Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Rockville, MD 20852, USA
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary
- Pharmahungary Group, 6720 Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- Pharmahungary Group, 6720 Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary
- Pharmahungary Group, 6720 Szeged, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (N.V.S.)
- HCEMM-SU Cardiometabolic Immunology Research Group, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
5
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
6
|
Wu C, Xu Y, He Q, Li D, Duan J, Li C, You C, Chen H, Fan W, Jiang Y, Eric Xu H. Ligand-induced activation and G protein coupling of prostaglandin F 2α receptor. Nat Commun 2023; 14:2668. [PMID: 37160891 PMCID: PMC10169810 DOI: 10.1038/s41467-023-38411-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Prostaglandin F2α (PGF2α), an endogenous arachidonic acid metabolite, regulates diverse physiological functions in many tissues and cell types through binding and activation of a G-protein-coupled receptor (GPCR), the PGF2α receptor (FP), which also is the primary therapeutic target for glaucoma and several other diseases. Here, we report cryo-electron microscopy (cryo-EM) structures of the human FP bound to endogenous ligand PGF2α and anti-glaucoma drugs LTPA and TFPA at global resolutions of 2.67 Å, 2.78 Å, and 3.14 Å. These structures reveal distinct features of FP within the lipid receptor family in terms of ligand binding selectivity, its receptor activation, and G protein coupling mechanisms, including activation in the absence of canonical PIF and ERY motifs and Gq coupling through direct interactions with receptor transmembrane helix 1 and intracellular loop 1. Together with mutagenesis and functional studies, our structures reveal mechanisms of ligand recognition, receptor activation, and G protein coupling by FP, which could facilitate rational design of FP-targeting drugs.
Collapse
Affiliation(s)
- Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qian He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dianrong Li
- Sironax (Beijing) Co., Ltd., Beijing, 102206, China
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Changyao Li
- Lingang Laboratory, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Chongzhao You
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Weiliang Fan
- Sironax (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Zhao Y, Lei Y, Ning H, Zhang Y, Chen G, Wang C, Wan Q, Guo S, Liu Q, Xie R, Zhuo Y, Yan S, Zhao J, Wei F, Wang L, Wang X, Li W, Yan H, Yu Y. PGF 2α facilitates pathological retinal angiogenesis by modulating endothelial FOS-driven ELR + CXC chemokine expression. EMBO Mol Med 2022; 15:e16373. [PMID: 36511116 PMCID: PMC9832840 DOI: 10.15252/emmm.202216373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
The pathological retinal angiogenesis often causes blindness. Current anti-angiogenic therapy for proliferative retinopathy targets the vascular endothelial growth factor (VEGF), but many patients do not radically benefit from this therapy. Herein, we report that circulating prostaglandin (PG) F2α metabolites were increased in type 2 diabetic patients with proliferative retinopathy, and the PGF2α receptor (Ptgfr) was upregulated in retinal endothelial cells (ECs) from a mouse model of oxygen-induced retinopathy (OIR). Further, disruption of the PTGFR receptor in ECs attenuated OIR in mice. PGF2α promoted the proliferation and tube formation of human retinal microvascular endothelial cells (HRMECs) via the release of ELR+ CXC chemokines, such as CXCL8 and CXCL2. Mechanistically, the PGF2α /PTGFR axis potentiated ELR+ CXC chemokine expression in HRMECs through the Gq /CAMK2G/p38/ELK-1/FOS pathway. Upregulated FOS-mediated ELR+ CXC chemokine expression was observed in retinal ECs from PDR patients. Moreover, treatment with PTGFR inhibitor lessened the development of OIR in mice in a CXCR2-dependent manner. Therefore, inhibition of PTGFR may represent a new avenue for the treatment of retinal neovascularization, particularly in PDR.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yi Lei
- Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Huying Ning
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Yaqiang Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life ScienceEast China Normal UniversityShanghaiChina
| | - Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Chenchen Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Qiangyou Wan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Shumin Guo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Ruotian Xie
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Yujuan Zhuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Shuai Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing Zhao
- Department of Genetics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Fengjiang Wei
- Department of Genetics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Weidong Li
- Department of Genetics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hua Yan
- Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| |
Collapse
|
8
|
Fujimori K. Prostaglandin D<sub>2</sub> and F<sub>2α</sub> as Regulators of Adipogenesis and Obesity. Biol Pharm Bull 2022; 45:985-991. [DOI: 10.1248/bpb.b22-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
9
|
Kong D, Yu Y. Prostaglandin D2 signaling and cardiovascular homeostasis. J Mol Cell Cardiol 2022; 167:97-105. [DOI: 10.1016/j.yjmcc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
10
|
PGF2α-FP Receptor Ameliorates Senescence of VSMCs in Vascular Remodeling by Src/PAI-1 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2908261. [PMID: 35126810 PMCID: PMC8813271 DOI: 10.1155/2022/2908261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Senescence in vascular smooth muscle cells (VSMCs) is involved in vascular remodeling of aged mice. ProstaglandinF2α- (PGF2α-) FP receptor plays a critical role in cardiovascular diseases (CVDs), hypertension, and cardiac fibrosis. However, its role in senescence-induced arteriosclerosis is yet to be fully elucidated. In this study, we found that FP receptor expression increased in aged mouse aortas and senescence VSMCs. FP receptor gene silencing can ameliorate vascular aging and inhibit oxidative stress, thereby reducing the expression of PAI-1, inhibiting the activation of MMPs, and ultimately improving the excessive deposition of ECM and delaying the process of vascular fibrosis. FP receptor could promote VSMC senescence by upregulated Src/PAI-1 signal pathway, and inhibited FP receptor/Src/PAI-1 pathway could ameliorate VSMCs aging in vitro, evidenced by the decrease of senescence-related proteins P16, P21, P53, and GLB1 expressions. These results suggested that FP receptor is a promoter of vascular aging, by inducing cellular aging, oxidative stress, and vascular remodeling via Src and PAI-1 upregulation.
