1
|
Navin AK, Rejani CT, Chandrasekaran B, Tyagi A. Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC). Biomed Pharmacother 2025; 187:118058. [PMID: 40253830 DOI: 10.1016/j.biopha.2025.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
Castration-resistant prostate cancer (CRPC) presents a significant challenge due to its resistance to conventional androgen deprivation therapies. Urolithins, bioactive metabolites derived from ellagitannins, have recently emerged as promising therapeutic agents for CRPC. Urolithins not only inhibit androgen receptor (AR) signaling, a crucial factor in the progression of CRPC, but also play a key role in regulating oxidative stress by their antioxidant properties, thereby inhibiting increased reactive oxygen species, a common feature of the aggressive nature of CRPC. Research has shown that urolithins induce apoptosis and diminish pro-survival signaling, leading to tumor inhibition. This review delves into the intricate mechanisms through which urolithins exert their therapeutic effects, focusing on both AR-dependent and AR-independent pathways. It also explores the exciting potential of combining urolithins with androgen ablation therapy, opening new avenues for CRPC treatment.
Collapse
Affiliation(s)
- Ajit Kumar Navin
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | | | - Balaji Chandrasekaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Ashish Tyagi
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
2
|
Sahoo BK, Velavalapalli VM. Deciphering the biophysical aspects of the interaction of 3,5,4'-trihydroxy-trans-stilbene with ribonuclease A: spectroscopic and computational studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5773-5783. [PMID: 39607551 DOI: 10.1007/s00210-024-03664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Drug-receptor interaction is an important aspect in drug action, drug discovery, and pharmacological aspects. The molecule 3,5,4'-trihydroxy-trans-stilbene known as resveratrol is a natural polyphenol and exhibits diverse biological activities. Ribonuclease A catalyses the degradation of RNA by its ribonucleolytic activity. The report presents the binding interaction of resveratrol with RNase A using experimental and theoretical techniques. Experimental studies revealed the interaction strength of 104 M-1 order with a single binding site. Resveratrol quenched the ribonuclease A fluorescence with a quenching constant of 104 M-1 range. The accessible fraction of the fluorophore was found to be 0.75 besides non-radiative energy transfer from ribonuclease A to resveratrol. The donor-acceptor distance was 2.14 nm from FRET calculations. No visible changes in the protein structure was evident from the circular dichroism studies. The interface residues involved in the interaction were obtained from docking studies. Further, the participation of the active site residues, His 12, His 119, and Lys 41 with interaction indicates the location of resveratrol near to the active site of ribonuclease A and indicates its possible potential to inhibit the ribonuclease A activity. The RMSD of less than 3 Å indicates stable conformation of protein in the complex. The protein RMSF value in the complex less than 3 Å shows no deviation of protein residues over time and thus suggests no conformational variation in the protein after binding.
Collapse
Affiliation(s)
- Bijaya Ketan Sahoo
- Department of Chemistry, School of Science, GITAM Deemed to Be University, Hyderabad Campus, Hyderabad, 502329, India.
| | | |
Collapse
|
3
|
Yapar EA, Ozdemir MN, Durgun ME, Dagıstan OA, Cavalu S, Ozsoy Y, Kartal M. Nanodelivery Approaches of Phytoactives for Skin Cancers: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:631-653. [PMID: 38616742 DOI: 10.2174/0113892010300081240329033208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Türkiye
| | - Ozlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul, Türkiye
- Phytotheraphy Research Center, Bezmialem vakıf University, Istanbul, Türkiye
| |
Collapse
|
4
|
Capó X, Jiménez-Garcia M, Sharopov F, Tsouh Fokou PV, Martorell M, Aldahish AA, Pezzani R, Sharifi-Rad J, Calina D. Unveiling the potential of HS-1793: a review of its anticancer properties and therapeutic promise. Future Med Chem 2024; 16:2301-2311. [PMID: 39555577 PMCID: PMC11622770 DOI: 10.1080/17568919.2024.2424150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
HS-1793 is a novel derivative of resveratrol, a compound known for its numerous beneficial effects, including anticancer activity, anti-inflammatory response, antimicrobial, antiaging, anti-cardiovascular disease activity, neuroprotective activity, etc. Despite its wide and interesting properties, resveratrol suffers from a crucial flaw because it is low bioavailable. For this reason, many other derivatives were explored and among them, HS-1793 has caught the attention of researchers. HS-1793 is a synthetic derivative of resveratrol discovered in 2007 that has been shown to have anti-cancer and anti-inflammatory properties. In addition, the compound showed a positive profile in metabolic processes, with adequate pharmacokinetics and pharmacodynamics. This review highlights current research on HS-1793, evaluating in vitro and in vivo works and lays the foundation for novel explorative trials in human diseases.
