1
|
Buzzanca C, Di Stefano V, D'Amico A, Gallina A, Melilli MG. A systematic review on Cynara cardunculus L.: bioactive compounds, nutritional properties and food-industry applications of a sustainable food. Nat Prod Res 2024:1-20. [PMID: 39488850 DOI: 10.1080/14786419.2024.2423046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The cardoon (Cynara cardunculus L.), is a perennial plant belonging to the Asteraceae family, and its cultivated species are widely used in the Mediterranean diet. This review provides an overview of cardoons' chemical composition, bioactive properties and multiple industrial and food applications. Thanks to its nutritional composition, the use of cardoon has increased in food, cosmetic and industrial sectors, such as the energy industry or in the production of paper pulp or bio-packaging. An application in the food industry has involved using of cardoon as a vegetable coagulant for gourmet cheeses-making, as the flowers are rich in aspartic proteases. Cardoon by-products are also rich in bioactive compounds with important health benefits. Most of these nutritional activities are due to the presence of phenolic compounds, minerals, inulin, fibre and sesquiterpene lactones with interesting antioxidant and antimicrobial, anti-inflammatory, anti-tumour, lipid-lowering, cytotoxic and anti-diabetic activities.
Collapse
Affiliation(s)
- Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angela D'Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Alessandro Gallina
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| | - Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| |
Collapse
|
2
|
Bavaro AR, Tarantini A, Bruno A, Logrieco AF, Gallo A, Mita G, Valerio F, Bleve G, Cardinali A. Functional foods in Mediterranean diet: exploring the functional features of vegetable case-studies obtained also by biotechnological approaches. Aging Clin Exp Res 2024; 36:208. [PMID: 39412623 PMCID: PMC11485090 DOI: 10.1007/s40520-024-02860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
The Mediterranean Diet (MedDiet) is a widely recognized dietary pattern, with its effects largely attributed to "functional foods" which are able to positively influence one or more target functions, improving health and maintaining a state of well-being.In this review, three "case-study" typical of the MedDiet, such as artichokes, capers and table olives are considered as traditional functional vegetables rich in bioactive compounds, mainly polyphenols. The review extensively discusses the antioxidant effects of these molecules, as well as their role in aging prevention and reduction, maintaining human health, and influencing the abundance and composition of intestinal microbiota. Additionally, this review focuses on the fate of the dietary polyphenols along the digestive tract.Among biotechnological strategies, the review explores the role of fermentation process in modifying the biochemical profile, recovery, bioaccessibility and bioavailability of bioactive compounds present in some vegetable foods of MedDiet. Finally, the main challenges in the selection, addition, and maintenance of probiotic strains in traditional food products are also summarized, with a view to develop new probiotic carriers for "functional diets".
Collapse
Affiliation(s)
- Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Annamaria Tarantini
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Angelica Bruno
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
- Xianghu Lab, Biomanufactoring Institute, Hangzhou, Zhejiang, China
| | - Antonia Gallo
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Giovanni Mita
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Francesca Valerio
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy.
| | - Gianluca Bleve
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy.
| | - Angela Cardinali
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| |
Collapse
|
3
|
Masala V, Jokić S, Aladić K, Molnar M, Casula M, Tuberoso CIG. Chemical Profiling and Evaluation of Antioxidant Activity of Artichoke ( Cynara cardunculus var. scolymus) Leaf By-Products' Extracts Obtained with Green Extraction Techniques. Molecules 2024; 29:4816. [PMID: 39459185 PMCID: PMC11510438 DOI: 10.3390/molecules29204816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the effectiveness of different green extraction techniques (GETs) on targeted bioactive compounds from artichoke leaf by-products using deep eutectic solvent extraction (DESE), supercritical CO2 extraction (SCO2E), subcritical water extraction (SWE), and ultrasound-assisted extraction (UAE). Moreover, (HR) LC-ESI-QTOF MS/MS and HPLC-PDA analyses were used to perform qualitative-quantitative analysis on the extracts, enabling the detection of several bioactive compounds, including luteolin, luteolin 7-O-glucoside, luteolin 7-O-rutinoside, apigenin rutinoside, chlorogenic acid, and cynaropicrin as the most representative ones. SWE showed better results than the other GETs (TPC: 23.39 ± 1.87 mg/g of dry plant, dp) and appeared to be the best choice. Regarding UAE, the highest total phenols content (TPC) was obtained with 50:50% v/v ethanol: water (7.22 ± 0.58 mg/g dp). The DES obtained with choline chloride:levulinic acid showed the highest TPC (9.69 ± 0.87 mg/g dp). Meanwhile, SCO2E was a selective technique for the recovery of cynaropicrin (48.33 ± 2.42 mg/g dp). Furthermore, the study examined the antioxidant activity (1.10-8.82 mmol Fe2+/g dp and 3.37-31.12 mmol TEAC/g dp for DPPH• and FRAP, respectively) and total phenols content via Folin-Ciocalteu's assay (198.32-1433.32 mg GAE/g dp), of which the highest values were detected in the SWE extracts. The relationship among the GETs, antioxidant assays, and compounds detected was evaluated using Principal Component Analysis (PCA). PCA confirmed the strong antioxidant activity of SWE and showed comparable extraction yields for the antioxidant compounds between UAE and DESE. Consequently, GETs selection and extraction parameters optimization can be employed to enrich artichoke leaf by-products' extracts with targeted bioactive compounds.
Collapse
Affiliation(s)
- Valentina Masala
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato, Italy; (V.M.); (M.C.)
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (K.A.); (M.M.)
| | - Krunoslav Aladić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (K.A.); (M.M.)
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (K.A.); (M.M.)
| | - Mattia Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato, Italy; (V.M.); (M.C.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato, Italy; (V.M.); (M.C.)
