1
|
Song Y, Zhao S, Peng P, Zhang C, Liu Y, Chen Y, Luo Y, Li B, Liu L. Neuron-glia crosstalk and inflammatory mediators in migraine pathophysiology. Neuroscience 2024; 560:381-396. [PMID: 39389252 DOI: 10.1016/j.neuroscience.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Migraine is a complex neurological disorder with neuroinflammation playing a crucial role in its pathogenesis. This review provides an overview of the neuroinflammation mechanisms in migraine, focusing on both cellular and molecular aspects. At the cellular level, we examine the role of glial cells, including astrocytes, microglia, oligodendrocytes in the central nervous system, and Schwann cells and satellite glial cells in the peripheral nervous system. On the molecular level, we explore the signaling pathways, including IL-1β, TNF-α, IL-6, and non-coding RNAs, that mediate cell interactions or independent actions. Some of the molecular signaling pathways mentioned, such as TNF-α and IL-1β, have been investigated as druggable targets. Recent advancements, such as [11C] PBR28-targeted imaging for visualizing astrocyte activation and single-cell sequencing for exploring cellular heterogeneity, represent breakthroughs in understanding the mechanisms of neuroinflammation in migraine. By considering factors for personalized treatments, estrogen and TRPM8 emerge as promising therapeutic targets regarding sexual dimorphism. These advancements may help bridge the gap between preclinical findings and clinical applications, ultimately leading to more precise and personalized options for migraine patients.
Collapse
Affiliation(s)
- Yine Song
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Shaoru Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Peiyue Peng
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Chengcheng Zhang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yuhan Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Ying Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yuxi Luo
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China.
| |
Collapse
|
2
|
Singh S, Ellioff KJ, Bruchas MR, Land BB, Stella N. Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2024; 391:162-173. [PMID: 39060165 PMCID: PMC11493443 DOI: 10.1124/jpet.124.002119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. SIGNIFICANCE STATEMENT: Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.
Collapse
Affiliation(s)
- Simar Singh
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Kaylin J Ellioff
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Benjamin B Land
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Nephi Stella
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
4
|
Wen J, Tanaka M, Zhang Y. Inhibition of 2-AG hydrolysis alleviates posttraumatic headache attributed to mild traumatic brain injury. J Headache Pain 2024; 25:115. [PMID: 39014318 PMCID: PMC11253377 DOI: 10.1186/s10194-024-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain including migraine, the role of augmentation of endocannabinoids in treating PTH has not been investigated. METHODS Repetitive mild TBI was induced in male C57BL/6J mice using the non-invasive close-head impact model of engineered rotational acceleration (CHIMERA). Periorbital allodynia was assessed using von Frey filaments and determined by the "Up-Down" method. Immunofluorescence staining was employed to investigate glial cell activation and calcitonin gene-related peptide (CGRP) expression in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC) of the rmTBI mice. Levels of 2-arachidonoyl glycerol (2-AG), anandamide (AEA), and arachidonic acid (AA) in the TG, medulla (including TNC), and periaqueductal gray (PAG) were measured by mass spectrometry. The therapeutic effect of endocannabinoid modulation on PTH was also assessed. RESULTS The rmTBI mice exhibited significantly increased cephalic pain hypersensitivity compared to the sham controls. MJN110, a potent and selective inhibitor of the 2-AG hydrolytic enzyme monoacylglycerol lipase (MAGL), dose-dependently attenuated periorbital allodynia in the rmTBI animals. Administration of CGRP at 0.01 mg/kg reinstated periorbital allodynia in the rmTBI animals on days 33 and 45 post-injury but had no effect in the sham and MJN110 treatment groups. Activation of glial cells along with increased production of CGRP in the TG and TNC at 7 and 14 days post-rmTBI were attenuated by MJN110 treatment. The anti-inflammatory and anti-nociceptive effects of MJN110 were partially mediated by cannabinoid receptor activation, and the pain-suppressive effect of MJN110 was completely blocked by co-administration of DO34, an inhibitor of 2-AG synthase. The levels of 2-AG in TG, TNC and PAG were decreased in TBI animals, significantly elevated and further reduced by the selective inhibitors of 2-AG hydrolytic and synthetic enzymes, respectively. CONCLUSION Enhancing endogenous levels of 2-AG appears to be an effective strategy for the treatment of PTH by attenuating pain initiation and transmission in the trigeminal pathway and facilitating descending pain inhibitory modulation.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Facchetti S, Palmisani M, Franco V, Tassorelli C. Effects of the Dual FAAH/MAGL Inhibitor AKU-005 on Trigeminal Hyperalgesia in Male Rats. Cells 2024; 13:830. [PMID: 38786051 PMCID: PMC11119298 DOI: 10.3390/cells13100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Michela Palmisani
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Valentina Franco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
6
|
van den Hoek TC, Verhagen IE, de Boer I, Terwindt GM. Substance use in a Dutch migraine cohort compared with the general population. Headache 2024; 64:141-148. [PMID: 38299699 DOI: 10.1111/head.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE To evaluate self-reported substance user profiles for individuals with migraine and compare these to the general population. BACKGROUND There is increasing attention to lifestyle influences such as substance use as presumed migraine triggers. METHODS Data on substance use were collected by survey in a large migraine cohort and from the biannual survey in the general Dutch population for substances. A representative cohort of Dutch patients with migraine (n = 5176) and the Dutch general population (n = 8370) was included. Patients with migraine were subdivided into episodic (EM) and chronic migraine (CM). Substance consumption was compared between the general population and patients with migraine, and between migraine subgroups after standardization for sex and level of education. RESULTS Included patients with migraine were 83.4% female (4319/5176) and had a mean (standard deviation) age of 44.8 (11.3) years. Patients with migraine reported less illicit drug use (odds ratio [OR] 0.48, 95% confidence interval [CI] 0.42-0.55; p < 0.001), less current and lifetime smoking (OR 0.60, 95% CI 0.55-0.65; p < 0.001 and OR 0.75, 95% CI 0.71-0.79; p < 0.001), and less current alcohol consumption (OR 0.66, 95% CI 0.62-0.70; p < 0.001) compared with the general population. Prevalence of substance use was compared between CM and EM participants and showed higher illicit drug use (OR 1.73, 95% CI 1.11-2.69; p = 0.011), higher current smoking (OR 1.61, 95% CI 1.22-2.11; p < 0.001) but less alcohol use (OR 0.54, 95% CI 0.43-0.68; p < 0.001) for participants with CM compared with EM. No differences were found for a history of smoking (OR 1.18, 95% CI 0.92-1.50, p = 0.19). CONCLUSIONS Individuals with migraine are less likely to use illicit drugs, smoke, or drink alcohol compared with the general population. Patients with CM less often consume alcohol, while they more often use illicit drugs and smoke compared to those with EM.