Collapse
|
11
|
Doré E, Joly-Beauparlant C, Morozumi S, Mathieu A, Lévesque T, Allaeys I, Duchez AC, Cloutier N, Leclercq M, Bodein A, Payré C, Martin C, Petit-Paitel A, Gelb MH, Rangachari M, Murakami M, Davidovic L, Flamand N, Arita M, Lambeau G, Droit A, Boilard E. The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes inflammation. JCI Insight 2022; 7:152638. [PMID: 35076027 PMCID: PMC8855825 DOI: 10.1172/jci.insight.152638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.
Collapse
Affiliation(s)
- Etienne Doré
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Alban Mathieu
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Tania Lévesque
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Isabelle Allaeys
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Anne-Claire Duchez
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Nathalie Cloutier
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Mickaël Leclercq
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Antoine Bodein
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Christine Payré
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Cyril Martin
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Agnes Petit-Paitel
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Manu Rangachari
- CHU de Québec-Université Laval Research Center, Neurosciences Axis, Quebec City, Quebec, Canada
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Laetitia Davidovic
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Nicolas Flamand
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, Yokohama, Japan
| | - Gérard Lambeau
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Eric Boilard
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| |
Collapse
|
12
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23031308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
13
|
Melo BF, Prieto-Lloret J, Cabral MD, Martins FO, Martins IB, Sacramento JF, Ruivo P, Carvalho T, Conde SV. Type 2 diabetes progression differently affects endothelial function and vascular contractility in the aorta and the pulmonary artery. Sci Rep 2021; 11:6052. [PMID: 33723367 PMCID: PMC7960698 DOI: 10.1038/s41598-021-85606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with cardiovascular and pulmonary disease. How T2D affects pulmonary endothelial function is not well characterized. We investigated the effects of T2D progression on contractility machinery and endothelial function in the pulmonary and systemic circulation and the mechanisms promoting the dysfunction, using pulmonary artery (PA) and aorta. A high-fat (HF, 3 weeks 60% lipid-rich diet) and a high-fat/high-sucrose (HFHSu, combined 60% lipid-rich diet and 35% sucrose during 25 weeks) groups were used as prediabetes and T2D rat models. We found that T2D progression differently affects endothelial function and vascular contractility in the aorta and PA, with the contractile machinery being altered in the PA and aorta in prediabetes and T2D animals; and endothelial function being affected in both models in the aorta but only affected in the PA of T2D animals, meaning that PA is more resistant than aorta to endothelial dysfunction. Additionally, PA and systemic endothelial dysfunction in diabetic rats were associated with alterations in the nitrergic system and inflammatory pathways. PA dysfunction in T2D involves endothelial wall mineralization. The understanding of the mechanisms behind PA dysfunction in T2D can lead to significant advances in both preventative and therapeutic treatments of pulmonary disease-associated diabetes.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats
- Rats, Wistar
- Vasoconstriction
Collapse
Affiliation(s)
- Bernardete F Melo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Jesus Prieto-Lloret
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Marlene D Cabral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Inês B Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Pedro Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal.
| |
Collapse
|
14
|
Braune S, Küpper JH, Jung F. Effect of Prostanoids on Human Platelet Function: An Overview. Int J Mol Sci 2020; 21:ijms21239020. [PMID: 33260972 PMCID: PMC7730041 DOI: 10.3390/ijms21239020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors.