| |
Collapse
|
4
|
Alves-Silva JM, Zuzarte M, Salgueiro L, Cocco E, Ghiani V, Falconieri D, Maccioni D, Maxia A. Agroprospecting of Biowastes: Globe Artichoke ( Cynara scolymus L. Cultivar Tema, Asteraceae) as Potential Source of Bioactive Compounds. Molecules 2024; 29:3960. [PMID: 39203039 PMCID: PMC11356890 DOI: 10.3390/molecules29163960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but they generate significant waste during their production, harvesting, and processing, which poses sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke biowaste (TB) into valuable resources, starting from a global perspective of the production chain to the targeted applications based on chemical and biological analysis. The major TB was identified in the outer bracts of the immature flower heads, which were collected throughout the harvesting season, extracted, and analyzed. The most abundant compounds were phenolic acids including chlorogenic acid and caffeoylquinic derivatives. Among flavonoids, cynaroside was the most abundant compound. Multivariate analysis distinguished batches by collection period, explaining 77.7% of the variance, with most compounds increasing in concentration later in the harvest season. Subsequently, TB extracts were analyzed for their potential in wound healing and anti-aging properties. Fibroblasts were used to assess the effect of selected extracts on cell migration through a scratch wound assay and on cellular senescence induced by etoposide. The results show a significant decrease in senescence-associated β-galactosidase activity, γH2AX nuclear accumulation, and both p53 and p21 protein levels. Overall, this study ascribes relevant anti-skin aging effects to TB, thus increasing its industrial value in cosmeceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Department of Chemical Engineering, Chemical Engineering and Renewable Resources for Sustainability (CERES), University of Coimbra, 3030-790 Coimbra, Portugal
| | - Emma Cocco
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | | | - Danilo Falconieri
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | - Delia Maccioni
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | - Andrea Maxia
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| |
Collapse
|
5
|
Shyam M, Sabina EP. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:49. [PMID: 39162715 PMCID: PMC11335715 DOI: 10.1007/s13659-024-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Arctium lappa, widely recognized as burdock, is a perennial plant that is employed in the realm of traditional Chinese medicine for a wide range of medicinal applications. The herb is rich in bioactive metabolites with therapeutic potential, encompassing polyphenolic antioxidants in its leaves, and flavonoids and fructo-oligosaccharides in its underground parts. Nutraceuticals originating from botanical sources such as Arctium lappa provide supplementary health advantages alongside their nutritional content and have demonstrated effectiveness in the prevention and management of specific ailments. The utilization of Arctium lappa root extract has exhibited encouraging outcomes in addressing hepatotoxicity induced by cadmium, lead, chromium, and acetaminophen, ameliorating liver damage and oxidative stress. Additionally, the root extract displays properties such as antidiabetic, hypolipidemic, aphrodisiac, anti-rheumatic, anti-Alzheimer, and various other pharmacological actions.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Hjazi A, Alissa M, Alqasem AA, Alghamdi A, Alghamdi SA. Cynaropicrin, a sesquiterpene lactone, triggers apoptotic cell death in triple negative breast cancer cells. Mol Biol Rep 2024; 51:856. [PMID: 39066893 DOI: 10.1007/s11033-024-09723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Breast cancer is the most common cancer in the world. Cynaropicrin is a natural sesquiterpene lactone with potential anticancer effects. The present study was conducted to evaluate the effect of cynaropicrin on proliferation and apoptosis in breast cancer cells. METHODS MDA-MB-231 and MCF-7 cell lines were treated with increasing concentrations of cynaropicrin. The viability of both cell lines was measured using MTT assay. Flowcytometry was used to detect apoptotic cells. The expression levels of apoptosis-related genes were determined using quantitative polymerase chain reaction. The protein expression of apoptosis markers was determined by western blotting. RESULTS Cynaropicrin significantly diminished the proliferation of MDA-MB-231 and MCF-7 cell lines in a dose-dependent manner. Flowcytometry data uncovered that cynaropicrin augmented early and late apoptosis in MDA-MB-231 cells. Real time-PCR and western blotting results also confirmed the upregulation of pro-apoptotic Bax, caspase-3, -8, and 9 as well as downregulated level of anti-apoptotic marker Bcl-2. Cynaropicrin also remarkably increased the activity of caspase-3, -8, and 9 in MDA-MB-231 cells. However, cynaropicrin neither promoted apoptosis in MCF-7 cells nor altered the expression levels and activity of above mentioned apoptotic markers. CONCLUSION The present data indicated anti-proliferative properties of cynaropicrin against breast cancer and highlighted apoptosis-inducing effects of this sesquiterpene on triple negative breast cancer (TNBC) cells. These data may suggest cynaropicrin as a potential anti-TNBC agent to tackle therapy resistance in this type of breast cancer.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah A Alqasem
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
7
|
Araki K, Hara M, Hamada S, Matsumoto T, Nakamura S. Antiproliferative Activities of Cynaropicrin and Related Compounds against Cancer Stem Cells. Chem Pharm Bull (Tokyo) 2024; 72:200-208. [PMID: 38382968 DOI: 10.1248/cpb.c23-00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Glioblastoma (GBM) has a high mortality rate despite the availability of various cancer treatment options. Although cancer stem cells (CSCs) have been associated with poor prognosis and metastasis, and play an important role in the resistance to existing anticancer drugs and radiation; no CSC-targeting drugs are currently approved in clinical practice. Therefore, the development of antiproliferative agents against CSCs is urgently required. In this study, we evaluated the antiproliferative activities of 21 sesquiterpenoids against human GBM U-251 MG CSCs and U-251 MG non-CSCs. Particularly, the guaianolide sesquiterpene lactone cynaropicrin (1) showed strong antiproliferative activity against U-251 MG CSCs (IC50 = 20.4 µM) and U-251 MG non-CSCs (IC50 = 10.9 µM). Accordingly, we synthesized six derivatives of 1 and investigated their structure-activity relationships. Most of the guaianolide sesquiterpene lactones with the α-methylene-γ-butyrolactone moiety showed antiproliferative activities against U-251 MG cells. We conclude that the 5,7,5-ring and the α-methylene-γ-butyrolactone moiety are both important for antiproliferative activities against U-251 MG cells. The results of this study suggest that the α,β-unsaturated carbonyl moiety, which has recently become a research hotspot in drug discovery, is the active center of 1. Therefore, we consider 1 as a potential lead for developing novel drugs targeting CSCs.
Collapse
|
8
|
Boulos JC, Omer EA, Rigano D, Formisano C, Chatterjee M, Leich E, Klauck SM, Shan LT, Efferth T. Cynaropicrin disrupts tubulin and c-Myc-related signaling and induces parthanatos-type cell death in multiple myeloma. Acta Pharmacol Sin 2023; 44:2265-2281. [PMID: 37344563 PMCID: PMC10618500 DOI: 10.1038/s41401-023-01117-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/28/2023] [Indexed: 06/23/2023] Open
Abstract
The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Daniela Rigano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Formisano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Manik Chatterjee
- University Hospital Würzburg, Translational Oncology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Ellen Leich
- Julius Maximilian University, Institute of Pathology, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Le-Tian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
9
|
Jin T, Leng B. Cynaropicrin Averts the Oxidative Stress and Neuroinflammation in Ischemic/Reperfusion Injury Through the Modulation of NF-kB. Appl Biochem Biotechnol 2023; 195:5424-5438. [PMID: 35838888 PMCID: PMC10457408 DOI: 10.1007/s12010-022-04060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Cerebral ischemia and successive reperfusion are the prevailing cause of cerebral stroke. Currently cerebral stroke is considered to be one of the prior causes for high mortality, disability, and morbidity. Cynaropicrin, a sesquiterpene lactone, exhibits various pharmacologic properties and also has an anti-inflammatory property associated with the suppression of the key pro-inflammatory NF-κB pathway. The protective effect of cynaropicrin against oxidative stress and neuroinflammation during CIR injury through the modulation of NF-κB pathway was studied in the current investigation. The experimental rats split into 5 groups as sham-operated control group (group 1), middle cerebral artery occlusion (MCAO)-induced rats (group 2), MCAO rats treated with cynaropicrin (diluted in saline) immediately 2 h after MCAO with 5, 10, and 25 mg/kg administration orally were designated as groups 3, 4, and 5, respectively. In MCAO-induced animals, the severity of ischemic was evident by the elevated level nitrate, MDA, MMPs, inflammatory mediators, Bax, caspase-3, and NF-κB. The level of Nrf-2, antioxidant enzymes, Bcl-2, and IL-10 was reduced in the MCAO-induced animals. Treatment with cynaropicrin in dosage-based manner increased the level of antioxidant enzymes, IL-10, Nrf-2, and Bcl-2 in the animals which indicates the antioxidative effect of cynaropicrin. The level of nitrate, MDA, MMPs, proinflammatory cytokines, inflammatory mediators, Bax, caspase-3, and NF-κB was reduced in the rats treated with cynaropicrin in a dosage-based manner. Experimental animals treated with cynaropicrin in a dosage-dependent way showed a defensive mechanism against oxidative stress and neuroinflammation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Tao Jin
- Department of Interventional and Vascular Surgery, Affiliated Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bing Leng
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
10
|
Feiden T, Valduga E, Zeni J, Steffens J. Bioactive Compounds from Artichoke and Application Potential. Food Technol Biotechnol 2023; 61:312-327. [PMID: 38022879 PMCID: PMC10666951 DOI: 10.17113/ftb.61.03.23.8038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Cynara cardunculus L. var. scolymus, known as the artichoke, originated in the Mediterranean region and is now cultivated in several countries. The artichoke has leaves, a stem, and a head, also called a floral capitulum, covered with green and pointed bracts. It is rich in polyphenols, flavonoids, anthocyanins, phenolic compounds, inulin, coumarins, terpenes, dietary fibre, enzymes, polysaccharides, minerals and vitamins, and therefore has a wide range of uses, including in the food industry, medicine and biofuels. Several studies have shown that artichokes have properties such as antioxidant, anti-inflammatory, antimicrobial, anticancer, hypocholesterolaemic, anti-HIV, cardioprotective, hepatoprotective and lipid-lowering effects. The aim of this study is to provide a literature review on the phytochemical composition, bioactivity and applications, focusing on the methods of extraction, purification and concentration of enzymes present in artichoke.
