1
|
Lamberti A, Serafini M, Aprile S, Bhela IP, Goutsiou G, Pessolano E, Fernandez-Ballester G, Ferrer-Montiel A, Di Martino RMC, Fernandez-Carvajal A, Pirali T. The multicomponent Passerini reaction as a means of accessing diversity in structure, activity and properties: Soft and hard vanilloid/cannabinoid modulators. Eur J Med Chem 2024; 279:116845. [PMID: 39265249 DOI: 10.1016/j.ejmech.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
A growing body of evidence points to the existence of a crosstalk between the endovanilloid (EV)- and the endocannabinoid (EC) systems, leading to the concept of a single system based on a shared set of endogenous ligands and regulation mechanisms. The EV/EC system encompasses the ion channel TRPV1, the G protein coupled receptors CB1 and CB2, their endogenous ligands and the enzymes for biosynthesis and inactivation. Disorders in which the EV/EC interaction is involved are inflammation, pain, neurodegenerative diseases and disorders of bones and skin. In the present paper, with the aim of targeting the EV/EC system, the Passerini reaction is used in a diversity-oriented approach to generate a series of α-acyloxycarboxamides bearing different substructures that resemble endogenous ligands. Compounds have been screened for activity on TRPV1, CB1 and CB2 and metabolic stability in skin cells, liver subcellular fractions and plasma. This protocol allowed to generate agents characterized by a diverse activity on TRPV1, CB1 and CB2, as well as heterogeneous metabolic stability that could allow different routes of administration, from soft drugs for topical treatment of skin diseases to hard drugs for systemic use in inflammation and pain. Compared to natural mediators, these compounds have a better drug-likeness. Among them, 41 stands out as an agonist endowed with a well-balanced activity on both TRPV1 and CB2, high selectivity over TRPM8, TRPA1 and CB1, metabolic stability and synthetic accessibility.
Collapse
Affiliation(s)
- Angela Lamberti
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Irene Preet Bhela
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Georgia Goutsiou
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Gregorio Fernandez-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Rita Maria Concetta Di Martino
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain.
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| |
Collapse
|
2
|
Escobar-Espinal DM, Vivanco-Estela AN, Barros N, Dos Santos Pereira M, Guimaraes FS, Del Bel E, Nascimento GC. Cannabidiol and it fluorinate analog PECS-101 reduces hyperalgesia and allodynia in trigeminal neuralgia via TRPV1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110996. [PMID: 38508408 DOI: 10.1016/j.pnpbp.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.
Collapse
Affiliation(s)
- Daniela Maria Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Airam Nicole Vivanco-Estela
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Núbia Barros
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Francisco Silveira Guimaraes
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
3
|
Pontearso M, Slepicka J, Bhattacharyya A, Spicarova D, Palecek J. Dual effect of anandamide on spinal nociceptive transmission in control and inflammatory conditions. Biomed Pharmacother 2024; 173:116369. [PMID: 38452657 DOI: 10.1016/j.biopha.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.
Collapse
Affiliation(s)
- Monica Pontearso
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Slepicka
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Boujenoui F, Nkambeu B, Salem JB, Castano Uruena JD, Beaudry F. Cannabidiol and Tetrahydrocannabinol Antinociceptive Activity is Mediated by Distinct Receptors in Caenorhabditis elegans. Neurochem Res 2024; 49:935-948. [PMID: 38141130 DOI: 10.1007/s11064-023-04069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.
Collapse
Affiliation(s)
- Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus David Castano Uruena
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Albrecht PJ, Liu Y, Houk G, Ruggiero B, Banov D, Dockum M, Day A, Rice FL, Bassani G. Cutaneous targets for topical pain medications in patients with neuropathic pain: individual differential expression of biomarkers supports the need for personalized medicine. Pain Rep 2024; 9:e1119. [PMID: 38375092 PMCID: PMC10876238 DOI: 10.1097/pr9.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Numerous potential cutaneous targets exist for treating chronic pain with topically applied active pharmaceutical ingredients. This preliminary human skin tissue investigation was undertaken to characterize several key biomarkers in keratinocytes and provide proof-of-principle data to support clinical development of topical compounded formulations for peripheral neuropathic pain syndromes, such as postherpetic neuralgia (PHN). Objectives The study intended to identify objective biomarkers in PHN skin on a patient-by-patient personalized medicine platform. The totality of biopsy biomarker data can provide a tissue basis for directing individualized compounded topical preparations to optimize treatment efficacy. Methods Referencing 5 of the most common actives used in topical pain relief formulations (ketamine, gabapentin, clonidine, baclofen, and lidocaine), and 3 well-established cutaneous mediators (ie, neuropeptides, cannabinoids, and vanilloids), comprehensive immunolabeling was used to quantify receptor biomarkers in skin biopsy samples taken from ipsilateral (pain) and contralateral (nonpain) dermatomes of patients with PHN. Results Epidermal keratinocyte labeling patterns were significantly different among the cohort for each biomarker, consistent with potential mechanisms of action among keratinocytes. Importantly, the total biomarker panel indicates that the enriched PHN cohort contains distinct subgroups. Conclusion The heterogeneity of the cohort differences may explain studies that have not shown statistical group benefit from topically administered compounded therapies. Rather, the essential need for individual tissue biomarker evaluations is evident, particularly as a means to direct a more accurately targeted topical personalized medicine approach and generate positive clinical results.