Collapse
|
15
|
Beck H, Thaler T, Meibom D, Meininghaus M, Jörißen H, Dietz L, Terjung C, Bairlein M, von Bühler CJ, Anlauf S, Fürstner C, Stellfeld T, Schneider D, Gericke KM, Buyck T, Lovis K, Münster U, Anlahr J, Kersten E, Levilain G, Marossek V, Kast R. Potent and Selective Human Prostaglandin F (FP) Receptor Antagonist (BAY-6672) for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). J Med Chem 2020; 63:11639-11662. [PMID: 32969660 DOI: 10.1021/acs.jmedchem.0c00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Tobias Thaler
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Daniel Meibom
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Mark Meininghaus
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Hannah Jörißen
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Lisa Dietz
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Carsten Terjung
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | | | - Sonja Anlauf
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Chantal Fürstner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Timo Stellfeld
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Dirk Schneider
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kersten M Gericke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Thomas Buyck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kai Lovis
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Uwe Münster
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Johanna Anlahr
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Elisabeth Kersten
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Guillaume Levilain
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Virginia Marossek
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Raimund Kast
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| |
Collapse
|
16
|
Wang LJ, Xiao Y, Fang J, Wang JL, Zhang H, Meng XX, Gong RL, Gu R. PGF2α stimulates the 10-pS Cl− channel and thiazide-sensitive Na+-Cl− cotransporter in the distal convoluted tubule. Am J Physiol Renal Physiol 2020; 319:F414-F422. [DOI: 10.1152/ajprenal.00287.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We used patch-clamp and Western blot analysis to test whether PGF2α stimulates the basolateral 10-pS Cl− channel and thiazide-sensitive Na+-Cl− cotransporter (NCC) in the distal convoluted tubule (DCT) via a prostaglandin F receptor (FP-R). Single channel and whole cell recordings demonstrated that PGF2α stimulated the 10-pS Cl− channel in the DCT. The stimulatory effect of PGF2α on the Cl− channel was mimicked by a FP-R agonist, latanoprost, but was abrogated by blocking FP-R with AL8810. Also, the effect of PGF2α on the Cl− channel in the DCT was recapitulated by stimulating PKC but was blocked by inhibiting PKC. Furthermore, inhibition of p38 MAPK but not ERK blocked the effect of PGF2α on the 10-pS Cl− channel. Inhibition of NADPH oxidase also abrogated the stimulatory effect of PGF2α on the 10-pS Cl− channel, while the addition of 10 μM H2O2 mimicked the stimulatory effect of PGF2α on the 10-pS Cl− channel. Moreover, superoxide-related species may mediate the stimulatory effect of PGF2α on the 10-pS Cl− channel because the stimulatory effect of PGF2α and H2O2 was not additive. Western blot analysis showed that infusion of PGF2α in vivo not only increased the expression of FP-R but also increased the expression of total NCC and phosphorylated NCC. We conclude that PGF2α stimulates the basolateral 10-pS Cl− channel in the DCT by activating FP-R through PKC/p38 MAPK and NADPH oxidase-dependent pathways. The stimulatory effects of PGF2α on the Cl− channel and NCC may contribute to PGF2α-induced increases in NaCl reabsorption in the DCT.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu Xiao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Jing Fang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Jun-Lin Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xin-Xin Meng
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Rui-Lan Gong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Ruimin Gu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Crescente M, Armstrong PC, Kirkby NS, Edin ML, Chan MV, Lih FB, Jiao J, Maffucci T, Allan HE, Mein CA, Gaston-Massuet C, Cottrell GS, Mitchell JA, Zeldin DC, Herschman HR, Warner TD. Profiling the eicosanoid networks that underlie the anti- and pro-thrombotic effects of aspirin. FASEB J 2020; 34:10027-10040. [PMID: 32592197 PMCID: PMC9359103 DOI: 10.1096/fj.202000312r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2, a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2, prostaglandin (PG) F2α, 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2. Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.
Collapse
Affiliation(s)
- Marilena Crescente
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicholas S Kirkby
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Melissa V Chan
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jing Jiao
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harriet E Allan
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charles A Mein
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graeme S Cottrell
- Reading School of Pharmacy and ICMR, University of Reading, Reading, UK
| | - Jane A Mitchell
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Harvey R Herschman
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Varga DP, Szabó Í, Varga VÉ, Menhyárt Á, M Tóth O, Kozma M, Bálint AR, Krizbai IA, Bari F, Farkas E. The antagonism of prostaglandin FP receptors inhibits the evolution of spreading depolarization in an experimental model of global forebrain ischemia. Neurobiol Dis 2020; 137:104780. [PMID: 31991249 DOI: 10.1016/j.nbd.2020.104780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Spontaneous, recurrent spreading depolarizations (SD) are increasingly more appreciated as a pathomechanism behind ischemic brain injuries. Although the prostaglandin F2α - FP receptor signaling pathway has been proposed to contribute to neurodegeneration, it has remained unexplored whether FP receptors are implicated in SD or the coupled cerebral blood flow (CBF) response. We set out here to test the hypothesis that FP receptor blockade may achieve neuroprotection by the inhibition of SD. Global forebrain ischemia/reperfusion was induced in anesthetized rats by the bilateral occlusion and later release of the common carotid arteries. An FP receptor antagonist (AL-8810; 1 mg/bwkg) or its vehicle were administered via the femoral vein 10 min later. Two open craniotomies on the right parietal bone served the elicitation of SD with 1 M KCl, and the acquisition of local field potential. CBF was monitored with laser speckle contrast imaging over the thinned parietal bone. Apoptosis and microglia activation, as well as FP receptor localization were evaluated with immunohistochemistry. The data demonstrate that the antagonism of FP receptors suppressed SD in the ischemic rat cerebral cortex and reduced the duration of recurrent SDs by facilitating repolarization. In parallel, FP receptor antagonism improved perfusion in the ischemic cerebral cortex, and attenuated hypoemic CBF responses associated with SD. Further, FP receptor antagonism appeared to restrain apoptotic cell death related to SD recurrence. In summary, the antagonism of FP receptors (located at the neuro-vascular unit, neurons, astrocytes and microglia) emerges as a promising approach to inhibit the evolution of SDs in cerebral ischemia.