Collapse
Affiliation(s)
- Xavier Capó
- Translational Research in Aging & Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Manuel Jiménez-Garcia
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products” of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | | | - Miquel Martorell
- Department of Nutrition & Dietetics, Faculty of Pharmacy & Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 61441, Kingdom of Saudi Arabia
| | - Raffaele Pezzani
- Phytotherapy Lab, Dept. Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy
- Accademia Italiana di Fitoterapia, Via Ugo la Malfa, 24, BS25100, Brescia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine & Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
5
|
Villegas C, Cortez N, Ogundele AV, Burgos V, Pardi PC, Cabrera-Pardo JR, Paz C. Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity. Biomolecules 2024; 14:867. [PMID: 39062581 PMCID: PMC11274592 DOI: 10.3390/biom14070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Ayorinde Victor Ogundele
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete 1530, Nigeria
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | | | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| |
Collapse
|
6
|
Han TH, Lee J, Harmalkar DS, Kang H, Jin G, Park MK, Kim M, Yang HA, Kim J, Kwon SJ, Han TS, Choi Y, Won M, Ban HS, Lee K. Stilbenoid derivatives as potent inhibitors of HIF-1α-centric cancer metabolism under hypoxia. Biomed Pharmacother 2024; 176:116838. [PMID: 38820970 DOI: 10.1016/j.biopha.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor associated with cancer metabolism and is regarded as a potent anticancer therapeutic strategy within the hypoxic microenvironment of cancer. In this study, stilbenoid derivatives were designed, synthesized, and assessed for their capacity to inhibit HIF-1α-associated cancer metabolism and evaluated for inhibition of cancer cell viability and HIF activation. Through the structure-activity relationship studies, compound 28e was identified as the most potent derivative. Specifically, under the hypoxic condition, 28e reduced the accumulation of HIF-1α protein and the expression of its target genes related to glucose metabolism without affecting the expression of HIF-1α mRNA. Furthermore, 28e inhibited glucose uptake, glycolytic metabolism, and mitochondrial respiration, decreasing cellular ATP production under hypoxic conditions. In addition, 28e displayed significant anti-tumor effects and effectively suppressed the accumulation of HIF-1α protein in tumor tissue in vivo xenograft model. These findings suggest that our stilbenoid derivatives exert their anticancer effects by targeting HIF-1α-centered cancer metabolism under hypoxic conditions.
Collapse
Affiliation(s)
- Tae-Hee Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Joohan Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Dipesh S Harmalkar
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Chemistry, Government College of Arts, Science and Commerce, Sanquelim, Goa 403505, India
| | - Hyeseul Kang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Guanghai Jin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Min Kyung Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Minkyoung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hyun-A Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jinsu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Su Jeong Kwon
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
7
|
Zhang H, Zhou Y, Pan Z, Wang B, Yang L, Zhang N, Chen B, Wang X, Jian Z, Wang L, Ling H, Qin X, Zhang Z, Liu T, Zheng A, Tan Y, Bi Y, Yang R. Toxicity assessment of Cucurbita pepo cv Dayangua and its effects on gut microbiota in mice. BMC Complement Med Ther 2024; 24:243. [PMID: 38909225 PMCID: PMC11193904 DOI: 10.1186/s12906-024-04551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Cucurbita pepo cv Dayangua (CPD) is an edible plant with diverse pharmacological properties. The current research on CPD has primarily focused on initial investigations of its chemical composition and pharmacological effects, and no comprehensive toxicity assessment has been conducted to date. METHODS In the present study, the toxicity of CPD was evaluated through both acute and sub-chronic oral toxicity tests in mice. 16S rDNA sequencing was used to analyze the composition of the gut microbiota of mice at different time points to observe the effect of CPD on these microbial communities. RESULTS In the acute toxicity test, CPD exhibited low toxicity, with a median lethal dose (LD50) > 2000 mg/kg. The sub-chronic toxicity test indicated that CPD administration at doses of 200, 400, and 600 mg/kg did not cause mortality or significant organ damage in mice. Furthermore, analysis of the gut microbiota after gavage administration of CPD at 400 and 600 mg/kg revealed an improved abundance of some beneficial gut bacteria. CONCLUSIONS In summary, no acute or sub-chronic toxic effects were observed in mice following the oral administration of CPD. CPD did not affect the structure and diversity of the gut microbiota and may contribute to an increase in the number of beneficial gut bacteria.
Collapse
Affiliation(s)
- Huan Zhang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bikun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lei Yang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Nan Zhang
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Baiyi Chen
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Xiaona Wang
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Zhiguang Jian
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaoming Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhelin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Teng Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Ruifu Yang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
8
|
Farhan M. Cytotoxic Activity of the Red Grape Polyphenol Resveratrol against Human Prostate Cancer Cells: A Molecular Mechanism Mediated by Mobilization of Nuclear Copper and Generation of Reactive Oxygen Species. Life (Basel) 2024; 14:611. [PMID: 38792632 PMCID: PMC11122162 DOI: 10.3390/life14050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Resveratrol, a polyphenolic compound found primarily in red grapes and pomegranates is known as an antioxidant but can act as a pro-oxidant when copper ions are present. Here, resveratrol is demonstrated to reduce cell growth (as evaluated by MTT assay) and promote apoptosis-like cell death (as measured by Histone/DNA ELISA) in prostate cancer cell lines PC3 and C42B. This effect is effectively inhibited by a copper chelator (neocuproine) and reactive oxygen species (ROS) scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide). These inhibitory effects provide evidence that intracellular copper reacts with resveratrol within cancer cells, resulting in DNA damage via the generation of reactive oxygen species. Additionally, it has been demonstrated that non-tumorigenic epithelial cell lines (MCF-10A) grown in media supplemented with copper are more susceptible to growth inhibition by resveratrol, as confirmed by the observed reduction in cell proliferation. Copper supplementation induces enhanced expression of the copper transporter CTR1 in MCF-10A cells, which is reduced by the addition of resveratrol to the media. The selective cell death of cancer cells generated by copper-mediated and ROS mechanisms may help to explain the anticancer properties of resveratrol.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
9
|
Ma Z, Zeng P, Zhai T, Zhao Y, Liang H. In Situ Mitochondrial Biomineralization for Drug-Free Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310218. [PMID: 38315577 DOI: 10.1002/adma.202310218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/13/2024] [Indexed: 02/07/2024]
Abstract
The common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO2) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells. BCLT preferentially accumulates inside tumor mitochondria and then is activated by near-infrared (NIR) laser irradiation to produce abundant PO4 3- and Ca2+ to accelerate in situ mitochondrial mineralization, leading to mitochondrial dysfunction and cancer cell death. More importantly, both PO4 3- and Ca2+ are essential components of metabolism in the body, and random gradient diffusion or premature leakage does not cause damage to adjacent normal cells. This achievement promises to be an alternative to conventional chemotherapy in clinical practice for many specific tumor types.