Collapse
Affiliation(s)
| | - Yi Liu
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - George Houk
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Beth Ruggiero
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - Marilyn Dockum
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - A.J. Day
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - Frank L. Rice
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Gus Bassani
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| |
Collapse
|
6
|
Qiao Z, Liu S, Zhai W, Jiang L, Ma Y, Zhang Z, Wang B, Shao J, Qian H, Zhao F, Yan L. Novel dual-target FAAH and TRPV1 ligands as potential pharmacotherapeutics for pain management. Eur J Med Chem 2024; 267:116208. [PMID: 38325006 DOI: 10.1016/j.ejmech.2024.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dual-acting drugs that simultaneously inhibit fatty acid amide hydrolase (FAAH) and antagonize the transient receptor potential vanilloid 1 (TRPV1) is a promising stronger therapeutic approach for pain management without side effects associated with single-target agents. Here, several series of dual FAAH/TRPV1 blockers were designed and synthesized through rational molecular hybridization between the pharmacophore of classical TRPV1 antagonists and FAAH inhibitors. The studies resulted in compound 2r, which exhibited strong dual FAAH/TRPV1 inhibition/antagonism in vitro, exerted powerful analgesic effects in formalin-induced pain test (phase II, in mice), desirable anti-inflammatory activity in carrageenan-induced paw edema in rats, no TRPV1-related hyperthermia side effect, and favorable pharmacokinetic properties. Meanwhile, the contributions of TRPV1 and FAAH to its antinociceptive effects were verified by target engagement and molecular docking studies. Overall, compound 2r can serve as a new scaffold for developing FAAH/TRPV1 dual-activie ligands to counteract pain.
Collapse
Affiliation(s)
- Zhenrui Qiao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Shuyu Liu
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu, 210009, China
| | - Weibin Zhai
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Lei Jiang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Yunmeng Ma
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Zhikang Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Bingxin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Jingwen Shao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu, 210009, China
| | - Fenqin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Lin Yan
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Wen J, Sackett S, Tanaka M, Zhang Y. Therapeutic Effects of Combined Treatment with the AEA Hydrolysis Inhibitor PF04457845 and the Substrate Selective COX-2 Inhibitor LM4131 in the Mouse Model of Neuropathic Pain. Cells 2023; 12:cells12091275. [PMID: 37174675 PMCID: PMC10177584 DOI: 10.3390/cells12091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic neuropathic pain resulting from peripheral nerve damage is a significant clinical problem, which makes it imperative to develop the mechanism-based therapeutic approaches. Enhancement of endogenous cannabinoids by blocking their hydrolysis has been shown to reduce inflammation and neuronal damage in a number of neurological disorders and neurodegenerative diseases. However, recent studies suggest that inhibition of their hydrolysis can shift endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide (AEA) toward the oxygenation pathway mediated by cyclooxygenase-2 (COX-2) to produce proinflammatory prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs). Thus, blocking both endocannabinoid hydrolysis and oxygenation is likely to be more clinically beneficial. In this study, we used the chronic constriction injury (CCI) mouse model to explore the therapeutic effects of simultaneous inhibition of AEA hydrolysis and oxygenation in the treatment of neuropathic pain. We found that the fatty acid amide hydrolase (FAAH) inhibitor PF04457845 and the substrate-selective COX-2 inhibitor LM4131 dose-dependently reduced thermal hyperalgesia and mechanical allodynia in the CCI mice. In addition to ameliorating the pain behaviors, combined treatment with subeffective doses of these inhibitors greatly attenuated the accumulation of inflammatory cells in both sciatic nerve and spinal cord. Consistently, the increased proinflammatory cytokines IL-1β, IL-6, and chemokine MCP-1 in the CCI mouse spinal cord and sciatic nerve were also significantly reduced by combination of low doses of PF04457845 and LM4131 treatment. Therefore, our study suggests that simultaneous blockage of endocannabinoid hydrolysis and oxygenation by using the substrate-selective COX-2 inhibitor, which avoids the cardiovascular and gastrointestinal side effects associated with the use of general COX-2 inhibitors, might be a suitable strategy for the treatment of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Scott Sackett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Vecchiarelli HA, Joers V, Tansey MG, Starowicz K. Editorial: Cannabinoids in neuroinflammation, neurodegeneration and pain: Focus on non-neuronal cells. Front Neurosci 2022; 16:1114775. [PMID: 36605549 PMCID: PMC9808392 DOI: 10.3389/fnins.2022.1114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Haley A. Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada,*Correspondence: Haley A. Vecchiarelli ✉
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States,Valerie Joers ✉
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States,Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States,Malú Gámez Tansey ✉
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology PAS, Kraków, Poland,Katarzyna Starowicz ✉
| |
Collapse
|
9
