1
|
Vardeman ET, Cheng HP, Vandebroek I, Kennelly EJ. Caribbean medicinal plant Argemone mexicana L.: Metabolomic analysis and in vitro effect on the vaginal microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118830. [PMID: 39277064 DOI: 10.1016/j.jep.2024.118830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are frequently used in Caribbean traditional medicine as low-cost, culturally relevant treatments for women's health concerns, such as gynecological infections. These plants are typically applied topically, potentially affecting both pathogenic bacteria (e.g., Gardnerella vaginalis) and beneficial vaginal microbes (Lactobacillus spp.). However, few studies have examined the impact of these plants on both beneficial and pathogenic vaginal bacteria. AIM OF THE STUDY Argemone mexicana, available in New York City and commonly used to treat gynecological infections by immigrants from the Dominican Republic, was investigated for its chemical variation and effects on the vaginal microbiota. We hypothesized that variations in the bioactivity of Argemone mexicana on Gardnerella vaginalis and Lactobacillus spp. are due to differences in antimicrobial compounds across different preparations. MATERIALS AND METHODS Untargeted and targeted metabolomic analysis using UPLC-qToF-MS and UPLC-TQD-MS were conducted on Argemone mexicana samples collected in New York City. Antimicrobial assays were used to assess the effects of Argemone mexicana samples on beneficial and pathogenic vaginal bacteria. ProGenesis QI and EZinfo were used for metabolomic analysis to link bioactivity with chemometric data. RESULTS UPLC-qToF-MS and statistical analyses showed that chemical variation correlated with plant tissue type and processing (dry or fresh samples). These differences were evident in antimicrobial screenings, where active plant samples were antimicrobial against pathogenic bacteria only, with no effect on beneficial Lactobacillus. Known antimicrobial benzoquinone alkaloids, such as berberine, were partly responsible for the observed microbiological activity. Berberine exhibited similar inhibition patterns, reduced biofilm formation, and trended towards higher concentration in active samples. CONCLUSIONS Extracts of Argemone mexicana, a plant used in Caribbean women's health, did not have an effect on beneficial vaginal microbes, but did inhibit pathogenic Gardnerella vaginalis. This antimicrobial activity correlated with the chemical variation of berberine and other related alkaloids across traditional preparations of Argemone mexicana. These results may be relevant for treating gynecological infections, not only with this plant, but other berberine-containing taxa.
Collapse
Affiliation(s)
- Ella T Vardeman
- The Center for Plants, People and Culture, The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458, USA; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 5th Ave, New York, NY, 10016, USA; Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Blvd W, Bronx, NY, 10468, USA.
| | - Hai-Ping Cheng
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 5th Ave, New York, NY, 10016, USA; Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Blvd W, Bronx, NY, 10468, USA.
| | - Ina Vandebroek
- The Center for Plants, People and Culture, The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458, USA; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 5th Ave, New York, NY, 10016, USA; Caribbean Centre for Research in Bioscience (CCRIB), The University of the West Indies Mona, Kingston 7, Jamaica.
| | - Edward J Kennelly
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 5th Ave, New York, NY, 10016, USA; Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Blvd W, Bronx, NY, 10468, USA.
| |
Collapse
|
2
|
Xu X, He Y, Liu J. Berberine: A multifaceted agent for lung cancer treatment-from molecular insight to clinical applications. Gene 2025; 934:149021. [PMID: 39427827 DOI: 10.1016/j.gene.2024.149021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Lung cancer is a major cause of cancer-related deaths worldwide, and it poses a significant threat to global health due to its high incidence and mortality rates. There is an urgent need for better prevention, early detection, and effective treatments for this disease. The treatment options for lung cancer depend on various factors such as the stage of the disease, the type of cancer, and the patient's overall health. Currently, the primary treatment strategies include surgery, chemotherapy, radiation therapy, targeted therapy, immunotherapy, and combination therapies. Berberine, a natural alkaloid found in medicinal plants, has demonstrated potential as an effective anti-cancer agent against lung cancer. The present study aims to summarize the evidence supporting Berberine's ability to inhibit the growth of lung cancer cells, induce apoptosis, and slow down tumor growth in both laboratory and animal studies. The study also shed light on the complex molecular mechanisms involved in its anti-tumor effects, including its impact on signaling pathways, DNA repair systems, and interaction with non-coding RNAs, all of which contribute to tumor suppression. Additionally, the synergistic effects of Berberine with other natural compounds and chemotherapy drugs are discussed. Overall, its multifaceted approach and proven effectiveness justify further research to develop Berberine into a viable treatment option for lung cancer patients. Abbreviations: BBR, Berberine; EMT, epithelial-mesenchymal transition; NSCLC, non-small cell lung cancer; ROS, reactive oxygen species; ASK1, Apoptosis Signal-regulating Kinase 1; JNK, c-Jun N-terminal kinase; BHC, Berberine Hydrochloride; DSB, double-strand breaks; CSN, COP9 signalosome; NIR, near-infrared; LLC, Lewis lung carcinoma; RTK, receptor tyrosine kinase; B-Phyt-LCNs, Berberine-Phytantriol liquid crystalline nanoparticles; ER, endoplasmic reticulum; Ber-LCNs, Berberine-loaded liquid crystalline nanoparticles; BNS, Berberine nanostructure; BER-CS-NPs, Berberine-loaded chitosan nanoparticles; B-Phyt-LCNs, Berberine-Phytantriol liquid crystalline nanoparticles; B-Phyt-LCNs, Berberine-loaded liquid crystalline nanoparticles; Ber-LCNs, Berberine-loaded liquid crystalline nanoparticles; B-ZnO NPs, Berberine-loaded zinc oxide nanoparticles; B-C60, Berberine-C60 complex; LTP, Low-Temperature Plasma.
Collapse
Affiliation(s)
- Xiaodan Xu
- Pharmacy Department of Qishan Hospital in Yantai City, Yantai, Shandong 264000, China
| | - Yuanyuan He
- Pharmacy Department of Qishan Hospital in Yantai City, Yantai, Shandong 264000, China
| | - Jungang Liu
- Yicheng Traditional Chinese Medical Science Hospital, Shandong, Zaozhuang 277300, China.