Collapse
Affiliation(s)
- Dániel P Varga
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Írisz Szabó
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Viktória É Varga
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Ákos Menhyárt
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Orsolya M Tóth
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Mihály Kozma
- Physiology and Pathology of the Blood-Brain Barrier Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62, Hungary
| | - Armand R Bálint
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - István A Krizbai
- Physiology and Pathology of the Blood-Brain Barrier Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62, Hungary; Institute of Life Sciences, Vasile Goldis Western University; Revolutiei Blvd n°94, Arad 310025, Romania
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary.
| |
Collapse
|
19
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
First exploratory study on the metabolome from plasma exosomes in patients with paroxysmal nocturnal hemoglobinuria. Thromb Res 2019; 183:80-85. [PMID: 31671376 DOI: 10.1016/j.thromres.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease in which patients are at increased risk of thrombosis. The mechanisms underlying the associated thrombosis risk are still poorly understood, although it is known that Eculizumab, the drug of choice for symptomatic patients, prevents thrombotic events. Exosomes are extracellular vesicles that can carry and disseminate genetic material, tumor biomarkers and inflammatory mediators. To date, the metabolite cargo of plasma exosomes from PNH patients has not yet been explored. In this pilot trial, we compared the metabolome of plasma exosomes from PNH patients with that of healthy subjects in order to provide further insights into this rare disease. RESULTS We used a non-targeted metabolomics approach with UPLC-ESI-QTOF-MS/MS and GC-MS platforms. Multivariate analyses revealed the differential occurrence (p < .001) of 78 metabolites in plasma exosomes from PNH patients vs healthy control subjects. Remarkably, prostaglandin F2-alpha (6.1-fold), stearoyl arginine (5.3-fold) and 26-hydroxycholesterol-3-sulfate (11.2-fold) were higher in PNH patients vs healthy controls (p < .001). CONCLUSIONS This is the first description on the differential metabolite cargo occurring in plasma exosomes from PNH patients. Our results could contribute to the search for possible prognostic biomarkers of thrombotic risk in patients with PNH. Further research in a larger cohort to validate these results is warranted.
Collapse
|
21
|
Daci A, Ozen G, Karaman EF, Teskin O, Caglayan M, Celik Z, Ozden S, Dashwood M, Uydes Dogan BS, Topal G. In Vitro Effects of Eicosapentaenoic and Docosahexaenoic Acid on the Vascular Tone of a Human Saphenous Vein: Influence of Precontractile Agents. Ann Vasc Surg 2019; 64:318-327. [PMID: 31634596 DOI: 10.1016/j.avsg.2019.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cardiovascular effects of omega-3 polyunsaturated fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been widely reported. However, there are limited studies concerning their effects on human blood vessels. Therefore, the aim of this study was to investigate the direct vascular effects of EPA and DHA on the human saphenous vein (SV) precontracted with either prostaglandin F2α (PGF2α), or thromboxane A2 analogue (U46619), or norepinephrine (NE). Moreover, we aimed to investigate the protein expression of free fatty acid receptor 4 (FFAR4) in human SV. METHODS Pretreatment of human SV rings with EPA and DHA (100 μM, 30 min) was tested on vascular reactivity induced by PGF2α (10 nM to 5 μM), NE (10 nM to 100 μM), and U46619 (1 nM to 100 nM). In addition, direct relaxant effects of EPA/DHA (1-100 μM) were tested in human SV rings precontracted by PGF2α, NE, and U46619. Furthermore, the involvement of potassium channels on their vascular effects was investigated in the presence of the nonselective K+ channel inhibitor tetraethylammonium chloride. RESULTS Pretreatment with EPA and DHA resulted in a significant decrease in vascular reactivity induced by U46619 and PGF2α compared to NE. In the presence of TEA, the relaxant effects of EPA and DHA were significantly decreased in SV preparations precontracted by U46619 and PGF2α for DHA. Furthermore, FFAR-4 protein was expressed in tissue extracts of human SV. CONCLUSIONS Our study demonstrates that both EPA and DHA reduce the increased vascular tone elicited by contractile agents on the human SV and that the direct vasorelaxant effect is likely to involve potassium channels.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmecutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Onder Teskin
- Department of Cardiovascular Surgery, Biruni University, Istanbul, Turkey
| | - Mine Caglayan
- Department of Pharmecutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Zeynep Celik
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmecutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mick Dashwood
- Surgical and Interventional Sciences, Royal Free Hospital Campus, University College Medical School, London, UK
| | - B Sonmez Uydes Dogan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gokce Topal
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
22
|
Aldo-keto reductase 1C3-Assessment as a new target for the treatment of endometriosis. Pharmacol Res 2019; 152:104446. [PMID: 31546014 DOI: 10.1016/j.phrs.2019.104446] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Endometriosis is a common gynecological disorder, which is treated surgically and/ or pharmacologically with an unmet clinical need for new therapeutics. A completed phase I trial and a recent phase II trial that investigated the steroidal aldo-keto reductase 1C3 (AKR1C3) inhibitor BAY1128688 in endometriosis patients prompted this critical assessment on the role of AKR1C3 in endometriosis. This review includes an introduction to endometriosis with emphasis on the roles of prostaglandins and progesterone in its pathophysiology. This is followed by an overview of the major enzymatic activities and physiological functions of AKR1C3 and of the data published to date on the expression of AKR1C3 in endometriosis at the mRNA and protein levels. The review concludes with the rationale for using AKR1C3 inhibitors, a discussion of the effects of AKR1C3 inhibition on the pathophysiology of endometriosis and a brief overview of other drugs under clinical investigation for this indication.