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, Tassorelli C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022; 62:227-240. [PMID: 35179780 DOI: 10.1111/head.14267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lara Ahmad
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
11
|
Cannabinoid-based therapy as a future for joint degeneration. Focus on the role of CB 2 receptor in the arthritis progression and pain: an updated review. Pharmacol Rep 2021; 73:681-699. [PMID: 34050525 PMCID: PMC8180479 DOI: 10.1007/s43440-021-00270-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Over the last several decades, the percentage of patients suffering from different forms of arthritis has increased due to the ageing population and the increasing risk of civilization diseases, e.g. obesity, which contributes to arthritis development. Osteoarthritis and rheumatoid arthritis are estimated to affect 50-60% of people over 65 years old and cause serious health and economic problems. Currently, therapeutic strategies are limited and focus mainly on pain attenuation and maintaining joint functionality. First-line therapies are nonsteroidal anti-inflammatory drugs; in more advanced stages, stronger analgesics, such as opioids, are required, and in the most severe cases, joint arthroplasty is the only option to ensure joint mobility. Cannabinoids, both endocannabinoids and synthetic cannabinoid receptor (CB) agonists, are novel therapeutic options for the treatment of arthritis-associated pain. CB1 receptors are mainly located in the nervous system; thus, CB1 agonists induce many side effects, which limit their therapeutic efficacy. On the other hand, CB2 receptors are mainly located in the periphery on immune cells, and CB2 modulators exert analgesic and anti-inflammatory effects in vitro and in vivo. In the current review, novel research on the cannabinoid-mediated analgesic effect on arthritis is presented, with particular emphasis on the role of the CB2 receptor in arthritis-related pain and the suppression of inflammation.
Collapse
|
12
|
Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model. Pharmacol Rep 2021; 73:820-827. [PMID: 33783763 DOI: 10.1007/s43440-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The endocannabinoid system modulates a wide variety of pain conditions. Systemically administered AM404, an endocannabinoid reuptake inhibitor, exerts antinociceptive effects via activation of the endocannabinoid system. However, the mechanism and site of AM404 action are not fully understood. Here, we explored the effect of AM404 on neuropathic pain at the site of the spinal cord. METHODS Male Sprague-Dawley rats were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of intrathecal administration of AM404 on mechanical and cold hyperalgesia were examined using the electronic von Frey test and cold plate test, respectively. Motor coordination was assessed using the rotarod test. To understand the mechanisms underlying the action of AM404, we tested the effects of pretreatment with the cannabinoid type 1 (CB1) receptor antagonist AM251, CB2 receptor antagonist AM630, and transient receptor potential vanilloid type 1 (TRPV1) antagonist capsazepine. RESULTS AM404 attenuated mechanical and cold hyperalgesia with minimal effects on motor coordination. AM251 significantly inhibited the antihyperalgesic action of AM404, whereas capsazepine showed a potentiating effect. CONCLUSIONS These results indicate that AM404 exerts antihyperalgesic effects primarily via CB1, but not CB2, receptor activation at the site of the spinal cord. TRPV1 receptors appear to play a pronociceptive role in CCI rats. The endocannabinoid reuptake inhibitor may be a promising candidate treatment for neuropathic pain.
Collapse
|
13
|
Bibliometric Analysis of Research on the Comorbidity of Pain and Inflammation. Pain Res Manag 2021; 2021:6655211. [PMID: 33680225 PMCID: PMC7904349 DOI: 10.1155/2021/6655211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Objectives To provide a comprehensive review on the global scientific research status of comorbid pain and inflammation from 1981 to 2019 and capture its subsequent development trends. Data Sources. The primary database chosen to collect publications on comorbid pain and inflammation research from 1981 to 2019 was the Web of Science (WOS). Core of the search strategy was the key word “pain” and the key word “inflammation” in the medical subject headings' major field. Study Selection. All articles retrieved were included in the bibliometric analysis. Data Extraction. We used CiteSpace to analyze publication outputs, subject categories, distribution by country/institution/journal, and other types of information. Then, knowledge base, hot issues, and future development directions were explained. Data Synthesis. A total of 2887 papers met the inclusion criteria in our research. Linear regression analysis results showed that the publications of studies of comorbid pain and inflammation significantly increased (P < 0.001) and have grown about 192 times in 40 years. The countries with the most outputs were the USA (886 publications), China (375 publications), and England (236 publications). Besides, Harvard University was the most prolific institution with 730 publications and 6646 citations. In accordance with the subject categories of WOS, neurosciences (31.832%), pharmacology/pharmacy (18.427%), and clinical neurology (15.206%) were the main research areas of these 2887 papers. Conclusions The current study reveals that research on comorbid pain and inflammation has gradually become more extensive worldwide since 1981, and neuropathic pain was the most popular study type. Most of our research output in this field came from countries in Europe and North America, although some Asian countries showed promising performance.
