1
|
Tabekoueng GB, Fomo Fozing FA, Mas-Claret E, Langat MK, Frese M, Bissoue AN, Wansi JD, Kamdem Waffo AF, Sewald N, Lenta BN. Cytotoxic clerodane diterpenoids from the roots of Casearia barteri Mast. RSC Adv 2024; 14:23109-23117. [PMID: 39040697 PMCID: PMC11262006 DOI: 10.1039/d4ra04393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
A study of diterpenoids as active ingredients against cancer from the active roots extract of Casearia barteri Mast. (IC50 = 1.57 μg mL-1) led to the isolation of six new clerodane diterpenoids, named as barterins A-F (1-6) alongside seven known compounds, caseamembrin A, caseamembrin E, casearlucin A, graveospene G, N-trans-feruloyltyramine, N-cis-feruloytyramine and sitosterol-3-O-β-D-(6-O-palmitoyl)-glucopyranoside. Their structures were elucidated based on NMR spectroscopic data and mass spectrometry. The absolute configurations of 1-6 were established by the time-dependent density functional theory (TDDFT), electronic circular dichroism (ECD) calculations and experimental data analysis. The cytotoxic effects of compounds 1-6 were evaluated against a human cervix carcinoma cell line KB-3-1. Barterins A-D (1-4) showed cytotoxic effects against the KB-3-1 cell line with IC50 values ranging from 1.34-4.73 μM.
Collapse
Affiliation(s)
- Georges Bellier Tabekoueng
- Department of Chemistry, Chemistry Laboratory, Faculty of Science, University of Douala P. O. Box 24157 Douala Cameroon
| | - Franck Armand Fomo Fozing
- Department of Chemistry, Chemistry Laboratory, Faculty of Science, University of Douala P. O. Box 24157 Douala Cameroon
| | | | | | - Marcel Frese
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University D-33501 Bielefeld Germany
| | - Achille Nouga Bissoue
- Department of Chemistry, Chemistry Laboratory, Faculty of Science, University of Douala P. O. Box 24157 Douala Cameroon
| | - Jean Duplex Wansi
- Department of Chemistry, Chemistry Laboratory, Faculty of Science, University of Douala P. O. Box 24157 Douala Cameroon
| | - Alain François Kamdem Waffo
- Department of Chemistry, Chemistry Laboratory, Faculty of Science, University of Douala P. O. Box 24157 Douala Cameroon
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University D-33501 Bielefeld Germany
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I P. O. Box 47 Yaoundé Cameroon
| |
Collapse
|
2
|
Luca SV, Wojtanowski K, Korona-Głowniak I, Skalicka-Woźniak K, Minceva M, Trifan A. Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids. Antibiotics (Basel) 2024; 13:485. [PMID: 38927152 PMCID: PMC11201062 DOI: 10.3390/antibiotics13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Hemp (Cannabis sativa L.) has been used for millennia as a rich source of food and fibers, whereas hemp flowers have only recently gained an increased market interest due to the presence of cannabinoids and volatile terpenes. Currently, the hemp flower processing industry predominantly focuses on either cannabinoid or terpene extraction. In an attempt to maximize the valorization of hemp flowers, the current study aimed to evaluate the phytochemical composition and antimicrobial properties of several extracts obtained from post-distillation by-products (e.g., spent material, residual distillation water) in comparison to the essential oil and total extract obtained from unprocessed hemp flowers. A terpene analysis of the essential oil revealed 14 monoterpenes and 35 sesquiterpenes. The cannabinoid profiling of extracts showed seven acidic precursors and 14 neutral derivatives, with cannabidiol (CBD) reaching the highest concentration (up to 16 wt.%) in the spent material extract. The antimicrobial assessment of hemp EO, cannabinoid-containing extracts, and single compounds (i.e., CBD, cannabigerol, cannabinol, and cannabichromene) against a panel of 20 microbial strains demonstrated significant inhibitory activities against Gram-positive bacteria, Helicobacter pylori, and Trichophyton species. In conclusion, this work suggests promising opportunities to use cannabinoid-rich materials from hemp flower processing in functional foods, cosmetics, and pharmaceuticals with antimicrobial properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Krzysztof Wojtanowski
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
3
|
Nguyen HT, Miyamoto A, Hoang HT, Vu TTT, Pothinuch P, Nguyen HTT. Effects of Maturation on Antibacterial Properties of Vietnamese Mango ( Mangifera indica) Leaves. Molecules 2024; 29:1443. [PMID: 38611723 PMCID: PMC11012903 DOI: 10.3390/molecules29071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
This study, for the first time, has investigated the relationships between alterations of mangiferin contents in mango leaves at different maturity stages and their antibacterial properties. Leaves were classified into six different maturity stages based on their color: (1) young dark reddish brown, (2) young yellow, (3) young light green, (4) mature green, (5) old dark green, and (6) old yellow leaves. Ethanol extracts were then examined against Gram-positive and Gram-negative bacteria, applying broth dilution and agar well diffusion methods. In addition, we also measured the mangiferin contents in leaves at different stages for the purpose of evaluating how the changes in this phytochemistry value affects their activities against bacteria. The results showed that extracts from leaves at young ages had better antibacterial properties than those from old leaves, as evidenced by the lower minimum inhibitory concentrations and larger inhibitory zones. In addition, we also found that the contents of mangiferin were significantly decreased followed the maturation process. These results suggest that mango leaves at young stages, especially dark reddish brown and young yellow leaves, are preferable for application in bacterial infections and other therapies related to mangiferin's constituents.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 100000, Vietnam;
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan;
| | - Hao Thanh Hoang
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 100000, Vietnam; (H.T.H.); (T.T.T.V.)
| | - Tra Thi Thu Vu
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 100000, Vietnam; (H.T.H.); (T.T.T.V.)
| | - Pitchaya Pothinuch
- Faculty of Food Technology, Rangsit University, 52/347 Muang-Ake Phahonyothin Road, Lak-Hok, Pathumthani 12000, Thailand;
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 100000, Vietnam; (H.T.H.); (T.T.T.V.)
| |
Collapse
|
4
|
Sun X, Shi Y, Shi D, Tu Y, Liu L. Biological Activities of Secondary Metabolites from the Edible-Medicinal Macrofungi. J Fungi (Basel) 2024; 10:144. [PMID: 38392816 PMCID: PMC10890728 DOI: 10.3390/jof10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Tu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Khalil AW, Iqbal Z, Adhikari A, Khan H, Nishan U, Iqbal A, Bangash JA, Tarar OM, Bilal A, Khan SA, Hoessli DC, Assiri MA, Wu Z, Afridi S. Spectroscopic characterization of eupalitin-3-O-β-D-galactopyranoside from Boerhavia procumbens: In vivo hepato-protective potential in rat model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123369. [PMID: 37738764 DOI: 10.1016/j.saa.2023.123369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
The liver is one of the most important organs responsible for detoxifying biomolecules and xenobiotics. Herein, we report the isolation, characterization, and hepatoprotective effect of the Boerhavia procumbens-derived eupalitin-3-O-β-D-galactopyranoside (EGP) compound. The structure of the EGP compound was deduced by using NMR spectroscopic techniques and mass spectrometry. The EGP hepatoprotective activities were evaluated with HepG2 cell viability and LDH assays in vitro, and CCl4-induced toxicity was investigated in vivo in the rat model. Compared to the CCl4-treated group, cells exposed to the EGP compound at 200 µg/ml showed increased cell viability (60.52 ± 1.22 %) and decreased LDH levels (23.81 ± 1.89 U/ml). The serum levels of SGPT, SGOT, ALP, and total bilirubin in the CCl4-treated group were substantially higher than those in the control group (64 ± 1.89 U/ml, 86 ± 1.47 U/ml, 252.6 ± 2.96 U/ml, and 5.45 ± 0.32 mg/dl, respectively). When compared to animals treated with CCl4 alone, the EGP compound's in vivo hepatoprotective effect at 60 mg/kg with CCl4 significantly (p < 0.01) decreased the levels of SGPT and SGOT (26 ± 1.34 U/ml and 42.92 ± 1.6 U/ml) respectively. Furthermore, our histological study showed a significant response in restoring and maintaining the normal morphological appearance of the liver. Thus, our results show that the EGP compound is a promising and novel lead molecule for better hepatotoxicity control and therapy.
Collapse
Affiliation(s)
- Abdul Wajid Khalil
- Department of Agricultural Chemistry, University of Agriculture, Peshawar 25120, Pakistan; Pakistan Council of Scientific & Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | - Zafar Iqbal
- Department of Agricultural Chemistry, University of Agriculture, Peshawar 25120, Pakistan
| | - Achyut Adhikari
- HEJ Research Institute, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hamayun Khan
- Department of Pharmaceutical Chemistry, M. Islam College of Pharmacy, Gujranwala, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan
| | - Anwar Iqbal
- Department of Chemical Sciences, University of Lakki Marwat, Lakki Marwat, KPK, Pakistan
| | - Javed Abbas Bangash
- Pakistan Council of Scientific & Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | - Omer Mukhtar Tarar
- Pakistan Council of Scientific & Industrial Research (PCSIR) Laboratories Complex, Karachi 75270, Pakistan
| | - Ahmad Bilal
- Pakistan Council of Scientific & Industrial Research (PCSIR) Laboratories Complex, Islamabad, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology, (NUST), Islamabad 44000, Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Zhiyuan Wu
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology, (NUST), Islamabad 44000, Pakistan.
| | - Saifullah Afridi
- Department of Pediatric Intensive Care Unit, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Joint Center for Infection and Immunity, Guangzhou Medical University, 510623 Guangzhou, China; Department of Allied Health Sciences, Faculty of Life Sciences, Sarhad University of Science & Information Technology (SUIT), Mardan Campus, Mardan 23200, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
6
|
Magnibou LM, Wouamba SCN, Yaya AJG, Mbougnia JF, Njateng GSS, Fotso GW, Henoumont C, Laurent S, Emmanuel T. Chemical profiling by UHPLC-Q-TOF-HRESI-MS/MS and antibacterial properties of Entada abyssinica (Fabaceae) constituents. Nat Prod Res 2023:1-11. [PMID: 37977828 DOI: 10.1080/14786419.2023.2280171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
A rapid untargeted UHPLC-Q-TOF-ESI-MS/MS-Based metabolomic profiling of the medicinal plant Entada abyssinica was performed. A total of 18 metabolites were detected, of which 10 could not be identified. Based on this result, an extensive chemical investigation of the CH2Cl2-MeOH (1:1) extract of this plant was carried out, leading to the isolation of a new ceramide, named entadamide (1), together with nine known compounds: monomethyl kolavate (2), 24-hydroxytormentic acid (3) chondrillasterol (4), 3-O-β-D glucopyranosylstigmasterol (5), 3-O-β-D glucopyranosylsitosterol (6), quercetin 3'-methylether (7), 2,3-dihydroxypropyl icosanoate (8), 2,3-dihydroxy-propyl 23-hydroxytricosanoate (9) and 2,3-dihydroxy-propyl 24-hydroxytetracosanoate (10). Their structures were elucidated by the analyses of their spectroscopic and spectrometric data (1D and 2D NMR, and HRESI-MS) in comparison with those reported in the literature. Furthermore, the crude extract and some isolated compounds were tested against non-ciprofloxacin resistant strains viz, Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Samonella thyphi (ATCC 19430) and Samonella enterica (NR4294). The tested samples demonstrated significant activity against all the tested bacteria (MIC values: 3.12-12.5 μg/mL).