Collapse
Affiliation(s)
- Thais Feiden
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Eunice Valduga
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Jamile Zeni
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Juliana Steffens
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| |
Collapse
|
11
|
Mandim F, Santos-Buelga C, C F R Ferreira I, Petropoulos SA, Barros L. The wide spectrum of industrial applications for cultivated cardoon (Cynara cardunculus L. var. Altilis DC.): A review. Food Chem 2023; 423:136275. [PMID: 37172504 DOI: 10.1016/j.foodchem.2023.136275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Cynara cardunculus L. var. altilis DC. belongs to the Asteraceae family and is widely used. This species is integrated into the Mediterranean diet and has broad applicability due to its rich chemical composition. Its flowers, used as a vegetable coagulant for gourmet cheese production, are rich in aspartic proteases. Leaves are rich in sesquiterpene lactones, the most abundant being cynaropicrin, while stems present a higher abundance of hydroxycinnamic acids. Both classes of compounds exhibit a wide range of bioactive properties. Its chemical composition makes it applicable in other industrial sectors, such as energy (e.g., manufacturing of biodiesel and biofuel) or paper pulp production, among other biotechnological applications. In the last decade, cardoon has been identified as a competitive energy crop, constituting an opportunity for the economic recovery and development of the rural areas of the Mediterranean basin. This article reviews the chemical composition, bioactive properties, and multifaceted industrial applications of cardoon.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación em Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Grupo de Investigación em Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
12
|
Ingallina C, Di Matteo G, Spano M, Acciaro E, Campiglia E, Mannina L, Sobolev AP. Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study. Molecules 2023; 28:molecules28031363. [PMID: 36771031 PMCID: PMC9919138 DOI: 10.3390/molecules28031363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.
Collapse
Affiliation(s)
- Cinzia Ingallina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Erica Acciaro
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Anatoly Petrovich Sobolev
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy
- Correspondence:
| |
Collapse
|
13
|
Elsebai MF, Habib ESE. Blood pH and COVID-19. Arch Pharm (Weinheim) 2023; 356:e2200558. [PMID: 36690587 DOI: 10.1002/ardp.202200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a worldwide war. Raising the blood pH might be a crucial strategy to chase COVID-19. The human blood is slightly alkaline, which is essential for cell metabolism, normal physiology, and balanced immunity since all of these biological processes are pH-dependent. Varieties of physiologic derangements occur when the blood pH is disrupted. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proliferates in acidic blood that magnifies the severity of COVID-19. On the other side, blood acidemia is linked to increased morbidity and mortality because of its complications on immunity, especially in the elderly and in critical diseases such as cancer, musculoskeletal degradation, renal, cardiac, and pulmonary disorders, which result in many pathological disorders such as osteomalacia, and disturbing the hematopoiesis. Additionally, acidemia of the blood facilitates viral infection and progression. Thus, correcting the acid-base balance might be a crucial strategy for the treatment of COVID-19, which might be attributed to the distraction of the viral spike protein to its cognate receptor angiotensin-converting enzyme 2 and supporting the over-taxed immunity.
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
X-ray crystalographic data, absolute configuration, and anticholinesterase effect of dihydromyricitrin 3-O-rhamnoside. Sci Rep 2022; 12:18351. [PMID: 36319690 PMCID: PMC9626498 DOI: 10.1038/s41598-022-23240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Based on our continuous effort to investigate chemistry and biology of the plant secondary metabolites, we were able to isolate a glycosidal flavonoid 1 from the Wild Egyptian Artichoke. The activity of dihydromyricetin 3-O-rhamnoside (sin. dihydromyricitrin, ampelopsin 3-O-rhamnoside) (1) against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE); its absolute configuration using X-ray crystallography were determined for the first time. Inhibitory activity of 1 against AChE and BChE enzymes were determined using a slightly modified version of Ellman's method. Compound 1 was revealed to have a potent inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.070 ± 0.008 and 0.071 ± 0.004 mM, respectively, where IC50 values of the reference drug (galanthamine) were 0.023 ± 0.15 and 0.047 ± 0.91 mM. Compound 1 could be a promising molecule against Alzheimer's disease.
Collapse
|
15
|
Lu Q, Tan D, Luo J, Ye Y, Zuo M, Wang S, Li C. Potential of natural products in the treatment of irritable bowel syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154419. [PMID: 36087525 DOI: 10.1016/j.phymed.2022.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a kind of functional bowel disease that is characterized by bellyache, abdominal distension, and diarrhea. Although not life-threatening, IBS has a long course and recurrent attacks and seriously affects the life quality of patients. Current drugs for treating IBS possess remarkable limitations, such as limited efficacy and severe adverse reactions. Therefore, developing novel medications to treat IBS is quite essential, and natural products may be a substantial source. PURPOSE This is the first systematic review elaborating the recent advancement of natural products as potential drugs for the therapy of IBS. METHODS A comprehensive retrieval of studies was carried out in scientific databases including PubMed, Web of Science, Elsevier, and CNKI. By using ("irritable bowel syndrome" OR "IBS") AND ("natural product" OR "natural compound" OR "phytochemical") as keywords, the eligible studies were screened, and the relevant information about therapeutic action and mechanism of natural products treating IBS was extracted. RESULTS Natural products against IBS consisted of four categories, namely, terpenoids, flavonoids, alkaloids, and phenols. Furthermore, the underlying mechanisms for natural products treating IBS were tightly associated with increased TJs and mucus protein expression, regulation of the brain-gut axis and gut microbiota structure, and inhibition of inflammatory response and intestinal mucosal damage. CONCLUSION Natural products could be extremely prospective candidate drugs used to treat IBS, and further preclinical and clinical researches are needed to guarantee their efficacy and safety.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Daopeng Tan
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan 528000, PR China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai 519040, PR China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Siyu Wang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China.
| |
Collapse
|
16
|
Dhyani P, Sati P, Sharma E, Attri DC, Bahukhandi A, Tynybekov B, Szopa A, Sharifi-Rad J, Calina D, Suleria HAR, Cho WC. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int 2022; 22:305. [PMID: 36207736 PMCID: PMC9540722 DOI: 10.1186/s12935-022-02721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, 263 136, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, 248 001, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar Garhwal, 246 174, Uttarakhand, India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Yang R, Ma S, Zhuo R, Xu L, Jia S, Yang P, Yao Y, Cao H, Ma L, Pan J, Wang J. Suppression of endoplasmic reticulum stress-dependent autophagy enhances cynaropicrin-induced apoptosis via attenuation of the P62/Keap1/Nrf2 pathways in neuroblastoma. Front Pharmacol 2022; 13:977622. [PMID: 36188599 PMCID: PMC9523313 DOI: 10.3389/fphar.2022.977622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy has dual roles in cancer, resulting in cellular adaptation to promote either cell survival or cell death. Modulating autophagy can enhance the cytotoxicity of many chemotherapeutic and targeted drugs and is increasingly considered to be a promising cancer treatment approach. Cynaropicrin (CYN) is a natural compound that was isolated from an edible plant (artichoke). Previous studies have shown that CYN exhibits antitumor effects in several cancer cell lines. However, it anticancer effects against neuroblastoma (NB) and the underlying mechanisms have not yet been investigated. More specifically, the regulation of autophagy in NB cells by CYN has never been reported before. In this study, we demonstrated that CYN induced apoptosis and protective autophagy. Further mechanistic studies suggested that ER stress-induced autophagy inhibited apoptosis by activating the p62/Keap1/Nrf2 pathways. Finally, in vivo data showed that CYN inhibited tumour growth in xenografted nude mice. Overall, our findings suggested that CYN may be a promising candidate for the treatment of NB, and the combination of pharmacological inhibitors of autophagy may hold novel therapeutic potential for the treatment of NB. Our paper will contribute to the rational utility and pharmacological studies of CYN in future anticancer research.