Collapse
|
23
|
Täubel J, Lorch U, Coates S, Fernandes S, Foley P, Ferber G, Gotteland J, Pohl O. Confirmation of the Cardiac Safety of PGF 2α Receptor Antagonist OBE022 in a First-in-Human Study in Healthy Subjects, Using Intensive ECG Assessments. Clin Pharmacol Drug Dev 2018; 7:889-900. [PMID: 29489066 PMCID: PMC6221050 DOI: 10.1002/cpdd.447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
OBE022, a new orally active prostaglandin F2α receptor antagonist (OBE022) with myometrial selectivity is being developed to reduce uterine contractions during preterm labor. This first-in-human study evaluated the effect of OBE022 following multiple doses on the QT interval in 23 healthy postmenopausal women, using the effect of a meal on QTc to demonstrate assay sensitivity. We report the cardiac safety outcome performed during the multiple ascending part of this trial. OBE022 was administered after a standardized breakfast on day 1 and in the fasted state from day 3 to day 9 wth a standardized lunch 4 hours after administration. Concentration-effect modeling was used to assess the effect of prodrug OBE022 and parent OBE002 on QTc after a single dose (days 1 and 3) and multiple doses (day 9). The concentration-response analysis showed the absence of QTc prolongation at all doses tested. Two-sided 90% confidence intervals of the geometric mean Cmax for estimated QTc effects of OBE022 and OBE002 of all dose groups were consistently below the threshold of regulatory concern. The sensitivity of this study to detect small changes in the QTc was confirmed by a significant shortening of the QTc on days 1, 3, and 9 after standardized meals. This study establishes that neither prodrug OBE022 nor parent OBE002 prolong the QTc interval. The observed food effect on the QT interval validated the assay on all assessment days. Both the change from predose, premeal and the change from premeal, postdose demonstrated the specificity of the method.
Collapse
Affiliation(s)
- Jörg Täubel
- Richmond Pharmacology LtdLondonUK
- St George'sUniversity of LondonLondonUK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Yan S, Xiao B, Zuo S, Zhang Q, Chen G, Yu Y, Chen D, Liu Q, Liu Y, Shen Y, Yu Y. Prostaglandin F 2α Facilitates Hepatic Glucose Production Through CaMKIIγ/p38/FOXO1 Signaling Pathway in Fasting and Obesity. Diabetes 2018; 67:1748-1760. [PMID: 29773555 DOI: 10.2337/db17-1521] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/01/2018] [Indexed: 11/13/2022]
Abstract
Gluconeogenesis is drastically increased in patients with type 2 diabetes and accounts for increased fasting plasma glucose concentrations. Circulating levels of prostaglandin (PG) F2α are also markedly elevated in diabetes; however, whether and how PGF2α regulates hepatic glucose metabolism remain unknown. Here, we demonstrated that PGF2α receptor (F-prostanoid receptor [FP]) was upregulated in the livers of mice upon fasting- and diabetic stress. Hepatic deletion of the FP receptor suppressed fasting-induced hepatic gluconeogenesis, whereas FP overexpression enhanced hepatic gluconeogenesis in mice. FP activation promoted the expression of gluconeogenic enzymes (PEPCK and glucose-6-phosphatase) in hepatocytes in a FOXO1-dependent manner. Additionally, FP coupled with Gq in hepatocytes to elicit Ca2+ release, which activated Ca2+/calmodulin-activated protein kinase IIγ (CaMKIIγ) to increase FOXO1 phosphorylation and subsequently accelerate its nuclear translocation. Blockage of p38 disrupted CaMKIIγ-induced FOXO1 nuclear translocation and abrogated FP-mediated hepatic gluconeogenesis in mice. Moreover, knockdown of hepatic FP receptor improved insulin sensitivity and glucose homeostasis in ob/ob mice. FP-mediated hepatic gluconeogenesis via the CaMKIIγ/p38/FOXO1 signaling pathway, indicating that the FP receptor might be a promising therapeutic target for type 2 diabetes.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Crosses, Genetic
- Diet, High-Fat/adverse effects
- Dinoprost/metabolism
- Fasting/metabolism
- Forkhead Box Protein O1/agonists
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Gene Expression Regulation/drug effects
- Gluconeogenesis/drug effects
- Humans
- Insulin Resistance
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Mice, Inbred C57BL
- Mice, Obese
- Mice, Transgenic
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Signal Transduction/drug effects
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Yuanyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, People's Republic of China
| | - Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Bing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- State Key Laboratory for Medical Genomics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shengkai Zuo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Guilin Chen
- Department of Pharmacology, School of Basic Medical Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, People's Republic of China
| | - Yu Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Department of Pediatric Cardiology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Di Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yujun Shen
- Department of Pharmacology, School of Basic Medical Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, People's Republic of China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Sharif NA, Klimko PG. Prostaglandin FP receptor antagonists: discovery, pharmacological characterization and therapeutic utility. Br J Pharmacol 2018; 176:1059-1078. [PMID: 29679483 DOI: 10.1111/bph.14335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