Collapse
Affiliation(s)
- Larissa M Magnibou
- Department of Chemistry, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Steven C N Wouamba
- Laboratoire BONHEURS-EA 751, CY Cergy-Paris Université, Gennevilliers, France
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Abel J G Yaya
- Department of Chemistry, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Guy S S Njateng
- Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ghislain W Fotso
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Celine Henoumont
- Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Talla Emmanuel
- Department of Chemistry, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| |
Collapse
|
7
|
Raletsena MV, Pooe OJ, Mongalo NI. A Systematic Review of Curtisia dentata Endemic to South Africa: Phytochemistry, Pharmacology, and Toxicology. Life (Basel) 2023; 13:2159. [PMID: 38004299 PMCID: PMC10672514 DOI: 10.3390/life13112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The use of traditional medicine in treating a variety of both human and animal infections is ancient and still relevant. This is due to the resistance exhibited by most pathogenic microbial stains to currently-used antibiotics. The current work reports the phytochemistry, ethno-medicinal uses, toxicology, and most important pharmacological activities that validate the use of the plant species in African traditional medicine. Curtisia dendata is used in the treatment of many human and animal infections, including diarrhea, skin and related conditions, sexually transmitted infections, cancer, and a variety of ethno-veterinary infections. Pharmacologically, the plant species exhibited potent antimicrobial activity against a variety of pathogens. Further, both extracts and compounds isolated from the plant species exhibited potent antioxidant, anticancer, anti-parasitic, anti-inflammatory, and other important biological activities. Phytochemically, the plant species possess a variety of compounds, particularly triterpenes, that may well explain the various pharmacological activities of the plant species. The toxicological parameters, antimicrobial activities against microorganisms related to sexually transmitted infections, anti-diabetic effects, and inflammatory properties of the plant species are not well studied and still need to be explored. The biological activities observed validate the use of the plant species in African traditional medicine, particularly in the treatment of pulmonary infections associated with Mycobacterium species, and may well be due to the presence of triterpenes prevalent in the leaves.
Collapse
Affiliation(s)
- Maropeng Vellry Raletsena
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Private Bag X06, Florida 0610, South Africa;
| | - Ofentse Jacob Pooe
- Department of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Private Bag X06, Florida 0610, South Africa;
| |
Collapse
|
8
|
Nigussie G, Siyadatpanah A, Norouzi R, Debebe E, Alemayehu M, Dekebo A. Antioxidant Potential of Ethiopian Medicinal Plants and Their Phytochemicals: A Review of Pharmacological Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1901529. [PMID: 37868204 PMCID: PMC10586904 DOI: 10.1155/2023/1901529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Background Free radicals are very reactive molecules produced during oxidation events that in turn initiate a chain reaction resulting in cellular damage. Many degenerative diseases in humans, including cancer and central nervous system damage, are caused by free radicals. Scientific evidence indicates that active compounds from natural products can protect cells from free radical damage. As a result, the aim of this review is to provide evidence of the use of diverse Ethiopian medicinal plants with antioxidant properties that have been scientifically validated in order to draw attention and foster further investigations in this area. Methods The keywords antioxidant, radical scavenging activities, reactive oxygen species, natural product, Ethiopian Medicinal plants, and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH) were used to identify relevant data in the major electronic scientific databases, including Google Scholar, ScienceDirect, PubMed, Medline, and Science domain. All articles with descriptions that were accessed until November 2022 were included in the search strategy. Results A total of 54 plant species from 33 families were identified, along with 46 compounds isolated. More scientific studies have been conducted on plant species from the Brassicaceae (19%), Asphodelaceae (12%), and Asteraceae (12%) families. The most used solvent and extraction method for plant samples are methanol (68%) and maceration (88%). The most examined plant parts were the leaves (42%). Plant extracts (56%) as well as isolated compounds (61%) exhibited significant antioxidant potential. The most effective plant extracts from Ethiopian flora were Bersama abyssinica, Solanecio gigas, Echinops kebericho, Verbascum sinaiticum, Apium leptophyllum, and Crinum abyssinicum. The best oxidative phytochemicals were Rutin (7), Flavan-3-ol-7-O-glucoside (8), Myricitrin (13), Myricetin-3-O-arabinopyranoside (14), 7-O-Methylaloeresin A (15), 3-Hydroxyisoagatholactone (17), β-Sitosterol-3-O-β-D-glucoside (22), Microdontin A/B (24), and Caffeic acid (39). Conclusion Many crude extracts and compounds exhibited significant antioxidant activity, making them excellent candidates for the development of novel drugs. However, there is a paucity of research into the mechanisms of action as well as clinical evidence supporting some of these isolated compounds. To fully authenticate and then commercialize, further investigation and systematic analysis of these antioxidant-rich species are required.
Collapse
Affiliation(s)
- Gashaw Nigussie
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Abolghasem Siyadatpanah
- Department of Medical Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Eyob Debebe
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | | | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
9
|
UKWUBILE CA, IKPEFAN EO, FAMUREWA AC. Role of Chitosan-Loaded Solanine Glycoalkaloid from Solanum scabrum Mill. Leaf Extract as Anti-Inflammatory and In Vitro Anticancer Agents. Turk J Pharm Sci 2023; 20:240-252. [PMID: 37606009 PMCID: PMC10445229 DOI: 10.4274/tjps.galenos.2022.03837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Objectives Solanum scabrum Mill. commonly "African nightshade" or "huckleberry" is a plant, whose leaves are used by tribes in Nigeria and Cameroon for making the popular "Kombi" and "Njama Njama" soups, respectively. This study aimed to evaluate the anti-inflammatory and anticancer activities of the leaf crude methanol extract from S. scabrum. Materials and Methods Fractions of the plant were tested for anti-inflammatory potential and in vitro anticancer activity on MCF-7 and HMVII cell lines by carrageenan-induced oedema in mice, and cytotoxicity assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, transwell migration and invasion assays, and apoptosis study by flow cytometry, respectively. Results Bioguided isolation yielded a white crystalline compound 3-nitro dibenzofuran (C12H7NO3, m/z; 213.19 g/mol, m.p.; 181.49 °C). 1H-NMR showed seven signals at δ (ppm) 2.8-4.3 consisting of two doublets and five singlets, while 13C-NMR revealed twelve carbons, which are majorly methyl carbons at δ (ppm) between 120 and 195. All tested samples demonstrated dose-dependent anti-inflammatory activity in carrageenan-induced mice. The isolated compound, i.e. solanine, and chitosan-loaded drugs showed significant inhibitory activity on the cell lines with inhibitory concentration 50 (IC50) values of 8.52, 0.82, and 22.1 μg/mL, respectively on MCF-7 cell line and 4.54, 0.08, and 12.1 μg/mL, respectively, on HMVII cell line, while doxorubicin (adriamycin) positive control, had IC50 values of 0.02 and 0.06 μg/mL, respectively, on MCF-7 and HMVII cancer cells. Selectivity index of solanine was the lowest in the study, hence, it lacks the ability to differentiate between cancerous and normal cell Vero E6 cell lines. Chitosan-loaded drugs quicken early apoptosis and sustained late apoptosis in cells with much improved selective indices. Conclusion The results obtained from this study further affirmed the use of chitosan nanoparticles as carriers for anticancer drugs.
Collapse
Affiliation(s)
- Cletus Anes UKWUBILE
- University of Maiduguri, Faculty of Pharmacy, Department of Pharmacognosy, Maiduguri, Nigeria
| | - Emmanuel Oise IKPEFAN
- Delta State University, Faculty of Pharmacy, Department of Pharmacognosy and Traditional Medicine, Abraka, Nigeria
| | - Ademola Clement FAMUREWA
- Alex Ekwueme Federal University, Faculty of Basic Medical Sciences, College of Medicine, Department of Medical Biochemistry, Abakaliki, Nigeria
| |
Collapse
|
10
|
Mfotie Njoya E, Ndemangou B, Akinyelu J, Munvera AM, Chukwuma CI, Mkounga P, Mashele SS, Makhafola TJ, McGaw LJ. In vitro antiproliferative, anti-inflammatory effects and molecular docking studies of natural compounds isolated from Sarcocephalus pobeguinii (Hua ex Pobég). Front Pharmacol 2023; 14:1205414. [PMID: 37416061 PMCID: PMC10320002 DOI: 10.3389/fphar.2023.1205414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Background: Sarcocephalus pobeguinii (Hua ex Pobég) is used in folk medicine to treat oxidative-stress related diseases, thereby warranting the investigation of its anticancer and anti-inflammatory properties. In our previous study, the leaf extract of S. pobeguinii induced significant cytotoxic effect against several cancerous cells with high selectivity indexes towards non-cancerous cells. Aim: The current study aims to isolate natural compounds from S. pobeguinii, and to evaluate their cytotoxicity, selectivity and anti-inflammatory effects as well as searching for potential target proteins of bioactive compounds. Methods: Natural compounds were isolated from leaf, fruit and bark extracts of S. pobeguinii and their chemical structures were elucidated using appropriate spectroscopic methods. The antiproliferative effect of isolated compounds was determined on four human cancerous cells (MCF-7, HepG2, Caco-2 and A549 cells) and non-cancerous Vero cells. Additionally, the anti-inflammatory activity of these compounds was determined by evaluating the nitric oxide (NO) production inhibitory potential and the 15-lipoxygenase (15-LOX) inhibitory activity. Furthermore, molecular docking studies were carried out on six putative target proteins found in common signaling pathways of inflammation and cancer. Results: Hederagenin (2), quinovic acid 3-O-[α-D-quinovopyranoside] (6) and quinovic acid 3-O-[β-D-quinovopyranoside] (9) exhibited significant cytotoxic effect against all cancerous cells, and they induced apoptosis in MCF-7 cells by increasing caspase-3/-7 activity. (6) showed the highest efficacy against all cancerous cells with poor selectivity (except for A549 cells) towards non-cancerous Vero cells; while (2) showed the highest selectivity warranting its potential safety as a chemotherapeutic agent. Moreover, (6) and (9) significantly inhibited NO production in LPS-stimulated RAW 264.7 cells which could mainly be attributed to their high cytotoxic effect. Besides, the mixture nauclealatifoline G and naucleofficine D (1), hederagenin (2) and chletric acid (3) were active against 15-LOX as compared to quercetin. Docking results showed that JAK2 and COX-2, with the highest binding scores, are the potential molecular targets involved in the antiproliferative and anti-inflammatory effects of bioactive compounds. Conclusion: Overall, hederagenin (2), which selectively killed cancer cells with additional anti-inflammatory effect, is the most prominent lead compound which may be further investigated as a drug candidate to tackle cancer progression.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaound, Cameroon
| | - Brigitte Ndemangou
- University Institute of Technology of Wood Technology, Mbalmayo, Cameroon
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Oye, Nigeria
| | - Aristide M. Munvera
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaound, Cameroon
| | - Chika. I. Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaound, Cameroon
| | - Samson S. Mashele
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Lyndy J. McGaw
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Yu JD, Yu DD, Su MZ, Gu YC, Wang H, Guo YW. New Antibacterial Diterpenoids from the South China Sea Soft Coral Klyxum molle. Mar Drugs 2023; 21:362. [PMID: 37367687 DOI: 10.3390/md21060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Fifteen new diterpenoids, namely xishaklyanes A-O (1-15), along with three known related ones (16-18), were isolated from the soft coral Klyxum molle collected from Xisha Islands, South China Sea. The stereochemistry of the new compounds was elucidated by a combination of detailed spectroscopic analyses, chemical derivatization, quantum chemical calculations, and comparison with the reported data. The absolute configuration of compound 18 was established by the modified Mosher's method for the first time. In bioassay, some of these compounds exhibited considerable antibacterial activities on fish pathogenic bacteria, and compound 4 showed the most effective activity with MIC of 0.225 μg/mL against Lactococcus garvieae.