Collapse
Affiliation(s)
| | - Iris E Verhagen
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Wei HL, Yang Q, Zhou GP, Chen YC, Yu YS, Yin X, Li J, Zhang H. Abnormal causal connectivity of anterior cingulate cortex-visual cortex circuit related to nonsteroidal anti-inflammatory drug efficacy in migraine. Eur J Neurosci 2024; 59:446-456. [PMID: 38123158 DOI: 10.1111/ejn.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
The anterior cingulate cortex (ACC) and visual cortex are integral components of the neurophysiological mechanisms underlying migraine, yet the impact of altered connectivity patterns between these regions on migraine treatment remains unknown. To elucidate this issue, we investigated the abnormal causal connectivity between the ACC and visual cortex in patients with migraine without aura (MwoA), based on the resting-state functional magnetic resonance imaging data, and its predictive ability for the efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs). The results revealed increased causal connectivity from the bilateral ACC to the lingual gyrus (LG) and decreased connectivity in the opposite direction in nonresponders compared with the responders. Moreover, compared with the healthy controls, nonresponders exhibited heightened causal connectivity from the ACC to the LG, right inferior occipital gyrus (IOG) and left superior occipital gyrus, while connectivity patterns from the LG and right IOG to the ACC were diminished. Based on the observed abnormal connectivity patterns, the support vector machine (SVM) models showed that the area under the receiver operator characteristic curves for the ACC to LG, LG to ACC and bidirectional models were 0.857, 0.898, and 0.939, respectively. These findings indicate that neuroimaging markers of abnormal causal connectivity in the ACC-visual cortex circuit may facilitate clinical decision-making regarding NSAIDs administration for migraine management.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qian Yang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Sturaro C, Fakhoury B, Targowska-Duda KM, Zribi G, Schoch J, Ruzza C, Calò G, Toll L, Cippitelli A. Preclinical effects of cannabidiol in an experimental model of migraine. Pain 2023; 164:2540-2552. [PMID: 37310430 DOI: 10.1097/j.pain.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
ABSTRACT Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.
Collapse
Affiliation(s)
- Chiara Sturaro
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Bianca Fakhoury
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Katarzyna M Targowska-Duda
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jennifer Schoch
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
9
|
Chandwani B, Bradley BA, Pace A, Buse DC, Singh R, Kuruvilla D. The Exploration of Cannabis and Cannabinoid Therapies for Migraine. Curr Pain Headache Rep 2023; 27:339-350. [PMID: 37515745 DOI: 10.1007/s11916-023-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE OF REVIEW There is increasing interest in the use of cannabis and cannabinoid therapies (CCT) by the general population and among people with headache disorders, which results in a need for healthcare professionals to be well versed with the efficacy and safety data. In this manuscript, we review cannabis and cannabinoid terminology, the endocannabinoid system and its role in the central nervous system (CNS), the data on efficacy, safety, tolerability, and potential pitfalls associated with use in people with migraine and headache disorders. We also propose possible mechanisms of action in headache disorders and debunk commonly held myths about its use. RECENT FINDINGS Preliminary studies show that CCT have evidence for the management of migraine. While this evidence exists, further randomized, controlled studies are needed to better support its clinical use. CCT can be considered an integrative treatment added to mainstream medicine for people with migraine who are refractory to treatment and/or exhibit disability and/or interest in trying these therapies. Further studies are warranted to specify appropriate formulation, dosage, and indication(s). Although not included in guidelines or the AHS 2021 Consensus Statement on migraine therapies, with the legalization of CCT for medical or unrestricted use across the USA, recent systematic reviews highlighting the preliminary evidence for its use in migraine, it is vital for clinicians to be well versed in the efficacy, safety, and clinical considerations for their use. This review provides information which can help people with migraine and clinicians who care for them make mutual, well-informed decisions on the use of cannabis and cannabinoid therapies for migraine based on the existing data.
Collapse
Affiliation(s)
- Brijesh Chandwani
- Department of Diagnostic Sciences, Tufts University, 1 Kneeland St, Boston, MA, 02111, USA.
- Attending, Orofacial Pain Service, St. Barnabas Hospital, Bronx, NY, USA.
| | | | - Anna Pace
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | | | | |
Collapse
|
10
|
Liktor-Busa E, Levine AA, Palomino SM, Singh S, Wahl J, Vanderah TW, Stella N, Largent-Milnes TM. ABHD6 and MAGL control 2-AG levels in the PAG and allodynia in a CSD-induced periorbital model of headache. FRONTIERS IN PAIN RESEARCH 2023; 4:1171188. [PMID: 37287623 PMCID: PMC10242073 DOI: 10.3389/fpain.2023.1171188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction The high prevalence and severe symptoms of migraines in humans emphasizes the need to identify underlying mechanisms that can be targeted for therapeutic benefit. Clinical Endocannabinoid Deficiency (CED) posits that reduced endocannabinoid tone may contribute to migraine development and other neuropathic pain conditions. While strategies that increase levels of the endocannabinoid n-arachidonoylethanolamide have been tested, few studies have investigated targeting the levels of the more abundant endocannabinoid, 2-arachidonoylgycerol, as an effective migraine intervention. Methods Cortical spreading depression was induced in female Sprague Dawley rats via KCl (potassium chloride) administration, followed by measures of endocannabinoid levels, enzyme activity, and neuroinflammatory markers. Efficacy of inhibiting 2-arachidonoylglycerol hydrolysis to mitigate periorbital allodynia was then tested using reversal and prevention paradigms. Results We discovered reduced 2-arachidonoylglycerol levels in the periaqueductal grey associated with increased hydrolysis following headache induction. Pharmacological inhibition of the 2-arachidonoylglycerol hydrolyzing enzymes, α/β-hydrolase domain-containing 6 and monoacylglycerol lipase reversed and prevented induced periorbital allodynia in a cannabinoid receptor-dependent manner. Discussion Our study unravels a mechanistic link between 2-arachidonoylglycerol hydrolysis activity in the periaqueductal grey in a preclinical, rat model of migraine. Thus, 2-arachidonoylglycerol hydrolysis inhibitors represent a potential new therapeutic avenue for the treatment of headache.