| |
Collapse
|
3
|
Haque S, Mathkor DM, Bhat SA, Musayev A, Khituova L, Ramniwas S, Phillips E, Swamy N, Kumar S, Yerer MB, Tuli HS, Yadav V. A Comprehensive Review Highlighting the Prospects of Phytonutrient Berberine as an Anticancer Agent. J Biochem Mol Toxicol 2025; 39:e70073. [PMID: 39717894 DOI: 10.1002/jbt.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer. Notably, berberine enhances the effectiveness of conventional chemotherapeutic drugs, mitigating associated drug resistance. Mechanistically, it has been shown to exert its efficacy by targeting molecules like nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphoinositide 3-kinase (PI3K)/Akt, thereby inhibiting survival pathways and promoting apoptosis of cancer cells. Moreover, berberine influences the expression of tumor suppressor genes, curtails cancer cell migration and invasion, and modulates the tumour microenvironment. Despite promising preclinical evidence, further research is essential to comprehensively elucidate its mechanisms of action and evaluate its safety and efficacy in clinical settings. In the present review, we have highlighted the pharmacokinetics, biosynthesis, and recent research work done pertaining to berberine's strong anticancer activity. We have also emphasised on the research being done on nanoformulations of berberine, which aim to improve its stability and bioavailability.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Bhat
- Department of Biochemistry, International Medical School, University of International Business (UIB), Almaty, Kazakhstan
| | - Abdugani Musayev
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Lidiya Khituova
- Department of Pediatrics with a Course of Children's Infectious Diseases, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Enosh Phillips
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Nitin Swamy
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Suneel Kumar
- Department of Botany, Government Girls College, Khargone, Madhya Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
5
|
Yamashita A, Kasai H, Maekawa S, Tanaka T, Akaike Y, Ryo A, Enomoto N, Moriishi K. Berberine promotes K 48-linked polyubiquitination of HNF4α, leading to the inhibition of HBV replication. Antiviral Res 2024; 232:106027. [PMID: 39489302 DOI: 10.1016/j.antiviral.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The current antiviral agents for the treatment of chronic infection with hepatitis B virus (HBV) do not completely remove covalently closed circular DNA (cccDNA) and integrated viral DNA fragments from patients. Berberine is an isoquinoline alkaloid extracted from various plants and has been reported to inhibit the replication of various types of DNA. In this study, we tested the effects of berberine and its derivatives on HBV infection. Berberine inhibited viral core promoter activity at the highest level among the compounds tested and suppressed HBV production and cccDNA synthesis in primary human hepatocytes and HBV-infected HepG2-NTCP cells at an EC50 value of 3.6 μM and a CC50 value of over 240.0 μM. Compared with other viral promoter activities, berberine treatment potently downregulated core promoter activity and reduced protein levels, but not RNA levels, of hepatic nuclear factor 4α (HNF4α), which primarily enhances enhancer II/core promoter activity. Furthermore, berberine treatment enhanced K48-linked, but not K63-linked, polyubiquitination and subsequent proteasome-dependent degradation of HNF4α. These results suggest that berberine enhances the polyubiquitination- and proteasome-dependent degradation of HNF4α and then inhibits HBV replication via the suppression of core promoter activity. The development of antiviral agents based on berberine may contribute to the amelioration of HBV-related disorders, regardless of the presence of residual cccDNA or integrated viral DNA fragments.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute for Infectious Diseases, Tokyo, 208-0011, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
6
|
Wang J, Bi C, Xi H, Wei F. Effects of administering berberine alone or in combination on type 2 diabetes mellitus: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1455534. [PMID: 39640489 PMCID: PMC11617981 DOI: 10.3389/fphar.2024.1455534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Despite the availability of multiple therapies for Type 2 diabetes mellitus (T2DM), challenges remain due to side effects and efficacy limitations. Berberine (BBR) has shown broad anti-diabetic effects, prompting a systematic assessment of its efficacy and safety through a meta-analysis. Methods A comprehensive search was conducted across eight database and search engines from inception until 06/09/2024. Only randomized controlled trials (RCTs) meeting inclusion criteria were analyzed. The Cochrane risk of bias assessment tool and Jadad scale were used to evaluate study quality. Meta-analysis was performed using RevMan v5.3 and Stata/SE v15.1. Results Fifty studies involving 4,150 participants were included. BBR alone significantly reduced fasting plasma glucose (FPG) (MD = -0.59 mmol/L, p = 0.048), 2-h postprandial blood glucose (2hPBG) (MD = -1.57 mmol/L, p < 0.01), low-density lipoprotein cholesterol (LDL-C) (MD = -0.30 mmol/L, p < 0.01), total cholesterol (TC) (MD = -0.30 mmol/L, p = 0.034), and triglycerides (TG) (MD = -0.35 mmol/L, p < 0.01). When combined with hypoglycemic drugs, BBR significantly improved FPG (MD = -0.99 mmol/L, p < 0.01), 2hPBG (MD = -1.07 mmol/L, p < 0.01), glycated hemoglobin (HbA1c) (MD = -0.69%, p < 0.01), and other metabolic markers, including fasting insulin (Fins), homeostasis model assessment index for assessing insulin resistance (HOMA-IR), lipid profiles and inflammatory markers. The most common BBR dosage was 0.9-1.5 g/d, with treatment cycles typically lasting 1-3 months. Conclusion Current evidence suggests that BBR alone or in combination has significant potential for treating type 2 diabetes mellitus (T2DM). Future research should encompass a broader scope, including not just the beneficial effects of BBR in head-to-head studies, but more crucially, delving into its mechanisms of action with hypoglycemic drugs to optimize T2DM treatment strategies.
Collapse
Affiliation(s)
- Jiacheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenhao Bi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbin Xi
- Department of Traditional Chinese Medicine Classics, Tai’an Hospital of Traditional Chinese Medicine, Tai’an, China
| | - Fengqin Wei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Miłek M, Dżugan M, Pieńkowska N, Galiniak S, Mołoń M, Litwińczuk W. Ornamental Barberry Twigs as an Underexploited Source of Berberine-Rich Extracts-Preliminary Research. Curr Issues Mol Biol 2024; 46:13193-13208. [PMID: 39590381 PMCID: PMC11592822 DOI: 10.3390/cimb46110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Berberine is a natural substance obtained from the roots of common barberry which, due to its strong pharmacological activity, is a commonly tested ingredient of dietary supplements. However, ornamental barberries, which are widely available, have not been considered as a source of berberine so far. The research aimed to check whether the ornamental barberry leaves and twigs could be used as an easily accessible raw material for obtaining natural berberine-rich extract with biological activity. Twigs and leaves of seven cultivars of ornamental barberry extracts were assessed for their polyphenol content, antioxidant potential (FRAP and DPPH), and berberine content using high-performance thin layer chromatography (HPTLC). As a reference, commercially available roots of Berberis vulgaris were used. For the next step, selected extracts (two with high and two with low berberine content) were tested on three cell lines (HaCaT, A375, Caco-2) using neutral red assay, and pure berberine sulfate (1-100 μg mL-1) was used as a control. Although the antioxidant potential of aqueous-methanol extracts of tested barberry was higher for the leaves than for the twigs, the berberine content was determined only in the twig extracts (from 42 to 676 mg 100 g-1). Studies on cell lines have shown the general toxicity of barberry extracts, but the observed effect was not directly correlated with the content of the alkaloid. However, the extract showed greater activity compared to an analogous dose of pure berberine, suggesting a significant effect of the matrix composition. For the first time, it was shown that the twigs of selected cultivars of ornamental barberry can be considered as a promising berberine source for the pharmaceutical industry to develop new effective formulations. However, these findings require further studies.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a, 35-601 Rzeszow, Poland;
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a, 35-601 Rzeszow, Poland;
| | - Natalia Pieńkowska
- Institute of Medical Sciences, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (N.P.); (S.G.)
| | - Sabina Galiniak
- Institute of Medical Sciences, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (N.P.); (S.G.)
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Wojciech Litwińczuk
- Department of Physiology and Plant Biotechnology, Institute of Agricultural Sciences, Environment Management and Protection, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszow, Poland;
| |
Collapse
|
8
|
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024; 29:5310. [PMID: 39598700 PMCID: PMC11596956 DOI: 10.3390/molecules29225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body's physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging.