Collapse
Affiliation(s)
- Randong Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Shurong Ma
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Lingqi Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Siqi Jia
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Pengcheng Yang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Ye Yao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Haibo Cao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Liya Ma
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Jian Pan, ; Jian Wang,
| | - Jian Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Jian Pan, ; Jian Wang,
| |
Collapse
|
18
|
de Oliveira MVD, Furtado RM, da Costa KS, Vakal S, Lima AH. Advances in UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) Covalent Inhibition. Front Mol Biosci 2022; 9:889825. [PMID: 35936791 PMCID: PMC9346081 DOI: 10.3389/fmolb.2022.889825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan is a cross-linked polymer responsible for maintaining the bacterial cell wall integrity and morphology in Gram-negative and Gram-positive bacteria. The peptidoglycan pathway consists of the enzymatic reactions held in three steps: cytoplasmic, membrane-associated, and periplasmic. The Mur enzymes (MurA-MurF) are involved in a cytoplasmic stage. The UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme is responsible for transferring the enolpyruvate group from phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine (UNAG) to form UDP-N-acetylglucosamine enolpyruvate (EP-UNAG). Fosfomycin is a natural product analogous to PEP that acts on the MurA target enzyme via binding covalently to the key cysteine residue in the active site. Similar to fosfomycin, other MurA covalent inhibitors have been described with a warhead in their structure that forms a covalent bond with the molecular target. In MurA, the nucleophilic thiolate of Cys115 is pointed as the main group involved in the warhead binding. Thus, in this minireview, we briefly describe the main recent advances in the design of MurA covalent inhibitors.
Collapse
Affiliation(s)
| | - Renan Machado Furtado
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Kauê S. da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- *Correspondence: Anderson H. Lima,
| |
Collapse
|
19
|
Kamel AM, Farag MA. Therapeutic Potential of Artichoke in the Treatment of Fatty Liver: A Systematic Review and Meta-Analysis. J Med Food 2022; 25:931-942. [PMID: 35763310 DOI: 10.1089/jmf.2022.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major chronic liver disease that can lead to liver cirrhosis, liver cancer, and death. Artichoke leaf extract (ALE) is well known in folk medicine for its hepatoprotective effect. Till recent times, no sufficient data from randomized clinical trials (RCTs) exist to support such use. This meta-analysis summarizes evidence from recent RCTs that evaluated ALE in NAFLD patients. Electronic databases were searched for RCTs that used ALE in NAFLD patients. The random-effects model was used to pool effect sizes (standardized change score). Data synthesis from five RCTs (333 patients) showed that ALE resulted in a significant reduction in alanine aminotransferase (standardized mean difference [SMD]: 1.1; 95% confidence interval [CI], 0.79-1.73; P < .001) and aspartate aminotransferase levels (SMD: 1.01; 95% CI, 0.52-1.51; P < .001) compared with the control group. ALE also resulted in a significant reduction in total cholesterol (SMD: 0.98; 95% CI, 0.53-1.43; P = .004), low-density lipoprotein (SMD: 0.96; 95% CI, 0.3-1.62; P < .001) and triglycerides (SMD: 0.95; 95% CI, 0.58-1.32; P < .001). The current review provides evidence from RCTs to support the use of ALE as a hepatoprotective agent in NAFLD patients. The study was registered on the PROSPERO database with the Registration No. CRD42020182502 (https://www.crd.york.ac.uk/prospero).
Collapse
Affiliation(s)
- Ahmed Mohamed Kamel
- Department of Clinical Pharmacy, and Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Maiuolo J, Musolino V, Gliozzi M, Carresi C, Oppedisano F, Nucera S, Scarano F, Scicchitano M, Guarnieri L, Bosco F, Macrì R, Ruga S, Cardamone A, Coppoletta AR, Ilari S, Mollace A, Muscoli C, Cognetti F, Mollace V. The Employment of Genera Vaccinium, Citrus, Olea, and Cynara Polyphenols for the Reduction of Selected Anti-Cancer Drug Side Effects. Nutrients 2022; 14:1574. [PMID: 35458136 PMCID: PMC9025632 DOI: 10.3390/nu14081574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most widespread diseases globally and one of the leading causes of death. Known cancer treatments are chemotherapy, surgery, radiation therapy, targeted hormonal therapy, or a combination of these methods. Antitumor drugs, with different mechanisms, interfere with cancer growth by destroying cancer cells. However, anticancer drugs are dangerous, as they significantly affect both cancer cells and healthy cells. In addition, there may be the onset of systemic side effects perceived and mutagenicity, teratogenicity, and further carcinogenicity. Many polyphenolic extracts, taken on top of common anti-tumor drugs, can participate in the anti-proliferative effect of drugs and significantly reduce the side effects developed. This review aims to discuss the current scientific knowledge of the protective effects of polyphenols of the genera Vaccinium, Citrus, Olea, and Cynara on the side effects induced by four known chemotherapy, Cisplatin, Doxorubicin, Tamoxifen, and Paclitaxel. In particular, the summarized data will help to understand whether polyphenols can be used as adjuvants in cancer therapy, although further clinical trials will provide crucial information.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Vincenzo Musolino
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Sara Ilari
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
21
|
Dubey AK, Chaudhry SK, Singh HB, Gupta VK, Kaushik A. Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00712. [PMID: 35186674 PMCID: PMC8832856 DOI: 10.1016/j.btre.2022.e00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Optimized therapeutic bio-compounds supported by bio-acceptable nanosystems (i.e., precise nanomedicine) have ability to promote health via maintaining body structure, organ function, and controlling chronic and acute effects. Therefore, nano-nutraceuticals (designed to neutralize virus, inhibit virus bindings with receptors, and support immunity) utilization can manage COVID-19 pre/post-infection effects. To explore these approaches well, our mini-review explores optimized bio-active compounds, their ability to influence SARS-CoV-2 infection, improvement in performance supported by precise nanomedicine approach, and challenges along with prospects. Such optimized pharmacologically relevant therapeutic cargo not only affect SARS-CoV-2 but will support other organs which show functional alternation due to SARS-CoV-2 for example, neurological functions. Hence, coupling the nutraceuticals with the nano-pharmacology perspective of higher efficacy via targeted delivery action can pave a novel way for health experts to plan future research needed to manage post COVID-19 infection effect where a longer efficacy with no side-effects is a key requirement.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Tamil Nadu, 600036, India
- Institute of Scholars (InSc), Bengaluru, 560091, Karnataka, India
| | - Suman Kumar Chaudhry
- Department of Computer Science and Engineering, Tezpur University, Sonitpur, Assam, 784028, India
| | | | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
22
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
23
|
Krepkova LV, Babenko AN, Saybel' OL, Lupanova IA, Kuzina OS, Job KM, Sherwin CM, Enioutina EY. Valuable Hepatoprotective Plants - How Can We Optimize Waste Free Uses of Such Highly Versatile Resources? Front Pharmacol 2021; 12:738504. [PMID: 34867345 PMCID: PMC8637540 DOI: 10.3389/fphar.2021.738504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Humans used plants for thousand of years as food, drugs, or fuel to keep homes warm. People commonly used fruits and roots, and other parts of the plant were often wasted. This review aims to discuss the potential of rational stem-to-stern use of three highly versatile and valuable plants with hepatoprotective properties. Milk thistle (Silybum marianum L. Gaertn.), artichoke (Cynara cardunculus), and chicory (Cichorium intybus L.) have well-characterized hepatoprotective properties. These plants have been chosen since liver diseases are significant diseases of concern worldwide, and all parts of plants can be potentially utilized. Artichoke and chicory are commonly used as food or dietary supplements and less often as phytodrugs. Various dietary supplements and phytodrugs prepared from milk thistle (MT) fruits/seeds are well-known to consumers as remedies supporting liver functions. However, using these plants as functional food, farm animal feed, is not well-described in the literature. We also discuss bioactive constituents present in various parts of these plants, their pharmacological properties. Distinct parts of MT, artichoke, and chicory can be used to prepare remedies and food for humans and animals. Unused plant parts are potentially wasted. To achieve waste-free use of these and many other plants, the scientific community needs to analyze the complex use of plants and propose strategies for waste-free technologies. The government must stimulate companies to utilize by-products. Another problem associated with plant use as a food or source of phytodrug is the overharvesting of wild plants. Consequently, there is a need to use more active cultivation techniques for plants.