Collapse
Affiliation(s)
- Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Aidan A. Levine
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Seph M. Palomino
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Simar Singh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jared Wahl
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
11
|
Della Pietra A, Krivoshein G, Ivanov K, Giniatullina R, Jyrkkänen HK, Leinonen V, Lehtonen M, van den Maagdenberg AMJM, Savinainen J, Giniatullin R. Potent dual MAGL/FAAH inhibitor AKU-005 engages endocannabinoids to diminish meningeal nociception implicated in migraine pain. J Headache Pain 2023; 24:38. [PMID: 37038131 PMCID: PMC10088116 DOI: 10.1186/s10194-023-01568-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Konstantin Ivanov
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juha Savinainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
12
|
Guerra J, Naidoo V, Cacabelos R. Potential effects of cannabinoids on audiovestibular function: A narrative review. Front Pharmacol 2022; 13:1010296. [PMID: 36605398 PMCID: PMC9807921 DOI: 10.3389/fphar.2022.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The growing interest in the development of drugs that target the endocannabinoid system has extended to conditions that affect the audiovestibular pathway. The expression of cannabinoid (CB) receptors in that pathway has been widely demonstrated, indicating a therapeutic potential for drug development at this level. These medications may be beneficial for conditions such as noise-induced hearing loss, ototoxicity, or various forms of vertigo of central or peripheral origin. The therapeutic targets of interest include natural or synthetic compounds that act as CB1/CB2 receptor agonists/antagonists, and inhibitors of the endocannabinoid-degrading enzymes FAAH and MAGL. Furthermore, genetic variations implicated in the response to treatment and the development of related disorders such as epilepsy or migraine have been identified. Direct methods of administering these medications should be examined beyond the systemic strategy.
Collapse
Affiliation(s)
- Joaquin Guerra
- Neuro-Otolaryngology Unit, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain,*Correspondence: Joaquin Guerra,
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Corunna, Spain
| | - Ramon Cacabelos
- Genomic Medicine, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
13
|
Sherpa ML, Shrestha N, Ojinna BT, Ravi N, Shantha Kumar V, Choday S, Parisapogu A, Tran HHV, Kc A, Elshaikh AO. Efficacy and Safety of Medical Marijuana in Migraine Headache: A Systematic Review. Cureus 2022; 14:e32622. [PMID: 36660507 PMCID: PMC9845509 DOI: 10.7759/cureus.32622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
Medical marijuana treatment for migraine is becoming more common, although the legality and societal acceptance of marijuana for medical purposes in the United States have been challenged by the stigma attached to it as a recreational drug. These substances function to reduce nociception and decrease the frequency of migraine by having an impact on the endocannabinoid system. Our study reviewed the clinical response, dosing, and side effects of marijuana in migraine management. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a literature search in PubMed, Google Scholar, and Science Direct, and nine studies were included in the systematic review. The studies demonstrated that medical marijuana has a significant clinical response by reducing the length and frequency of migraines. No severe adverse effects were noted. Due to its effectiveness and convenience, medical marijuana therapy may be helpful for patients suffering from migraines. However, additional clinical trials and observational studies with longer follow-ups are required to study the efficacy and safety of the drug.
Collapse
Affiliation(s)
- Mingma L Sherpa
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nilasma Shrestha
- Pathology and Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Blessing T Ojinna
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Niriksha Ravi
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vivig Shantha Kumar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Silpa Choday
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anusha Parisapogu
- Infectious Disease, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadrian Hoang-Vu Tran
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anil Kc
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abeer O Elshaikh
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series. Biomedicines 2022; 10:biomedicines10081862. [PMID: 36009411 PMCID: PMC9405173 DOI: 10.3390/biomedicines10081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cannabinoids can be successfully used in the treatment of many symptoms and diseases; however, most often they are not the drugs of first choice. They can be added to the primary therapy, which can improve its effectiveness, or be introduced as the basic treatment when the conventional methods have failed. Small clinical trials and case reports prove the benefits of applying medicinal cannabis in various indications; however, clinical trials in larger groups of patients are scarce and often controversial. Due to limited scientific evidence, it is essential to conduct further experimental trials. Understanding the role of endocannabinoids, as well as the composition of cannabis containing both phytocannabinoids and terpenes plays an important role in their clinical use. The clinical effects of cannabinoids depend, among other things, on the activity of the endocannabinoid system, the proportion of phytocannabinoids, such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and the dosage used. The article discusses the role of phytocannabinoids and the potential of using them in different clinical cases in patients suffering from chronic pain, opioid dependence, depression and migraine, who did not respond to the conventional therapeutic methods. In each of the presented cases, the implementation of cannabinoids altered the course of the disease and resulted in symptom relief. Every decision to introduce cannabinoids to the treatment should be made individually with careful attention paid to details. Additionally, it is worth taking care of good clinical communication and education so that the implemented therapy is safe, effective and properly perceived by the patient.
Collapse
|
15
|
Okusanya BO, Lott BE, Ehiri J, McClelland J, Rosales C. Medical Cannabis for the Treatment of Migraine in Adults: A Review of the Evidence. Front Neurol 2022; 13:871187. [PMID: 35711271 PMCID: PMC9197380 DOI: 10.3389/fneur.2022.871187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Medical cannabis (MC) has been hypothesized as an alternative therapy for migraines, given the undesirable side effects of current migraine medications. The objective of this review was to assess the effectiveness and safety of MC in the treatment of migraine in adults. Methods We searched PubMed, EMBASE, PsycINFO, CINAHL, and Web of Science for eligible studies in adults aged 18 years and older. Two reviewers independently screened studies for eligibility. A narrative synthesis of the included studies was conducted. Results A total of 12 publications involving 1,980 participants in Italy and the United States of America were included. Medical cannabis significantly reduced nausea and vomiting associated with migraine attacks after 6 months of use. Also, MC reduced the number of days of migraine after 30 days, and the frequency of migraine headaches per month. MC was 51% more effective in reducing migraines than non-cannabis products. Compared to amitriptyline, MC aborted migraine headaches in some (11.6%) users and reduced migraine frequency. While the use of MC for migraines was associated with the occurrence of medication overuse headaches (MOH), and the adverse events were mostly mild and occurred in 43.75% of patients who used oral cannabinoid preparations. Conclusions There is promising evidence that MC may have a beneficial effect on the onset and duration of migraine headaches in adults. However, well-designed experimental studies that assess MC's effectiveness and safety for treating migraine in adults are needed to support this hypothesis.
Collapse
Affiliation(s)
- Babasola O Okusanya
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - Breanne E Lott
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - John Ehiri
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - Jean McClelland
- Health Sciences Library, University of Arizona, Tucson, AZ, United States
| | - Cecilia Rosales
- Division of Public Health Practice and Translational Research, Mel and Enid Zuckerman College of Public Health, University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
16
|
Quantification of endocannabinoids in human cerebrospinal fluid using a novel micro-flow liquid chromatography-mass spectrometry method. Anal Chim Acta 2022; 1210:339888. [DOI: 10.1016/j.aca.2022.339888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
|
17
|
Inhibiting Endocannabinoid Hydrolysis as Emerging Analgesic Strategy Targeting a Spectrum of Ion Channels Implicated in Migraine Pain. Int J Mol Sci 2022; 23:ijms23084407. [PMID: 35457225 PMCID: PMC9027089 DOI: 10.3390/ijms23084407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation ‘on demand’, along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.