Collapse
Affiliation(s)
| | | | | | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
9
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
11
|
Zhang CW, Huang DY, Rajoka MSR, Wu Y, He ZD, Ye L, Wang Y, Song X. The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules 2024; 29:5079. [PMID: 39519720 PMCID: PMC11547813 DOI: 10.3390/molecules29215079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fungal infections present a significant health risk, particularly in immunocompromised individuals. Berberine, a natural isoquinoline alkaloid, has demonstrated broad-spectrum antimicrobial activity, though its antifungal potential and underlying mechanisms against both yeast-like and filamentous fungi are not fully understood. This study investigates the antifungal efficacy of berberine against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Trichophyton mentagrophytes in vitro, as well as its therapeutic potential in a murine model of cryptococcal infection. Berberine showed strong antifungal activity, with MIC values ranging from 64 to 128 µg/mL. SEM and TEM analyses revealed that berberine induced notable disruptions to the cell wall and membrane in C. neoformans. No signs of cell necrosis or apoptosis were observed in fungal cells treated with 2 × MIC berberine, and it did not increase intracellular ROS levels or affect mitochondrial membrane potential. Molecular docking and binding affinity assays demonstrated a strong interaction between berberine and the fungal enzyme CYP51, with a dissociation constant (KD) of less than 1 × 10-12 M, suggesting potent inhibition of ergosterol biosynthesis. In vivo studies further showed that berberine promoted healing in guinea pigs infected with T. mentagrophytes, and in a murine cryptococcal infection model, it prolonged survival and reduced lung inflammation, showing comparable efficacy to fluconazole. These findings indicate that berberine exerts broad-spectrum antifungal effects through membrane disruption and CYP51 inhibition, highlighting its potential as a promising therapeutic option for fungal infections.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Dong-Yu Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Zhen-Dan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Liang Ye
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xun Song
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| |
Collapse
|
12
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
13
|
Demir S, Turkmen Alemdar N, Kucuk H, Ayazoglu Demir E, Menteşe A, Aliyazıcıoğlu Y. Therapeutic effect of berberine against 5-fluorouracil induced ovarian toxicity in rats. Biotech Histochem 2024:1-7. [PMID: 39440588 DOI: 10.1080/10520295.2024.2415005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Berberine (BER) is a naturally occurring alkaloid with a multitude of beneficial effects on human health. Although it is one of the most studied phytochemicals, its curative effect against ovarian damage caused by 5-fluorouracil (5-FU) has not been demonstrated to date. The aim of this study was to investigate the possible protective effect of BER against 5-FU-induced ovotoxicity, focusing on its ability to attenuate oxidative stress, inflammation and apoptosis. The 30 female rats were randomly divided into five groups: Control, BER (2 mg/kg), 5-FU (100 mg/kg), 5-FU+BER (1 mg/kg) and 5-FU+BER (2 mg/kg). The levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and caspase-3 were determined using spectrophotometric methods. In addition, ovarian samples were evaluated histopathologically using hematoxylin&eosin staining method. The MDA, TOS, 8-OHdG, IL-6, TNF-α and caspase-3 levels significantly increased by 5-FU administration. Also, we found that 5-FU significantly decreased TAS, SOD and CAT levels. Treatments with BER significantly attenuated the 5-FU-induced ovarian damage via increasing the antioxidant capacity and reducing the oxidative stress, inflammation and apoptosis in a dose-dependent manner. Moreover, the ovoprotective effect of BER was also confirmed by histopathological evaluation. BER may be evaluated as a potential candidate molecule to reduce 5-FU-induced ovarian toxicity.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Menteşe
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon, Turkiye
| | - Yuksel Aliyazıcıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
14
|
Saxena S, Anand SK, Sharma A, Kakkar P. Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine. Toxicol In Vitro 2024; 100:105916. [PMID: 39127087 DOI: 10.1016/j.tiv.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Aberrant accumulation of dysfunctional mitochondria in renal cells during hyperglycemia signifies perturbed autophagy and mitochondrial turnover. This study aims to focus on the underlying mechanism involved in autophagy and mitophagy inducing efficacy of Berberine (isoquinoline alkaloid) in hyperglycemic NRK-52E cells. Berberine mediated protection to hyperglycemic cells prevented alteration in mitochondrial structure and function. Treatment with SRT-1720 (Sirt1 activator) enhanced autophagy, decreased apoptosis, upregulated expression of downstream moieties (FoxO3a and Bnip3) and ameliorated mitochondria related anomalies while nicotinamide (Sirt1 inhibitor) treatment exhibited reversal of the same. GFP reporter assay ascertained enhanced transcriptional activity of FoxO in Berberine-treated hyperglycemic cells, which was found to be correlated to increased expression of downstream protein Bnip3. Knocking down FoxO3a disrupted autophagy and stimulated apoptosis. N-acetyl-L-cysteine pre-treatment confirmed that generation of ROS intervened high glucose induced toxicity in NRK-52E cells. Berberine co-treatment resulted in differential expressions of key proteins involved in autophagy and mitophagy like LC3B, ATGs, Beclin1, Sirt1, Bnip3, FoxO3a and Parkin. Further, enhanced mitophagy in Berberine-treated cells was confirmed by transmission electron microscopy. Thus, our findings give evidence that the protection accorded by Berberine against hyperglycemia in renal proximal tubular cells (NRK-52E) involves instigation of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitophagy induction.
Collapse
Affiliation(s)
- Sugandh Saxena
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sumit Kumar Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
15
|
Shah NA, Mir RA, Saltanat S. "Understanding and treating baras (vitiligo) in unani medicine: historical perspectives, pathophysiology, and therapeutic approaches". JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0240. [PMID: 39331622 DOI: 10.1515/jcim-2024-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Vitiligo, also known as baras in Unani medicine, causes patches of depigmented skin due to the loss of melanocytes. According to ancient Unani scholars, factors like excessive phlegm in the blood and weakened color-controlling power were believed to be the cause. This study dives into the historical insights of luminaries like Majūsī and Hakim Akbar Arzānī, alongside modern medical understanding. It explores the pathophysiology, epidemiology, and clinical features of vitiligo, while also addressing confusing definitions, dietary influences, and demographic patterns. We take a close look at the classification, prognosis, and investigative methods. The aim of this research is to bring together traditional and modern perspectives to fully understand vitiligo, covering its cultural, historical, and scientific aspects. By incorporating epidemiological data, dietary considerations, and insights into the underlying mechanisms, we enhance diagnostic and treatment approaches. In conclusion, this study establishes a cohesive connection between the historical wisdom of Unani medicine and the current scientific discourse on vitiligo. By merging these perspectives, we gain a comprehensive understanding of the condition, enabling a more holistic approach to diagnosis and management. As dermatological research continues to evolve, the integration of traditional and modern insights becomes crucial in effectively addressing complex skin disorders like vitiligo.
Collapse
Affiliation(s)
- Nadeem A Shah
- Department of Jild-Wa-Taziniyat, Markaz Unani Medical College and Hospital, Kozhikode, Kerala, India
| | | | | |
Collapse
|
16
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
17
|
Awari A, Kumar M, Kaushik D, Amarowicz R, Proestos C, Wahab R, Khan MR, Tomasevic I, Oz E, Oz F. Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications. Foods 2024; 13:2802. [PMID: 39272566 PMCID: PMC11395431 DOI: 10.3390/foods13172802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Berberis aristata, commonly known as Indian barberry, has been traditionally used for its medicinal properties. Despite its recognized pharmacological benefits, its potential application in the food industry remains underexplored. This study aims to investigate the proximate analysis and techno-functional properties of Berberis aristata root powder to evaluate its feasibility as a functional food ingredient. The root powder of Berberis aristata was subjected to proximate analysis to determine its moisture, ash, protein, fat, fiber, and carbohydrate content. Techno-functional properties, including water and oil absorption capacity, emulsifying and foaming properties, and bulk density, were evaluated using standardized analytical techniques. The proximate analysis revealed a high fiber content and a significant number of bioactive compounds. The root powder exhibited favorable water and oil absorption capacities, making it suitable for use as a thickening and stabilizing agent. Emulsifying and foaming properties were comparable to conventional food additives, indicating their potential in various food formulations. The findings suggest that Berberis aristata root powder possesses desirable techno-functional properties that could be leveraged in the food industry. Its high fiber content and bioactive compounds offer additional health benefits, making it a promising candidate for functional food applications. Further research on its incorporation into different food matrices and its sensory attributes is recommended to fully establish its utility.