Collapse
Affiliation(s)
- Jia-Dong Yu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan-Dan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue-Wei Guo
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
12
|
Swana L, Tsakem B, Tembu JV, Teponno RB, Folahan JT, Kalinski JC, Polyzois A, Kamatou G, Sandjo LP, Chamcheu JC, Siwe-Noundou X. The Genus Dacryodes Vahl.: Ethnobotany, Phytochemistry and Biological Activities. Pharmaceuticals (Basel) 2023; 16:ph16050775. [PMID: 37242558 DOI: 10.3390/ph16050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Dacryodes Vahl. species, belonging to the Burseraceae family, are widely used in traditional medicine in tropical regions to treat a range of ailments including malaria, wounds, tonsillitis, and ringworms. This review discusses the distribution, ethnobotanical uses, phytochemistry, and bioactivities of Dacryodes species. The intent is to spur future research into isolating and identifying key active principles, secondary metabolites, and crude extracts, and evaluating their pharmacological and toxicological effects, as well as the mechanism of actions to understand their medicinal benefits. A systematic review of scientific electronic databases from 1963 to 2022 including Scifinder, Scopus, Pubmed, Springer Link, ResearchGate, Ethnobotany Research and Applications, Google Scholar, and ScienceDirect was conducted with a focus on Dacryodes edulis (G.Don) H.J. Lam and Dacryodes rostrata (Blume) H.J. Lam. Pharmacological data revealed that D. edulis isolates contain secondary metabolites and other phytochemical groups belonging to the terpenoids class with anti-microbial, anticancer, antidiabetic, antiinflammatory and hepatoprotective activities, highlighting its pharmacological potential in the therapy or management of diverse cancers, cardiovascular, and neurological diseases. Thus, phytochemicals and standardized extracts from D. edulis could offer safer and cost-effective chemopreventive and chemotherapeutic health benefits/regimen, or as alternative therapeutic remedy for several human diseases. Nevertheless, the therapeutic potential of most of the plants in the genus have not been exhaustively explored with regard to phytochemistry and pharmacology, but mostly complementary approaches lacking rigorous, scientific research-based knowledge. Therefore, the therapeutic potentials of the Dacryodes genus remain largely untapped, and comprehensive research is necessary to fully harness their medicinal properties.
Collapse
Affiliation(s)
- Leseho Swana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa
| | - Bienvenu Tsakem
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Jacqueline V Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Rémy B Teponno
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Jarmo-Charles Kalinski
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Guy Kamatou
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Louis P Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa
| |
Collapse
|
13
|
Comparative HPLC–DAD–ESI-QTOF/MS/MS Analysis of Bioactive Phenolic Compounds Content in the Methanolic Extracts from Flowering Herbs of Monarda Species and Their Free Radical Scavenging and Antimicrobial Activities. Pharmaceutics 2023; 15:pharmaceutics15030964. [PMID: 36986824 PMCID: PMC10053500 DOI: 10.3390/pharmaceutics15030964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Comparative analysis of flavonoids and phenolic acids composition, in plants of six species of Monarda from family Lamiaceae was carried out. The 70% (v/v) methanolic extracts of flowering herbs of Monarda citriodora Cerv. ex Lag., Monarda bradburiana L.C. Beck, Monarda didyma L., Monarda media Willd., Monarda fistulosa L. and Monarda punctata L. were analyzed for their polyphenol composition as well as antioxidant capacity and antimicrobial effect. Liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC–DAD–ESI-QTOF/MS/MS) was used to identify phenolic compounds. The in vitro antioxidant activity was assessed using a DPPH radical scavenging assay, while antimicrobial activity was measured by the broth microdilution method allowing for MIC (minimal inhibitory concentration) determination. The total polyphenol content (TPC) was assayed by the Folin–Ciocalteu method. The results showed the presence of eighteen different components including phenolic acids and flavonoids together with their derivatives. The presence of six constituents (gallic acid, hydroxybenzoic acid glucoside, ferulic acid, p-coumaric acid, luteolin-7-glucoside and apigenin-7-glucoside) was found to be dependent on the species. To differentiate the samples, the antioxidant activity of 70% (v/v) methanolic extracts was studied and expressed as a percent of DPPH radical inhibition and in EC50 values (mg/mL). The latter values were as follows: M. media (EC50 = 0.090 mg/mL), M. didyma (EC50 = 0.114 mg/mL), M. citriodora (EC50 = 0.139 mg/mL), M. bradburiana (EC50 = 0.141 mg/mL), M. punctata (EC50 = 0.150 mg/mL) and M. fistulosa (EC50 = 0.164 mg/mL). Moreover, all extracts indicated bactericidal activity against reference Gram-positive (MIC = 0.07–1.25 mg/mL) and Gram-negative bacteria (MIC = 0.63–10 mg/mL) as well as fungicidal effect towards yeasts (MIC = 1.25–10 mg/mL). Staphylococcus epidermidis and Micrococcus luteus were the most sensitive to them. All extracts showed promising antioxidant properties and noteworthy activity against the reference Gram-positive bacteria. Antimicrobial effect of the extracts against the reference Gram-negative bacteria as well as fungi (yeasts) from Candida spp. was slight. All extracts showed bactericidal and fungicidal effect. The obtained results indicated that the investigated extracts from Monarda spp. could be potential sources of natural antioxidants and antimicrobial agents, especially with activity towards Gram-positive bacteria. The differences in the composition and properties of the studied samples may influence the pharmacological effects of the studied species.
Collapse
|
14
|
Djoumessi AK, Nono RN, Neumann B, Stammler HG, Bitchagno GTM, Efange NM, Nkenfou CN, Ayong L, Lenta BN, Sewald N, Nkeng-Efouet-Alango P, Chouna JR. Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites 2023; 13:metabo13020298. [PMID: 36837917 PMCID: PMC9966138 DOI: 10.3390/metabo13020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The chemical investigation of the EtOH extract from the stem bark of Trichilia monadelpha (Thonn.) J. J. De Wilde afforded two new limonoids (1 and 2): 24-acetoxy-21,25-dihydroxy-21,23-epoxytirucall-7-en-3-one (1) and (6R)-1-O-deacetylkhayanolide E (2), together with eleven known compounds (3-13), including additional limonoids, flavonoids, triterpenoids, steroids, and fatty acid. Their structures were determined using 1D- and 2D-NMR experiments, ESI mass spectrometry, and single crystal X-ray diffraction analysis. The antibacterial and antiplasmodial activities of the extracts, sub-extracts, fractions, and some of the isolated compounds were evaluated in known pathogenic strains, including Staphylococcus aureus and Plasmodium falciparum. Fraction E (n-Hex/EtOAc 30:70, v/v) showed significant activity against S. aureus ATCC 25923 with a MIC value of 3.90 µg/mL, while one of its constituents (epicatechin (9)) exhibited significant activity with MIC values of 7.80 µg/mL. Interestingly, grandifotane A (6) (IC50 = 1.37 µM) and khayanolide D (5) (IC50 = 1.68 µM) were highly active against the chloroquine-sensitive/sulfadoxine-resistant plasmodium falciparum 3D7 strain, unlike their corresponding plant extract and fractions.
Collapse
Affiliation(s)
| | - Raymond Ngansop Nono
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Beate Neumann
- Department of Chemistry, Inorganic and Structural Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | - Hans-Georg Stammler
- Department of Chemistry, Inorganic and Structural Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | | | | | - Celine Nguefeu Nkenfou
- Department of Biology, Higher Teacher Training College, University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
- Molecular Biology Center, Yaoundé P.O. Box 14475, Cameroon
| | - Lawrence Ayong
- Centre Pasteur du Cameroun, Yaounde P.O. Box 1274, Cameroon
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry-OC3, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
- Correspondence: (N.S.); (J.R.C.)
| | | | - Jean Rodolphe Chouna
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
- Correspondence: (N.S.); (J.R.C.)
| |
Collapse
|
15
|
Value-Added Compounds with Antimicrobial, Antioxidant, and Enzyme-Inhibitory Effects from Post-Distillation and Post-Supercritical CO 2 Extraction By-Products of Rosemary. Antioxidants (Basel) 2023; 12:antiox12020244. [PMID: 36829802 PMCID: PMC9952831 DOI: 10.3390/antiox12020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Hydrodistillation is the main technique to obtain essential oils from rosemary for the aroma industry. However, this technique is wasteful, producing numerous by-products (residual water, spent materials) that are usually discarded in the environment. Supercritical CO2 (SC-CO2) extraction is considered an alternative greener technology for producing aroma compounds. However, there have been no discussions about the spent plant material leftover. Therefore, this work investigated the chemical profile (GC-MS, LC-HRMS/MS) and multi-biological activity (antimicrobial, antioxidant, enzyme inhibitory) of several raw rosemary materials (essential oil, SC-CO2 extracts, solvent extracts) and by-products/waste materials (post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts). More than 55 volatile organic compounds (e.g., pinene, eucalyptol, borneol, camphor, caryophyllene, etc.) were identified in the rosemary essential oil and SC-CO2 extracts. The LC-HRMS/MS profiling of the solvent extracts revealed around 25 specialized metabolites (e.g., caffeic acid, rosmarinic acid, salvianolic acids, luteolin derivatives, rosmanol derivatives, carnosol derivatives, etc.). Minimum inhibitory concentrations of 15.6-62.5 mg/L were obtained for some rosemary extracts against Micrococcus luteus, Bacilus cereus, or Staphylococcus aureus MRSA. Evaluated in six different in vitro tests, the antioxidant potential revealed strong activity for the polyphenol-containing extracts. In contrast, the terpene-rich extracts were more potent in inhibiting various key enzymes (e.g., acetylcholinesterase, butyrylcholinesterase, tyrosinase, amylase, and glucosidase). The current work brings new insightful contributions to the continuously developing body of knowledge about the valorization of rosemary by-products as a low-cost source of high-added-value constituents in the food, pharmaceutical, and cosmeceutical industries.
Collapse
|
16
|
Antimicrobial and Cytotoxic Potential of Helminthosporin from Rumex abyssiniscus Jacq. Discovered as a Novel Source of Syringic Acid and Bis(2-ethyloctyl) Phthalate. Curr Microbiol 2022; 80:7. [PMID: 36445554 DOI: 10.1007/s00284-022-03101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Rumex abyssinicus Jacq. is a perennial medicinal herb widely used in traditional medicine to treat many diseases. Phytochemicals of the plant were isolated using column chromatography and thin layer chromatography techniques. Extract, fractions and pure compounds were screened for antimicrobial activity against sensitive and multi-drug resistant microbes and their cytotoxicity was performed on different cancer cell lines. The mechanism of action of purified helminthosporin as well as the potent fraction containing a mixture of two compounds was assessed. Fraction R7C3 was the most potent antibacterial with the lowest MIC value of 0.12 µg/mL. Helminthosporin was the most potent compound with the lowest MIC value of 1.95 µg/mL. The compound was more potent than the antibiotic chloramphenicol against multi-drug resistant (MDR) bacteria with MIC equal to 16 µg/mL. The fraction and helminthosporin were shown to destroy the cell wall of the yeast and bacteria, and DNA fragmentation effect on the genome of Candida albicans and Bacillus cereus. Helminthosporin was the most cytotoxic compound with IC50 ˂ 10 µM. Fraction R7C3 showed the most potent cytotoxic effects on all cancer cell lines, with IC50 ranging from ˂1 to 4.35 ng/mL. Our study is the first report on the mechanism of action of helminthosporin, a potent candidate in the development of new drugs against multi-resistant bacteria and cancer cells. In addition, this study uncovered Rumex abyssinicus as a new source of syringic acid and bis(2-ethyloctyl) phthalate.