Collapse
|
18
|
Clinical Evidence of Cannabinoids in Migraine: A Narrative Review. J Clin Med 2022; 11:jcm11061479. [PMID: 35329806 PMCID: PMC8949974 DOI: 10.3390/jcm11061479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system (ECS) influences many biological functions, and hence, its pharmacological modulation may be useful for several disorders, such as migraine. Preclinical studies have demonstrated that the ECS is involved in the modulation of trigeminal excitability. Additionally, clinical data have suggested that an endocannabinoid deficiency is associated with migraine. Given these data, phytocannabinoids, as well as synthetic cannabinoids, have been tried as migraine treatments. In this narrative review, the current clinical evidence of potential ECS involvement in migraine pathogenesis is summarized. Furthermore, studies exploring the clinical effects of phytocannabinoids and synthetic cannabinoids on migraine patients are reviewed.
Collapse
|
19
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, Tassorelli C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022; 62:227-240. [PMID: 35179780 DOI: 10.1111/head.14267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lara Ahmad
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Woodman SE, Antonopoulos SR, Durham PL. Inhibition of Nociception in a Preclinical Episodic Migraine Model by Dietary Supplementation of Grape Seed Extract Involves Activation of Endocannabinoid Receptors. FRONTIERS IN PAIN RESEARCH 2022; 3:809352. [PMID: 35295808 PMCID: PMC8915558 DOI: 10.3389/fpain.2022.809352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 01/15/2023] Open
Abstract
Migraine is associated with peripheral and central sensitization of the trigeminal system and dysfunction of descending pain modulation pathways. Recently, dietary inclusion of grape seed extract (GSE) was shown to inhibit mechanical nociception in a preclinical model of chronic temporomandibular joint disorder, a condition often comorbid with migraine, with the antinociceptive effect mediated, in part, by activation of 5-HT3/7 and GABAB receptors. This study further investigated the mechanisms by which GSE inhibits mechanical nociception in a preclinical model of episodic migraine. Hyperalgesic priming of female and male Sprague Dawley rats was induced by three consecutive daily two-hour episodes of restraint stress. Seven days after the final restraint stress, rats were exposed to pungent odors from an oil extract that contains the compound umbellulone, which stimulates CGRP release and induces migraine-like pain. Some animals received dietary supplementation of GSE in their drinking water beginning one week prior to restraint stress. Changes in mechanical sensitivity in the orofacial region and hindpaw were determined using von Frey filaments. To investigate the role of the endocannabinoid receptors in the effect of GSE, some animals were injected intracisternally with the CB1 antagonist AM 251 or the CB2 antagonist AM 630 prior to odor inhalation. Changes in CGRP expression in the spinal trigeminal nucleus (STN) in response to stress, odor and GSE supplementation were studied using immunohistochemistry. Exposure of stress-primed animals to the odor caused a significant increase in the average number of withdrawal responses to mechanical stimulation in both the orofacial region and hindpaw, and the effect was significantly suppressed by daily supplementation with GSE. The anti-nociceptive effect of GSE was inhibited by intracisternal administration of antagonists of CB1 and CB2 receptors. GSE supplementation inhibited odor-mediated stimulation of CGRP expression in the STN in sensitized animals. These results demonstrate that GSE supplementation inhibits trigeminal pain signaling in an injury-free model of migraine-like pain via activation of endocannabinoid receptors and repression of CGRP expression centrally. Hence, we propose that GSE may be beneficial as a complementary migraine therapeutic.
Collapse
Affiliation(s)
| | | | - Paul L. Durham
- Department of Biology, Missouri State University, Jordan Valley Innovation Center-Center for Biomedical and Life Sciences, Springfield, MO, United States
| |
Collapse
|
21
|
Johansen P, Lucke-Wold B. Commentary on "Calcitonin-gene related peptide and neurologic injury: An emerging target for headache management". JOURNAL OF NEUROBIOLOGY AND PHYSIOLOGY 2022; 4:20-22. [PMID: 36419527 PMCID: PMC9681156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Phillip Johansen
- Department of Neurosurgery, University of Florida,
Gainesville, FL, USA
| | | |
Collapse
|
22
|
Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2021; 10:76. [PMID: 35052756 PMCID: PMC8773152 DOI: 10.3390/biomedicines10010076] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Migraine is a primary headache disorder characterized by a unilateral, throbbing, pulsing headache, which lasts for hours to days, and the pain can interfere with daily activities. It exhibits various symptoms, such as nausea, vomiting, sensitivity to light, sound, and odors, and physical activity consistently contributes to worsening pain. Despite the intensive research, little is still known about the pathomechanism of migraine. It is widely accepted that migraine involves activation and sensitization of the trigeminovascular system. It leads to the release of several pro-inflammatory neuropeptides and neurotransmitters and causes a cascade of inflammatory tissue responses, including vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Convincing evidence obtained in rodent models suggests that neurogenic inflammation is assumed to contribute to the development of a migraine attack. Chemical stimulation of the dura mater triggers activation and sensitization of the trigeminal system and causes numerous molecular and behavioral changes; therefore, this is a relevant animal model of acute migraine. This narrative review discusses the emerging evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology of migraine, presenting the most recent advances in preclinical research and the novel therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
| | - Masaru Tanaka
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| | - László Vécsei
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
23
|
Giniatullin R. 5-hydroxytryptamine in migraine: The puzzling role of ionotropic 5-HT 3 receptor in the context of established therapeutic effect of metabotropic 5-HT 1 subtypes. Br J Pharmacol 2021; 179:400-415. [PMID: 34643938 DOI: 10.1111/bph.15710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
5-hydroxytryptamine (5-HT; serotonin) is traditionally considered as a key mediator implicated in migraine. Multiple 5-HT receptor subtypes contribute to a variety of region-specific functional effects. The raphé nuclei control nociceptive inputs by releasing 5-HT in the brainstem, whereas dural mast cells provide the humoral source of 5-HT in the meninges. Triptans (5-HT1B/D agonists) and ditans (5-HT1F agonists) are the best established 5-HT anti-migraine agents. However, activation of meningeal afferents via ionotropic 5-HT3 receptors results in long-lasting excitatory drive suggesting a pro-nociceptive role for these receptors in migraine. Nevertheless, clinical data do not clearly support the applicability of currently available 5-HT3 antagonists to migraine treatment. The reasons for this might be the presence of 5-HT3 receptors on inhibitory interneurons dampening the excitatory drive, a lack of 5-HT3 A-E subunit-selective antagonists and gender/age-dependent effects. This review is focusing on the controversial role of 5-HT3 receptors in migraine pathology and related pharmacological perspectives of 5-HT ligands.