Collapse
|
14
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, Bungau S. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci 2021; 71:2022-2034. [PMID: 33471311 DOI: 10.1007/s12031-020-01774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Depression is a common mental disorder and is the leading cause of suicide globally. Because of the significant diversity in mental disorders, accurate diagnosis is difficult. Hence, the investigation of novel biomarkers is a key research perspective in psychotherapy to enable an individually tailored treatment approach. The prefrontal cortex (PFC) is a vital cortical region whose circuitry has been implicated in the development of depressive disorder. The endocannabinoid system (ECS) has garnered increasing attention because of its involvement in several diverse physiological brain processes including regulation of emotional, motivational and cognitive functions. The current review article explores the function of the key elements of the ECS as a biomarker in depressive disorder. The activity of endocannabinoids is thought to be moderated by the CB1 receptors in the central nervous system (CNS). Variations in the concentration of endocannabinoids and the binding affinity of CB1 receptors and their density have been identified in the PFC of persons with depression. Such discoveries support our theory that alteration in endocannabinoid function leads to the pathophysiological features of depressive disorders. Moreover, evidence from animal and human studies has revealed that dysfunction in endocannabinoid signalling can produce depression-like behaviours; therefore, improvement of endocannabinoid signalling may represent a new therapeutic approach for the management of depressive disorders.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Distt. Shimla, Government College of Pharmacy, Himachal Pradesh, Rohru, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
16
|
Bryk M, Chwastek J, Kostrzewa M, Mlost J, Pędracka A, Starowicz K. Alterations in Anandamide Synthesis and Degradation during Osteoarthritis Progression in an Animal Model. Int J Mol Sci 2020; 21:ijms21197381. [PMID: 33036283 PMCID: PMC7582975 DOI: 10.3390/ijms21197381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease manifested by movement limitations and chronic pain. Endocannabinoid system (ECS) may modulate nociception via cannabinoid and TRPV1 receptors. The purpose of our study was to examine alterations in the spinal and joint endocannabinoid system during pain development in an animal model of OA. Wistar rats received intra-articular injection of 3mg of sodium monoiodoacetate (MIA) into the knee joint. Animals were sacrificed on day 2, 7, 14, 21, 28 after injection and lumbar spinal cord, cartilage and synovium were collected. Changes in the transcription levels of the ECS elements were measured. At the spinal level, gene expression levels of the cannabinoid and TRPV1 receptors as well as enzymes involved in anandamide synthesis and degradation were elevated in the advanced OA phase. In the joint, an important role of the synovium was demonstrated, since cartilage degeneration resulted in attenuation of the changes in the gene expression. Enzymes responsible for anandamide synthesis and degradation were upregulated particularly in the early stages of OA, presumably in response to early local joint inflammation. The presented study provides missing information about the MIA-induced OA model and encourages the development of a therapy focused on the molecular role of ECS.
Collapse
|
17
|
Berry AJ, Zubko O, Reeves SJ, Howard RJ. Endocannabinoid system alterations in Alzheimer's disease: A systematic review of human studies. Brain Res 2020; 1749:147135. [PMID: 32980333 DOI: 10.1016/j.brainres.2020.147135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Studies investigating alterations of the endocannabinoid system (ECS) in Alzheimer's disease (AD) in humans have reported inconsistent findings so far. We performed a systematic review of studies examining alterations of the ECS specifically within humans with AD or mild cognitive impairment (MCI), including neuroimaging studies, studies of serum and cerebrospinal fluid biomarkers, and post-mortem studies. We attempted to identify reported changes in the expression and activity of: cannabinoid receptors 1 and 2; anandamide (AEA); 2-arachidonoylglycerol (2-AG); monoacylglycerol lipase (MAGL); fatty acid amide hydrolase (FAAH); and transient receptor potential cation channel V1 (TRPV1). Twenty-two studies were identified for inclusion. Mixed findings were reported for most aspects of the ECS in AD, making it difficult to identify a particular profile of ECS alterations characterising AD. The included studies tended to be small, methodologically heterogeneous, and frequently did not control for important potential confounders, such as pathological progression of AD. Eight studies correlated ECS alterations with neuropsychometric performance measures, though studies infrequently examined behavioural and neuropsychiatric correlates. PROSPERO database identifier: CRD42018096249.