Collapse
Affiliation(s)
- Ankita Awari
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Rizwan Wahab
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
18
|
Rigillo G, Cappellucci G, Baini G, Vaccaro F, Miraldi E, Pani L, Tascedda F, Bruni R, Biagi M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety. Nutrients 2024; 16:2953. [PMID: 39275269 PMCID: PMC11397700 DOI: 10.3390/nu16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
| | - Giorgio Cappellucci
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Elisabetta Miraldi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Biagi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
19
|
Pradhan S, Campanile M, Sharma S, Oliva R, Patra S. Mechanistic Insights into the c-MYC G-Quadruplex and Berberine Binding inside an Aqueous Two-Phase System Mimicking Biomolecular Condensates. J Phys Chem Lett 2024; 15:8706-8714. [PMID: 39159468 DOI: 10.1021/acs.jpclett.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We investigated the binding between the c-MYC G-quadruplex (GQ) and berberine chloride (BCl) in an aqueous two-phase system (ATPS) with 12.3 wt % polyethylene glycol and 5.6 wt % dextran, mimicking the highly crowded intracellular biomolecular condensates formed via liquid-liquid phase separation. We found that in the ATPS, complex formation is significantly altered, leading to an increase in affinity and a change in the stoichiometry of the complex with respect to neat buffer conditions. Thermodynamic studies reveal that binding becomes more thermodynamically favorable in the ATPS due to entropic effects, as the strong excluded volume effect inside ATPS droplets reduces the entropic penalty associated with binding. Finally, the binding affinity of BCl for the c-MYC GQ is higher than those for other DNA structures, indicating potential specific interactions. Overall, these findings will be helpful in the design of potential drugs targeting the c-MYC GQ structures in cancer-related biocondensates.
Collapse
Affiliation(s)
- Susmita Pradhan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126 Naples, Italy
| | - Shubhangi Sharma
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126 Naples, Italy
| | - Satyajit Patra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| |
Collapse
|
20
|
Nuntawong P, Senoo A, Tayama Y, Caaveiro JMM, Morimoto S, Sakamoto S. An aptamer-based fluorometric method for the rapid berberine detection in Kampo medicines. Anal Chim Acta 2024; 1318:342930. [PMID: 39067935 DOI: 10.1016/j.aca.2024.342930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Berberine (BBR), a key component in Kampo medicine, is a cationic benzylisoquinoline alkaloid whose detection plays a critical role in the quality control of these traditional remedies. Traditional methods for detecting BBR often involve complex procedures, which can be time-consuming and costly. To address this challenge, our study focuses on developing a simpler, faster, and more efficient detection method for BBR in Kampo medicine formulations. RESULTS We successfully developed a rapid fluorometric detection method for BBR using colloidal gold nanoparticle-based systematic evolution of ligands by exponential enrichment (GOLD-SELEX). Initially, specific single-stranded DNA (ssDNA) sequences were selected for their ability to enhance BBR's fluorescence intensity. The optimal ssDNA sequence, identified as BBR38, was further truncated to produce BBR38S, a stem-loop ssDNA that improved fluorescence upon interaction with BBR. To further enhance the fluorescence, the BBR38S aptamer underwent additional modifications, including stem truncation and nucleotide mutations, resulting in the higher fluorescence variant BBR38S-3 A10C. The final product, TetBBR38S, a tetramer version of BBR38S-3 A10C, exhibited a linear detection range of 0.780-50.0 μg mL-1 and a limit of detection of 0.369 μg mL-1. The assay demonstrated sufficient selectivity and was successfully applied to analyze 128 different Kampo medicine formulations, accurately detecting BBR content with high precision. SIGNIFICANCE This study represents an advancement in Kampo medicine research, marking the first successful application of an aptamer-based approach for BBR detection in complex matrices. The developed method is not only simple and rapid (with a detection time of 5 min) but also cost-effective, which is crucial for widespread application.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yorie Tayama
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jose M M Caaveiro
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
21
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
22
|
Tiwari DD, Thorat VM, Pakale PV, Patil S. Effects of Berberis asiatica, Withania somnifera, and Their Combination on Body Weight in Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Wistar Rats. Cureus 2024; 16:e68295. [PMID: 39350820 PMCID: PMC11441830 DOI: 10.7759/cureus.68295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, impaired insulin secretion, and beta cell dysfunction, often leading to chronic hyperglycemia and associated complications. Berberis asiatica (BA) and Withania somnifera (WS) are ancient medicinal plants with a reputation for having potential therapeutic effects in diabetes management. The purpose of this study was to look into how body weight (BW) was affected in streptozotocin-nicotinamide (STZ-NIC) induced T2DM in Wistar rats by BA, WS, and their polyherbal combination (PHC). Materials and methods Seventy-eight Wistar rats of both sexes were divided into 13 groups, with six rats in each group, including normal and diabetic controls, and treated with varying doses of BA, WS, and PHC. The rats were under observation over the course of 35 days for any change in BW. The Organization for Economic Co-operation and Development (OECD) rules and guidelines were followed in the conduct of acute toxicity tests. One-way analysis of variance (ANOVA), followed by Tukey-Kramer post hoc tests, was used for statistical analysis. Results The findings indicated that the highest dose of BA (1000 mg/kg) significantly improved BW in diabetic rats, approaching that of the normal control group. The combination of BA and WS also demonstrated significant improvements in BW, suggesting a synergistic effect. The standard antidiabetic drugs, metformin and glimepiride, were effective in increasing BW in diabetic rats. Conclusion The study concludes that BA, WS, and their combination have a positive impact on BW management in T2DM rats, with the combination therapy showing enhanced effects. These findings support the potential utilization of these herbs in managing BW and other T2DM-associated metabolic disturbances and abnormalities.