Collapse
Affiliation(s)
- Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
24
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
25
|
Shakil SSM, Gowan M, Hughes K, Azam MNK, Ahmed MN. A narrative review of the ethnomedicinal usage of Cannabis sativa Linnaeus as traditional phytomedicine by folk medicine practitioners of Bangladesh. J Cannabis Res 2021; 3:8. [PMID: 33741060 PMCID: PMC7980557 DOI: 10.1186/s42238-021-00063-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is a worldwide interest in the use of Cannabis sativa for biomedicine purposes. Cannabis has ethnomedicinal usage as a natural medicine in Bangladesh and cultivated during the British Empire period for revenues. OBJECTIVE Folk medicine practitioners (FMPs) from different districts of Bangladesh have been using Cannabis sativa, but until now there have not been any compiled studies particularly regarding this practice. Hence, this review is an effort to retrieve the traditional usage of Cannabis sativa as a phytomedicine from published ethnomedicinal studies. METHODS AND MATERIALS Information was searched by using the search terms "ethnomedicinal Cannabis sativa and Bangladesh"; "Bangladesh cannabaceae and ethnomedicinal survey"; "ganja, bhang and folk medicine Bangladesh"; "tetrahydrocannabinol (THC), cannabinoid and therapeutic, clinical trial"; and "cannabis and pharmacological/biological" and retrieved from ethnobotanical articles available on PubMed, Scopus, Science Direct, and Google Scholar databases. A search of the relevant scientific literature also was conducted to assess the efficacy of the ethnomedicinal usage of Cannabis sativa. RESULTS While reviewing over 200 ethnomedicinal plants' survey articles, we found that FMPs of Bangladesh from 12 different districts used Cannabis sativa to treat cited ailments like sleep-associated problems (n=5), neuropsychiatric and CNS problems (n=5), and infections and respiratory problems (n=5) followed by rheumatism, gastrointestinal, gynecological (n=4 each), cancer, sexual, and other ailments including hypertension, headache, itch, increases bile secretion, abortifacient, dandruff, fever, and urinary problems (n=1 each). There are a total of 15 formulations identified from the 11 out of 18 ethnomedicinal plant survey reports. The leaf was the main plant part used (53.8%), followed by root (23%), seed (7.7%) and flower, inflorescence, resin, and all parts 3.8% respectively. CONCLUSIONS Sales and cultivation of Cannabis are illegal at present in Bangladesh, but the use of Cannabis sativa as a natural phytomedicine has been practiced traditionally by folk medicine practitioners of Bangladesh for many years and validated through relevant pharmacological justification. Although Cannabis sativa possesses ethnomedicinal properties in the folk medicine of Bangladesh, it is, furthermore, needed to conduct biological research to consolidate pharmacological justification about the prospects and challenges of Cannabis and cannabinoids' use in Bangladesh as safer biomedicine in the future.
Collapse
Affiliation(s)
| | - Matt Gowan
- The Canadian College of Naturopathic Medicine, Toronto, Ontario Canada
| | | | - Md. Nur Kabidul Azam
- Department of Genetic Engineering & Biotechnology, Jashore University of Science & Technology, Jashore, Bangladesh
| | - Md. Nasir Ahmed
- Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh
| |
Collapse
|
26
|
Della Pietra A, Giniatullin R, Savinainen JR. Distinct Activity of Endocannabinoid-Hydrolyzing Enzymes MAGL and FAAH in Key Regions of Peripheral and Central Nervous System Implicated in Migraine. Int J Mol Sci 2021; 22:ijms22031204. [PMID: 33530477 PMCID: PMC7865507 DOI: 10.3390/ijms22031204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
In migraine pain, cannabis has a promising analgesic action, which, however, is associated with side psychotropic effects. To overcome these adverse effects of exogenous cannabinoids, we propose migraine pain relief via activation of the endogenous cannabinoid system (ECS) by inhibiting enzymes degrading endocannabinoids. To provide a functional platform for such purpose in the peripheral and central parts of the rat nociceptive system relevant to migraine, we measured by activity-based protein profiling (ABPP) the activity of the main endocannabinoid-hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). We found that in trigeminal ganglia, the MAGL activity was nine-fold higher than that of FAAH. MAGL activity exceeded FAAH activity also in DRG, spinal cord and brainstem. However, activities of MAGL and FAAH were comparably high in the cerebellum and cerebral cortex implicated in migraine aura. MAGL and FAAH activities were identified and blocked by the selective and potent inhibitors JJKK-048/KML29 and JZP327A, respectively. The high MAGL activity in trigeminal ganglia implicated in the generation of nociceptive signals suggests this part of ECS as a priority target for blocking peripheral mechanisms of migraine pain. In the CNS, both MAGL and FAAH represent potential targets for attenuation of migraine-related enhanced cortical excitability and pain transmission.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (R.G.); (J.R.S.)
| | - Juha R. Savinainen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence: (R.G.); (J.R.S.)
| |
Collapse
|
27
|
Tyukhtenko S, Ma X, Rajarshi G, Karageorgos I, Anderson KW, Hudgens JW, Guo JJ, Nasr ML, Zvonok N, Vemuri K, Wagner G, Makriyannis A. Conformational gating, dynamics and allostery in human monoacylglycerol lipase. Sci Rep 2020; 10:18531. [PMID: 33116203 PMCID: PMC7595040 DOI: 10.1038/s41598-020-75497-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/08/2020] [Indexed: 11/09/2022] Open
Abstract
Inhibition of human Monoacylglycerol Lipase (hMGL) offers a novel approach for treating neurological diseases. The design of inhibitors, targeting active-inactive conformational transitions of the enzyme, can be aided by understanding the interplay between structure and dynamics. Here, we report the effects of mutations within the catalytic triad on structure, conformational gating and dynamics of hMGL by combining kinetics, NMR, and HDX-MS data with metadynamics simulations. We found that point mutations alter delicate conformational equilibria between active and inactive states. HDX-MS reveals regions of the hMGL that become substantially more dynamic upon substitution of catalytic acid Asp-239 by alanine. These regions, located far from the catalytic triad, include not only loops but also rigid α-helixes and β-strands, suggesting their involvement in allosteric regulation as channels for long-range signal transmission. The results identify the existence of a preorganized global communication network comprising of tertiary (residue-residue contacts) and quaternary (rigid-body contacts) networks that mediate robust, rapid intraprotein signal transmission. Catalytic Asp-239 controls hMGL allosteric communications and may be considered as an essential residue for the integration and transmission of information to enzymes' remote regions, in addition to its well-known role to facilitate Ser-122 activation. Our findings may assist in the identification of new druggable sites in hMGL.