Collapse
Affiliation(s)
- Lubov V Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Aleksandra N Babenko
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga L Saybel'
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Irina A Lupanova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga S Kuzina
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Dayton Children's Hospital, Wright State University, Dayton, OH, United States
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
24
|
Ding Z, Xi J, Zhong M, Chen F, Zhao H, Zhang B, Fang J. Cynaropicrin Induces Cell Cycle Arrest and Apoptosis by Inhibiting PKM2 to Cause DNA Damage and Mitochondrial Fission in A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13557-13567. [PMID: 34726896 DOI: 10.1021/acs.jafc.1c05394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic reprogramming is critical for tumorigenesis. Pyruvate kinase M2 (PKM2) is overexpressed in lung carcinoma cells and plays a critical role in the Warburg effect, making the enzyme a research hotspot for anticancer drug development. Cynaropicrin (CYN), a natural sesquiterpene lactone compound from artichoke, has received increasing consideration due to its consumable esteem and pharmacological properties. Our data reveal that CYN not only inhibited the purified PKM2 activity but also decreased the cellular PKM2 expression in A549 cells. The inhibition of PKM2 leads to the upregulation of p53 and the downregulation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP), and subsequently causes the cell cycle arrest. Additionally, CYN inhibits the interaction of PKM2 and Nrf2, resulting in the impairment of cellular antioxidant capacity, induction of oxidative stress, and mitochondrial damages. Overexpression of PKM2 attenuates the CYN-induced DNA damage, mitochondrial fission, and cell viability. Thus, targeting PKM2 provides an original mechanism for understanding the pharmacological impact of CYN and assists in the further development of CYN as an anticancer agent.
Collapse
Affiliation(s)
- Zhenjiang Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Nakamura T, Pitna DB, Kimura K, Yoshimoto Y, Uchiyama T, Mori T, Kondo R, Hara S, Egoshi Y, Yamaguchi S, Suzuki N, Suzuki Y, Usuki T. Total synthesis of cynaropicrin. Org Biomol Chem 2021; 19:6038-6044. [PMID: 33982042 DOI: 10.1039/d1ob00657f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cynaropicrin is found in artichoke (Cynara scolymus) and is the source of its bitter taste and it is a sesquiterpene lactone with a 5-7-5 tricyclic skeleton, six chiral centers, and four exo-olefins. This natural product has numerous attractive biological activities including the inhibition of NF-κB activation, antihepatitis C activity, and antitrypanosomal activity. In this study, the first total synthesis of cynaropicrin was achieved starting from (S)-α-pinene. The synthesis involved a stereoselective Favorskii rearrangement and an indium-promoted diastereoselective Barbier reaction.
Collapse
Affiliation(s)
- Tenma Nakamura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Dinda B Pitna
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Kogaku Kimura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yukiko Yoshimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Tomoya Uchiyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Takaya Mori
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Ryosuke Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Shihori Hara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yuki Egoshi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Shoya Yamaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
26
|
Synthesis and Molecular Docking of Some Grossgemin Amino Derivatives as Tubulin Inhibitors Targeting Colchicine Binding Site. J CHEM-NY 2021. [DOI: 10.1155/2021/5586515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Six amino derivatives of grossgemin (2–7) were synthesized according to the reported essential pharmacophoric features of colchicine binding site inhibitors (CBSIs). The derivatives 4–6 were obtained for the first time. The pharmacophoric features of 2–7 as CBSIs were studied to be almost identical. Furthermore, the 3D-flexible alignment of compound 5 as a representative example with colchicine showed a very good overlapping. In agreement, compounds 2–7 docked into CBS with binding modes very similar to that of colchicine and exhibited binding free energies of −24.57, −25.05, −32.16, −29.34, −26.38, and −26.86 (kcal/mol), respectively. The binding free energies of 4–7 were better than that of colchicine (−26.13 kcal/mol) with a noticeable superiority to compound 4.
Collapse
|
27
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
28
|
Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 2021; 476:2345-2364. [PMID: 33587232 PMCID: PMC7882868 DOI: 10.1007/s11010-021-04084-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
The pandemic of Serious Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) that produces corona virus disease (COVID-19) has challenged the entire mankind by rapidly spreading globally in 210 countries affecting over 25 million people and about 1 million deaths worldwide. It continues to spread, afflicting the health system globally. So far there is no remedy for the ailment and the available antiviral regimens have been unsatisfactory for the clinical outcomes and the mode of treatment has been mainly supportive for the prevention of COVID-19-induced morbidity and mortality. From the time immortal the traditional plant-based ethno-medicines have provided the leads for the treatment of infectious diseases. Phytopharmaceuticals have provided potential and less toxic antiviral drugs as compared to conventional modern therapeutics which are associated with severe toxicities. The ethnopharmacological knowledge about plants has provided food supplements and nutraceuticals as a promise for prevention and treatment of the current pandemic. In this review article, we have attempted to comprehend the information about the edible medicinal plant materials with potential antiviral activity specifically against RNA virus which additionally possess property to improve immunity along with external and internal respiration and exhibit anti-inflammatory properties for the prevention and treatment of the disease. This will open an arena for the development of novel nutraceutical herbal formulations as an alternative therapy that can be used for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Bhoomika Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Supriya Sharma
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Nisha Nair
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Jaseela Majeed
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
29
|
Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules 2021; 26:727. [PMID: 33573318 PMCID: PMC7866841 DOI: 10.3390/molecules26030727] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Plant Biology, Institute of Biology, Kiev National, University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 47189-63616 Khuzestan, Iran;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Ulkar Ibrahimova
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Sayyara Ibadullayeva
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56126 Behbahan, Italy
| |
Collapse
|
30
|
Zheng D, Zhu Y, Shen Y, Xiao S, Yang L, Xiang Y, Dai X, Hu W, Zhou B, Liu Z, Zhao H, Zhao C, Huang X, Wang L. Cynaropicrin Shows Antitumor Progression Potential in Colorectal Cancer Through Mediation of the LIFR/STATs Axis. Front Cell Dev Biol 2021; 8:605184. [PMID: 33505963 PMCID: PMC7829511 DOI: 10.3389/fcell.2020.605184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second deadliest malignant disease in the world and the leukemia inhibitory factor receptor/signal transducers and activators of transcriptions (LIFR/STATs) signaling axis plays an important role in the molecular biology of CRC. METHODS Cell function tests were performed to observe the inhibitory effect of cynaropicrin on human CRC cells (RKO, HCT116, and DLD-1). Expression levels of LIFR, P-STAT3, P-STAT4, and apoptotic proteins were detected by Western blotting. Immunoprecipitation confirmed the presence of LIFR/STAT3/STAT4 complex. Cell immunofluorescence assay was used to observe the subcellular localization of STAT3 and STAT4. In vivo efficacy of cynaropicrin was evaluated by a xenotransplantation model in nude mice. RESULTS Cynaropicrin significantly reduced the survival ability of human CRC cells and promoted apoptosis in a dose-dependent manner. Western blotting results suggested that the antitumor effects of cynaropicrin might be mediated by inhibition of the LIFR/STATs axis. Cynaropicrin reduced the formation of STAT3/STAT4 heterodimers and blocked their entry into the nucleus. Cynaropicrin also suppressed tumor growth in the xenograft model. CONCLUSION The results showed that cynaropicrin exerted a strong inhibitory effect on CRC in vitro and in vivo. Our study concluded that cynaropicrin has potential application prospects in the field of anti-CRC therapy.