Collapse
Affiliation(s)
- Zhaoyu Ma
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Pei Zeng
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Prabhu KS, Jessy S, Kuttikrishnan S, Mujeeb F, Mariyam Z, Habeeba U, Ahmad N, Bhat AA, Uddin S. Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies. Pharmaceuticals (Basel) 2024; 17:578. [PMID: 38794148 PMCID: PMC11123949 DOI: 10.3390/ph17050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Serah Jessy
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Farina Mujeeb
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India;
| | - Zahwa Mariyam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Ummu Habeeba
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
11
|
Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG. Resveratrol as a Promising Nutraceutical: Implications in Gut Microbiota Modulation, Inflammatory Disorders, and Colorectal Cancer. Int J Mol Sci 2024; 25:3370. [PMID: 38542344 PMCID: PMC10970219 DOI: 10.3390/ijms25063370] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 12/20/2024] Open
Abstract
Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Mathew Cherian
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| |
Collapse
|
12
|
Fernandes AS, de Melo Bisneto AV, Silva LS, Flávia Luiz Cardoso Bailão E, Cardoso CG, Carneiro CC, da Costa Santos S, Chen-Chen L. Tellimagrandin-I and camptothin a exhibit chemopreventive effects in Salmonella enterica serovar Typhimurium strains and human lymphocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:185-198. [PMID: 38073488 DOI: 10.1080/15287394.2023.2290641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.
Collapse
Affiliation(s)
- Amanda Silva Fernandes
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luana Santos Silva
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Clever Gomes Cardoso
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cristiene Costa Carneiro
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
13
|
Li Z, Zhang J, You S, Zhang J, Zhang Y, Akram Z, Sun S. Pterostilbene upregulates MICA/B via the PI3K/AKT signaling pathway to enhance the capability of natural killer cells to kill cervical cancer cells. Exp Cell Res 2024; 435:113933. [PMID: 38296018 DOI: 10.1016/j.yexcr.2024.113933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
Natural killer (NK) cells are triggered by the innate immune response in the tumor microenvironment. The extensive set of stimulating and inhibiting receptors mediates the target recognition of NK cells, and controls the strength of the effector reaction countering specific targeted cells. Yet, lacking major MHC (histocompatibility complex) MICA/B class I chain-related proteins on the membrane of tumor cells results in the failure of NK cell recognition and ability to resist NK cell destruction. Searching databases and molecular docking suggested that in cervical cancer, pterostilbene (3,5-dimethoxy-40-hydroxystilbene; PTS) in Vaccinium corymbosum extract could constrain PI3K/AKT signaling and improving the MICA/B expression. In flow cytometry, MTT assay, viability/cytotoxicity assay, and colony development assays, PTS reduced the development of cervical cancer cells and increased apoptosis. The quantitative real-time PCR (qRT-PCR) and a Western blot indicate that PTS controlled the cytolytic action of NK cells in tumor cells via increasing the MICA/B expression, thus modifying the anti-tumor immune response in cervical cancer.
Collapse
Affiliation(s)
- Zuoping Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China; Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Jiaru Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China.
| | - Shiwan You
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China.
| | - Jing Zhang
- Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Yuling Zhang
- Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Zubair Akram
- Shihezi University College of Chemistry and Chemical Engineering, Shihezi, 832002, Xinjiang, China.
| | - Shiguo Sun
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, Xinjiang, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Arif M, Pandey P, Khan F. Review Deciphering the Anticancer Efficacy of Resveratrol and their Associated Mechanisms in Human Carcinoma. Endocr Metab Immune Disord Drug Targets 2024; 24:1015-1026. [PMID: 37929735 DOI: 10.2174/0118715303251351231018145903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
The scientific world has recently shown wider attention to elucidating the anticancerous potential of numerous plant-based bioactive compounds. Many research studies have suggested that consuming foods high in polyphenols, which are present in large amounts in grains, legumes, vegetables, and fruits, may delay the onset of various illnesses, including cancer. Normal cells with genetic abnormalities begin the meticulously organized path leading to cancer, which causes the cells to constantly multiply, colonize, and metastasize to other organs like the liver, lungs, colon, and brain. Resveratrol is a naturally occurring stilbene and non-flavonoid polyphenol, a phytoestrogen with antioxidant, anti-inflammatory, cardioprotective, and anticancer properties. Resveratrol makes cancer cells more susceptible to common chemotherapeutic treatments by reversing multidrug resistance in cancer cells. This is especially true when combined with clinically used medications. Several new resveratrol analogs with enhanced anticancer effectiveness, absorption, and pharmacokinetic profile have been discovered. The present emphasis of this review is the modulation of intracellular molecular targets by resveratrol in vivo and in vitro in various malignancies. This review would help future researchers develop a potent lead candidate for efficiently managing human cancers.