Collapse
|
17
|
Phytochemical Analysis, Antibacterial and Antibiofilm Activities of Aloe vera Aqueous Extract against Selected Resistant Gram-Negative Bacteria Involved in Urinary Tract Infections. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In bacterial infections, including urinary tract infections (UTIs), the gap between the development of new antimicrobials and antimicrobial resistance is dramatically increasing, especially in Gram-negative (Gram–) bacteria. All healthy products that can be used per se or that may be sources of antibacterial compounds should be considered in the fight against this major public health threat. In the present study, the phytochemical composition of Aloe vera extract was investigated by HPLC–MS/MS, and we further evaluated its antibacterial and antibiofilm formation activity against selected resistant Gram– bacteria involved in UTIs, namely, Achromobacter xylosoxidans 4892, Citrobacter freundii 426, Escherichia coli 1449, Klebsiella oxytoca 3003, Moraxella catarrhalis 4222, Morganella morganii 1543, Pseudomonas aeruginosa 3057, and a reference strain E. coli ATCC 25922. Inhibition zones (IZs) of the extract were determined using the well diffusion method, minimum inhibitory (MIC), and bactericidal (MBC) concentration by the two-fold serial microdilution assay, and antibiofilm formation activity by the crystal violet attachment assay. Aloe-emodin and its derivatives were the major constituent (75.74%) of A. vera extract, the most important of them being aloesin (30.22%), aloe-emodin-diglucoside (12.58%), and 2′-p-methoxycoumaroylaloeresin B (9.64%). The minerals found in the extract were sulfur (S), silicon (Si), chlorine (Cl), potassium (K), and bromine (Br). Except for the clinical strain E. coli 1449, which was totally non-susceptible, A. vera demonstrated noteworthy antibacterial activity with MIC and MBC values ranging from 0.625 to 5 mg/mL and 5 to 10 mg/mL, respectively. A. vera also demonstrated dose-dependent antibacterial effects, and the reference strain E. coli ATCC 25922 was the most susceptible with MIC = 0.625 and IZ = 19 mm at 20 mg/mL. The antibiofilm formation potential of A. vera extract was strong at 2MIC and MIC (93–100% of biofilm formation inhibition), moderate at MIC/2 (32–41%), weak at MIC/4 (14–21%), and nil at MIC/8.
Collapse
|
18
|
Ngoh Misse Mouelle E, Foundikou Nsangou M, Michiren Mandou VS, Wansi JD, Akone SH, Ngeufa Happi E. Chemical constituents from Ficus sur Forssk (Moraceae). Z NATURFORSCH C 2022; 78:201-207. [PMID: 36321526 DOI: 10.1515/znc-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 02/12/2023]
Abstract
Abstract
Phytochemical investigation of the aerial roots of Ficus sur, a Cameroonian medicinal plant, resulted in a previously undescribed cerebroside, suroside (1), in addition to its aglycon congener suramide (2). Moreover, six known natural products including alpinumisoflavone (3), wighteone metabolite (4), oleanolic acid (5), β-sitosterol (6), β-sitosterol-3-O-β-D-glucopyranoside (7), and epi-ѱ-taraxastanolone (8) were identified. The structures of the previously undescribed compounds were determined by analysis of 1D and 2D-NMR (One and two dimensional nuclear magnetic resonance), mass spectrometry, chemical conversion, and by comparison of these data with those from the literature. Wighteone metabolite (4) exhibited a weak cytotoxic activity against the human HepG2 hepatocellular carcinoma cells with an IC50 value of 51.9 µM.
Collapse
Affiliation(s)
- Eitel Ngoh Misse Mouelle
- Department of Chemistry, Faculty of Science , University of Douala , P.O. Box 24157 Douala , Cameroon
| | - Mohamed Foundikou Nsangou
- Department of Chemistry, Faculty of Science , University of Douala , P.O. Box 24157 Douala , Cameroon
| | | | - Jean Duplex Wansi
- Department of Chemistry, Faculty of Science , University of Douala , P.O. Box 24157 Douala , Cameroon
| | - Sergi Herve Akone
- Department of Chemistry, Faculty of Science , University of Douala , P.O. Box 24157 Douala , Cameroon
- Department of Microbial Natural Products (MINS), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , University of Saarland , D-66123 Saarbrücken , Germany
| | - Emmanuel Ngeufa Happi
- Department of Chemistry, Faculty of Science , University of Douala , P.O. Box 24157 Douala , Cameroon
| |
Collapse
|
19
|
Liang J, Huang X, Ma G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv 2022; 12:29197-29213. [PMID: 36320733 PMCID: PMC9554739 DOI: 10.1039/d2ra02389j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Antibacterial drugs face increasing challenges due to drug resistance and adverse reactions, which has created a pressing need for the discovery and development of novel antibacterial drugs. Herbs have played an important role in the treatment of infectious diseases. This review aims to summarize, analyze and evaluate the antibacterial activities and mechanisms of components from popular herbs in East Asia. In this review, we have searched and summarized the scientific papers published during the past twenty-year period from electronic databases such as PubMed, ScienceDirect, and Web of Science. These herbs and their components, including alkaloids, flavonoids, essential oils, terpenes, organic acids, coumarins and lignans, display potential antimicrobial effects. Herbal medicine formulas (HMFs) usually show stronger antibacterial activity than single herbs. Herbs and HMFs bring forth antibacterial activities by damaging cell membranes and walls, inhibiting nucleic acid and protein synthesis, and increasing intracellular osmotic pressure. These herbs and their components can be developed as potential and promising novel antibacterial herbal products.
Collapse
Affiliation(s)
- Jingru Liang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Xuan Huang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| |
Collapse
|
20
|
Gupta SP, Tiwari P, Sharma B. Protective Effect of Methanolic Extract of Euglena tuba Against Dalton Lymphoma Induced Oxidative Stress in BALB/c Mice. Indian J Clin Biochem 2022; 37:410-422. [PMID: 36262781 PMCID: PMC9573845 DOI: 10.1007/s12291-021-01011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
The identification and pharmacological validation of plant-based lead compounds for the cure of different diseases including cancer have always been globally strived. In addition to possessing numerous medicinal properties, many of the phytochemicals display antioxidant potential activities. Reactive oxygen species (ROS) causeoxidative stress leading to several severe diseases such as cancer. The antioxidants are substances that fight against ROS to protect the cells from their damaging effects. In the present study, the effects of methanol extract of Euglena tuba(ETME) have been evaluated for its antioxidant and antitumor potential against Dalton's lymphoma (DL) introduced in BALB/cmice. After 24 h of intraperitoneal inoculation of DL cells in mice, ETME (300 mg kg-1 body weight) was administered intraperitoneally upto18 alternative days. On the 18th day, the mice were sacrificed; the blood and tissues (liver and brain) were collected to determine the tumor growth parameters including morphological, behavioural, haematological profile, and antioxidant indices. The results indicated that ETME exhibited significant antioxidative and antitumor properties when compared with the data from DL bearing mice. The results from the present study indicated that ETME contained remarkable antitumor efficacy, which was mediated through amelioration of oxidative stress. The data suggested that ETME could be used as a potential natural anticancer agent.
Collapse
|
21
|
Liposome-Encapsulated Bioactive Guttiferone E Exhibits Anti-Inflammatory Effect in Lipopolysaccharide-Stimulated MH-S Macrophages and Cytotoxicity against Human Cancer Cells. Mediators Inflamm 2022; 2022:8886087. [PMID: 36081652 PMCID: PMC9448579 DOI: 10.1155/2022/8886087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Guttiferone E is a naturally occurring polyisoprenylated benzophenone exhibiting a wide range of remarkable biological activities. But its therapeutic application is still limited due to its poor water solubility. This study is aimed at preparing guttiferone E-loaded liposomes and assessing their in vitro cytotoxicity and anti-inflammatory effect. Methods Liposomes containing guttiferone E were prepared by the thin film hydration method, and the physicochemical characteristics were determined using dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The cytotoxicity was assessed by the MTT assay. The fluorometric cyclooxygenase (COX) activity assay kit was used to assess the COX activity while the nitric oxide production was evaluated by the Griess reagent method. Results The liposomes with a mean size of 183.33 ± 17.28 nm were obtained with an entrapment efficiency of 63.86%. Guttiferone E-loaded liposomes successfully decreased the viability of cancer cells. The overall IC50 values varied between 5.46 μg/mL and 22.25 μg/mL. Compared to the untreated control, guttiferone E-loaded liposomes significantly reduced the nitric oxide production and the activity of COX in a concentration-dependent manner. Conclusion This study indicates that liposomes can be an alternative to overcome the water insolubility issue of the bioactive guttiferone E.
Collapse
|
22
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
23
|
Zulkipli M, Mahbub N, Fatima A, Wan-Lin SL, Khoo TJ, Mahboob T, Rajagopal M, Samudi C, Kathirvalu G, Abdullah NH, Pinho AR, Oliveira SMR, Pereira MDL, Rahmatullah M, Hasan A, Paul AK, Butler MS, Nawaz M, Wilairatana P, Nissapatorn V, Wiart C. Isolation and Characterization of Werneria Chromene and Dihydroxyacidissimol from Burkillanthus malaccensis (Ridl.) Swingle. PLANTS (BASEL, SWITZERLAND) 2022; 11:1388. [PMID: 35684161 PMCID: PMC9182682 DOI: 10.3390/plants11111388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The secondary metabolites of endemic plants from the Rutaceae family, such as Burkillanthusmalaccensis (Ridl.) Swingle from the rainforest of Malaysia, has not been studied. Burkillanthusmalaccensis (Ridl.) Swingle may produce antibacterial and antibiotic-potentiating secondary metabolites. Hexane, chloroform, and methanol extracts of leaves, bark, wood, pericarps, and endocarps were tested against bacteria by broth microdilution assay and their antibiotic-potentiating activities. Chromatographic separations of hexane extracts of seeds were conducted to investigate effective phytochemicals and their antibacterial activities. Molecular docking studies of werneria chromene and dihydroxyacidissiminol against SARS-CoV-2 virus infection were conducted using AutoDock Vina. The methanol extract of bark inhibited the growth of Staphylococcusaureus, Escherichiacoli, and Pseudomonasaeruginosa with the minimum inhibitory concentration of 250, 500, and 250 µg/mL, respectively. The chloroform extract of endocarps potentiated the activity of imipenem against imipenem-resistant Acinetobacterbaumannii. The hexane extract of seeds increased the sensitivity of P. aeruginosa against ciprofloxacin and levofloxacin. The hexane extract of seeds and chloroform extract of endocarps were chromatographed, yielding werneria chromene and dihydroxyacidissiminol. Werneria chromene was bacteriostatic for P.aeruginosa and P.putida, with MIC/MBC values of 1000 > 1000 µg/mL. Dihydroxyacidissiminol showed the predicted binding energies of −8.1, −7.6, −7.0, and −7.5 kcal/mol with cathepsin L, nsp13 helicase, SARS-CoV-2 main protease, and SARS-CoV-2 spike protein receptor-binding domain S-RBD. Burkillanthusmalaccensis (Ridl.) Swingle can be a potential source of natural products with antibiotic-potentiating activity and that are anti-SARS-CoV-2.
Collapse
Affiliation(s)
- Masyitah Zulkipli
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Nuzum Mahbub
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34093, Turkey;
| | - Stefanie Lim Wan-Lin
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Teng-Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Tooba Mahboob
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.M.); (C.S.); (G.K.)
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Chandramathi Samudi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.M.); (C.S.); (G.K.)
| | - Gheetanjali Kathirvalu
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.M.); (C.S.); (G.K.)
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Malaysia;
| | - Ana Rita Pinho
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.P.); (M.d.L.P.)
- Neuroscience and Signaling Laboratory, Institute of Biomedicine-IBIMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sonia M. R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.P.); (M.d.L.P.)