Collapse
Affiliation(s)
- Alex J Berry
- Division of Psychiatry, University College London, London, UK.
| | - Olga Zubko
- Division of Psychiatry, University College London, London, UK
| | | | - Robert J Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
18
|
An adaptive randomized clinical trial in interstitial cystitis/bladder pain syndrome evaluating efficacy of ASP3652 and the relationship between disease characteristics and Hunner's lesions. World J Urol 2020; 39:2065-2071. [PMID: 32734461 DOI: 10.1007/s00345-020-03372-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The primary purpose of this study was to evaluate the effect of the fatty acid amide hydrolase (FAAH) inhibitor ASP3652 on efficacy and safety in patients with Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). The secondary purpose was to evaluate phenotyping based on Hunner's lesions (HL). METHODS In this randomized trial, adult female patients with moderate/severe IC/BPS received 12 weeks of treatment with an oral dose of ASP3652 (50, 150, or 300 mg twice daily) or placebo. A Bayesian model was employed using accumulating data to adjust the randomization probability and to analyze the primary efficacy variable (change from baseline to end of treatment in Mean Daily Pain [MDP; range 0-10]). Study outcomes and patient characteristics of patients with and without HL (HL+ and HL-) were compared. RESULTS In total, 287 patients were randomized. The 300 mg dose group (n = 97) showed the largest effect, i.e., a mean change from baseline to end of treatment of -1.73 in MDP. However, the mean difference from placebo was 0.02. The probability that this dose was better than placebo was 13.5%. Adverse event incidence was low and similar between study groups. HL+ patients were older and had more severe symptoms than HL-. An association was suggested in HL+ patients between changes in micturition frequency and MDP (R = 0.41 [95% CI 0.18, 0.63]), which was not observed in HL- (R = 0.04 [95% CI -0.16, 0.29]). CONCLUSION ASP3652 was safe and well tolerated, but did not show efficacy in IC/BPS. The observed differences between HL+ and HL- suggest that IC/BPS diagnosis and treatment may be approached differently in these two phenotypes. TRIAL REGISTRATION EudraCT number 2011-004555-39, date of registration: 2012-05-07.
Collapse
|
19
|
Kaur I, Behl T, Bungau S, Zengin G, Kumar A, El-Esawi MA, Khullar G, Venkatachalam T, Arora S. The endocannabinoid signaling pathway as an emerging target in pharmacotherapy, earmarking mitigation of destructive events in rheumatoid arthritis. Life Sci 2020; 257:118109. [PMID: 32698072 DOI: 10.1016/j.lfs.2020.118109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis is an inflammatory autoimmune disease, characterized by synovial proliferation, destruction to articular cartilage and severe pain. The cannabinoids obtained from Cannabis sativa exhibited their actions via cannabinoid-1 and -2 receptors, which also provides a platform for endocannabinoids to act. The endocannabinoid system comprises endocannabinoid molecules involved in signaling processes, along with G-protein coupled receptors and enzymes associated with ligand biosynthesis, activation and degradation. The action of endocannabinoid system in immune system regulation, via primary CB2 activation, followed by inhibition of production of pro-inflammatory cytokines, auto-antibodies and MMPs, FLSs proliferation and T-cell mediated immune response, are elaborated as potential therapeutic regimes in rheumatoid arthritis. The involvement of endocannabinoid system in immune cells like, B cells, T cells and macrophages, as well as regulatory actions on sensory noniceptors to ameliorate pain is significantly highlighted in the review, elaborating the actions of endocannabinoid signaling in mitigating the disease events. The review also focuses on enhancement of endocannabinoid tone, either by inhibiting the degradation enzymes, like FAAH, MAGL, COX, CytP450, LOX, etc. or by retarding cellular uptake processes. Moreover, the review portrays the optimizing role of endocannabinoid system, in abbreviating the symptoms and complications of rheumatoid arthritis in patients and mitigating inflammation, pain and immune mediated effects significantly.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., Oradea, Romania
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, Turkey
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
20
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
21
|
Fazio D, Criscuolo E, Piccoli A, Barboni B, Fezza F, Maccarrone M. Advances in the discovery of fatty acid amide hydrolase inhibitors: what does the future hold? Expert Opin Drug Discov 2020; 15:765-778. [PMID: 32292082 DOI: 10.1080/17460441.2020.1751118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme, that inactivates endogenous signaling lipids of the fatty acid amide family, including the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). The latter compound has been shown to regulate a number of important pathophysiological conditions in humans, like feeding, obesity, immune response, reproductive events, motor coordination, and neurological disorders. Hence, direct manipulation of the endocannabinoid tone is thought to have therapeutic potential. A new opportunity to develop effective drugs may arise from multi-target directed ligand (MTDL) strategies, which brings the concept that a single compound can recognize different targets involved in the cascade of pathophysiological events. AREAS COVERED This review reports the latest advances in the development of new single targeted and dual-targeted FAAH inhibitors over the past 5 years. EXPERT OPINION In recent years, several FAAH inhibitors have been synthesized and investigated, yet to date none of them has reached the market as a systemic drug. Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases.