Collapse
Affiliation(s)
- Mohd Arif
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| |
Collapse
|
15
|
Jurczyk M, Musiał-Kulik M, Foryś A, Godzierz M, Kaczmarczyk B, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Comparison of PLLA-PEG and PDLLA-PEG micelles for co-encapsulation of docetaxel and resveratrol. J Biomed Mater Res B Appl Biomater 2024; 112:e35318. [PMID: 37650461 DOI: 10.1002/jbm.b.35318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
The interest in combining chemosensitizers with cytostatics in cancer therapy is growing, which causes also a need to develop their delivery systems. Example of the combination with beneficial therapeutic effects is docetaxel (Dtx) and resveratrol (Res). Although poly(lactide)-co-poly(ethylene glycol) (PLA-PEG) micelles have been considered as one of the most promising platforms for drug delivery, their properties may depend on the stereoisomeric form of hydrophobic block. Therefore, the aim of this study was evaluation of the effect of PLA block on co-encapsulation and release rate of Dtx and Res, which has not been studied so far. This article presents a comparison of single- (Dtx or Res) and dual-drug (Dtx and Res) loaded micelles obtained from poly(l,l-lactide)-co-poly(ethylene glycol) (PLLA-PEG) and poly(d,l-lactide)-co-poly(ethylene glycol) (PDLLA-PEG). The analyzes of the micelles have been conducted including morphology, drug(s) encapsulation efficiency, intermolecular interactions, in vitro drug release, and cytotoxicity. Differences in drug loading ability and release profile have been observed between Res and Dtx but also depending on the polymer and number of drugs in micelles (single vs. dual loaded). The PLLA-PEG micelles have a significantly higher Dtx encapsulation capacity than PDLLA-PEG micelles. The highest cytotoxicity was shown for Dtx and Res dual-loaded micelles, regardless of the polymer. The findings may be used for selection of PLA-based drug delivery systems containing Dtx and Res.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
16
|
Salmani-Javan E, Farhoudi Sefidan Jadid M, Zarghami N. Recent advances in molecular targeted therapy of lung cancer: Possible application in translation medicine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:122-133. [PMID: 38234663 PMCID: PMC10790298 DOI: 10.22038/ijbms.2023.72407.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 01/19/2024]
Abstract
Lung cancer is one of the leading causes of death among all cancer deaths. This cancer is classified into two different histological subtypes: non-small cell lung cancer (NSCLC), which is the most common subtype, and small cell lung cancer (SCLC), which is the most aggressive subtype. Understanding the molecular characteristics of lung cancer has expanded our knowledge of the cellular origins and molecular pathways affected by each of these subtypes and has contributed to the development of new therapies. Traditional treatments for lung cancer include surgery, chemotherapy, and radiotherapy. Advances in understanding the nature and specificity of lung cancer have led to the development of immunotherapy, which is the newest and most specialized treatment in the treatment of lung cancer. Each of these treatments has advantages and disadvantages and causes side effects. Today, combination therapy for lung cancer reduces side effects and increases the speed of recovery. Despite the significant progress that has been made in the treatment of lung cancer in the last decade, further research into new drugs and combination therapies is needed to extend the clinical benefits and improve outcomes in lung cancer. In this review article, we discussed common lung cancer treatments and their combinations from the most advanced to the newest.
Collapse
Affiliation(s)
- Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi Sefidan Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
17
|
Chen P, Lou L, Sharma B, Li M, Xie C, Yang F, Wu Y, Xiao Q, Gao L. Recent Advances on PKM2 Inhibitors and Activators in Cancer Applications. Curr Med Chem 2024; 31:2955-2973. [PMID: 37455458 DOI: 10.2174/0929867331666230714144851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Metabolic reprogramming of cells, from the normal mode of glucose metabolism named glycolysis, is a pivotal characteristic of impending cancerous cells. Pyruvate kinase M2 (PKM2), an important enzyme that catalyzes the final rate-limiting stage during glycolysis, is highly expressed in numerous types of tumors and aids in development of favorable conditions for the survival of tumor cells. Increasing evidence has suggested that PKM2 is one of promising targets for innovative drug discovery, especially for the developments of antitumor therapeutics. Herein, we systematically summarize the recent advancement on PKM2 modulators including inhibitors and activators in cancer applications. We also discussed the classifications of pyruvate kinases in mammals and the biological functions of PKM2 in this review. We do hope that this review would provide a comprehensive understanding of the current research on PKM2 modulators, which may benefit the development of more potent PKM2-related drug candidates to treat PKM2-associated diseases including cancers in future.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Mengchu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Chengliang Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
18
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: 10.1080/09540105.2023.2265686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/28/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
19
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: https:/doi.org/10.1080/09540105.2023.2265686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 05/18/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
20
|
Ballav S, Lokhande KB, Yadav RS, Ghosh P, Swamy KV, Basu S. Exploring binding mode assessment of novel kaempferol, resveratrol, and quercetin derivatives with PPAR-α as potent drug candidates against cancer. Mol Divers 2023; 27:2867-2885. [PMID: 36544031 DOI: 10.1007/s11030-022-10587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR)-α, a ligand-activated transcription factor stands out to be a valuable protein target against cancer. Given that ligand binding is the crucial process for the activation of PPAR-α, fibrate class of synthetic compounds serves as potent agonist for the receptor. However, their serious side effects limit the long-term application in cancer. This emphasizes the dire need to identify new candidates that would exert desired activation by abrogating the adverse effects caused by synthetic agonists. Natural dietary products serve as an important source of drug discovery. Hence, the present study encompasses the investigation of the role of natural plant phenolic compounds: kaempferol, resveratrol, and quercetin and their 8708 derivatives by the means of computational pipeline comprising molecular docking and molecular dynamic (MD) simulation techniques. Docking calculations shortlisted potential candidates, namely 6-cinnamylchrysin (6-CC), resveratrol potassium-4-sulfate (RPS) and 6-[2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxyhexyl nitrate (DHOON), and derivatives of kaempferol, resveratrol, and quercetin, respectively. 6-CC, RPS, and DHOON manifested better affinities of - 32.83 kcal/mol (Ala333, Lys358, His440), - 27.22 kcal/mol (Tyr314, Met355), and - 30.18 kcal/mol (Ser280, Tyr314, Ala333), respectively, and were found to act as good stimulants for PPAR-α. Among these three compounds, 6-CC caused relatively least deviations and fluctuations analyzed through MD simulation which judiciously held responsible to attain most favorable interaction with PPAR-α. Followed by the binding free energy (ΔG) calculations using MM-GBSA confirmed the key role of 6-CC toward PPAR-α. The compound 6-CC also achieved high drug-likeness and pharmacokinetic properties. Thus, these findings stipulate new drug leads for PPAR-α receptor which abets a way to develop new anti-cancer drugs.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, 411033, Maharashtra, India
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India
| | - Rohit Singh Yadav
- Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, 411033, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - K V Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, 411033, Maharashtra, India
- Bioinformatics Research Group, MIT School of Bioengineering Science & Research, MIT Art, Design and Technology University, Pune, Maharashtra, 412201, India
| | - Soumya Basu
- Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India.