Collapse
Affiliation(s)
- Dandan Zheng
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yu Zhu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yili Shen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Sisi Xiao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Youqun Xiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuanxuan Dai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wanle Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bin Zhou
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B, Beyatli A, Alfred MA, Salehi B, Calina D, Docea AO, Imran M, Anil Kumar NV, Romero-Román ME, Maroyi A, Martorell M. Pharmacological Activities of Psoralidin: A Comprehensive Review of the Molecular Mechanisms of Action. Front Pharmacol 2020; 11:571459. [PMID: 33192514 PMCID: PMC7643726 DOI: 10.3389/fphar.2020.571459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022] Open
Abstract
Analysis of the most relevant studies on the pharmacological properties and molecular mechanisms of psoralidin, a bioactive compound from the seeds of Cullen corylifolium (L.) Medik. confirmed its complex therapeutic potential. In the last years, the interest of the scientific community regarding psoralidin increased, especially after the discovery of its benefits in estrogen-related diseases and as a chemopreventive agent. Growing preclinical pieces of evidence indicate that psoralidin has anticancer, antiosteoporotic, anti-inflammatory, anti-vitiligo, antibacterial, antiviral, and antidepressant-like effects. Here, we provide a comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways. In this review, we conducted literature research on the PubMed database using the following keywords: “Psoralidin” or “therapeutic effects” or “biological activity” or “Cullen corylifolium” in order to identify relevant studies regarding PSO bioavailability and mechanisms of therapeutic effects in different diseases based on preclinical, experimental studies. In the light of psoralidin beneficial actions for human health, this paper gathers complete information on its pharmacotherapeutic effects and opens new natural therapeutic perspectives in chronic diseases.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITAUM), Bursa Uludag University, Bursa, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmet Beyatli
- Department of Medicinal and Aromatic Plants, University of Health Sciences, Istanbul, Turkey
| | - Mary Angelia Alfred
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Maria Eugenia Romero-Román
- Laboratorio de Análisis Químico, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
32
|
De Cicco P, Busà R, Ercolano G, Formisano C, Allegra M, Taglialatela-Scafati O, Ianaro A. Inhibitory effects of cynaropicrin on human melanoma progression by targeting MAPK, NF-κB, and Nrf-2 signaling pathways in vitro. Phytother Res 2020; 35:1432-1442. [PMID: 33058354 DOI: 10.1002/ptr.6906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023]
Abstract
Malignant melanoma is the deadliest skin cancer, due to its propensity to metastasize. MAPKs and NF-κB pathways are constitutively activated in melanoma and promote cell proliferation, cell invasion, metastasis formation, and resistance to therapeutic regimens. Thus, they represent potential targets for melanoma prevention and treatment. Phytochemicals are gaining considerable attention for the management of melanoma because of their several cellular and molecular targets. A screening of a small library of sesquiterpenes lactones selected cynaropicrin, isolated from the aerial parts of Centaurea drabifolia subsp. detonsa, for its potential anticancer effect against melanoma cells. Treatment of human melanoma cells A375 with cynaropicrin resulted in inhibition of cell proliferation and induction of caspase-3-dependent apoptosis. Furthermore, cynaropicrin reduced several cellular malignant features such migration, invasion, and colonies formation through the inhibition of ERK1/2 and NF-κB activity. Cynaropicrin was able to reduce intracellular reactive oxygen species generation, which are involved in all the stages of carcinogenesis. Indeed, cynaropicrin increased the expression of several antioxidant genes, such as glutamate-cysteine ligase and heme oxygenase-1, by promoting the activation of the transcription factor Nrf-2. In conclusion, our results individuate cynaropicrin as a potential adjuvant chemotherapeutic agent for melanoma by targeting several protumorigenic signaling pathways.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Rosalia Busà
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
33
|
Zayed A, Farag MA. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
36
|
Rocchetti G, Giuberti G, Lucchini F, Lucini L. Polyphenols and Sesquiterpene Lactones from Artichoke Heads: Modulation of Starch Digestion, Gut Bioaccessibility, and Bioavailability following In Vitro Digestion and Large Intestine Fermentation. Antioxidants (Basel) 2020; 9:E306. [PMID: 32290151 PMCID: PMC7222196 DOI: 10.3390/antiox9040306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Artichoke is a relevant source of health-promoting compounds such as polyphenols and sesquiterpene lactones. In this study, the bioaccessibility and gut bioavailability of artichoke constituents were evaluated by combining in vitro digestion and large intestine fermentation, metabolomics, and Caco-2 human intestinal cells model. Moreover, the ability of artichoke polyphenols to modulate the in vitro starch digestibility was also explored. An untargeted metabolomic approach based on liquid chromatography quadrupole-time-of-flight (UHPLC/QTOF) mass spectrometry coupled with multivariate statistics was used to comprehensively screen the phytochemical composition of raw, digested, and fermented artichoke. Overall, a large abundance of phenolic acids and sesquiterpene lactones was detected, being 13.77 and 11.99 mg·g-1, respectively. After 20 h of in vitro large intestine fermentation, a decrease in polyphenols and sesquiterpene lactones content was observed. The most abundant compounds characterizing the raw material (i.e., chlorogenic acid and cynaropicrin equivalents) showed an average % bioaccessibility of 1.6%. The highest % bioaccessibility values were recorded for flavonoids such as anthocyanin and flavone equivalents (on average, 13.6%). However, the relatively high bioavailability values recorded for flavonols, phenolic acids, and sesquiterpene lactones (from 71.6% up to 82.4%) demonstrated that these compounds are able to be transported through the Caco-2 monolayer. The phenolic compounds having the highest permeation rates through the Caco-2 model included low molecular weight phenolics such as tyrosol and 4-ethylcatechol; the isoflavonoids 3'-O-methylviolanone, equol 4'-O-glucuronide, and hydroxyisoflavone; together with the methyl and acetyl derivatives of glycosylated anthocyanins. Therefore, although human in vivo confirmatory trials are deemed possible, current findings provide insights into the mechanistic effects underlying artichoke polyphenols and sesquiterpenoids bioavailability following gastrointestinal and large intestine processes.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Research Centre for Nutrigenomics and Proteomics (PRONUTRIGEN), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Franco Lucchini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Research Centre for Nutrigenomics and Proteomics (PRONUTRIGEN), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
37
|
Ferro Y, Montalcini T, Mazza E, Foti D, Angotti E, Gliozzi M, Nucera S, Paone S, Bombardelli E, Aversa I, Musolino V, Mollace V, Pujia A. Randomized Clinical Trial: Bergamot Citrus and Wild Cardoon Reduce Liver Steatosis and Body Weight in Non-diabetic Individuals Aged Over 50 Years. Front Endocrinol (Lausanne) 2020; 11:494. [PMID: 32849284 PMCID: PMC7431622 DOI: 10.3389/fendo.2020.00494] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease is the most common cause of liver-related morbidity and mortality in the world. However, no effective pharmacological treatment for this condition has been found. Purpose: This study evaluated the effect of a nutraceutical containing bioactive components from Bergamot citrus and wild cardoon as a treatment for individuals with fatty liver disease. The primary outcome measure was the change in liver fat content. Methods: A total of 102 patients with liver steatosis were enrolled in a double-blind placebo controlled clinical trial. The intervention group received a nutraceutical containing a Bergamot polyphenol fraction and Cynara Cardunculus extract, 300 mg/day for 12 weeks. The control group received a placebo daily. Liver fat content, by transient elastography, serum transaminases, lipids and glucose were measured at the baseline and the end of the study. Results: We found a greater liver fat content reduction in the participants taking the nutraceutical rather than placebo (-48.2 ± 39 vs. -26.9 ± 43 dB/m, p = 0.02); The percentage CAP score reduction was statistically significant in those with android obesity, overweight/obesity as well as in women. However, after adjustment for weight change, the percentage CAP score reduction was statistically significant only in those over 50 years (44 vs. 78% in placebo and nutraceutical, respectively, p = 0.007). Conclusions: This specific nutraceutical containing bioactive components from Bergamot and wild cardoon reduced the liver fat content during 12 weeks in individuals with liver steatosis over 50 years. If confirmed, this nutraceutical could become the cornerstone treatment of patients affected by liver steatosis. Clinical Trial Registration: www.isrctn.com, identifier ISRCTN12833814.