Collapse
Affiliation(s)
- Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Prathamesh V Pakale
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Sarika Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
23
|
Duda-Madej A, Viscardi S, Szewczyk W, Topola E. Natural Alkaloids in Cancer Therapy: Berberine, Sanguinarine and Chelerythrine against Colorectal and Gastric Cancer. Int J Mol Sci 2024; 25:8375. [PMID: 39125943 PMCID: PMC11313295 DOI: 10.3390/ijms25158375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The rising incidence of colorectal cancer (CRC) and gastric cancer (GC) worldwide, coupled with the limited effectiveness of current chemotherapeutic agents, has prioritized the search for new therapeutic options. Natural substances, which often exhibit cytostatic properties, hold significant promise in this area. This review evaluates the anticancer properties of three natural alkaloids-berberine, sanguinarine, and chelerythrine-against CRC and GC. In vivo and in vitro studies have demonstrated that these substances can reduce tumor volume and inhibit the epithelial-mesenchymal transition (EMT) of tumors. At the molecular level, these alkaloids disrupt key signaling pathways in cancer cells, including mTOR, MAPK, EGFR, PI3K/AKT, and NF-κB. Additionally, they exhibit immunomodulatory effects, leading to the induction of programmed cell death through both apoptosis and autophagy. Notably, these substances have shown synergistic effects when combined with classical cytostatic agents such as cyclophosphamide, 5-fluorouracil, cetuximab, and erlotinib. Furthermore, berberine has demonstrated the ability to restore sensitivity in individuals originally resistant to cisplatin GC. Given these findings, natural compounds emerge as a promising option in the chemotherapy of malignant gastrointestinal tumors, particularly in cases with limited treatment options. However, more research is necessary to fully understand their therapeutic potential.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Wiktoria Szewczyk
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| |
Collapse
|
24
|
Owumi S, Chimezie J, Otunla M, Oluwawibe B, Agbarogi H, Anifowose M, Arunsi U, Owoeye O. Prepubertal Repeated Berberine Supplementation Enhances Cerebrocerebellar Functions by Modulating Neurochemical and Behavioural Changes in Wistar Rats. J Mol Neurosci 2024; 74:72. [PMID: 39042258 DOI: 10.1007/s12031-024-02250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Moses Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Bayode Oluwawibe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Mayowa Anifowose
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Uche Arunsi
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Olatunde Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| |
Collapse
|
25
|
Amir M, Jeevithan L, Barkat M, Fatima SH, Khan M, Israr S, Naseer F, Fayyaz S, Elango J, Wu W, Maté Sánchez de Val JE, Rahman SU. Advances in Regenerative Dentistry: A Systematic Review of Harnessing Wnt/β-Catenin in Dentin-Pulp Regeneration. Cells 2024; 13:1153. [PMID: 38995004 PMCID: PMC11240772 DOI: 10.3390/cells13131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/β-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.
Collapse
Affiliation(s)
- Mariam Amir
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - Maham Barkat
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Syeda Habib Fatima
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Malalai Khan
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sara Israr
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Fatima Naseer
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sarmad Fayyaz
- Department of Dental Materials Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Saeed Ur Rahman
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| |
Collapse
|
26
|
Li Y, Zhao M, Tang R, Fang K, Zhang H, Kang X, Yang L, Ge W, Du W. Study on the quality of Corydalis Rhizoma in Zhejiang based on multidimensional evaluation method. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118047. [PMID: 38499258 DOI: 10.1016/j.jep.2024.118047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The quality requirements of Corydalis Rhizoma (CR) in different producing areas are uniform, resulting in uneven efficacy. As a genuine producing area, the effective quality control of CR in Zhejiang Province (ZJ) could provide a theoretical basis for the rational application of medicinal materials. AIM OF THE STUDY The purpose of this study was to effectively distinguish the CR inside and outside ZJ, and provided a theoretical basis for the quality control and material basis research of ZJ CR. MATERIALS AND METHODS The core components of ZJ CR could be identified by HPLC combined with chemometrics screening, and the quality of CR from different producing areas was evaluated by a genetic algorithm-back propagation (GA-BP) neural network. Chromaticity and near-infrared (NIR) spectroscopy were used to identify CR inside and outside ZJ, and rapid content prediction was realized. The analgesic effect of CR in different regions was compared by a zebrafish analgesic experiment. Analgesic experiments in rats and analysis of the research status of quality components were used to screen the quality control components of ZJ CR. RESULTS The contents of palmatine hydrochloride (YSBMT), dehydrocorydaline (TQZJJ), tetrahydropalmatine (YHSYS), tetrahydroberberine (SQXBJ), corydaline (YHSJS), stylopine (SQHLJ), and isoimperatorin (YOQHS) in ZJ CR were higher than those in CR from outside ZJ, but the content of protopine (YAPJ) and berberine hydrochloride (YSXBJ) was lower than that in CR from outside ZJ. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. The GA-BP neural network showed that the relative importance of ZJ CR was the strongest. Chroma-content correlation analysis and the NIR qualitative model could effectively distinguish CR from inside and outside of ZJ, and the NIR quantitative model could quickly predict the content of CR from inside and outside of ZJ. Zebrafish experiments showed that ZJ, Shaanxi (SX), Henan (HN), and Sichuan (SC) CR had significant analgesic effects, while Hebei (HB) CR had no significant analgesic effect. Overall comparison, the analgesic effect of ZJ CR was better than that of CR outside ZJ. The comprehensive score of the grey correlation degree between YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, YHSJS, SQXBJ, and SQHLJ were higher than 0.9, and the research frequency were extremely high. CONCLUSIONS The relative importance of the content and origin of most components of ZJ CR was higher than that of CR outside ZJ. The holistic analgesic effect of ZJ CR was better than that of CR outside ZJ, but slightly lower than that of SX CR. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, SQXBJ, YHSJS, and SQHLJ could be used as the quality control components of ZJ CR. The multidimensional evaluation method used in this study provided a reference for the quality control and material basis research of ZJ CR.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Xianjie Kang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Liu Yang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
27
|
Conti V, Polcaro G, De Bellis E, Donnarumma D, De Rosa F, Stefanelli B, Corbi G, Sabbatino F, Filippelli A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med 2024; 14:685. [PMID: 39063939 PMCID: PMC11278393 DOI: 10.3390/jpm14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Natural Health Products (NHPs) have long been considered a valuable therapeutic approach for the prevention and treatment of various diseases, including cancer. However, research on this topic has led to inconclusive and often controversial results. This review aims to provide a comprehensive update of the effects and mechanisms related to the use of NHPs, to describe the results of randomized clinical trials (RCTs) on their effects in cancer patients, and to critically discuss factors influencing clinical outcomes. RCTs available in the literature, even those studying the same NHP, are very heterogeneous in terms of indications, doses, route and timing of administration, and outcomes evaluated. Silymarin, ginsenoside, and vitamin E appear to be useful in attenuating adverse events related to radiotherapy or chemotherapy, and curcumin and lycopene might provide some benefit in patients with prostate cancer. Most RCTs have not clarified whether NHP supplementation provides any real benefit, while harmful effects have been shown in some cases. Overall, the available data suggest that although there is some evidence to support the benefits of NHPs in the management of cancer patients, further clinical trials with the same design are needed before their introduction into clinical practice can be considered.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Emanuela De Bellis
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Danilo Donnarumma
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Federica De Rosa
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
28
|
Ciorîță A, Erhan SE, Soran ML, Lung I, Mot AC, Macavei SG, Pârvu M. Pharmacological Potential of Three Berberine-Containing Plant Extracts Obtained from Berberis vulgaris L., Mahonia aquifolium (Pursh) Nutt., and Phellodendron amurense Rupr. Biomedicines 2024; 12:1339. [PMID: 38927546 PMCID: PMC11201499 DOI: 10.3390/biomedicines12061339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Three berberine-containing plant extracts were investigated for their pharmacological properties. The stems and leaves of Berberis vulgaris, Mahonia aquifolium, and Phellodendron amurense were characterized through scanning electron microscopy. The plant extracts obtained from fresh stem barks were further analyzed through high-performance liquid chromatography, revealing berberine concentrations, among berbamine and palmatine. The plant extracts were further tested for their anticancer potential against 2D and 3D human skin melanoma (A375) and lung adenocarcinoma (A549) cell lines. The concentrations at which 50% of the cells are affected was determined by the viability assay and it was shown that B. vulgaris, the plant extract with the highest berberine concentration, is the most efficient inhibitor (0.4% extract concentration for the 2D model and 3.8% for the 3D model). The membrane integrity and nitrate/nitrite concentration assays were consistent with the viability results and showed effective anticancer potential. For further investigations, the B. vulgaris extract was used to obtain silver nanoparticles, which were characterized through transmission electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The formed nanoparticles have a uniform size distribution and are suited for future investigations in the field of biomedical applications, together with the B. vulgaris plant extract.