Collapse
Affiliation(s)
- Sergiy Tyukhtenko
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA.
| | - Xiaoyu Ma
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Ioannis Karageorgos
- BioProcess Measurements Group, Biomolecular Measurement Division, National Institute of Standards & Technology, Rockville, MD, 20850, USA.,Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Kyle W Anderson
- BioProcess Measurements Group, Biomolecular Measurement Division, National Institute of Standards & Technology, Rockville, MD, 20850, USA.,Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Jeffrey W Hudgens
- BioProcess Measurements Group, Biomolecular Measurement Division, National Institute of Standards & Technology, Rockville, MD, 20850, USA.,Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Jason J Guo
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA.,Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115-5000, USA
| | - Mahmoud L Nasr
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Kiran Vemuri
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA.
| |
Collapse
|
28
|
Wang X, Zhao H, Liu L, Niu P, Zhai C, Li J, Xu Q, Zhao D. Hejie Zhitong prescription promotes sleep and inhibits nociceptive transmission-associated neurotransmitter activity in a rodent migraine model. Chin Med 2020; 15:105. [PMID: 33014123 PMCID: PMC7526328 DOI: 10.1186/s13020-020-00386-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is painful disease in which neurotransmitters related to pain transmission play an important role. Hejie Zhitong prescription (HJZT) has been used in the clinic as an effective prescription for the treatment of migraine for many years. Our team aimed to further explore its antimigraine mechanism based on previous research results and to explore the inhibitory effect of HJZT on the transmission of pain related to nitroglycerine (NTG)-induced migraine as well as the synergistic effect of HJZT with pentobarbital sodium on promoting sleep. METHODS Sixty mice were randomly assigned to groups and received the corresponding interventions. Sleep latency and sleep time were recorded to calculate the incidence of sleep. Forty-eight Wistar rats were randomly assigned and administered an intervention corresponding to their group. Calcitonin gene-related peptide (CGRP), serotonin (5-HT), substance P (SP), and cholecystokinin (CCK) levels were measured using ELISAs. Levels of the cannabinoid receptor type 1 (CB1R) and cyclooxygenase-2 (COX-2) protein were assessed using immunohistochemistry. The expression of the CGRP and CCK mRNAs in the midbrain and trigeminal ganglion (TG) were measured using real-time quantitative PCR. RESULTS HJZT promoted the occurrence of sleep in mice. HJZT downregulated COX-2 expression in the midbrain and TG of rats but upregulated the expression of the CB1R, and decreased the plasma level of the CGRP protein and expression of its mRNA in the midbrain and TG. It also downregulated the expression of the CCK mRNA in the midbrain and TG. The high-dose HJZT treatment increased plasma 5-HT levels, but did not induce changes in the plasma levels of the SP or CCK protein. CONCLUSIONS HJZT exerts a synergistic effect with pentobarbital sodium on promoting sleep. As for anti-migraine, HJZT can inhibits the expression of nociceptive transmission-associated neurotransmitters, including 5-HT, CGRP and CCK, which may be related to its upregulation of CB1R and downregulation of COX-2.
Collapse
Affiliation(s)
- Xinna Wang
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| | - Hongfei Zhao
- Administration of Traditional Chinese Medicine of Jilin Province, Changchun, Jilin, 130051 China
| | - Liming Liu
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| | - Ping Niu
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| | - Chao Zhai
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| | - Jinjian Li
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| | - Qiaoli Xu
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| | - Dexi Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117 China
| |
Collapse
|
29
|
Kilinc E, Ankarali S, Torun IE, Dagistan Y. Receptor mechanisms mediating the anti-neuroinflammatory effects of endocannabinoid system modulation in a rat model of migraine. Eur J Neurosci 2020; 55:1015-1031. [PMID: 32639078 DOI: 10.1111/ejn.14897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Calcitonin gene-related peptide (CGRP), substance P and dural mast cells are main contributors in neurogenic inflammation underlying migraine pathophysiology. Modulation of endocannabinoid system attenuates migraine pain, but its mechanisms of action remain unclear. We investigated receptor mechanisms mediating anti-neuroinflammatory effects of endocannabinoid system modulation in in vivo migraine model and ex vivo hemiskull preparations in rats. To induce acute model of migraine, a single dose of nitroglycerin was intraperitoneally administered to male rats. Moreover, isolated ex vivo rat hemiskulls were prepared to study CGRP and substance P release from meningeal trigeminal afferents. We used methanandamide (cannabinoid agonist), rimonabant (cannabinoid receptor-1 CB1 antagonist), SR144528 (CB2 antagonist) and capsazepine (transient receptor potential vanilloid-1 TRPV1 antagonist) to explore effects of endocannabinoid system modulation on the neurogenic inflammation, and possible involvement of CB1, CB2 and TRPV1 receptors during endocannabinoid effects. Methanandamide attenuated nitroglycerin-induced CGRP increments in in vivo plasma, trigeminal ganglia and brainstem and also in ex vivo hemiskull preparations. Methanandamide also alleviated enhanced number and degranulation of dural mast cells induced by nitroglycerin. Rimonabant, but not capsazepine or SR144528, reversed the attenuating effects of methanandamide on CGRP release in both in vivo and ex vivo experiments. Additionally, SR144528, but not rimonabant or capsazepine, reversed the attenuating effects of methanandamide on dural mast cells. However, neither nitroglycerin nor methanandamide changed substance P levels in both in vivo and ex vivo experiments. Methanandamide modulates CGRP release in migraine-related structures via CB1 receptors and inhibits the degranulation of dural mast cells through CB2 receptors. Selective ligands targeting CB1 and CB2 receptors may provide novel and effective treatment strategies against migraine.