| |
Collapse
|
21
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
22
|
Ziyang T, Xirong H, Chongming A, Tingxin L. The potential molecular pathways of Astragaloside-IV in colorectal cancer: A systematic review. Biomed Pharmacother 2023; 167:115625. [PMID: 37793276 DOI: 10.1016/j.biopha.2023.115625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Astragaloside IV (AS-IV), a traditional Chinese medicine, is often used to treat cancer. Colorectal cancer imposes a heavy burden on patients and society. It is essential to update the clinical evidence supporting AS-IV in the treatment of colorectal cancer. The purpose of this review is to systematically evaluate the molecular pathway and safety of AS-IV in colorectal cancer. 7 databases were queried for Jan 2012-Dec 2022. A total of 37 related articles were retrieved. 8 papers were included to evaluate the role of AS-IV in colorectal cancer and make a review. AS-IV plays vital roles in colorectal cancer, especially in the suppression of proliferation, inducing tumor cell apoptosis, increasing immune function and reducing drug resistance. Furthermore, AS-IV has been proved to regulate many signaling pathways, which are usually affected by most cancers. However, a large-scale and well-designed multicenter randomized controlled study ensures that the safety and optimal dose of AS-IV will be determined in the future.
Collapse
Affiliation(s)
- Tang Ziyang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hu Xirong
- Faculty of Nursing, Xi'an Jiaotong University, Xi'an, PR China
| | - An Chongming
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Li Tingxin
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
23
|
Bartnik M, Sławińska-Brych A, Mizerska-Kowalska M, Zdzisińska B. Evaluation of the Biological Effect of Non-UV-Activated Bergapten on Selected Human Tumor Cells and the Insight into the Molecular Mechanism of Its Action. Int J Mol Sci 2023; 24:15555. [PMID: 37958539 PMCID: PMC10647757 DOI: 10.3390/ijms242115555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
There is some evidence that non-photoactivated psoralens may be active against breast and colon tumor cells. Therefore, we evaluated the antiproliferative, proapoptotic, and anti-migrative effect of 5-methoxypsoralen (5-MOP) isolated from Peucedanum tauricum MB fruits in human colorectal adenocarcinoma (HT-29 and SW620), osteosarcoma (Saos-2 and HOS), and multiple myeloma (RPMI8226 and U266). Dose- and cell-line-dependent effects of 5-MOP on viability and proliferation were observed, with the strongest inhibitory effect against Saos-2 and a moderate effect against the HOS, HT-29, and SW620 cells. Multiple myeloma showed low sensitivity. The high viability of human normal cell cultures (HSF and hFOB) in a wide range of 5-MOP concentrations tested (6.25-100 µM) was confirmed. Moreover, the migration of treated Saos-2, SW620, and HT-29 cell lines was impaired, as indicated via a wound healing assay. Flow cytometry analysis conducted on Saos-2 cells revealed the ability of 5-MOP to block the cell cycle in the G2 phase and trigger apoptosis, which was accompanied by a loss of mitochondrial membrane potential, caspases (-9 and -3) activation, the altered expression of the Bax and Bcl-2 proteins, and decreased AKT phosphorylation. This is the first report evaluating the antiproliferative and antimigratory impact of non-UV-activated bergapten on the abovementioned (except for HT-29) tumor cells, which provides new data on the potential role of 5-MOP in inhibiting the growth of various types of therapeutic-resistant cancers.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
24
|
Farhan M, Rizvi A. The Pharmacological Properties of Red Grape Polyphenol Resveratrol: Clinical Trials and Obstacles in Drug Development. Nutrients 2023; 15:4486. [PMID: 37892561 PMCID: PMC10610408 DOI: 10.3390/nu15204486] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Resveratrol is a stilbenoid from red grapes that possesses a strong antioxidant activity. Resveratrol has been shown to have anticancer activity, making it a promising drug for the treatment and prevention of numerous cancers. Several in vitro and in vivo investigations have validated resveratrol's anticancer capabilities, demonstrating its ability to block all steps of carcinogenesis (such as initiation, promotion, and progression). Additionally, resveratrol has been found to have auxiliary pharmacological effects such as anti-inflammatory, cardioprotective, and neuroprotective activity. Despite its pharmacological properties, several obstacles, such as resveratrol's poor solubility and bioavailability, as well as its adverse effects, continue to be key obstacles to drug development. This review critically evaluates the clinical trials to date and aims to develop a framework to develop resveratrol into a clinically viable drug.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
25
|