Collapse
Affiliation(s)
- Alexandra Ciorîță
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii, 400015 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Sabina-Emanuela Erhan
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii, 400015 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Maria Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Augustin Catalin Mot
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
- Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János St., 400028 Cluj-Napoca, Romania
| | - Sergiu Gabriel Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii, 400015 Cluj-Napoca, Romania;
| |
Collapse
|
29
|
Marques C, Grenho L, Fernandes MH, Costa Lima SA. Improving the Antimicrobial Potency of Berberine for Endodontic Canal Irrigation Using Polymeric Nanoparticles. Pharmaceutics 2024; 16:786. [PMID: 38931907 PMCID: PMC11207060 DOI: 10.3390/pharmaceutics16060786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, -6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 μg/mL. Upon incorporation into PLGA nanoparticles, 20 μg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 μg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Liliana Grenho
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (L.G.); (M.H.F.)
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (L.G.); (M.H.F.)
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Ge Q, Yan Y, Luo Y, Teng T, Cao C, Zhao D, Zhang J, Li C, Chen W, Yang B, Yi Z, Chang T, Chen X. Dietary supplements: clinical cholesterol-lowering efficacy and potential mechanisms of action. Int J Food Sci Nutr 2024; 75:349-368. [PMID: 38659110 DOI: 10.1080/09637486.2024.2342301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
This review aims to analyse the efficacy of dietary supplements in reducing plasma cholesterol levels. Focusing on evidence from meta-analyses of randomised controlled clinical trials, with an emphasis on potential mechanisms of action as supported by human, animal, and cell studies. Certain dietary supplements including phytosterols, berberine, viscous soluble dietary fibres, garlic supplements, soy protein, specific probiotic strains, and certain polyphenol extracts could significantly reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 3-25% in hypercholesterolemic patients depending on the type of supplement. They tended to be more effective in reducing plasma LDL cholesterol level in hypercholesterolemic individuals than in normocholesterolemic individuals. These supplements worked by various mechanisms, such as enhancing the excretion of bile acids, inhibiting the absorption of cholesterol in the intestines, increasing the expression of hepatic LDL receptors, suppressing the activity of enzymes involved in cholesterol synthesis, and activating the adenosine monophosphate-activated protein kinase signalling pathway.
Collapse
Affiliation(s)
- Qian Ge
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yan
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yang Luo
- Ningxia Institute of Science and Technology Development Strategy and Information, Yinchuan, China
| | - Tai Teng
- Ningxia Guolong Hospital Co., LTD, Yinchuan, China
| | - Caixia Cao
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Danqing Zhao
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jing Zhang
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Caihong Li
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wang Chen
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Binkun Yang
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zicheng Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tengwen Chang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Chen
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|
31
|
Feineis D, Bringmann G. Structural variety and pharmacological potential of naphthylisoquinoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 91:1-410. [PMID: 38811064 DOI: 10.1016/bs.alkal.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
32
|
Niu ZX, Wang YT, Wang JF. Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids. Nat Prod Rep 2024. [PMID: 38712365 DOI: 10.1039/d4np00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Shangqiu 476000, Henan Province, China.
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jun-Feng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA.
| |
Collapse
|
33
|
Argüelles JC, Sánchez-Fresneda R, Argüelles A, Solano F. Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. J Fungi (Basel) 2024; 10:334. [PMID: 38786689 PMCID: PMC11122340 DOI: 10.3390/jof10050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Fungi are eukaryotic organisms with relatively few pathogenic members dangerous for humans, usually acting as opportunistic infections. In the last decades, several life-threatening fungal infections have risen mostly associated with the worldwide extension of chronic diseases and immunosuppression. The available antifungal therapies cannot combat this challenge because the arsenal of compounds is scarce and displays low selective action, significant adverse effects, and increasing resistance. A growing isolation of outbreaks triggered by fungal species formerly considered innocuous is being recorded. From ancient times, natural substances harvested from plants have been applied to folk medicine and some of them recently emerged as promising antifungals. The most used are briefly revised herein. Combinations of chemotherapeutic drugs with natural products to obtain more efficient and gentle treatments are also revised. Nevertheless, considerable research work is still necessary before their clinical use can be generally accepted. Many natural products have a highly complex chemical composition, with the active principles still partially unknown. Here, we survey the field underlying lights and shadows of both groups. More studies involving clinical strains are necessary, but we illustrate this matter by discussing the potential clinical applications of combined carnosic acid plus propolis formulations.
Collapse
Affiliation(s)
- Juan Carlos Argüelles
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Alejandra Argüelles
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Francisco Solano
- Departamento Bioquímica, Biología Molecular B & Inmunología, Facultad Medicina, University Murcia, Campus El Palmar, 30112 Murcia, Spain
| |
Collapse
|
34
|
Sarraf M, Beigbabaei A, Naji‐Tabasi S. Edible oleogels for oral delivery of berberine in dairy food: In-vitro digestion study. Food Sci Nutr 2024; 12:3273-3281. [PMID: 38726417 PMCID: PMC11077212 DOI: 10.1002/fsn3.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Oleogel is a viscoelastic, spreadable and semi-solid structure, which is used as a fat substitute and a controller the release of bioactive compounds. The aim of this study was to develop low fat dairy dessert enriched with berberine with applying oleogel system as delivery system and fat replacer. The oleogel prepared with an emulsion-templated methods based on soluble interaction of whey protein concentrate (WPC), WPC-basil seed gum (BSG), and WPC-xanthan gum (XG). In the first step, berberine release kinetic in in-vitro gastrointestinal environment was studied. The results showed that the mouth environment had the highest release rate of berberine. Cooperation of hydrocolloids in oleogel increase stability of structure in stomach condition in compared with WPC oleogel. The suitable model to fit the oleogels contain beberine was the Korsmeyer-Papas that was the highest R 2 (.98). According to release results of berberine from oleogel network, the oleogel 0.6BSG:WPC was chosen and applied in formulation of dairy dessert at different levels (0%, 25%, 50%, 75% and 100% of oleogel) instead of cream. The dessert contained uncoated berberine had the unacceptable bitterness in comparison with samples containing coated berberine with oleogel. The overall acceptance decreased with increment of oleogel due to increasing of bitter taste. Appling berberine (therapeutic compound) and oleogel (fat-substitute) to achieve marketable consumer products showed positive effects on trend of the study, especially at low level of substitution.