In contrast to the availability of potent and selective antagonists of several prostaglandin receptor types (including DP1 , DP2 , EP and TP receptors), there has been a paucity of well-characterized, selective FP receptor antagonists. The earliest ones included dimethyl amide and dimethyl amine derivatives of PGF2α , but these have failed to gain prominence. The fluorinated PGF2α analogues, AL-8810 and AL-3138, were subsequently discovered as competitive and non-competitive FP receptor antagonists respectively. Non-prostanoid structures, such as the thiazolidinone AS604872, the D-amino acid-based oligopeptide PDC31 and its peptidomimic analogue PDC113.824 came next, but the latter two are allosteric inhibitors of FP receptor signalling. AL-8810 has a sub-micromolar in vitro potency and ≥2 log unit selectivity against most other PG receptors when tested in several cell- and tissue-based functional assays. Additionally, AL-8810 has demonstrated therapeutic efficacy as an FP receptor antagonist in animal models of stroke, traumatic brain injury, multiple sclerosis, allodynia and endometriosis. Consequently, it appears that AL-8810 has become the FP receptor antagonist of choice. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
| | - Peter G Klimko
- Novartis Pharmaceuticals Corporation, Fort Worth, TX, 76134, USA
| |
Collapse
|
26
|
Lorigo M, Mariana M, Feiteiro J, Cairrao E. How is the human umbilical artery regulated? J Obstet Gynaecol Res 2018; 44:1193-1201. [PMID: 29727040 DOI: 10.1111/jog.13667] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/31/2018] [Indexed: 01/12/2023]
Abstract
The purpose of this review is to present an update of the main mechanisms involved in the physiological regulation of contraction and relaxation of the human umbilical artery (HUA) smooth muscle cells. A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the regulation of the HUA are presented in this article. The vascular smooth muscle is a highly specialized structure, whose main function is to regulate the vascular tonus. This is controlled by a balance between the cellular signaling pathways that mediate contraction and relaxation. The cells responsible for the contractile property of this muscle are the smooth muscle cells (SMC), and an excellent source of these cells is the HUA, involved in fetoplacental circulation. Since the umbilical blood vessels are not innervated, the HUA tonus is modulated by vasoactive substances that regulate the contractile process. The main vasoactive substances that induce contraction are serotonin, histamine, thromboxane, bradykinin, endothelin 1 and prostaglandin F2α, that are linked to the activation of proteins Gq and Gi/0 . On the other hand, the main vasorelaxation mechanisms are the activation of adenyl and guanil cyclases, potassium channels and the inhibition of calcium channels. The SMC from the HUA allow the study of different cellular mechanisms and their functions. Therefore, these cells are an important tool to study the mechanisms regulating the contractility of this artery, allowing to detect potential therapeutic targets to treat HUA disorders (gestational hypertension and pre-eclampsia).
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Feiteiro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
27
|
Peng L, Sun B, Liu M, Huang J, Liu Y, Xie Z, He J, Chen L, Wang D, Zhu Y, Zhang X, Ai D. Plasma metabolic profile reveals PGF2α protecting against non-proliferative diabetic retinopathy in patients with type 2 diabetes. Biochem Biophys Res Commun 2018; 496:1276-1283. [PMID: 29408756 DOI: 10.1016/j.bbrc.2018.01.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 11/17/2022]
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complications of diabetes and the leading cause of blindness in adults worldwide. Non-proliferative DR (NPDR) is the first stage of DR but currently has few recommended intervention. Eicosanoids play important roles in maintaining vessel homeostasis. However, the functions of eicosanoids in NPDR are still unknown. In this study, we investigated the eicosanoids profile difference in plasma between type 2 diabetes with NPDR or not. A total of 50 patients with type 2 diabetes were recruited and divided into non-DR (NDR) group and NPDR group based on fundus photographs. The eicosanoids profiles in plasma were determined by LC-MS/MS. Adhesion and transwell assay were used to detect the adhesion and migration effects of metabolites on primary bovine retinal pericyte cells (BRPC), respectively. Streptomycin (STZ)-induced diabetic mouse model was used to test the protective effects of selected metabolites according to retinal immunofluorescence staining and fluorescence confocal microscopy. Prostaglandin 2α (PGF2α) was decreased significantly in NPDR group compared to NDR group and negatively correlated with NPDR. In vitro, PGF2α was found to accelerate adhesion and migration by activating prostaglandin F receptor (FP receptor) and subsequent increasing RhoA activity in primary bovine retinal pericyte. Administration of PGF2α analogue diminished the damage on retinal capillary in an STZ-induced diabetic mouse model. Our results suggested that PGF2α may be a protective factor in the progression of NPDR in T2D patients. The protective mechanism of PGF2α was to increase pericyte mobility through FP receptor/RhoA pathway.