Collapse
Affiliation(s)
- Erkan Kilinc
- Medical Faculty, Department of Physiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Seyit Ankarali
- Medical Faculty, Department of Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ibrahim Ethem Torun
- Medical Faculty, Department of Physiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Yasar Dagistan
- Medical Faculty, Department of Neurosurgery, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
30
|
Xu B, Xiao J, Xu K, Zhang Q, Chen D, Zhang R, Zhang M, Zhu H, Niu J, Zheng T, Li N, Zhang X, Fang Q. VF-13, a chimeric peptide of VD-hemopressin(α) and neuropeptide VF, produces potent antinociception with reduced cannabinoid-related side effects. Neuropharmacology 2020; 175:108178. [PMID: 32544481 DOI: 10.1016/j.neuropharm.2020.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
Abstract
Pharmacological evidence indicated a functional interaction between neuropeptide FF (NPFF) and cannabinoid systems, and the cannabinoids combined with the NPFF receptor agonist neuropeptide VF (NPVF) produced antinociception without tolerance. In the present study, VF-13, a chimeric peptide containing the pharmacophores of the endogenous cannabinoid peptide VD-hemopressin(α) (VD-Hpα) and NPVF, was synthesized and pharmacologically evaluated. In vitro, VF-13 significantly upregulated the phosphorylated level of extracellular signal-regulated kinase 1/2 (ERK1/2) in CHO cells stably expressing CB1 receptors and inhibited forskolin-induced cAMP accumulation in HEK293 cells stably expressing NPFF1 or NPFF2 receptors. Moreover, VF-13 induced neurite outgrowth in Neuro 2A cells via CB1 and NPFF receptors. These results suggest that VF-13 exhibits multifunctional agonism at CB1, NPFF1 and NPFF2 receptors in vitro. Interestingly, intracerebroventricular VF-13 produced dose-dependent antinociception in mouse models of tail-flick and carrageenan-induced inflammatory pain via the TRPV1 receptor. In contrast, the reference compound (m)VD-Hpα-NH2 induced CB1 receptor-mediated supraspinal antinociception. Additionally, subcutaneous injection of (m)VD-Hpα-NH2 and VF-13 produced significant antinociception in carrageenan-induced inflammatory pain model. In the tetrad assay, our data demonstrated that VF-13 elicited hypothermia, but not catalepsy and hypoactivity after intracerebroventricular injection. Notably, VF-13 produced non-tolerance forming antinociception over 6 days treatment in both acute and inflammatory pain models. Furthermore, VF-13 had no apparent effects on gastrointestinal transit, pentobarbitone-induced sedation, food intake, and motor coordination at the supraspinal level. In summary, VF-13, a novel chimeric peptide of VD-Hpα and NPVF, produced non-tolerance forming antinociception in preclinical pain models with reduced cannabinoid-related side effects.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
31
|
Suleimanova A, Talanov M, Gafurov O, Gafarov F, Koroleva K, Virenque A, Noe FM, Mikhailov N, Nistri A, Giniatullin R. Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP and 5-HT in Meninges: Novel Clues on Transduction of Chemical Signals Into Persistent or Rhythmic Neuronal Firing. Front Cell Neurosci 2020; 14:135. [PMID: 32508598 PMCID: PMC7248338 DOI: 10.3389/fncel.2020.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Extracellular ATP and serotonin (5-HT) are powerful triggers of nociceptive firing in the meninges, a process supporting headache and whose cellular mechanisms are incompletely understood. The current study aimed to develop, with the neurosimulator NEURON, a novel approach to explore in silico the molecular determinants of the long-lasting, pulsatile nature of migraine attacks. The present model included ATP and 5-HT release, ATP diffusion and hydrolysis, 5-HT uptake, differential activation of ATP P2X or 5-HT3 receptors, and receptor subtype-specific desensitization. The model also tested the role of branched meningeal fibers with multiple release sites. Spike generation and propagation were simulated using variable contribution by potassium and sodium channels in a multi-compartment fiber environment. Multiple factors appeared important to ensure prolonged nociceptive firing potentially relevant to long-lasting pain. Crucial roles were observed in: (i) co-expression of ATP P2X2 and P2X3 receptor subunits; (ii) intrinsic activation/inactivation properties of sodium Nav1.8 channels; and (iii) temporal and spatial distribution of ATP/5-HT release sites along the branches of trigeminal nerve fibers. Based on these factors we could obtain either persistent activation of nociceptive firing or its periodic bursting mimicking the pulsating nature of pain. In summary, our model proposes a novel tool for the exploration of peripheral nociception to test the contribution of clinically relevant factors to headache including migraine pain.
Collapse
Affiliation(s)
| | - Max Talanov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Fail' Gafarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Ksenia Koroleva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anaïs Virenque
- Neuroscience Center, Helsinki University, Helsinki, Finland
| | | | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies, Trieste, Italy
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
32
|
Baptista LC, Sun Y, Carter CS, Buford TW. Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Cognitive Frailty. Front Nutr 2020; 7:17. [PMID: 32219095 PMCID: PMC7078157 DOI: 10.3389/fnut.2020.00017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive frailty is a geriatric condition defined by the coexistence of cognitive impairment and physical frailty. This "composite" aging phenotype is associated with a higher risk of several adverse health-related outcomes, including dementia. In the last decade, cognitive frailty has gained increased attention from the scientific community that has focused on understanding the clinical impact and the physiological and pathological mechanisms of development and on identifying preventive and/or rehabilitative therapeutic interventions. The emergence of gut microbiome in neural signaling increased the interest in targeting the gut-brain axis as a modulation strategy. Multiple studies on gastroenteric, metabolic, and neurodegenerative diseases support the existence of a wide bidirectional communication network of signaling mediators, e.g., bioactive lipids, that can modulate inflammation, gut permeability, microbiota composition, and the gut-brain axis. This crosstalk between the gut-brain axis, microbiome, and bioactive lipids may emerge as the basis of a promising therapeutic strategy to counteract cognitive frailty. In this review, we summarize the evidence in the literature regarding the link between the gut microbiome, brain, and several families of bioactive lipids. In addition, we also explore the applicability of several bioactive lipid members as a potential routes for therapeutic interventions to combat cognitive frailty.
Collapse
Affiliation(s)
- Liliana C. Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Christy S. Carter
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,Thomas W. Buford ; Twitter: @twbuford
| |
Collapse
|
33
|
Martinelli D, Arceri S, Tronconi L, Tassorelli C. Chronic migraine and Botulinum Toxin Type A: Where do paths cross? Toxicon 2020; 178:69-76. [PMID: 32250749 DOI: 10.1016/j.toxicon.2020.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Migraine is a highly prevalent and disabling disorder accounted among the primary headaches. It is the expression of a complex, and not yet fully understood, pathophysiology involving the sensitization of peripheral and central nociceptive pathways. In this review we succinctly illustrate the molecular, anatomical, and functional abnormalities underlying the migraine attack that are relevant for understanding in more depth the neurobiology behind the therapeutic effect of Botulinum Toxin Type A (BoNT-A). BoNT-A has proved effective in several neurological conditions and, more recently, also in chronic migraine. Its antimigraine mechanism of action was initially thought to be limited to the periphery and interpreted as an inhibitory activity on the processes associated to the local release of neuropeptides, with subsequent induction of peripheral sensitization. Increasing experimental evidence has become available to suggest that additional mechanisms are possibly involved, including the direct/indirect inhibition of sensitization processes in central nociceptive pathways.