Collapse
Affiliation(s)
- Yvelise Ferro
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
- *Correspondence: Tiziana Montalcini
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| | - Daniela Foti
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Elvira Angotti
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Sara Paone
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | | | - Ilaria Aversa
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
| | - Vincenzo Musolino
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| |
Collapse
|
38
|
Barracosa P, Barracosa M, Pires E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem Biodivers 2019; 16:e1900498. [PMID: 31778035 DOI: 10.1002/cbdv.201900498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
Cardoon is a multi-purpose and versatile Mediterranean crop, adapted to climate change, with a wide spectrum of potential applications due its added value as a rich source of fibers, oils and bioactive compounds. The Cynara species are a component of the Mediterranean diet and have been used as food and medicine since ancient times. The important role of cardoon in human nutrition, as a functional food, is due to its high content of nutraceutical and bioactive compounds such as oligofructose inulin, caffeoylquinic acids, flavonoids, anthocyanins, sesquiterpenes lactones, triterpenes, fatty acids and aspartic proteases. The present review highlights the characteristics and functions of cardoon biomass which permits the development of innovative products in food and nutrition, pharmaceutics and cosmetics, plant protection and biocides, oils and energy, lignocellulose materials, and healthcare industries following the actual trends of a circular economy.
Collapse
Affiliation(s)
- Paulo Barracosa
- Escola Superior Agrária de Viseu - Instituto Politécnico de Viseu, 3500-606, Viseu, Portugal.,CI&DETS - Centro de Estudos em Educação, Tecnologias e Saúde, 3504-510, Viseu, Portugal.,Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Mariana Barracosa
- Faculdade de Ciências da Nutrição e Alimentação -, Universidade do Porto, 4200-465, Porto, Portugal
| | - Euclides Pires
- Departamento Ciências da Vida - FCTUC, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
39
|
Lepore SM, Maggisano V, Lombardo GE, Maiuolo J, Mollace V, Bulotta S, Russo D, Celano M. Antiproliferative Effects of Cynaropicrin on Anaplastic Thyroid Cancer Cells. Endocr Metab Immune Disord Drug Targets 2019; 19:59-66. [PMID: 30264682 DOI: 10.2174/1871530318666180928153241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The sesquiterpene lactone cynaropicrin, a major constituent of the artichoke leaves extracts, has shown several biologic activities in many preclinical experimental models, including anti-proliferative effects. OBJECTIVE Herein we evaluated the effects of cynaropicrin on the growth of three human anaplastic thyroid carcinoma cell lines, investigating the molecular mechanism underlying its action. METHOD MTT assay was used to evaluate the viability of CAL-62, 8505C and SW1736 cells, and flow cytometry to analyse cell cycle distribution. Western blot was performed to detect the levels of STAT3 phosphorylation and NFkB activation. Antioxidant effects were analyzed by measuring the reactive oxygen species and malonyldialdehyde dosage was used to check the presence of lipid peroxidation. RESULTS Viability of CAL-62, 8505C and SW1736 cells was significantly reduced by cynaropicrin in a dose- and time-dependent way, with an EC50 of about 5 µM observed after 48 h of treatment with the compound. Cellular growth inhibition was accompanied both by an arrest of the cell cycle, mainly in the G2/M phase, and the presence of a significant percentage of necrotic cells. After 48 h of treatment with 10 µM of cynaropicrin, a reduced nuclear expression of NFkB and STAT3 phosphorylation were also revealed. Moreover, we observed an increase in lipid peroxidation, without any significant effect on the reactive oxygen species production. CONCLUSION These results demonstrate that cynaropicrin reduces the viability and promotes cytotoxic effects in anaplastic thyroid cancer cells associated with reduced NFkB expression, STAT3 phosphorylation and increased lipid peroxidation. Further characterization of the properties of this natural compound may open the way for using cynaropicrin as an adjuvant in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Saverio M Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni E Lombardo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
40
|
Liu T, Zhang J, Han X, Xu J, Wu Y, Fang J. Promotion of HeLa cells apoptosis by cynaropicrin involving inhibition of thioredoxin reductase and induction of oxidative stress. Free Radic Biol Med 2019; 135:216-226. [PMID: 30880248 DOI: 10.1016/j.freeradbiomed.2019.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Cancer is considered as one of the highly mortal diseases globally. This is largely due to the lack of efficacious medicines for tumors, and thus development of potent anticancer agents is urgently needed. The thioredoxin (Trx) system is crucial to the survival ability of cells and its expression is up-regulated in many human tumors. Recently, increasing evidence has been established that mammalian thioredoxin reductase (TrxR), a selenocysteine-containing protein and the core component of the thioredoxin system, is a promising therapeutic target. The sesquiterpene lactone compound cynaropicrin (CYN), a major component of Cynara scolymus L., has shown multiple pharmacological functions, especially the anticancer effect, in many experimental models. Most of these functions are concomitant with the production of reactive oxygen species (ROS). Nevertheless, the target of this promising natural anticancer product in redox control has rarely been explored. In this study, we showed that CYN induces apoptosis of Hela cells. Mechanistic studies demonstrated that CYN impinges on the thioredoxin system via inhibition of TrxR, which leads to Trx oxidation and ROS accumulation in HeLa cells. Particularly, the cytotoxicity of CYN is enhanced through the genetic knockdown of TrxR, supporting the pharmacological effect of CYN is relevant to its inhibition of TrxR. Together, our studies reveal an unprecedented mechanism accounting for the anticancer effect of CYN and identify a promising therapeutic agent worthy of further development for cancer therapy.