Collapse
Affiliation(s)
- Liyuan Peng
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| | - Bei Sun
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Mingming Liu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| | - Jing Huang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| | - Zipeng Xie
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| | - Liming Chen
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China.
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
28
|
Li J, Kong D, Wang Q, Wu W, Tang Y, Bai T, Guo L, Wei L, Zhang Q, Yu Y, Qian Y, Zuo S, Liu G, Liu Q, Wu S, Zang Y, Zhu Q, Jia D, Wang Y, Yao W, Ji Y, Yin H, Nakamura M, Lazarus M, Breyer RM, Wang L, Yu Y. Niacin ameliorates ulcerative colitis via prostaglandin D 2-mediated D prostanoid receptor 1 activation. EMBO Mol Med 2017; 9:571-588. [PMID: 28341703 PMCID: PMC5412792 DOI: 10.15252/emmm.201606987] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Niacin, as an antidyslipidemic drug, elicits a strong flushing response by release of prostaglandin (PG) D2. However, whether niacin is beneficial for inflammatory bowel disease (IBD) remains unclear. Here, we observed niacin administration‐enhanced PGD2 production in colon tissues in dextran sulfate sodium (DSS)‐challenged mice, and protected mice against DSS or 2,4,6‐trinitrobenzene sulfonic acid (TNBS)‐induced colitis in D prostanoid receptor 1 (DP1)‐dependent manner. Specific ablation of DP1 receptor in vascular endothelial cells, colonic epithelium, and myeloid cells augmented DSS/TNBS‐induced colitis in mice through increasing vascular permeability, promoting apoptosis of epithelial cells, and stimulating pro‐inflammatory cytokine secretion of macrophages, respectively. Niacin treatment improved vascular permeability, reduced apoptotic epithelial cells, promoted epithelial cell update, and suppressed pro‐inflammatory gene expression of macrophages. Moreover, treatment with niacin‐containing retention enema effectively promoted UC clinical remission and mucosal healing in patients with moderately active disease. Therefore, niacin displayed multiple beneficial effects on DSS/TNBS‐induced colitis in mice by activation of PGD2/DP1 axis. The potential efficacy of niacin in management of IBD warrants further investigation.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Guo
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengkai Zuo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daile Jia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ji
- The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing Jiangsu, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City Ibaraki, Japan
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China .,Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Kobayashi Y, Yamamoto Y, Kageyama S, Hirayama H, Kimura K, Okuda K. Regulation of bovine oviductal NO synthesis by follicular steroids and prostaglandins. Reproduction 2016; 151:577-87. [PMID: 26940101 DOI: 10.1530/rep-15-0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) is a regulator of sperm motility, oocyte/embryo survival, and waves of contraction/relaxation in mammalian oviducts. As follicles control oviductal functions by two routes at least, (1) a systemic way via blood vessels before ovulation, (2) a direct way by entering of follicular fluid through fimbria at ovulation, we hypothesized that NO synthesis in the bovine oviduct is regulated by follicular steroids and prostaglandins (PGs). Quantification of mRNA expressions in the ampullary tissues showed that inducible NO synthase (NOS2) mRNA expression was highest on the day of ovulation (day 0). By contrast, NOS2 mRNA expression in the isthmus was highest on days 5-6 and lowest on days 19-21. Endothelial NOS (NOS3) mRNA expressions in either the ampulla or the isthmus did not change during the estrous cycle. PGE2 and PGF2α increased NOS2 mRNA expressions in cultured ampullary oviductal epithelial cells after 1-h incubation. These increases were suppressed by an antagonist of E-prostanoid receptor type 2, one of the PGE2 receptor. Estradiol-17β decreased the expression of NOS2 mRNA expression in cultured isthmic epithelial cells 24h after treatment. This effect was suppressed by an antagonist of estrogen receptorα(ESR1). Expression of ESR1 was highest on days 19-21 in the isthmic tissues. The overall findings indicate region-specific difference of NO synthesis in the oviduct. PGs flowed from ruptured follicle may up-regulate NO synthesis in the oviductal epithelium, whereas circulating E2 seems to inhibit NO synthesis via ESR1 in the isthmus at the follicular stage.