Collapse
Affiliation(s)
- Mozhdeh Sarraf
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Adel Beigbabaei
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
35
|
Wade U, Pascual-Figal DA, Rabbani F, Ernst M, Albert A, Janssens I, Dierckxsens Y, Iqtadar S, Khokhar NA, Kanwal A, Khan A. The Possible Synergistic Pharmacological Effect of an Oral Berberine (BBR) and Curcumin (CUR) Complementary Therapy Alleviates Symptoms of Irritable Bowel Syndrome (IBS): Results from a Real-Life, Routine Clinical Practice Settings-Based Study. Nutrients 2024; 16:1204. [PMID: 38674895 PMCID: PMC11053504 DOI: 10.3390/nu16081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent chronic functional gastrointestinal disorder, characterised by recurrent abdominal discomfort and altered bowel movements. IBS cause a significantly negative impact on quality of life (QoL). Growing pharmacological evidence suggests that berberine (BBR) and curcumin (CUR) may mitigate IBS symptoms through multiple complementary synergistic mechanisms, resulting in the attenuation of intestinal inflammation and regulation of bowel motility and gut functions. In the present observational study conducted under real-life routine clinical practice settings, 146 patients diagnosed with IBS were enrolled by general practitioner clinics and pharmacies in Belgium. For the first time, this study assessed the potential synergistic pharmacological effect of a combined oral BBR/CUR supplement (Enterofytol® PLUS, containing 200 mg BBR and 49 mg CUR) (two tablets daily for 2 months), serving as complementary therapy in the management of IBS. Following the 2-month supplementation, significant improvements were observed in the patients' IBS severity index (IBSSI) (47.5%) and all the primary IBS symptoms, such as abdominal discomfort (47.2%), distension (48.0%), intestinal transit (46.8%), and QoL (48.1%) (all p < 0.0001). The improvement in the patients' IBSSI was independent of age, sex, and IBS sub-types. The patients' weekly maximum stool passage frequency decreased significantly (p < 0.0001), and the stool status normalized (p < 0.0001). The patients' need for concomitant conventional IBS treatment decreased notably: antispasmodics by 64.0% and antidiarrhoeals by 64.6%. Minor adverse effects were reported by a small proportion (7.1%) of patients, mostly gastrointestinal. The majority (93.1%) experienced symptom improvement or resolution, with a high satisfaction rate (82.6%) and willingness to continue the supplementation (79.0%). These findings support the potential synergistic pharmacological role of BBR and CUR in IBS, and their co-supplementation may alleviate IBS symptoms and improve QoL.
Collapse
Affiliation(s)
- Ursula Wade
- Department of Basic and Clinical Neuroscience, Kings College London, London SE5 9RT, UK;
| | - Domingo A. Pascual-Figal
- Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, 30120 Murcia, Spain;
| | - Fazale Rabbani
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Marie Ernst
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | - Adelin Albert
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | | | | | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan;
| | - Nisar A. Khokhar
- Department of Medicine, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan;
| | - Ayesha Kanwal
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Amjad Khan
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
36
|
Wei Y, Li S, Wen H, Dong J, Liang Z, Li X, Zhang Y. 1H NMR guided isolation of 3-arylisoquinoline alkaloids from Hypecoum erectum L. and their anti-inflammation activity. PHYTOCHEMISTRY 2024; 222:114093. [PMID: 38615927 DOI: 10.1016/j.phytochem.2024.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Nine 3-arylisoquinoline alkaloids including five undescribed ones, hypectumines A-E (1-5), were isolated from the whole herb of Hypecoum erectum L. with the guidance of 1H-NMR. Their structures were established by a combination of 1D, 2D NMR, and HRESIMS spectrometry. Among them, hypectumines A and B possessed rare urea moieties while hypectumines C and D were characterized by 3-(methylamino)propanoic acid scaffolds. Biological assay demonstrated that alkaloids hypectumine B and 2,3-dimethoxy-N-formylcorydamine had anti-inflammatory effects by inhibiting NO production on LPS-induced RAW264.7 cells with IC50 values of 24.4 and 44.2 μM, respectively. Furthermore, hypectumine B could reduce the expression of pro-inflammatory cytokines TNF-α and IL-6, suggesting it might be a potential candidate for treating inflammatory disease.
Collapse
Affiliation(s)
- Yinling Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sheng Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Hongyan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Jing Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Zhenzhen Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xiaoyu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
37
|
Akash MSH, Yaqoob S, Rehman K, Hussain A, Chauhdary Z, Nadeem A, Shahzad A, Shah MA, Panichayupakaranant P. Biochemical Investigation of Therapeutic Efficacy of Berberine-Enriched Extract in Streptozotocin-Induced Metabolic Impairment. ACS OMEGA 2024; 9:15677-15688. [PMID: 38585081 PMCID: PMC10993375 DOI: 10.1021/acsomega.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Metabolic disorders pose significant global health challenges, necessitating innovative therapeutic approaches. This study focused on the multifaceted therapeutic potential of berberine-enriched extract (BEE) in mitigating metabolic impairment induced by streptozotocin (STZ) in a rat model and compared the effects of BEE with berberine (BBR) and metformin (MET) to comprehensively evaluate their impact on various biochemical parameters. Our investigation reveals that BEE surpasses the effects of BBR and MET in ameliorating metabolic impairment, making it a promising candidate for managing metabolic disorders. For this, 30 male Wistar rats were divided into five groups (n = 6): control (CN), STZ, STZ + MET, STZ + BBR, and STZ + BEE. The treatment duration was extended over 4 weeks, during which various biochemical parameters were monitored, including fasting blood glucose (FBG), lipid profiles, inflammation, liver and kidney function biomarkers, and gene expressions of various metabolizing enzymes. The induction of metabolic impairment by STZ was evident through an elevated FBG level and disrupted lipid profiles. The enriched extract effectively regulated glucose homeostasis, as evidenced by the restoration of FBG levels, superior to both BBR and MET. Furthermore, BEE demonstrated potent effects on insulin sensitivity, upregulating the key genes involved in carbohydrate metabolism: GCK, IGF-1, and GLUT2. This highlights its potential in enhancing glucose utilization and insulin responsiveness. Dyslipidemia, a common occurrence in metabolic disorders, was effectively managed by BEE. The extract exhibited superior efficacy in regulating lipid profiles. Additionally, BEE exhibited significant anti-inflammatory properties, surpassing the effects of BBR and MET in lowering the levels of inflammatory biomarkers (IL-6 and TNF-α), thereby ameliorating insulin resistance and systemic inflammation. The extract's superior hepatoprotective and nephroprotective effects, indicated by the restoration of liver and kidney function biomarkers, further highlight its potential in maintaining organ health. Moreover, BEE demonstrated potent antioxidant properties, reducing oxidative stress and lipid peroxidation in liver tissue homogenates. Histopathological examination of the pancreas underscored the protective effects of BEE, preserving and recovering pancreatic β-cells damaged by STZ. This collective evidence positions BEE as a promising therapeutic candidate for managing metabolic disorders and offers potential benefits beyond current treatments. In conclusion, our findings emphasize the remarkable therapeutic efficacy of BEE and provide a foundation for further research into its mechanisms, long-term safety, and clinical translation.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Sahrish Yaqoob
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Kanwal Rehman
- Department
of Pharmacy, The Women University, Multan 6000, Pakistan
| | - Amjad Hussain
- Institute
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Ahmed Nadeem
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Shahzad
- Department
of Biochemistry and Molecular Biology, Kunming
Medical University, Yunnan 650031, China
| | | | - Pharkphoom Panichayupakaranant
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
38
|
Oli S, Tatrari G, Chauhan HK, Bisht AK, Bhatt ID. Effects of Graphene-Based Metal Composite and Urea on Seed Germination and Performance of Berberis chitria Buch.-Ham. ex Lindl. Appl Biochem Biotechnol 2024; 196:2219-2232. [PMID: 37490242 DOI: 10.1007/s12010-023-04624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/26/2023]
Abstract
Being an important source of berberine, Berberis chitria Buch.-Ham. ex Lindl. (Berberidaceae) has high demand in pharmaceutical industries. Its populations are diminishing due to overexploitation, habitat loss, slow-growing nature, and climate change. It is important to develop propagation protocols to sustain its natural populations and ensure its survival in the future. Fertilizers play an essential role in the yield and productivity of different crops. Among others, urea is the most abundantly used fertilizer in crops. Its effects on the yield and survival of medicinal plants are poorly studied. However, it is known that applying urea for a long time affects the soil negatively. Due to these negative effects, alternative fertilizers such as graphene-based metal composite (GMC) are being tested for their efficiency. In the present study, for the first time, we tested the effects of urea and GMC on the germination and performance of B. chitria. GMC showed maximum germination at 30 ppm (75%) and urea at 15 ppm (79%). Findings reveal non-significant effects of GMC and urea on germination and performance of B. chitria, suggesting the use of GMC as an alternative fertilizer.