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (A.H.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Mark S. Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Muhammad Nawaz
- Department of Nano-Medicine, Institute for Research and Medical Consultations (IRM), Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
24
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in sub-Saharan Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1387. [PMID: 35631812 PMCID: PMC9143319 DOI: 10.3390/plants11101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, including deaths arising from non-communicable diseases in sub-Saharan Africa (SSA). Consequently, this study aimed to provide details of medicinal plants (MPs) employed in SSA for the treatment of CVDs and their related risk factors to open new avenues for the discovery of novel drugs. The extensive ethnopharmacological literature survey of these MPs in 41 SSA countries was based on studies from 1982 to 2021. It revealed 1,085 MPs belonging to 218 botanical families, with Fabaceae (9.61%), Asteraceae (6.77%), Apocynaceae (3.93%), Lamiaceae (3.75%), and Rubiaceae (3.66%) being the most represented. Meanwhile, Allium sativum L., Persea americana Mill., Moringa oleifera Lam., Mangifera indica L., and Allium cepa L. are the five most utilised plant species. The preferred plant parts include the leaves (36%), roots (21%), barks (14%), fruits (7%), and seeds (5%), which are mostly prepared by decoction. Benin, Mauritius, Nigeria, South Africa, and Togo had the highest reported use while most of the investigations were on diabetes and hypertension. Despite the nutraceutical advantages of some of these MPs, their general toxicity potential calls for caution in their human long-term use. Overall, the study established the need for governments of SSA countries to validate the efficacy/safety of these MPs as well as provide affordable, accessible, and improved modern healthcare services.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpho Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
25
|
Molecular Insights into Coumarin Analogues as Antimicrobial Agents: Recent Developments in Drug Discovery. Antibiotics (Basel) 2022; 11:antibiotics11050566. [PMID: 35625210 PMCID: PMC9137837 DOI: 10.3390/antibiotics11050566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Coumarins are a large family of benzopyrones, and more than 1300 coumarins have been reported to date. Natural, as well as synthetic, coumarins have demonstrated a diverse activity spectrum. On the other hand, the demands of the current health scenario witnessing morbidity and mortality due to microbial infections and multidrug-resistant bacterial strains, the well-reported phytochemical coumarin can be of interest. Some of the well-reported coumarin analogues as antimicrobial agents include β-lactum derivatives, coumarin-based 1,2,3-triazole compounds, the miconazole analogue, coumarin-substituted pyrazole hybrids, pyranocoumarin, coumarin−sulphonamide hybrids, pyranocoumarins, coumarin−sulphonamide derivatives, chromenylpyrazoles candidates, 3-amidocoumarins analogues, uracil−coumarin hybrids, indolinedione−coumarin hybrids, coumarin−imidazole hybrids, coumarin-fused pyrazolones and methyl thiazole derivatives, coumarin−theophylline hybrids, etc. In the present review, several methods for the synthesis of coumarin derivatives as antimicrobial agents are reported, along with structure−activity relationship (SAR) studies focusing on the developments reported since 2016. Abstract A major global health risk has been witnessed with the development of drug-resistant bacteria and multidrug-resistant pathogens linked to significant mortality. Coumarins are heterocyclic compounds belonging to the benzophenone class enriched in different plants. Coumarins and their derivatives have a wide range of biological activity, including antibacterial, anticoagulant, antioxidant, anti-inflammatory, antiviral, antitumour, and enzyme inhibitory effects. In the past few years, attempts have been reported towards the optimization, synthesis, and evaluation of novel coumarin analogues as antimicrobial agents. Several coumarin-based antibiotic hybrids have been developed, and the majority of them were reported to exhibit potential antibacterial effects. In the present work, studies reported from 2016 to 2020 about antimicrobial coumarin analogues are the focus. The diverse biological spectrum of coumarins can be attributed to their free radical scavenging abilities. In addition to various synthetic strategies developed, some of the structural features include a heterocyclic ring with electron-withdrawing/donating groups conjugated with the coumarin nucleus. The suggested structure−activity relationship (SAR) can provide insight into how coumarin hybrids can be rationally improved against multidrug-resistant bacteria. The present work demonstrates molecular insights for coumarin derivatives having antimicrobial properties from the recent past. The detailed SAR outcomes will benefit towards leading optimization during the discovery and development of novel antimicrobial therapeutics.
Collapse
|
26
|
Özenver N, Efferth M, Efferth T. Ethnopharmacology, phytochemistry, chemical ecology and invasion biology of Acanthus mollis L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114833. [PMID: 34785251 DOI: 10.1016/j.jep.2021.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus mollis L. (Bear's Breeches) is a wide-spread medicinal and ornamental plant and is particularly suited to exemplarily illustrate the diverse aspects of invasion biology by neophytes. Since ancient times, it has been a popular Mediterranean ornamental plant in horticulture and served as model for the decoration of column capitals in architecture. AIM OF THE STUDY In the present review, we aimed to give an overview about ethnopharmacology, phytochemistry, chemical ecology, and invasion biology of A. mollis. Thus, the importance of plantation cultivation in the presence of ecologically problematic species and environmental protection were emphasized. MATERIALS AND METHODS We conducted an extensive literature search via screening PubMed, Scopus, and Web of Science, in order to compile the data about A. mollis and its role on invasion biology and thereby attracting attention to the prominence of the horticultural and agricultural cultivation of plant species with a special focus on A. mollis as a model. RESULTS AND CONCLUSION Phytochemical analyses revealed secondary metabolites from the classes of flavonoids, phenols, phenylpropanoids, anthraquinones arylnaphthalene lignans, phytosterols and others. Extracts of A. mollis and isolated phytochemicals not only exert assorted activities including antioxidant, anti-inflammatory and neuroprotective in murine and human experimental models, but also act against plant parasites (bacteria, insects, mollusks, fungi), protecting the plant from microbial attack and herbivorous predators. A. mollis has been used in traditional medicine to treat dermatological ailments, gastrointestinal diseases, ulcers and even tumors. Nevertheless, the robustness and rapid growth of A. mollis as well as the global horticultural trade facilitated its invasion into fragile ecosystems of Australia, New Zealand, and several other spots around the globe in Northern Europe (Great Britain), Asia (China, India), South Africa, and South America (Argentina). The release of A. mollis from gardens into the wild represents a considerable danger as invasive species are threatening biodiversity and leading to the extinction of domestic plants in the long run. Likewise, the likelihood of other medicinal plants in terms of invasion biology are needed to be fully recognized and discussed.
Collapse
Affiliation(s)
- Nadire Özenver
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany; Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Ankara, Turkey.
| | - Monika Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| | - Thomas Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| |
Collapse
|
27
|
Fouatio Feudjou W, Mbock AM, Tedjon Sielinou V, Fouotsa H, Njonté Wouamba SC, Kamkumo Gounoue R, Freeze M, Stammler HG, Kezeutas Bankeu JJ, Pierre M, Ndjakou Lenta B, Tiabou Tchinda A, Sewald N, Nkengfack AE. Secondary metabolites from Detarium microcarpum Guill. and Perr. (Fabaceae). Z NATURFORSCH C 2022; 77:253-261. [PMID: 35212491 DOI: 10.1515/znc-2021-0239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
The chemical investigation of the ethanol/water (7:3) extract of the roots of Detarium microcarpum (Fabaceae) led to the isolation of one new labdane diterpenoid, microcarpin (1) and one new ceramide derivative, microcarpamide (2), along with eight known secondary metabolites (3-10) including, 5-(carboxymethyl)-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid (3), microcarposide (4), rhinocerotinoic acid (5), 1,7-dihydroxy-6-methylxanthone (6), ursolic acid (7), 3β,23-dihydroxylup-20(29)-en-28-oic acid (8), alphitolic acid (9), and stigmasterol glucoside (10). The structures of these compounds were elucidated based on their spectroscopic data. Although compounds 3 and 4 are known, their crystalline structures are reported here for the first time. These compounds were evaluated in vitro for their antisalmonella activity. The results obtained showed that, microcarpamide (2), microcarposide (4), and rhinocerotinoic acid (5) were moderately active against three salmonella strains: Salmonella typhi, Salmonella enteritidis and Salmonella typhimirium, with minimum inhibition concentration values of 76.7 and 153.5 μM.
Collapse
Affiliation(s)
- William Fouatio Feudjou
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon.,Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Arnaud Michel Mbock
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Valerie Tedjon Sielinou
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Hugue Fouotsa
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | | | - Racéline Kamkumo Gounoue
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Marcel Freeze
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | - Hans-Georg Stammler
- Department of Inorganic and Structural Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | | | - Mkounga Pierre
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47 Yaoundé, Cameroon
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Norbert Sewald
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
| | - Augustin Ephrem Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| |
Collapse
|
28
|
Cashman-Kadri S, Lagüe P, Fliss I, Beaulieu L. Determination of the Relationships between the Chemical Structure and Antimicrobial Activity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof. Antibiotics (Basel) 2022; 11:antibiotics11030297. [PMID: 35326761 PMCID: PMC8944596 DOI: 10.3390/antibiotics11030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/28/2022] Open
Abstract
The structure–activity relationships and mode of action of synthesized glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-related antimicrobial peptides were investigated. Including the native skipjack tuna GAPDH-related peptide (SJGAP) of 32 amino acid residues (model for the study), 8 different peptide analogs were designed and synthesized to study the impact of net charge, hydrophobicity, amphipathicity, and secondary structure on both antibacterial and antifungal activities. A net positive charge increase, by the substitution of anionic residues or C-terminal amidation, improved the antimicrobial activity of the SJGAP analogs (minimal inhibitory concentrations of 16–64 μg/mL), whereas the alpha helix content, as determined by circular dichroism, did not have a very definite impact. The hydrophobicity of the peptides was also found to be important, especially for the improvement of antifungal activity. Membrane permeabilization assays showed that the active peptides induced significant cytoplasmic membrane permeabilization in the bacteria and yeast tested, but that this permeabilization did not cause leakage of 260 nm-absorbing intracellular material. This points to a mixed mode of action involving both membrane pore formation and targeting of intracellular components. This study is the first to highlight the links between the physicochemical properties, secondary structure, antimicrobial activity, and mechanism of action of antimicrobial peptides from scombrids or homologous to GAPDH.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC G1V 0A6, Canada;
- Institute for Integrative Systems Biology, Department of Biochemistry, Microbiology and Bio-Informatics, Pavillon, Alexandre-Vachon, Université Laval, 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 404767)
| |
Collapse
|
29
|
D’Angeli F, Guadagni F, Genovese C, Nicolosi D, Trovato Salinaro A, Spampinato M, Mannino G, Lo Furno D, Petronio Petronio G, Ronsisvalle S, Sipala F, Falzone L, Calabrese V. Anti-Candidal Activity of the Parasitic Plant Orobanche crenata Forssk. Antibiotics (Basel) 2021; 10:1373. [PMID: 34827311 PMCID: PMC8615231 DOI: 10.3390/antibiotics10111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Daria Nicolosi
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy;
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Federica Sipala
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Luca Falzone
- Laboratory of Experimental Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| |
Collapse
|
30
|
Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper. Antioxidants (Basel) 2021; 10:antiox10101642. [PMID: 34679776 PMCID: PMC8533580 DOI: 10.3390/antiox10101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/26/2023] Open
Abstract
Piper spices represent an inexhaustible reservoir of bioactive compounds that may act as drug leads in natural product research. The aim of this study was to investigate a series of methanolic fruit extracts obtained from P. nigrum (black, green, white and red), P. longum and P. retrofractum in comparative phytochemical and multi-directional biological (antimicrobial, antioxidant, anti-enzymatic and anti-melanogenic) assays. The metabolite profiling revealed the presence of 17 piperamides, with a total content of 247.75-591.42 mg piperine equivalents/g. Among the 22 tested microorganism strains, Piper spices were significantly active (MIC < 0.1 mg/mL) against the anaerobes Actinomyces israelii and Fusobacterium nucleatum. The antioxidant and anti-enzymatic activities were evidenced in DPPH (10.64-82.44 mg TE/g) and ABTS (14.20-77.60 mg TE/g) radical scavenging, CUPRAC (39.94-140.52 mg TE/g), FRAP (16.05-77.00 mg TE/g), chelating (0-34.80 mg EDTAE/g), anti-acetylcholinesterase (0-2.27 mg GALAE/g), anti-butyrylcholinesterase (0.60-3.11 mg GALAE/g), anti-amylase (0.62-1.11 mmol ACAE/g) and anti-glucosidase (0-1.22 mmol ACAE/g) assays. Several Piper extracts (10 μg/mL) inhibited both melanin synthesis (to 32.05-60.65% of αMSH+ cells) and release (38.06-45.78% of αMSH+ cells) in αMSH-stimulated B16F10 cells, partly explained by their tyrosinase inhibitory properties. Our study uncovers differences between Piper spices and sheds light on their potential use as nutraceuticals or cosmeceuticals for the management of different diseases linked to bacterial infections, Alzheimer's dementia, type 2 diabetes mellitus or hyperpigmentation.