Collapse
Affiliation(s)
- Daniele Martinelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Sebastiano Arceri
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Tronconi
- Mondino Foundation IRCCS, Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Cristina Tassorelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
35
|
Abstract
Migraine is among the most common and most disabling disorders worldwide, yet its underlying pathophysiology is among the most poorly understood. New information continues to emerge on mechanisms within the central and peripheral nervous systems that may contribute to migraine attacks. Additionally, new therapeutics have recently become available and along with much needed relief for many patients, these drugs provide insight into the disorder based on their mechanism of action. This review will cover new findings within the last several years that add to the understanding of migraine pathophysiology, including those related to the vasculature, calcitonin gene-related peptide (CGRP), and mechanisms within the cortex and meninges that may contribute to attacks. Discussion will also cover recent findings on novel therapeutic targets, several of which continue to show promise in new preclinical studies, including acid-sensing ion channels (ASICs) and the delta-opioid receptor (DOR).
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
36
|
Kopruszinski CM, Navratilova E, Vagnerova B, Swiokla J, Patwardhan A, Dodick D, Porreca F. Cannabinoids induce latent sensitization in a preclinical model of medication overuse headache. Cephalalgia 2019; 40:68-78. [PMID: 31311288 DOI: 10.1177/0333102419865252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM Evaluation of cannabinoid receptor agonists in a preclinical model of medication overuse headache. METHODS Female Sprague Dawley rats received graded intraperitoneal doses of WIN55,212-2 or Δ-9-tetrahydrocannabinol (Δ-9-THC). Antinociception (tail-flick test), catalepsy and hypomotility (open field test) and impairment of motor function (rotarod test) were assessed to establish effective dosing. Rats were then treated twice daily with equianalgesic doses of WIN55,212-2 or Δ-9-THC, or vehicle, for 7 days and cutaneous tactile sensory thresholds were evaluated during and three weeks following drug discontinuation. Rats then received a one-hour period of bright light stress (BLS) on two consecutive days and tactile sensory thresholds were re-assessed. RESULTS WIN55,212-2 and Δ-9-THC produced antinociception as well as hypomotility, catalepsy and motor impairment. Repeated administration of WIN55,212-2 and Δ-9-THC induced generalized periorbital and hindpaw allodynia that resolved within 3 weeks after discontinuation of drug. Two episodes of BLS produced delayed and long-lasting periorbital and hindpaw allodynia selectively in rats previously treated with WIN55,212-2, and Δ-9-THC. INTERPRETATION Cannabinoid receptor agonists including Δ-9-THC produce a state of latent sensitization characterized by increased sensitivity to stress, a presumed migraine trigger. Overuse of cannabinoids including cannabis may increase the risk of medication overuse headache in vulnerable individuals.
Collapse
Affiliation(s)
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Juliana Swiokla
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - David Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
37
|
Abstract
Migraine is a chronic episodic disorder typically characterized by a debilitating headache. This article offers tools to identify potential triggers and prevent or reduce the occurrence of attacks.
Collapse
Affiliation(s)
- Vincent M Vacca
- Vincent M. Vacca, Jr., is a member of the adjunct faculty at the University of Massachusetts in Boston, Mass
| |
Collapse
|
38
|
Abstract
Migraine is a disabling neurovascular disorder with few targeted, tolerable and effective treatments. Phytomedicines, or plant-based medicinal formulations, hold great promise in the identification of novel therapeutic targets in migraine. Many patients also turn toward herbal and plant-based therapies for the treatment of their migraines as clinical and preclinical evidence of efficacy increases. Patients seek effective and tolerable treatments instead of or in addition to current conventional pharmacologic therapies. We review some phytomedicines potentially useful for migraine treatment-feverfew (Tanacetum parthenium), butterbur (Petasites hybridus), marijuana (Cannabis spp.), Saint John's Wort (Hypericum perforatum) and the Damask rose (Rosa × damascena)-with respect to their mechanisms of action and evidence for treatment of migraine. The evidence for feverfew is mixed; butterbur is effective with potential risks of hepatotoxicity related to preparation; marijuana has not been shown to be effective in migraine treatment, and data are scant; Saint John's Wort shows relevant physiological activity but is a hepatic enzyme inducer and lacks clinical studies for this purpose; the Damask rose when used in topical preparations did not show efficacy in one clinical trial. Other plant preparations have been considered for migraine treatment but most without blinded randomized, placebo-controlled trial evidence.
Collapse
Affiliation(s)
- Thilinie Rajapakse
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Women and Children's Research Institute, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada.
| | - William Jeptha Davenport
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Leishman E, Kunkler PE, Hurley JH, Miller S, Bradshaw HB. Bioactive Lipids in Cancer, Inflammation and Related Diseases : Acute and Chronic Mild Traumatic Brain Injury Differentially Changes Levels of Bioactive Lipids in the CNS Associated with Headache. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:193-217. [PMID: 31562631 DOI: 10.1007/978-3-030-21735-8_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Headache is a common complaint after mild traumatic brain injury (mTBI). Changes in the CNS lipidome were previously associated with acrolein-induced headache in rodents. mTBI caused similar headache-like symptoms in rats; therefore, we tested the hypothesis that mTBI might likewise alter the lipidome. Using a stereotaxic impactor, rats were given either a single mTBI or a series of 4 mTBIs 48 h apart. 72 h later for single mTBI and 7 days later for repeated mTBI, the trigeminal ganglia (TG), trigeminal nucleus (TNC), and cerebellum (CER) were isolated. Using HPLC/MS/MS, ~80 lipids were measured in each tissue and compared to sham controls. mTBI drove widespread alterations in lipid levels. Single mTBI increased arachidonic acid and repeated mTBI increased prostaglandins in all 3 tissue types. mTBI affected multiple TRPV agonists, including N-arachidonoyl ethanolamine (AEA), which increased in the TNC and CER after single mTBI. After repeated mTBI, AEA increased in the TG, but decreased in the TNC. Common to all tissue types in single and repeated mTBI was an increase the AEA metabolite, N-arachidonoyl glycine, a potent activator of microglial migration. Changes in the CNS lipidome associated with mTBI likely play a role in headache and in long-term neurodegenerative effects of repeated mTBI.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Phillip E Kunkler
- Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joyce H Hurley
- Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sally Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|