Collapse
Affiliation(s)
- Domenico Fazio
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy
| | - Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Alessandra Piccoli
- Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| |
Collapse
|
22
|
The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed Pharmacother 2019; 120:109504. [PMID: 31627091 DOI: 10.1016/j.biopha.2019.109504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
Treating Cancer-induced bone pain (CIBP) continues to be a major clinical challenge and underlying mechanisms of CIBP remain unclear. Recently, emerging body of evidence suggested the endocannabinoid system (ECS) may play essential roles in CIBP. Here, we summarized the current understanding of the antinociceptive mechanisms of endocannabinoids in CIBP and discussed the beneficial effects of endocannabinoid for CIBP treatment. Targeting non-selective cannabinoid 1 receptors or selective cannabinoid 2 receptors, and modulation of peripheral AEA and 2-AG, as well as the inhibition the function of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have produced analgesic effects in animal models of CIBP. Management of ECS therefore appears to be a promising way for the treatment of CIBP in terms of efficacy and safety. Further clinical studies are encouraged to confirm the possible translation to humans of the very promising results already obtained in the preclinical studies.
Collapse
|
23
|
Wang J, Lu HX, Wang J. Cannabinoid receptors in osteoporosis and osteoporotic pain: a narrative update of review. ACTA ACUST UNITED AC 2019; 71:1469-1474. [PMID: 31294469 DOI: 10.1111/jphp.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Osteoporosis is a skeletal disease with decreased bone mass and alteration in microarchitecture of bone tissue, and these changes put patients in risk of bone fracture. As a common symptom of osteoporosis and complication of osteoporotic fracture, chronic pain is a headache for clinicians. Nonsteroidal anti-inflammatory drugs (NSAIDs), selective COX-2 inhibitors and opioid drugs can temporarily reduce osteoporotic pain but have relevant side effects, such as addiction, tolerability and safety. The review summarized the recent advancements in the study of CB receptors in osteoporosis and osteoporotic pain and related mechanisms. KEY FINDINGS Recent studies indicated the two nociceptive receptors, cannabinoid receptor (CB) and transient receptor potential vanilloid type 1 (TRPV1) channel, are co-expressed in bone cells and play important role in the metabolism of bone cells, suggesting that dualtargeting these 2 receptors/channel may provide a novel approach for osteoporotic pain. In addition, both CB receptor and TRPV1 channel are found to be expressed in the glial cells which play vital role in mediating inflammation, chronic pain and metabolism of bone cells, suggesting a role of glial cells inosteoporotic pain. SUMMARY Multiple-targeting against glial cells, CB receptors and TRPV1 channel may be one effective therapeutic strategy for osteoporotic pain in the future, following the elucidation of the complicated mechanism.
Collapse
Affiliation(s)
- Jing Wang
- Department of Osteoporosis, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hong-Xia Lu
- Department of Ultrasound, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jing Wang
- Department of Nephrology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
24
|
Vučković S, Srebro D, Vujović KS, Vučetić Č, Prostran M. Cannabinoids and Pain: New Insights From Old Molecules. Front Pharmacol 2018; 9:1259. [PMID: 30542280 PMCID: PMC6277878 DOI: 10.3389/fphar.2018.01259] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
Cannabis has been used for medicinal purposes for thousands of years. The prohibition of cannabis in the middle of the 20th century has arrested cannabis research. In recent years there is a growing debate about the use of cannabis for medical purposes. The term ‘medical cannabis’ refers to physician-recommended use of the cannabis plant and its components, called cannabinoids, to treat disease or improve symptoms. Chronic pain is the most commonly cited reason for using medical cannabis. Cannabinoids act via cannabinoid receptors, but they also affect the activities of many other receptors, ion channels and enzymes. Preclinical studies in animals using both pharmacological and genetic approaches have increased our understanding of the mechanisms of cannabinoid-induced analgesia and provided therapeutical strategies for treating pain in humans. The mechanisms of the analgesic effect of cannabinoids include inhibition of the release of neurotransmitters and neuropeptides from presynaptic nerve endings, modulation of postsynaptic neuron excitability, activation of descending inhibitory pain pathways, and reduction of neural inflammation. Recent meta-analyses of clinical trials that have examined the use of medical cannabis in chronic pain present a moderate amount of evidence that cannabis/cannabinoids exhibit analgesic activity, especially in neuropathic pain. The main limitations of these studies are short treatment duration, small numbers of patients, heterogeneous patient populations, examination of different cannabinoids, different doses, the use of different efficacy endpoints, as well as modest observable effects. Adverse effects in the short-term medical use of cannabis are generally mild to moderate, well tolerated and transient. However, there are scant data regarding the long-term safety of medical cannabis use. Larger well-designed studies of longer duration are mandatory to determine the long-term efficacy and long-term safety of cannabis/cannabinoids and to provide definitive answers to physicians and patients regarding the risk and benefits of its use in the treatment of pain. In conclusion, the evidence from current research supports the use of medical cannabis in the treatment of chronic pain in adults. Careful follow-up and monitoring of patients using cannabis/cannabinoids are mandatory.