Collapse
Affiliation(s)
- Yoshihiko Kobayashi
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Soichi Kageyama
- Animal Biotechnology GroupAnimal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Hiroki Hirayama
- Animal Biotechnology GroupAnimal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Koji Kimura
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan Obihiro University of Agriculture and Veterinary MedicineHokkaido, Japan
| |
Collapse
|
30
|
Rare SNP rs12731181 in the miR-590-3p Target Site of the Prostaglandin F
2α
Receptor Gene Confers Risk for Essential Hypertension in the Han Chinese Population. Arterioscler Thromb Vasc Biol 2015; 35:1687-95. [DOI: 10.1161/atvbaha.115.305445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/01/2015] [Indexed: 11/16/2022]
|
31
|
Sinreih M, Anko M, Kene NH, Kocbek V, Rižner TL. Expression of AKR1B1, AKR1C3 and other genes of prostaglandin F2α biosynthesis and action in ovarian endometriosis tissue and in model cell lines. Chem Biol Interact 2015; 234:320-31. [DOI: 10.1016/j.cbi.2014.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022]
|
32
|
Afrin LB, Molderings GJ. A concise, practical guide to diagnostic assessment for mast cell activation disease. World J Hematol 2014; 3:1-17. [DOI: 10.5315/wjh.v3.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As recognition of mast cell (MC) involvement in a range of chronic inflammatory disorders has increased, diagnosticians’ suspicions of MC activation disease (MCAD) in their chronically mysteriously inflamed patients have similarly increased. It is now understood that the various forms of systemic mastocytosis - diseases of inappropriate activation and proliferation of MCs seemingly driven by a small set of rare, usually constitutively activating mutations in assorted MC regulatory elements - comprise merely the tip of the MCAD iceberg, whereas the far larger and far more clinically heterogeneous (and thus more difficult to recognize) bulk of the iceberg consists of assorted forms of MC activation syndrome (MCAS) which manifest little to no abnormal MC proliferation and may originate from a far more heterogeneous set of MC mutations. It is reasonable to suspect MCAD when symptoms and signs of MC activation are present and no other diagnosis better accounting for the full range of findings is present. Initial laboratory assessment should include not only routine blood counts and serum chemistries but also a serum total tryptase level, which helps direct further evaluation for mastocytosis vs MCAS. Appropriate tissue examinations are needed to diagnose mastocytosis, while elevated levels of relatively specific mast cell mediators are sought to support diagnosis of MCAS. Whether assessing for mastocytosis or MCAS, testing is fraught with potential pitfalls which can easily yield false negatives leading to erroneous rejection of diagnostic consideration of MCAD in spite of a clinical history highly consistent with MCAD. Efforts at accurate diagnosis of MCAD are worthwhile, as many patients then respond well to appropriately directed therapeutic efforts.
Collapse
|
33
|
Afrin LB, Molderings GJ. A concise, practical guide to diagnostic assessment for mast cell activation disease. World J Hematol 2014; 3:1-17. [DOI: 10.5315/wjh.v3.i1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As recognition of mast cell (MC) involvement in a range of chronic inflammatory disorders has increased, diagnosticians’ suspicions of MC activation disease (MCAD) in their chronically mysteriously inflamed patients have similarly increased. It is now understood that the various forms of systemic mastocytosis - diseases of inappropriate activation and proliferation of MCs seemingly driven by a small set of rare, usually constitutively activating mutations in assorted MC regulatory elements - comprise merely the tip of the MCAD iceberg, whereas the far larger and far more clinically heterogeneous (and thus more difficult to recognize) bulk of the iceberg consists of assorted forms of MC activation syndrome (MCAS) which manifest little to no abnormal MC proliferation and may originate from a far more heterogeneous set of MC mutations. It is reasonable to suspect MCAD when symptoms and signs of MC activation are present and no other diagnosis better accounting for the full range of findings is present. Initial laboratory assessment should include not only routine blood counts and serum chemistries but also a serum total tryptase level, which helps direct further evaluation for mastocytosis vs MCAS. Appropriate tissue examinations are needed to diagnose mastocytosis, while elevated levels of relatively specific mast cell mediators are sought to support diagnosis of MCAS. Whether assessing for mastocytosis or MCAS, testing is fraught with potential pitfalls which can easily yield false negatives leading to erroneous rejection of diagnostic consideration of MCAD in spite of a clinical history highly consistent with MCAD. Efforts at accurate diagnosis of MCAD are worthwhile, as many patients then respond well to appropriately directed therapeutic efforts.
Collapse
|
34
|
Koldehoff M, Cierna B, Steckel NK, Beelen DW, Elmaagacli AH. Maternal molecular features and gene profiling of monocytes during first trimester pregnancy. J Reprod Immunol 2013; 99:62-8. [PMID: 23958292 DOI: 10.1016/j.jri.2013.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/23/2013] [Accepted: 07/05/2013] [Indexed: 12/11/2022]
Abstract
We examined the molecular characteristics of monocytes of pregnant and non-pregnant women to investigate the molecular effects that are associated with immunoregulation at the maternal-fetal interface. We analyzed molecular features and target genes in monocytes of pregnant women using flow cytometry, real-time PCR and oligonucleotide microarray technology. CD14(high) monocytes and several immune gene members including CD200, CD200R, IDO, IFI27, IL-10 and G0S2 were found to be differentially expressed in monocytes throughout pregnancy. In addition, transcripts within components of the signaling cascade of immune cells (HLA-DRB4, HBEGF, IL-8, CD3D, CCL5), and of several transcription factors (SOCS1, CXCL10, ID1, ID2) were altered in the monocytes of pregnant women. Further studies will be needed to elucidate the biological significance of our observation.
Collapse
Affiliation(s)
- Michael Koldehoff
- Department of Bone Marrow Transplantation, West German Cancer Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|