Collapse
Affiliation(s)
- Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
41
|
Suleimen EM, Sisengalieva GG, Dzhalmakhanbetova RI, Iskakova ZB, Ishmuratova MY. Constituent Composition and Cytotoxicity of Essential Oil from Chartolepis intermedia. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2587-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zhai KF, Duan H, Khan GJ, Xu H, Han FK, Cao WG, Gao GZ, Shan LL, Wei ZJ. Salicin from Alangium chinense Ameliorates Rheumatoid Arthritis by Modulating the Nrf2-HO-1-ROS Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6073-6082. [PMID: 29852739 DOI: 10.1021/acs.jafc.8b02241] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder linked to oxidative stress of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs). The effects and potential mechanism of salicin on inflammation and oxidative stress of RA-FLSs were examined by MTT, ELISA, and Western blot methods. Salicin significantly reduced cell viability (82.03 ± 7.06, P < 0.01), cytokines (47.70 ± 1.48 ng/L for TNF-α, 30.03 ± 3.49 ng/L for IL-6) ( P < 0.01), and matrix metalloproteinases-1/-3 expression ( P < 0.01) in IL-1β-induced RA-FLSs and inhibited ROS generation and p65 phosphorylation ( P < 0.01) as compared with IL-1β-induced treatment. Moreover, salicin promoted Nrf2 nuclear translocation (2.15 ± 0.21) and HO-1 expression (1.12 ± 0.05) and reduced ROS production in IL-1β-induced RA-FLSs ( P < 0.01). Salicin not only reduced the collagen-induced arthritis by reducing the clinical score ( P < 0.01), inflammatory infiltration, and synovial hyperplasia in vivo but also suppressed the oxidative damage indexes (SOD 155.40 ± 6.53 U/mg tissue, MDA 152.80 ± 5.89 nmol/g tissue, GSH 50.98 ± 3.45 nmol/g tissue, and CAT 0.92 ± 0.10 U/g protein) ( P < 0.01) of ankle joint cells. Conclusively, our findings indicate that salicin ameliorates rheumatoid arthritis, which may be associated with oxidative stress and Nrf2-HO-1-ROS pathways in RA-FLSs.
Collapse
Affiliation(s)
- Ke-Feng Zhai
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 , P. R. China
| | - Hong Duan
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
| | - Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy , University of Central Punjab , Lahore 54000 , Pakistan
| | - Hui Xu
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
| | - Fang-Kai Han
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
| | - Wen-Gen Cao
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
| | - Gui-Zhen Gao
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
| | - Ling-Ling Shan
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , P. R. China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Zhao-Jun Wei
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| |
Collapse
|
43
|
de Faria ELP, do Carmo RS, Cláudio AFM, Freire CSR, Freire MG, Silvestre AJD. Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara cardunculus L. Leaves. Int J Mol Sci 2017; 18:ijms18112276. [PMID: 29084184 PMCID: PMC5713246 DOI: 10.3390/ijms18112276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.
Collapse
Affiliation(s)
- Emanuelle L P de Faria
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rafael S do Carmo
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Filipa M Cláudio
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
44
|
Shi H, Zhu X, Cui Y, Qin Y, Yang L, Deng X. Analgesic activity of cynaropicrinon on post-inflammatory irritable bowel syndrome visceral hypersensitivity in a rat model. Exp Ther Med 2017; 14:4476-4482. [PMID: 29067122 DOI: 10.3892/etm.2017.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Visceral hypersensitivity is one of the most common symptoms in patients with post-inflammatory-irritable bowel syndrome (PI-IBS). Enterochromaffin (EC) cells and 5-hydroxytryptamine (5-HT) are important in the development of visceral hyperalgesia, and EC cells are influenced by helper T-cell subtype 1 or 2 cytokine predominant environments. In the present study, the analgesic effect of cynaropicrin and its underlying mechanism on the treatment of trinitrobenzene sulfonic (TNBS)-induced PI-IBS visceral hyperalgesia rats was investigated. The results from the abdominal withdrawal reflex tests and electromyography recordings indicated that treatment with cynaropicrin significantly and dose-dependently alleviated the visceral hyperalgesia of PI-IBS rats (P<0.05). In addition, the increased colonic 5-HT content, colonic tryptophan hydroxylase expression, EC cell number and the cytokine levels, including tumor necrosis factor-α and interleukin-6 in PI-IBS rats were significantly alleviated by cynaropicrin (P<0.05). These data demonstrate that the analgesic activity of cynaropicrin on TNBS-induced PI-IBS visceral hypersensitive rats was mediated via reduction of cytokines levels. Thus, cynaropicrin as a bioactive natural product may offer promising therapeutic avenues for visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Hailong Shi
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an Shaanxi 710069, P.R. China.,College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| | - Xianwei Zhu
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China.,Innovation Research Centre of Acupuncture Combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Shaanxi 712046, P.R. China.,Graduate School of Innovative Life Science for Education, University of Toyama, Toyama 930-8555, Japan
| | - Yaya Cui
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| | - Yifei Qin
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| | - Lin Yang
- Graduate School of Innovative Life Science for Education, University of Toyama, Toyama 930-8555, Japan
| | - Xu Deng
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang Shaanxi 712046, P.R. China
| |
Collapse
|
45
|
Antiproliferative activity against leukemia cells of sesquiterpene lactones from the Turkish endemic plant Centaurea drabifolia subsp. detonsa. Fitoterapia 2017; 120:98-102. [DOI: 10.1016/j.fitote.2017.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/23/2022]
|
46
|
Shakeri A, Amini E, Asili J, Masullo M, Piacente S, Iranshahi M. Screening of several biological activities induced by different sesquiterpene lactones isolated from Centaurea behen L. and Rhaponticum repens (L.) Hidalgo. Nat Prod Res 2017. [PMID: 28641489 DOI: 10.1080/14786419.2017.1344661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aims to evaluate the in vitro cytotoxic, in vitro and in ovo anti-angiogenic effects and antimicrobial activity of sesquiterpene lactones (SLs) from two plants Centaurea behen and Rhaponticum repens (L.). Five SLs, including cynaropicrin (1), 4β,15-dehydro-3-dehydrosolstitialin A (2), aguerin B (3), janerin (4), cebellin E (5), and a flavone hispidulin (6) were isolated from C. behen (compounds 1-3) and R. repens (compounds 4-6). Cynaropicrin (1) and aguerin B (3) were characterised by strong cytotoxic activities against A2780 cells with IC50 values of 1.15 and 1.62 μg mL-1, respectively, comparable to that of doxorubicin (IC50 = 1.17 μg mL-1). The anti-angiogenic study showed the remarkable inhibitory effect of cynaropicrin (1) and aguerin B (3) on the proliferation and migration of HUVECs. In addition, cynaropycrin and aguerin B exhibited significant angio-inhibitory effects in CAM assay. These findings may be useful for the development of novel chemotherapeutic agents for the treatment of cancer.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- a Department of Pharmacognosy , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Elaheh Amini
- b Department of Animal Biology, Faculty of Biological Sciences , Kharazmi University , Tehran , Iran
| | - Javad Asili
- a Department of Pharmacognosy , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Milena Masullo
- c Dipartimento di Scienze Farmaceutiche , Universita degli Studi di Salerno , Salerno , Italy
| | - Sonia Piacente
- c Dipartimento di Scienze Farmaceutiche , Universita degli Studi di Salerno , Salerno , Italy
| | - Mehrdad Iranshahi
- a Department of Pharmacognosy , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,d Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
47
|
Abstract
Hepatitis C, caused by the hepatitis C virus (HCV) that attacks the liver and leads to inflammation, is a severe threat to human health. Pegylated interferon α (INF-α) and ribavirin based therapy was once the standard therapy for HCV infection. However, it is suboptimal in efficacy and poorly tolerated in some patients. In the last five years, four classes of direct antiviral drugs (NAAs) that target non-structural proteins (NS) of the virus including NS3/NS4A, NS5A, and NS5B have been developed and opened a new era in HCV treatment as they are more effective and tolerable than the INF-α and ribavirin combination regimen. Importantly, the newly introduced multiple NAAs combination therapy makes it possible to eradicate all genotypes of HCV. We review recent progress on the research and development of DAAs in the present article.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Pharmacology, Qingdao University School of Pharmacy
| | | |
Collapse
|