Collapse
Affiliation(s)
- Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Čedomir Vučetić
- Clinic of Orthopaedic Surgery and Traumatology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Storozhuk MV, Zholos AV. TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling. Curr Neuropharmacol 2018; 16:137-150. [PMID: 28440188 PMCID: PMC5883376 DOI: 10.2174/1570159x15666170424120802] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Chronic pain is a significant clinical problem and a very complex pathophysiological phenomenon. There is growing evidence that targeting the endocannabinoid system may be a useful approach to pain alleviation. Classically, the system includes G protein-coupled receptors of the CB1 and CB2 subtypes and their endogenous ligands. More recently, several subtypes of the large superfamily of cation TRP channels have been coined as “ionotropic cannabinoid receptors”, thus highlighting their role in cannabinoid signalling. Thus, the aim of this review was to explore the intimate connection between several “painful” TRP channels, endocannabinoids and nociceptive signalling. Methods: Research literature on this topic was critically reviewed allowing us not only summarize the existing evidence in this area of research, but also propose several possible cellular mechanisms linking nociceptive and cannabinoid signaling with TRP channels. Results: We begin with an overview of physiology of the endocannabinoid system and its major components, namely CB1 and CB2 G protein-coupled receptors, their two most studied endogenous ligands, anandamide and 2-AG, and several enzymes involved in endocannabinoid biosynthesis and degradation. The role of different endocannabinoids in the regulation of synaptic transmission is then discussed in detail. The connection between the endocannabinoid system and several TRP channels, especially TRPV1-4, TRPA1 and TRPM8, is then explored, while highlighting the role of these same channels in pain signalling. Conclusion: There is increasing evidence implicating several TRP subtypes not only as an integral part of the endocannabinoid system, but also as promising molecular targets for pain alleviation with the use of endo- and phytocannabinoids, especially when the function of these channels is upregulated under inflammatory conditions.
Collapse
Affiliation(s)
- Maksim V Storozhuk
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine
| | - Alexander V Zholos
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine.,Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine
| |
Collapse
|
26
|
Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue? Clin Ther 2018; 40:1457-1466. [DOI: 10.1016/j.clinthera.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
27
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
28
|
Malek N, Starowicz K. Joint problems arising from lack of repair mechanisms: can cannabinoids help? Br J Pharmacol 2018; 176:1412-1420. [PMID: 29574720 DOI: 10.1111/bph.14204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common disease of joints, which are complex organs where cartilage, bone and synovium cooperate to allow a range of movements. During progression of the disease, the function of all three main components is jeopardized. Nevertheless, the involvement of each tissue in OA development is still not established and is the topic of the present review. The OA therapies available are symptomatic, largely targeting pain management rather than disease progression. The strong need to develop a treatment for cartilage degeneration, bone deformation and synovial inflammation has led to research on the involvement of the endocannabinoid system in the development of OA. The current review discusses the research on this topic to date and notes the advantages of exploiting endocannabinoid system modulation for cartilage, bone and synovium homeostasis, which could prevent the further progression of OA. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathophysiology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Poland
| |
Collapse
|
29
|
Brown MRD, Farquhar-Smith WP. Cannabinoids and cancer pain: A new hope or a false dawn? Eur J Intern Med 2018; 49:30-36. [PMID: 29482740 DOI: 10.1016/j.ejim.2018.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system is involved in many areas of physiological function and homeostasis. Cannabinoid receptors are expressed in the peripheral and central nervous system and on immune cells, all areas ideally suited to modulation of pain processing. There are a wealth of preclinical data in a number of acute, chronic, neuropathic and cancer pain models that have demonstrated a potent analgesic potential for cannabinoids, especially in patients with cancer. However, although there are some positive results in pain of cancer patients, the clinical evidence for cannabinoids as analgesics has not been convincing and their use can only be weakly recommended. The efficacy of cannabinoids seems to have been 'lost in translation' which may in part be related to using extracts of herbal cannabis rather than targeted selective full agonists at the cannabinoid CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Matthew R D Brown
- Department of Anaesthetics, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, United Kingdom.
| | - W Paul Farquhar-Smith
- Department of Anaesthetics, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, United Kingdom.
| |
Collapse
|
30
|
Tyurenkov IN, Ozerov AA, Kurkin DV, Logvinova EO, Bakulin DA, Volotova EV, Borodin DD. Structure and biological activity of endogenous and synthetic agonists of GPR119. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules.