Collapse
Affiliation(s)
- Sheetal Oli
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, 263001, India
| | - Gaurav Tatrari
- PRS-NSNT Centre, Department of Chemistry, D.S.B Campus, Kumaun University, Nainital, 263001, India
| | - Harsh Kumar Chauhan
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, 263001, India
| | - Anil Kumar Bisht
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, 263001, India.
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, India
| |
Collapse
|
39
|
Xin L, Tan GY, Zhang Q, Zhang Q. Protective Effects of Phellodendron Species on Bone Health: A Novel Perspective on Their Potentials in Treating Osteoporosis and Osteoarthritis. Chin J Integr Med 2024; 30:379-384. [PMID: 38157118 DOI: 10.1007/s11655-023-3751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 01/03/2024]
Abstract
Phellodendron (PN) species, traditionally used in Chinese medicine for centuries, hold promise as a potential treatment for osteoporosis (OP) and osteoarthritis (OA) due to their bioactive compounds. The bioactive compounds, including berberine and palmatine, exhibit anti-inflammatory, antioxidant, and bone-protective properties, contributing to their potential therapeutic benefits in promoting bone health and preventing bone loss. However, challenges such as the need for standardized preparation and dosing, limited clinical studies, and potential interactions with other medications hinder their clinical use. Nonetheless, the rich history of PN species in Chinese medicine provides a promising foundation for future investigation into their potential as alternative treatments for OP and OA. Further research is needed to fully understand the underlying mechanisms of action and explore the clinical implications of PN for bone health.
Collapse
Affiliation(s)
- Li Xin
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guo-Yao Tan
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiang Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
40
|
Ng CYJ, Pan K, Wang E, Yuan J, Zhong LLD. Medical food therapy for the long-term management of non-alcoholic fatty liver disease. Gastroenterol Rep (Oxf) 2024; 12:goae020. [PMID: 38560598 PMCID: PMC10980581 DOI: 10.1093/gastro/goae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keyi Pan
- Clinical Research Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Enkang Wang
- Beicai Community Health Service Center of Pudong New Area, Shanghai, P. R. China
| | - Jianye Yuan
- Clinical Research Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Linda L D Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
41
|
Picheta N, Piekarz J, Burdan O, Satora M, Tarkowski R, Kułak K. Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review. Int J Mol Sci 2024; 25:3796. [PMID: 38612606 PMCID: PMC11012191 DOI: 10.3390/ijms25073796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is a real gynecological problem among women of reproductive age from 15 to 49. A recent analysis showed that 75% of women will have an occurrence at least once per year, while 5% are observed to have recurrent vaginal mycosis-these patients may become unwell four or more times a year. This pathology is caused in 85-90% of cases by fungi of the Candida albicans species. It represents an intractable medical problem for female patients due to pain and pruritus. Due to the observation of an increasing number of strains resistant to standard preparations and an increase in the recurrence of this pathology when using local or oral preferential therapy, such as fluconazole, an analysis was launched to develop alternative methods of treating VVC using herbs such as dill, turmeric, and berberine. An in-depth analysis of databases that include scientific articles from recent years made it possible to draw satisfactory conclusions supporting the validity of herbal therapy for the pathology in question. Although phytotherapy has not yet been approved by the Food and Drug Administration, it appears to be a promising therapeutic solution for strains that are resistant to existing treatments. There is research currently undergoing aimed at comparing classical pharmacotherapy and herbal therapy in the treatment of vaginal candidiasis for the purpose of increasing medical competence and knowledge for the care of the health and long-term comfort of gynecological patients.
Collapse
Affiliation(s)
- Natalia Picheta
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Julia Piekarz
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Oliwia Burdan
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Małgorzata Satora
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Rafał Tarkowski
- I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland;
| | - Krzysztof Kułak
- I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland;
| |
Collapse
|
42
|
Vafaei S, Alkhrait S, Yang Q, Ali M, Al-Hendy A. Empowering Strategies for Lifestyle Interventions, Diet Modifications, and Environmental Practices for Uterine Fibroid Prevention; Unveiling the LIFE UP Awareness. Nutrients 2024; 16:807. [PMID: 38542717 PMCID: PMC10975324 DOI: 10.3390/nu16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Uterine fibroids (UFs) are the most common prevalent benign tumor among women of reproductive age, disproportionately affecting women of color. This paper introduces an innovative management strategy for UFs, emphasizing the curbing of disease prevention and progression. Traditionally, medical intervention is deferred until advanced stages, necessitating invasive surgeries such as hysterectomy or myomectomy, leading to high recurrence rates and increased healthcare costs. The strategy, outlined in this review, emphasizes UF disease management and is named LIFE UP awareness-standing for Lifestyle Interventions, Food Modifications, and Environmental Practices for UF Prevention. These cost-effective, safe, and accessible measures hold the potential to prevent UFs, improve overall reproductive health, reduce the need for invasive procedures, and generate substantial cost savings for both individuals and healthcare systems. This review underscores the importance of a proactive UF management method, paving the way for future research and policy initiatives in this domain.
Collapse
Affiliation(s)
| | | | | | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (S.A.); (Q.Y.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (S.A.); (Q.Y.)
| |
Collapse
|
43
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
44
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
45
|
Shao L, Zhao Y, Heinrich M, Prieto-Garcia JM, Manzoni C. Active natural compounds perturb the melanoma risk-gene network. G3 (BETHESDA, MD.) 2024; 14:jkad274. [PMID: 38035793 PMCID: PMC10849364 DOI: 10.1093/g3journal/jkad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous melanoma is an aggressive type of skin cancer with a complex genetic landscape caused by the malignant transformation of melanocytes. This study aimed at providing an in silico network model based on the systematic profiling of the melanoma-associated genes considering germline mutations, somatic mutations, and genome-wide association study signals accounting for a total of 232 unique melanoma risk genes. A protein-protein interaction network was constructed using the melanoma risk genes as seeds and evaluated to describe the functional landscape in which the melanoma genes operate within the cellular milieu. Not only were the majority of the melanoma risk genes able to interact with each other at the protein level within the core of the network, but this showed significant enrichment for genes whose expression is altered in human melanoma specimens. Functional annotation showed the melanoma risk network to be significantly associated with processes related to DNA metabolism and telomeres, DNA damage and repair, cellular ageing, and response to radiation. We further explored whether the melanoma risk network could be used as an in silico tool to predict the efficacy of anti-melanoma phytochemicals, that are considered active molecules with potentially less systemic toxicity than classical cytotoxic drugs. A significant portion of the melanoma risk network showed differential expression when SK-MEL-28 human melanoma cells were exposed to the phytochemicals harmine and berberine chloride. This reinforced our hypothesis that the network modeling approach not only provides an alternative way to identify molecular pathways relevant to disease but it may also represent an alternative screening approach to prioritize potentially active compounds.
Collapse
Affiliation(s)
- Luying Shao
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX London, UK
| | - Yibo Zhao
- Department of Pharmacology, UCL School of Pharmacy, WC1N 1AX London, UK
| | - Michael Heinrich
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX London, UK
- Chinese Medicine Research Center, and Department of Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Jose M Prieto-Garcia
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, WC1N 1AX London, UK
| |
Collapse
|
46
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
47
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
48
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
49
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
50
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|