Collapse
|
31
|
Jepkoech C, Omosa LK, Nchiozem-Ngnitedem VA, Kenanda EO, Guefack MGF, Mbaveng AT, Kuete V, Heydenreich M. Antibacterial secondary metabolites from Vernonia auriculifera Hiern (Asteraceae) against MDR phenotypes. Nat Prod Res 2021; 36:3203-3206. [PMID: 34293972 DOI: 10.1080/14786419.2021.1953024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purification of the aerial parts of Vernonia auriculifera Hiern afforded steroids (1-2), flavonoids (3-5), and polyalcohol (6). Their structures were determined using spectral evidences as well as by comparison with reported data. Iodonitrotetrazolium chloride (INT) colorimetric assay was used to assess the antibacterial activity of the extract and isolates against 13 pathogenic strains. The crude extract showed strong antibacterial activity (MIC < 100 µg/mL) against the tested bacterial strains. When combined with an efflux pump inhibitor phenylalanine beta naphthylamide (PAβN), the inhibition potency of the extract was substantially enhanced with the lowest MIC value at 4 µg/mL. Compounds 5 and 6 showed moderate activity (MIC < 100 µg/mL) against 12/13 (92.3%), and 8/13 (61.5%) bacterial strains, respectively. A minimal bactericidal concentration (MBC)/minimal inhibitory concentration (MIC) ratio ≤ 4 indicated their bactericidal effect against Escherichia coli, Enterbacter aerogenes, Klebsiella pneumoniae, Providencia stuartii, Pseudomonas aeruginosa, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Clara Jepkoech
- Department of Chemistry, School of Pure and Applied Sciences, Kisii University, Kisii, Kenya
| | | | | | - Evans O Kenanda
- Department of Research and Extension, Kisii University, Kisii, Kenya
| | - Michel-Gael F Guefack
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Armelle T Mbaveng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | |
Collapse
|
32
|
Comprehensive Review of Endophytic Flora from African Medicinal Plants. Curr Microbiol 2021; 78:2860-2898. [PMID: 34184112 DOI: 10.1007/s00284-021-02566-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Many people in different African countries are suffering from different diseases many of which result in serious life threat and public health problems with high risk of infection and mortality. Due to less accessibility and high cost of modern drugs, people of this continent often depend on traditional medicine using medicinal plants to manage the diseases. Africa has large tropical rain forests, which are very rich in medicinal plants. Many of them have been scientifically proven for their medicinal values. These medicinal plants which constitute a large repertoire of endophytes have not been significantly explored for the isolation of these microorganisms and their bioactive secondary metabolites. This review summarizes the research on endophytes isolated from medicinal plants of Africa, their pharmacological potential and some of their biotechnological aspects. Novel compounds reported from endophytes from Africa with their biological activities have also been reviewed. Information documented in this review might serve as starting point for future researches on endophytes in different African countries.
Collapse
|
33
|
Protective effects of Dioscorea birmanica extract against oxidative stress-induced damage in cultured normal hepatocytes and its phytochemical constituents. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules 2021; 26:molecules26113193. [PMID: 34073499 PMCID: PMC8198081 DOI: 10.3390/molecules26113193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
The chemical composition of the hydroethanolic extracts (60% v/v) from the aerial parts of Thymus marschallianus Willd (TM) and Thymus seravschanicus Klokov (TS) from Southern Kazakhstan flora was analyzed together with their hexane fractions. Determination of antibacterial, antifungal and antioxidant activities of both extracts was also performed. RP-HPLC/PDA and HPLC/ESI-QTOF-MS showed that there were some differences between the composition of both extracts. The most characteristic components of TM were rosmarinic acid, protocatechuic acid, luteolin 7-O-glucoside, and apigenin 7-O-glucuronide, while protocatechuic acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, and eriodictyol predominated in TS. The content of polyplenols was higher in TS than in TM. The GC-MS analysis of the volatile fraction of both examined extracts revealed the presence of thymol and carvacrol. Additionally, sesquiterpenoids, fatty acids, and their ethyl esters were found in TM, and fatty acid methyl esters in TS. The antioxidant activity of both extracts was similar. The antibacterial activity of TS extract was somewhat higher than TM, while antifungal activity was the same. TS extract was the most active against Helicobacter pylori ATCC 43504 with MIC (minimal inhibitory concentration) = 0.625 mg/mL, exerting a bactericidal effect. The obtained data provide novel information about the phytochemistry of both thyme species and suggest new potential application of TS as a source of bioactive compounds, especially with anti-H. pylori activity.
Collapse
|
35
|
Ahmad I, Mir MA, Srivastava S, Shati AA, Elbehairi SEI, Irfan S, Abohashrh M, Nisar N, Bashir N, Srivastava P. Phytochemical Screening and In-Vitro Antibacterial and Anticancer Activity of Crude Extract of Matricaria aurea. Curr Pharm Des 2021; 27:69-79. [PMID: 33292113 DOI: 10.2174/1381612826666201207105620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Infectious diseases constantly represent the source of sickness as well as mortality in human beings. Herbal applications in human life through using plants for antibacterial and anticancer activity have shown the potential medicinal outcome. OBJECTIVES To evaluate the antibacterial and anticancer activities of the crude extract of Matricaria aurea. MATERIALS AND METHODS The antibacterial activity of the crude flowers of M. aurea extract was examined against reference and clinical bacterial strains by agar well diffusion method. Minimum inhibitory concentrations and minimum bactericidal concentrations were determined by micro broth dilution assays using MH broth. Herbal extract was employed over human breast adenocarcinoma cell line (MCF-7), hepatocellular carcinoma cell line (HepG-2) and colorectal adenocarcinoma cell line (HCT-116) to optimize cancer cells proliferation by SRB assay. RESULTS The data has shown that the extract from M. aurea had significant antimicrobial activity against the tested microorganisms. The plant extract showed higher antibacterial activity against the reference strain of Streptococcus pyogenes. The MIC and MBC varied between 0.38-12.5 mg/ml and 3.1-200 mg/ml respectively. Synergy study elucidated the significant bacteriostatic effect of M. aurea extract on S. aureus and S. saprophyticus. The data of SRB assay deliver the potential anticancer activity through cell death. CONCLUSION This study delivers innovative information that M. aurea possessed excellent bio-activities against pathogenic microbes and cancer cells, which drive attention for further research to explore the active components responsible for biological efficacies.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Srivastava
- Department of Pharmaceutics, Era College of Pharmacy, Era University, Lucknow, UP, India
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Safia Irfan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nasreena Bashir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
36
|
Gado DA, Abdalla MA, Ahmed AS, Madikizela B, Nkadimeng SM, Ehlers MM, McGaw LJ. In vitro antibacterial activity of Loxostylis alata extracts and isolated compounds against Salmonella species. BMC Complement Med Ther 2021; 21:121. [PMID: 33849505 PMCID: PMC8042679 DOI: 10.1186/s12906-021-03292-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Background Owing to antibiotic resistance, alternative antimicrobials from medicinal plants are receiving attention as leads for anti-infective agents. This study aimed to investigate selected tree species and their constituents for activity against bacterial foodborne pathogens, particularly Salmonella serovars. Methods Antibacterial activity of ten plant species was determined by serial microdilution against bacteria implicated in causing gastrointestinal ailments. Active compounds were isolated from Loxostylis alata using bioassay-guided fractionation. Antioxidant activity was determined using free-radical scavenging assays. Cytotoxicity and genotoxicity of the extracts was ascertained on Vero cells, and using the Ames assay respectively. Results Extracts had low to moderate MIC values from 0.04 to 2.5 mg/mL. Protorhus longifolia and Loxostylis alata were most active and L. alata had the highest selectivity index value (2.51) against Salmonella Typhimurium, as well as high antioxidant activity. Cytotoxicity values ranged from 0.02 to 0.47 mg/mL, while tested extracts were not genotoxic. Bioactive compounds isolated from L. alata included delicaflavone and a polymethoxyflavone. Conclusions The Loxostylis alata leaf extract had strong activity against Salmonella serovars but isolated compounds were less active, indicating likely synergistic effects. Extracts of L. alata are promising candidates for development of antimicrobial preparations or food additives against microbial contamination.
Collapse
Affiliation(s)
- Dorcas A Gado
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa.,Regional Laboratory for Animal Influenzas and other Transboundary Animal Diseases, National Veterinary Research Institute, PMB 01, Vom, Plateau State, Nigeria
| | - Muna Ali Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa. .,Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314, Khartoum North, Sudan.
| | - Aroke S Ahmed
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
| | - Balungile Madikizela
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
| | - Sanah M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, PO Box X323, Arcadia 0007, Pretoria, South Africa.,National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
| |
Collapse
|
37
|
Mouafo HT, Tchuenchieu ADK, Nguedjo MW, Edoun FLE, Tchuente BRT, Medoua GN. In vitro antimicrobial activity of Millettia laurentii De Wild and Lophira alata Banks ex C. F. Gaertn on selected foodborne pathogens associated to gastroenteritis. Heliyon 2021; 7:e06830. [PMID: 33981891 PMCID: PMC8082555 DOI: 10.1016/j.heliyon.2021.e06830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed at evaluating the antimicrobial potential of aqueous, ethanolic and methanolic extracts of two Cameroonian plants against selected foodborne pathogens. Bioactive compounds were extracted from Millettia laurentii De Wild seeds and Lophira alata Banks ex. C. F. Gaertn leaves using distilled water, ethanol and methanol as solvents. The extracts were tested against Escherichia coli O157, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Moraxella morganii, Salmonella enteritidis, Klebsiella pneumoniae and Listeria monocytogenes using the microdilution method. The results showed that distilled water extracted a more important mass of phytochemical compounds (18.0-24.60%) compared to ethanol (4.80-5.0%) and methanol (4.20-4.60%). All the extracts exhibited significant antimicrobial activity with MIC values ranging from 5 to 20 μg/mL for M. laurentii seeds extracts and from 1.0 to 20 μg/mL for L. alata leaves extracts. The different plant extracts were ten times less active than gentamicin. The most active extracts were obtained using ethanol as solvent and K. pneumoniae was the most resistant pathogen to all extracts (MBC>20 μg/mL). M. laurentii extracts were bactericidal against L. monocytogenes and P. mirabilis while the reference antibiotic (gentamicin) was bacteriostatic against these pathogens. The results obtained from this study suggest the studied local plant materials as a source of antimicrobial compounds which can be valorized in the medical field as substitute of antibiotics for which many microorganisms have nowadays developed resistance mechanisms. Further studies need to be performed in order to characterize and identify these antimicrobial active molecules.