Zayed A, Al Hroot J, Mayyas A, Al-Husein B. Rapid high performance liquid chromatography method for erlotinib quantification in vitro: Application to study the effect of resveratrol on metabolism and cellular uptake of erlotinib. Fundam Clin Pharmacol 2023; 37:983-993. [PMID: 37143385 DOI: 10.1111/fcp.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/09/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Erlotinib is a selective epidermal growth factor receptor inhibitor that is used for the treatment of non-small cell lung cancer and pancreatic cancer. Its metabolism is mainly mediated by cytochrome P450 3A (CYP 3A). Resveratrol, a natural compound found in many plants and supplements, is known to inhibit CYP3A enzyme, therefore, it may act as an inhibitor for the metabolism of erlotinib. OBJECTIVE Development of a rapid high performance liquid chromatography with photodiode array detection (HPLC-PDA) method for the quantification of erlotinib in liver microsomes and cancer cells and its application to study resveratrol effect on metabolism and cellular uptake of erlotinib. METHODS HPLC-PDA was used to develop an efficient bioanalytical method with a 2.5-min runtime preceded by a simple protein precipitation step. The method was validated according to the European Medicines Agency guidelines. Erlotinib metabolic stability and resveratrol effect on erlotinib metabolite formation were evaluated in rat liver microsomes. Furthermore, the method was used to measure the intracellular concentrations of erlotinib in cancer colorectal cells and investigating resveratrol effect on the cellular uptake of erlotinib. RESULTS A rapid HPLC-PDA method was developed and validated for the first time to address potential drug interaction of erlotinib with resveratrol. Resveratrol was a strong inhibitor of erlotinib metabolism in vitro with IC50 = 4.03 μM. Resveratrol, however, had no effect on erlotinib cellular uptake after 1 h incubation in human colorectal cancer cells. CONCLUSION The study suggests that resveratrol may produce a potential herb-drug interaction with erlotinib at the metabolism level and should be investigated in patients in the clinic.
Collapse
Affiliation(s)
- Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Jomana Al Hroot
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdulraouf Mayyas
- Department of Conservation Science, Queen Rania Faculty of Tourism and Heritage, The Hashemite University, Al-Zarqa, Jordan
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
26
|
Delgado-Gonzalez P, Garza-Treviño EN, de la Garza Kalife DA, Quiroz Reyes A, Hernández-Tobías EA. Bioactive Compounds of Dietary Origin and Their Influence on Colorectal Cancer as Chemoprevention. Life (Basel) 2023; 13:1977. [PMID: 37895359 PMCID: PMC10608661 DOI: 10.3390/life13101977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of death and the third most diagnosed cancer worldwide. The tumor microenvironment and cancer stem cells participate in colorectal tumor progression and can dictate malignancy. Nutrition status affects treatment response and the progression or recurrence of the tumor. This review summarizes the main bioactive compounds against the molecular pathways related to colorectal carcinogenesis. Moreover, we focus on the compounds with chemopreventive properties, mainly polyphenols and carotenoids, which are highly studied dietary bioactive compounds present in major types of food, like vegetables, fruits, and seeds. Their proprieties are antioxidant and gut microbiota modulation, important in the intestine because they decrease reactive oxygen species and inflammation, both principal causes of cancer. These compounds can promote apoptosis and inhibit cell growth, proliferation, and migration. Combined with oncologic treatment, a sensitization to first-line colorectal chemotherapy schemes, such as FOLFOX and FOLFIRI, is observed, making them an attractive and natural support in the oncologic treatment of CRC.
Collapse
Affiliation(s)
- Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - David A. de la Garza Kalife
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - Adriana Quiroz Reyes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | | |
Collapse
|
27
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
28
|
Jaiswara PK, Shukla SK. Chemotherapy-Mediated Neuronal Aberration. Pharmaceuticals (Basel) 2023; 16:1165. [PMID: 37631080 PMCID: PMC10459787 DOI: 10.3390/ph16081165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Chemotherapy is a life-sustaining therapeutic option for cancer patients. Despite the advancement of several modern therapies, such as immunotherapy, gene therapy, etc., chemotherapy remains the first-line therapy for most cancer patients. Along with its anti-cancerous effect, chemotherapy exhibits several detrimental consequences that restrict its efficacy and long-term utilization. Moreover, it effectively hampers the quality of life of cancer patients. Cancer patients receiving chemotherapeutic drugs suffer from neurological dysfunction, referred to as chemobrain, that includes cognitive and memory dysfunction and deficits in learning, reasoning, and concentration ability. Chemotherapy exhibits neurotoxicity by damaging the DNA in neurons by interfering with the DNA repair system and antioxidant machinery. In addition, chemotherapy also provokes inflammation by inducing the release of various pro-inflammatory cytokines, including NF-kB, IL-1β, IL-6, and TNF-α. The chemotherapy-mediated inflammation contributes to chemobrain in cancer patients. These inflammatory cytokines modulate several growth signaling pathways and reactive oxygen species homeostasis leading to systemic inflammation in the body. This review is an effort to summarize the available information which discusses the role of chemotherapy-induced inflammation in chemobrain and how it impacts different aspects of therapeutic outcome and the overall quality of life of the patient. Further, this article also discusses the potential of herbal-based remedies to overcome chemotherapy-mediated neuronal toxicity as well as to improve the quality of life of cancer patients.