The bibliography includes 104 references.
Collapse
|
31
|
Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017; 9:E1165. [PMID: 29068398 PMCID: PMC5707637 DOI: 10.3390/nu9111165] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.
Collapse
Affiliation(s)
- Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rahul Dutta
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Michael C Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
32
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
33
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
34
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
35
|
Carullo G, Galligano F, Aiello F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: an overview (2009-2016). MEDCHEMCOMM 2017; 8:492-500. [PMID: 30108767 PMCID: PMC6072045 DOI: 10.1039/c6md00569a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Most drugs used to treat pain and inflammation act through inhibition of the enzymes prostaglandin G/H synthase, commonly known as cyclooxygenase (COX). Among these, the simultaneous inhibition of cyclooxygenase 1 (COX-1) would explain the unwanted side effects in the gastrointestinal tract and many adverse cardiovascular effects, such as high blood pressure, myocardial infarction and thrombosis. These side effects led in time to the development of NSAIDs that behave as selective COX-2 inhibitors. This manuscript highlights the structure-activity relationships which characterize the chemical scaffolds endowed with selective COX-2 inhibition. Additionally, the role of COX-2 inhibitors in the pain phenomenon and cancer is discussed.
Collapse
Affiliation(s)
- G Carullo
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Galligano
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Aiello
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| |
Collapse
|
36
|
Sorensen CJ, DeSanto K, Borgelt L, Phillips KT, Monte AA. Cannabinoid Hyperemesis Syndrome: Diagnosis, Pathophysiology, and Treatment-a Systematic Review. J Med Toxicol 2017; 13:71-87. [PMID: 28000146 PMCID: PMC5330965 DOI: 10.1007/s13181-016-0595-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Cannabinoid hyperemesis syndrome (CHS) is a syndrome of cyclic vomiting associated with cannabis use. Our objective is to summarize the available evidence on CHS diagnosis, pathophysiology, and treatment. We performed a systematic review using MEDLINE, Ovid MEDLINE, Embase, Web of Science, and the Cochrane Library from January 2000 through September 24, 2015. Articles eligible for inclusion were evaluated using the Grading and Recommendations Assessment, Development, and Evaluation (GRADE) criteria. Data were abstracted from the articles and case reports and were combined in a cumulative synthesis. The frequency of identified diagnostic characteristics was calculated from the cumulative synthesis and evidence for pathophysiologic hypothesis as well as treatment options were evaluated using the GRADE criteria. The systematic search returned 2178 articles. After duplicates were removed, 1253 abstracts were reviewed and 183 were included. Fourteen diagnostic characteristics were identified, and the frequency of major characteristics was as follows: history of regular cannabis for any duration of time (100%), cyclic nausea and vomiting (100%), resolution of symptoms after stopping cannabis (96.8%), compulsive hot baths with symptom relief (92.3%), male predominance (72.9%), abdominal pain (85.1%), and at least weekly cannabis use (97.4%). The pathophysiology of CHS remains unclear with a dearth of research dedicated to investigating its underlying mechanism. Supportive care with intravenous fluids, dopamine antagonists, topical capsaicin cream, and avoidance of narcotic medications has shown some benefit in the acute setting. Cannabis cessation appears to be the best treatment. CHS is a cyclic vomiting syndrome, preceded by daily to weekly cannabis use, usually accompanied by symptom improvement with hot bathing, and resolution with cessation of cannabis. The pathophysiology underlying CHS is unclear. Cannabis cessation appears to be the best treatment.
Collapse
Affiliation(s)
- Cecilia J Sorensen
- Denver Health Residency in Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, 80204, USA.
| | - Kristen DeSanto
- Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Borgelt
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristina T Phillips
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Andrew A Monte
- Denver Health Residency in Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, 80204, USA
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Poison & Drug Center, Denver Health and Hospital Authority, Denver, CO, USA
| |
Collapse
|
37
|
Abstract
Inflammation represents a very frequent condition in humans; it is often underestimated, making the problem an increasingly alarming phenomenon. For these reasons, conventional therapies are losing their effectiveness, leaving room for innovative therapies. In this field, natural products showed their efficacy in various diseases; and flavonoids, in particular quercetin, is known for its broad range of activities. In this review, we have highlighted its efficacy in various models of inflammation, focusing also on the activity of its semisynthetic derivatives, and those naturally present in plant extracts. Finally, the analgesic property of quercetin, intrinsically linked to its anti-inflammatory action, has been also evaluated, to investigate about an innovative approach to this interesting natural compound, such as analgesic remedial.
Collapse
|