Collapse
Affiliation(s)
- Hippolyte Tene Mouafo
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, POBOX 13033, Yaoundé Cameroon
| | - Alex Dimitri Kamgain Tchuenchieu
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, POBOX 13033, Yaoundé Cameroon
| | - Maxwell Wandji Nguedjo
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, POBOX 13033, Yaoundé Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, POBOX 812, Yaoundé Cameroon
| | - Ferdinand Lanvin Ebouel Edoun
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, POBOX 13033, Yaoundé Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, POBOX 812, Yaoundé Cameroon
| | - Boris Ronald Tonou Tchuente
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, POBOX 13033, Yaoundé Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, POBOX 812, Yaoundé Cameroon
| | - Gabriel Nama Medoua
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, POBOX 13033, Yaoundé Cameroon
| |
Collapse
|
38
|
Shukla V, Asthana S, Singh S. Role of anthraquinones in Cassia occidentalis induced hepato-myo-encephalopathy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113431. [PMID: 33011371 DOI: 10.1016/j.jep.2020.113431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The different plant parts of Cassia occidentalis Linn, (CO) such as root, leaves, seeds and pods have traditionally been used in multifarious medicines for the treatment of dysentery, diarrhea, constipation, fever, eczema, cancer and venereal diseases. MATERIALS AND METHODS A systematic search of literature has been done in books and scientific databases like Science Direct, Pubmed, Google Scholar and Scopus etc. These sources were used to compile, analyze and review the information regarding the phytochemistry, toxicology and mechanism of toxicity of CO. The various references on this subject are cited in our review ranging from 1956 to 2019. RESULTS Unintentional exposure of CO causes serious pathological condition in children, known as hepato-myo-encephalopathy (HME). The toxicity after CO consumption is associated with the presence of anthraquinones (AQs), a class of secondary plant metabolites. These AQs at high concentrations are known to cause detrimental effects on essential vital organs such as liver, kidney, spleen, brain, muscle and reproductive organs. The animal studies in rodent models as well as clinical investigations have clearly revealed that CO toxicity is associated with enhanced hepatotoxicity serum markers (ALT, AST, and LDH) and presence of necrotic lesions in liver. Furthermore, CO also causes vacuolization in muscle tissue and increases the level of CPK which is a prominent muscle damage marker. Apart from these target organs, CO consumption also causes neuronal damage via disturbing the levels of different proteins such as (GFAP and b-tubulin III). The mechanistic studies show that AQs present in CO have the potential to disturb the cellular homeostasis via binding to DNA, increasing the production ROS and showing inhibitory effects on essential enzymes etc. Therefore, AQs have been observed to be the primary culprit agents contributing to the toxicity of CO in children and animals. CONCLUSION Despite its therapeutic potential, CO consumption can be detrimental if consumed in high amounts. A thorough analysis of literature reveals that AQs are the primary factors contributing to toxicity of CO seeds. Exposure to CO seeds causes HME, which is a serious life threatening condition for the malnourished children from lower strata. Multiple mechanisms are involved in the CO induced HME in patients. Lack of appropriate diagnostic measures and a poor understanding of the CO toxicity mechanism in humans and animals complicate the clinical management of CO poisoning subjects. Therefore, development of point of care diagnostic kits shall help in early diagnosis & suitable management of CO poisoning.
Collapse
Affiliation(s)
- Vibha Shukla
- Food Toxicology Division, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Somya Asthana
- Food Toxicology Division, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, India
| | - Saurabh Singh
- Food Toxicology Division, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
39
|
Antioxidant Activities of Methanol Extracts of Thirteen Cameroonian Antibacterial Dietary Plants. J CHEM-NY 2020. [DOI: 10.1155/2020/8886762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study falls within the search for alternative solutions to problems related to diseases associated with oxidative stress. It involved the evaluation of antioxidant activities extracts from thirteen antibacterial Cameroonian food plants, namely, P. nigrum, A. cruentus, L. sativa, S. edule, S. nigrum, V. amygdalina, A. hybridus, V. hymenolepis, L. capensis, M. esculenta, C. melo, T. occidentalis, and T. triangulare. The thirteen plant extracts with a broad spectrum of antibacterial activity all showed total reducing powers ranging between 2.41 and 27.81 AAE (mg ascorbic acid equivalents per gram of dried extract) and total phenol contents between 2.65 and 35.03 GAE (mg of gallic acid equivalents per gram of dried extract) of dry extract. Except for extracts of L. capensis, the other 12 extracts showed flavonoid contents ranging between 0.29 and 5.99 RE (rutin equivalents per gram of dried extract). All 13 plant extracts also showed free radical scavenging activity against DPPH· with IC50 ranging between 1.65 and 310.52 μg/ml, while 12 of these extracts exhibited inhibitory activity against NO· radical (IC50 ranging from 19.77 to 157.72 μg/ml). Statistically insignificant positive correlations (
) were found between antibacterial activities of these plants and their antioxidant activities. The different results of this study provide scientific evidence for the use of these antibacterial food plants in the control of different conditions associated with oxidative stress.
Collapse
|
40
|
The Aqueous Extract of Dacryodes edulis (Burseraceae) Leaves Inhibits Cell Proliferation Induced by Estradiol on the Uterus and Vagina of Ovariectomized Female Wistar Rats. Adv Pharmacol Pharm Sci 2020; 2020:8869281. [PMID: 33274337 PMCID: PMC7700024 DOI: 10.1155/2020/8869281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Proliferation is a cellular process strongly linked to the genesis of cancer. Natural substances with antiproliferative activities are currently potential alternatives in the treatment of cancers. Dacryodes edulis, for instance, is a medicinal plant traditionally used in the treatment of cancer. Scientific studies have reported the antioxidant activity of this plant. In addition, the presence of prostate cancer chemopreventive polyphenols was reported in D. edulis extracts. Therefore, this study was aimed to evaluate the effects of the aqueous extract of D. edulis leaves on cell proliferation induced by estradiol in ovariectomized female Wistar rats. In this regard, ovariectomized (OVX) rats were cotreated with estradiol valerate (E2V) (0.75 mg/kg) and the aqueous extract of D. edulis leaves. Control groups received either the vehicle (sham-operated animals and the OVX control), E2V (0.75 mg/kg) only, or E2V (0.75 mg/kg) and tamoxifen (10 mg/kg). Treatments were administered orally for 3 consecutive days, and animals were sacrificed thereafter. Epithelial heights of the uterus and vagina were assessed. Uterine levels of total cholesterol and estradiol were determined as well. Results showed that the aqueous extract of D. edulis leaves reversed the effects of estradiol as it reduced uterine weight (p < 0.05), uterine (p < 0.05), and vaginal (p < 0.001) epithelium heights. This antiproliferative effect of D. edulis was associated with reduced tissue (uterine) levels of estradiol (p < 0.001). These results suggest that the aqueous extract of D. edulis leaves could be a potential alternative treatment for proliferation-related diseases.
Collapse
|
41
|
Sokoudjou JB, Atolani O, Njateng GSS, Khan A, Tagousop CN, Bitombo AN, Kodjio N, Gatsing D. Isolation, characterization and in vitro anti-salmonellal activity of compounds from stem bark extract of Canarium schweinfurthii. BMC Complement Med Ther 2020; 20:316. [PMID: 33076876 PMCID: PMC7574196 DOI: 10.1186/s12906-020-03100-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria belonging to the Salmonella genus are major concern for health, as they are widely reported in many cases of food poisoning. The use of antibiotics remains a main stream control strategy for avian salmonellosis as well as typhoid and paratyphoid fevers in humans. Due to the growing awareness about drug resistance and toxicities, the use of antibiotics is being discouraged in many countries whilst advocating potent benign alternatives such as phyto-based medicine. The objective of this work was to isolate, characterise the bioactive compounds of Canarium schweinfurthii; and evaluate their anti-salmonellal activity. METHODS The hydro-ethanolic extract of Canarium schweinfurthii was fractionated and tested for their anti-salmonellal activity. The most active fractions (i.e. chloroform and ethyl acetate partition fractions) were then explored for their phytochemical constituents. Fractionation on normal phase silica gel column chromatography and size exclusion chromatography on Sephadex LH-20 led to the isolation of four compounds (maniladiol, scopoletin, ethyl gallate and gallic acid) reported for the first time in Canarium schweinfurthii. RESULTS Result indicated that scopoletin and gallic acid had greater activity than the crude extracts and partition fractions. Among the isolated compounds, scopoletin showed the highest inhibitory activity with a MIC of 16 μg/ml against Salmonella Typhimurium and Salmonella Enteritidis. CONCLUSIONS The overall results of this study indicates that the hydro-ethanolic extract as well as some of isolated compounds have interesting anti-salmonellal activities that could be further explored for the development of potent therapy for salmonellosis. Furthermore, the study adds credence to the folkloric applications of the plant.
Collapse
Affiliation(s)
- Jean Baptiste Sokoudjou
- Research Unit of Microbiology and Antimicrobial substances, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
- Natural Products Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus-22060, Islamabad, Pakistan
| | - Olubunmi Atolani
- Natural Products Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus-22060, Islamabad, Pakistan
- Department of Chemistry, Faculty of Physical Sciences, University of Ilorin, P.M.B, Ilorin, 1515, Nigeria
| | - Guy Sedar Singor Njateng
- Research Unit of Microbiology and Antimicrobial substances, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Afsar Khan
- Natural Products Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus-22060, Islamabad, Pakistan
| | - Cyrille Ngoufack Tagousop
- Department of Basic Scientific Studies, University Institute of Technology, University of Ngaoundere, P.O.Box 455, Ngaoundere, Cameroon
| | - André Nehemie Bitombo
- Natural Products Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus-22060, Islamabad, Pakistan
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Norbert Kodjio
- Research Unit of Microbiology and Antimicrobial substances, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Donatien Gatsing
- Research Unit of Microbiology and Antimicrobial substances, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| |
Collapse
|
42
|
Raimi IO, Kopaopa BG, Mugivhisa LL, Lewu FB, Amoo SO, Olowoyo JO. An appraisal of documented medicinal plants used for the treatment of cancer in Africa over a twenty-year period (1998–2018). J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Ngameni B, Erdoğan M, Kuete V, Dalkılıç E, Ngadjui BT, Daştan A. Synthesis and structural characterization of novel O-substituted phenolic and chalcone derivatives with antioxidant activity. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820932789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of novel 4- O-alkyltriazolylphenolic derivatives is first synthesized with good to excellent yields via the click reaction of 3-methoxy-4- O-propargylbenzaldehyde or 3-allyl-4- O-propargylacetophenone and aromatic azide derivatives. Next, the chalcones are prepared via the Claisen-Schmidt method from 4- O-alkylphenylketone derivatives in the presence of the corresponding (hetero)aromatic aldehydes as electrophiles. The structures of the newly synthesized compounds are confirmed from their infrared, nuclear magnetic resonance spectral data, and by elemental analysis. The main advantages of this procedure are the simplicity of the reaction conditions, easily available starting materials, and simple work-up. The antioxidant activity of several of the products is determined using the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging assay. 4- O-propargylvanillin (IC50 = 14.54 µg/mL) had moderate antioxidant activity.
Collapse
Affiliation(s)
- Bathélémy Ngameni
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Erdin Dalkılıç
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Arif Daştan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
44
|
Lee J, Lee CY, Park JH, Seo HH, Shin S, Song BW, Kim IK, Kim SW, Lee S, Park JC, Lim S, Hwang KC. Differentiation of adipose-derived stem cells into functional chondrocytes by a small molecule that induces Sox9. Exp Mol Med 2020; 52:672-681. [PMID: 32313200 PMCID: PMC7210883 DOI: 10.1038/s12276-020-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease that results from the disintegration of joint cartilage and the underlying bone. Because cartilage and chondrocytes lack the ability to self-regenerate, efforts have been made to utilize stem cells to treat OA. Although various methods have been used to differentiate stem cells into functional chondrocytes, the currently available methods cannot induce stem cells to undergo differentiation into chondrocyte-like cells without inducing characteristics of hypertrophic chondrocytes, which finally lead to cartilage disintegration and calcification. Therefore, an optimized method to differentiate stem cells into chondrocytes that do not display undesired phenotypes is needed. This study focused on differentiating adipose-derived stem cells (ASCs) into functional chondrocytes using a small molecule that regulated the expression of Sox9 as a key factor in cartilage development and then explored its ability to treat OA. We selected ellipticine (ELPC), which induces chondrocyte differentiation of ASCs, using a GFP-Sox9 promoter vector screening system. An in vivo study was performed to confirm the recovery rate of cartilage regeneration with ASC differentiation into chondrocytes by ELPC in a collagenase-induced animal model of OA. Taken together, these data indicate that ellipticine induces ASCs to differentiate into mature chondrocytes without hypertrophic chondrocytes in vitro and in vivo, thus overcoming a problem encountered in previous studies. These results indicate that ELPC is a novel chondrocyte differentiation-inducing drug that shows potential as a cell therapy for OA.