Collapse
Affiliation(s)
| | - Surendra Kumar Shukla
- Department of Oncology Science, University of Oklahoma Health Science Centre, Oklahoma City, OK 73104, USA;
| |
Collapse
|
29
|
Maliougina M, El Hiani Y. TRPM2: bridging calcium and ROS signaling pathways-implications for human diseases. Front Physiol 2023; 14:1217828. [PMID: 37576339 PMCID: PMC10412822 DOI: 10.3389/fphys.2023.1217828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
TRPM2 is a versatile and essential signaling molecule that plays diverse roles in Ca2+ homeostasis and oxidative stress signaling, with implications in various diseases. Research evidence has shown that TRPM2 is a promising therapeutic target. However, the decision of whether to activate or inhibit TRPM2 function depends on the context and specific disease. A deeper understanding of the molecular mechanisms governing TRPM2 activation and regulation could pave the way for the development of innovative therapeutics targeting TRPM2 to treat a broad range of diseases. In this review, we examine the structural and biophysical details of TRPM2, its involvement in neurological and cardiovascular diseases, and its role in inflammation and immune system function. In addition, we provide a comprehensive overview of the current knowledge of TRPM2 signaling pathways in cancer, including its functions in bioenergetics, oxidant defense, autophagy, and response to anticancer drugs.
Collapse
Affiliation(s)
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University Faculty of Medicine, Halifax, NS, Canada
| |
Collapse
|
30
|
Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 2023; 40:238. [PMID: 37442848 DOI: 10.1007/s12032-023-02111-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.
Collapse
Affiliation(s)
- Harshini Swaminathan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - K Saravanamurali
- Virus Research and Diagnostics Laboratory, Department of Microbiology, Coimbatore Medical College, Coimbatore, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
31
|
Spaleniak W, Cuendet M. Resveratrol as a circadian clock modulator: mechanisms of action and therapeutic applications. Mol Biol Rep 2023; 50:6159-6170. [PMID: 37231216 PMCID: PMC10289927 DOI: 10.1007/s11033-023-08513-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
In the past decades, resveratrol has gained increasing attention due to its versatile and beneficial properties. This natural polyphenol, commonly present in the human diet, has been shown to induce SIRT1 and to modulate the circadian rhythm at the cellular and organismal levels. The circadian clock is a system regulating behavior and function of the human body, thus playing a crucial role in health maintenance. It is primarily entrained by light-dark cycles; however, other factors such as feeding-fasting, oxygen and temperature cycles play a significant role in its regulation. Chronic circadian misalignment can lead to numerous pathologies, including metabolic disorders, age-related diseases or cancer. Therefore, the use of resveratrol may be a valuable preventive and/or therapeutic strategy for these pathologies. This review summarizes studies that evaluated the modulatory effect of resveratrol on circadian oscillators by focusing on the potential and limitations of resveratrol in biological clock-related disorders.
Collapse
Affiliation(s)
- Weronika Spaleniak
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
33
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
34
|
Hypoxia, but Not Normoxia, Reduces Effects of Resveratrol on Cisplatin Treatment in A2780 Ovarian Cancer Cells: A Challenge for Resveratrol Use in Anticancer Adjuvant Cisplatin Therapy. Int J Mol Sci 2023; 24:ijms24065715. [PMID: 36982788 PMCID: PMC10051682 DOI: 10.3390/ijms24065715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Natural compounds, such as resveratrol (Res), are currently used as adjuvants for anticancer therapies. To evaluate the effectiveness of Res for the treatment of ovarian cancer (OC), we screened the response of various OC cell lines to the combined treatment with cisplatin (CisPt) and Res. We identified A2780 cells as the most synergistically responding, thus optimal for further analysis. Because hypoxia is the hallmark of the solid tumor microenvironment, we compared the effects of Res alone and in combination with CisPt in hypoxia (pO2 = 1%) vs. normoxia (pO2 = 19%). Hypoxia caused an increase (43.2 vs. 5.0%) in apoptosis and necrosis (14.2 vs. 2.5%), reactive oxygen species production, pro-angiogenic HIF-1α (hypoxia-inducible factor-1α) and VEGF (vascular endothelial growth factor), cell migration, and downregulated the expression of ZO1 (zonula occludens-1) protein in comparison to normoxia. Res was not cytotoxic under hypoxia in contrast to normoxia. In normoxia, Res alone or CisPt+Res caused apoptosis via caspase-3 cleavage and BAX, while in hypoxia, it reduced the accumulation of A2780 cells in the G2/M phase. CisPt+Res increased levels of vimentin under normoxia and upregulated SNAI1 expression under hypoxia. Thus, various effects of Res or CisPt+Res on A2780 cells observed in normoxia are eliminated or diminished in hypoxia. These findings indicate the limitations in using Res as an adjuvant with CisPt therapy in OC.
Collapse
|
35
|
Nakayama T, Uno B. Reactivity of trans-Resveratrol toward Electrogenerated Superoxide in N, N-Dimethylformamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4382-4393. [PMID: 36852964 DOI: 10.1021/acs.jafc.2c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The reactivity of 5-[(E)-2-(4-hydroxyphenyl)ethen-1-yl]benzene-1,3-diol (trans-resveratrol) and related compounds toward electrogenerated superoxide radical anion (O2•-) were investigated using electrochemistry, in situ electrolytic electron spin resonance, and in situ electrolytic ultraviolet-visible spectral measurements, in N,N-dimethylformamide (DMF) with the aid of density functional theory (DFT) calculations. The quasi-reversible cyclic voltammogram of dioxygen/O2•- was modified by the presence of trans-resveratrol, suggesting that the electrogenerated O2•- was scavenged by trans-resveratrol through proton-coupled electron transfer (PCET) via three phenolic hydroxy groups (OH) on the stilbene moiety. The reactivity of trans-resveratrol toward O2•- characterized by the OHs was experimentally confirmed in comparative analyses using some related compounds, pinosylvin, pterostilbene, p-coumaric acid, and so on, in DMF. The electrochemical and DFT results suggested that a concerted PCET mechanism via 4'OH of trans-resveratrol proceeds, where the coplanarity of the two phenolic rings in the stilbene moiety linked by an ethylene bridge is essential for a successful O2•- scavenging.