Collapse
Affiliation(s)
- Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jong-Chul Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
45
|
Antistaphylococcal Activity of Extracts, Fractions, and Compounds of Acacia polyacantha Wild (Fabaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2654247. [PMID: 32256637 PMCID: PMC7102469 DOI: 10.1155/2020/2654247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/18/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
Acacia polyacantha is a medicinal plant traditionally used to treat livestock diseases and gastrointestinal infections; our study was undertaken to evaluate the antistaphylococcal activities of the methanolic leaf, bark, and root extracts, fractions, and compounds from Acacia polyacantha against a panel of 14 multidrug-resistant Staphylococcus bacterial strains overexpressing efflux pumps. The study was also extended to investigate two possible modes of action, that is, influence on bacterial growth kinetics and influence on proton-ATPase pumps, of the most active compound against a reference strain. Materials and Methods. The crude extracts after extraction were subjected to column chromatography. Antibacterial assays of extracts, fractions, and compounds alone and in the presence of efflux pump inhibitors were carried out using the broth microdilution method and the study of two mechanisms of action achieved by standard methods with the most active compound. Results. The phytochemical study of Acacia polyacantha leaves leads to the isolation of stigmasterol (1), β-amyrin (2), 3-O-methyl-D-chiro-inositol (3), epicatechin (4), quercetin-3-O-galactoside (5), 3-O-[β-D-xylopyranosyl-(1 ⟶ 4)-β-D-galactopyranosyl]-oleanolic acid (6), 3-O-[β-galactopyranosyl-(1⟶ 4)-β-D-galactopyranosyl]-oleanolic acid (7) and that of leaves lead to the isolation of lupeol (8) 2,3-dihydroxypropyltetracosanoate (9), and methyl-gallate (10). Leaf, root, and bark extracts inhibited 92.85% (13/14), 92.85% (13/14), and 71.43 % (10/14) of the tested bacteria strains, respectively, with minimum inhibitory concentration (MIC) varying between 16 and 1024 μg/mL. Fractions exhibited better activities compared to those of their extracts of origin, as their MICs ranged from 16 to 512 μg/mL, with fractions from leaves being more active than those obtained from barks. Compounds had varying activities; MICs varied from 16 to 512 μg/mL with compound 4 presenting the best activity as MICs ≤100 μg/mL were obtained against 11 of the tested bacteria. The activities of extracts, fractions, and compounds were improved in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP) as an efflux pump inhibitor to as much as >128 folds. Meanwhile, in the presence of chlorpromazine as an efflux pump inhibitor, only the activity of compound 10 was improved on 10 of the tested bacteria strains. Compound 4 prolonged the lag phase of the growth kinetic in a concentration-dependent manner and equally inhibited the proton-ATPase pumps of the tested bacteria strains. Conclusion. The present study demonstrates the antistaphylococcal potential of Acacia polyacantha and its constituents to combat bacterial infections alone or in combination with efflux pump inhibitors.
Collapse
|
46
|
Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2019; 10:277-290. [PMID: 32923005 PMCID: PMC7474127 DOI: 10.1016/j.jpha.2019.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
The upsurge of multiple drug resistance (MDR) bacteria substantially diminishes the effectiveness of antibiotic arsenal and therefore intensifies the rate of therapeutic failure. The major factor in MDR is efflux pump-mediated resistance. A unique pump can make bacteria withstand a wide range of structurally diverse compounds. Therefore, their inhibition is a promising route to eliminate resistance phenomenon in bacteria. Phytochemicals are excellent alternatives as resistance-modifying agents. They can directly kill bacteria or interact with the crucial events of pathogenicity, thereby decreasing the ability of bacteria to develop resistance. Numerous botanicals display noteworthy efflux pumps inhibitory activities. Edible plants are of growing interest. Likewise, some plant families would be excellent sources of efflux pump inhibitors (EPIs) including Apocynaceae, Berberidaceae, Convolvulaceae, Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae. Easily applicable methods for screening plant-derived EPIs include checkerboard synergy test, berberine uptake assay and ethidium bromide test. In silico high-throughput virtual detection can be evaluated as a criterion of excluding compounds with efflux substrate-like characteristics, thereby improving the selection process and extending the identification of EPIs. To ascertain the efflux activity inhibition, real-time PCR and quantitative mass spectrometry can be applied. This review emphasizes on efflux pumps and their roles in transmitting bacterial resistance and an update plant-derived EPIs and strategies for identification. Active efflux as the main resistance strategy in bacteria. Phytochemicals as promising alternatives against efflux pumps-mediated MDR. Herbals-based efflux pump inhibitors screening, the methods.
Collapse
|
47
|
Kumar A, Khan F, Saikia D. Exploration of Medicinal Plants as Sources of Novel Anticandidal Drugs. Curr Top Med Chem 2019; 19:2579-2592. [PMID: 31654513 DOI: 10.2174/1568026619666191025155856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human infections associated with skin and mucosal surfaces, mainly in tropical and sub-tropical parts of the world. During the last decade, there have been an increasing numbers of cases of fungal infections in immunocompromised patients, coupled with an increase in the number of incidences of drug resistance and toxicity to anti fungal agents. Hence, there is a dire need for safe, potent and affordable new antifungal drugs for the efficient management of candidal infections with minimum or no side effects. INTRODUCTION Candidiasis represents a critical problem to human health and a serious concern worldwide. Due to the development of drug resistance, there is a need for new antifungal agents. Therefore, we reviewed the different medicinal plants as sources of novel anticandidal drugs. METHODS The comprehensive and detailed literature on medicinal plants was carried out using different databases, such as Google Scholar, PubMed, and Science Direct and all the relevant information from the articles were analyzed and included. RESULTS Relevant Publications up to the end of November 2018, reporting anticandidal activity of medicinal plants has been included in the present review. In the present study, we have reviewed in the light of SAR and mechanisms of action of those plants whose extracts or phytomolecules are active against candida strains. CONCLUSION This article reviewed natural anticandidal drugs of plant origin and also summarized the potent antifungal bioactivity against fungal strains. Besides, mechanism of action of these potent active plant molecules was also explored for a comparative study. We concluded that the studied active plant molecules exhibit potential antifungal activity against resistant fungal strains.
Collapse
Affiliation(s)
- Ajay Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal & Aromatic Plants, P.O.- CIMAP, Kukrail Picnic Spot Road, Lucknow -226015 (U.P.), India
| | - Feroz Khan
- Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal & Aromatic Plants, P.O.- CIMAP, Kukrail Picnic Spot Road, Lucknow -226015 (U.P.), India
| | - Dharmendra Saikia
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal & Aromatic Plants, P.O.- CIMAP, Kukrail Picnic Spot Road, Lucknow -226015 (U.P.), India
| |
Collapse
|
48
|
Mabou Tagne A, Biapa Nya PC, Tiotsia Tsapi A, Edingue Essoh AK, Pembouong G, Ngouadjeu Ngnintedem MA, Marino F, Cosentino M. Determinants, Prevalence and Trend of Use of Medicinal Plants Among People Living with HIV: A Cross-Sectional Survey in Dschang, Cameroon. AIDS Behav 2019; 23:2088-2100. [PMID: 30607756 DOI: 10.1007/s10461-018-02388-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
People living with HIV (PLHIV) in Cameroon often seek care from traditional health practitioners (THPs) and use medicinal plants (MP). Most MP, however, still lacks evidence for their efficacy and safety, and their use, often undisclosed to referring physicians, may interfere with standard therapies. Therefore, we conducted a survey of 247 PLHIV in Dschang to assess the determinants, prevalence and trend of MP use. Besides, we surveyed 16 THPs about the use of MP in PLHIV and HIV-related knowledge. 54.9% PLHIV declared using in total 70 plants, 91.3% users were satisfied with MP, and unwanted effects were reported in 2 cases. MP users were less educated than nonusers, had longer disease duration and were more often unemployed. Only 3 THPs used MP in PLHIV, and most of them had insufficient knowledge of HIV. Results may be useful for education on HIV and integration of traditional medicines with conventional therapeutics.
Collapse
|
49
|
Aro AO, Dzoyem JP, Awouafack MD, Selepe MA, Eloff JN, McGaw LJ. Fractions and isolated compounds from Oxyanthus speciosus subsp. stenocarpus (Rubiaceae) have promising antimycobacterial and intracellular activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:108. [PMID: 31117999 PMCID: PMC6532187 DOI: 10.1186/s12906-019-2520-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tuberculosis is a deadly disease caused by Mycobacterium species. The use of medicinal plants is an ancient global practice for the treatment and prevention of diverse ailments including tuberculosis. The aim of this study was to isolate and characterize antimycobacterial compounds by bioassay-guided fractionation of the acetone leaf extract of Oxyanthus speciosus. METHODS A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against mycobacteria. Cytotoxicity and nitric oxide inhibitory activity of the isolated compounds was determined to evaluate in vitro safety and potential anti-inflammatory activity. Intracellular efficacy of the crude extract against Mycobacterium-infected macrophages was also determined. RESULTS Two compounds were isolated and identified as lutein (1) and rotundic acid (2). These had good antimycobacterial activity against the four mycobacteria tested with MIC values ranging from 0.013 to 0.1 mg/mL. Rotundic acid had some cytotoxicity against C3A human liver cells. Lutein was not cytotoxic at the highest tested concentration (200 μg/mL) and inhibited nitric oxide production in RAW 264.7 macrophages by 94% at a concentration of 25 μg/mL. The acetone crude extract (120 μg/mL) of O. speciosus had intracellular antimycobacterial activity, reducing colony forming units by more than 90%, displaying bactericidal efficacy in a dose and time-dependent manner. CONCLUSION This study provides good proof of the presence of synergism between different compounds in extracts and fractions. It is also the first report of the antimycobacterial activity of lutein and rotundic acid isolated from Oxyanthus speciosus. The promising activity of the crude extract of O. speciosus both in vitro and intracellularly in an in vitro macrophage model suggests its potential for development as an anti- tuberculosis (TB) herbal medicine.
Collapse
Affiliation(s)
- Abimbola O. Aro
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| | - Jean P. Dzoyem
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Maurice D. Awouafack
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
- Laboratory of Natural Products Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.OBox 67, Dschang, Cameroon
| | | | - Jacobus N. Eloff
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| | - Lyndy J. McGaw
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| |
Collapse
|
50
|
Ngoungoure VLN, Muñoz P, Tizabi Y, Valdes R, Moundipa PF, Segura-Aguilar J. Protective Effects of Crude Plant Extracts against Aminochrome-induced toxicity in Human Astrocytoma Cells: Implications for Parkinson's Disease. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2019; 3:125-133. [PMID: 31321384 PMCID: PMC6639011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIMS Aminochrome, an endogenous compound formed during dopamine oxidation can induce neurotoxicity under certain aberrant conditions and induce Parkinson-like syndrome. Glutathione transferase M2 (GSTM2) activity of astrocytes by catalysing the conjugation of aminochrome with glutathione, can offer protection against aminochrome toxicity. Some medicinal toxicity through this plants may exert protective effect against aminochrome mechanism. METHODS In the present study, extracts from plants native to Cameroon, such as Alchornea laxiflora (leaves), Dacryodes edulis (barks), Annona muricata (seeds), Annona senegalensis (barks) were evaluated for their protection against aminochrome-induced toxicity in human glioblastoma/ astrocytoma U373MG wild type and U373MGsiGT6 cells in which GSTM2 expression was 74% silenced. The cells were pre-incubated with the plant extracts for 2 hr before addition of aminochrome (75 μM) and measurement of cell death/viability by flow cytometry after 24 hr incubation. RESULTS The extract of A. laxiflora (1 μg/ml), D. edulis (25 μg/ml), A. muricata (25 μg/ml) and A. senegalensis (25μg/ml) significantly decreased aminochrome-induced toxicity in U373siGST6 and U373MG cells. However, only A. laxiflora and A. muricata significantly increased the mitochondria membrane potential in U373siGST6 cells following aminochrome treatment. CONCLUSION The results indicate that extracts of some Cameroon plants can provide protection against aminochrome-induced toxicity and mitochondria dysfunction in human glioblastoma/astrocytoma cells. Although further identification of active components of these extracts is needed, potential usefulness of these compounds in Parkinson's disease may be suggested.
Collapse
Affiliation(s)
- Viviane L. Ndam Ngoungoure
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Cameroon
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| | - Patricia Muñoz
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Raul Valdes
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Cameroon
| | - Juan Segura-Aguilar
- Department of Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| |
Collapse
|