Collapse
Affiliation(s)
- Tatsushi Nakayama
- Department of Pharmacy, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Bunji Uno
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0923, Japan
| |
Collapse
|
36
|
Fatehi R, Rashedinia M, Akbarizadeh AR, Zamani M, Firouzabadi N. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution. Biochem Biophys Res Commun 2023; 644:130-139. [PMID: 36641965 DOI: 10.1016/j.bbrc.2022.12.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Breast cancer is the fifth leading cause of death, worldwide affecting both genders. Accumulating evidence suggests that metformin, an oral hypoglycemic agent used in the management of type 2 diabetes, exerts anti-tumor effects in many cancers, including the breast cancer. Resveratrol, a natural product found abundantly in many fruits, exhibits marked cytotoxic and pro-oxidant effects. This study was designed to investigate the effect of metformin in combination with resveratrol and cisplatin in MCF-7 cells. Study groups were as follows: untreated control group, single treatment groups (metformin, resveratrol, and cisplatin), double treatment groups (metformin + resveratrol, metformin + cisplatin, and cisplatin + resveratrol) and triple treatment groups (metformin + resveratrol + cisplatin). Our results indicated that metformin inhibits proliferation of MCF-7 cells, an effect that was associated with ROS production and G0/G1 cell cycle arrest, but not apoptosis. Moreover, resveratrol suppressed the proliferation of MCF-7 cells by induction of apoptosis as well as cell cycle arrest. Notably, a significant inhibitory effect in the co-treatment of metformin, resveratrol, and cisplatin was observed which was attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest. In conclusion, our results advocate the anti-cancer properties of metformin and resveratrol on MCF-7 cell s via induction of cell cycle arrest. Additionally, synergistic anti-cancer effects of metformin in a triple combination with cisplatin and resveratrol was attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest. Based on our findings it is proposed that patients may benefit from addition of a drug with a safe profile to conventional anticancer therapies.
Collapse
Affiliation(s)
- Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Quality Control, Food and Drug, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Rahimifard M, Baeeri M, Mousavi T, Azarnezhad A, Haghi-Aminjan H, Abdollahi M. Combination therapy of cisplatin and resveratrol to induce cellular aging in gastric cancer cells: Focusing on oxidative stress, and cell cycle arrest. Front Pharmacol 2023; 13:1068863. [PMID: 36686661 PMCID: PMC9846154 DOI: 10.3389/fphar.2022.1068863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background: As a medical dilemma, gastric cancer will have 7.3 million new cases in 2040. Despite the disease's high economic and global burden, conventional chemotherapy regimens containing cisplatin have insufficient effectiveness and act non-specifically, leading to several adverse drug reactions To address these issues, the biological efficacy of the cisplatin-resveratrol combination was tested. Methods: To find IC50, gastric adenocarcinoma cells (AGS) were exposed to different concentrations of resveratrol and cisplatin. Anti-cancer and anti-metastatic effects of 100 M resveratrol with concentrations of cisplatin (25, 50, and 100 g/ml) were studied by assessing ß-galactosidase and telomerase activities, senescence and migration gene expression, reactive oxygen species (ROS) level, and cell cycle arrest. Results: Co-administration of cisplatin and resveratrol increased ß-galactosidase activity, ROS level as a key marker of oxidative stress, p53, p38, p16, p21, and MMP-2 gene expression, and induced G0/G1 cell cycle arrest. Additionally, telomerase activity, pro-inflammatory gene expression, and cell invasion were suppressed. The best results were achieved with 100 g/ml cisplatin co-administered with resveratrol. Conclusion: The current study proved the synergistic effect of the cisplatin-resveratrol combination on suppressing metastasis and inducing apoptosis and cell senescence through targeting P38/P53 and P16/P21 pathways. Such promising results warrant translation to animal models and the clinic. This may lead to cost-effective, available, and accessible treatment regimens with targeted action and the fewest ADRs.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
39
|
The use of integrated text mining and protein-protein interaction approach to evaluate the effects of combined chemotherapeutic and chemopreventive agents in cancer therapy. PLoS One 2022; 17:e0276458. [DOI: 10.1371/journal.pone.0276458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Combining chemotherapeutic (CT) and chemopreventive (CP) agents for cancer treatment is controversial, and the issue has not yet been conclusively resolved. In this study, by integrating text mining and protein-protein interaction (PPI), the combined effects of these two kinds of agents in cancer treatment were investigated. First, text mining was performed by the Pathway Studio database to study the effects of various agents (CP and CT) on cancer-related processes. Then, each group’s most important hub genes were obtained by calculating different centralities. Finally, the results of in silico analysis were validated by examining the combined effects of hesperetin (Hst) and vincristine (VCR) on MCF-7 cells. In general, the results of the in silico analysis revealed that the combination of these two kinds of agents could be useful for treating cancer. However, the PPI analysis revealed that there were a few important proteins that could be targeted for intelligent therapy while giving treatment with these agents. In vitro experiments confirmed the results of the in silico analysis. Also, Hst and VCR had good harmony in modulating the hub genes obtained from the in silico analysis and inducing apoptosis in the MCF-7 cell line.
Collapse
|
40
|
Tang Y, Fu W, Wei K, Liu L, Wu S, Tang W. The therapeutic efficacy of resveratrol for acute lung injury—A meta−analysis of preclinical trials. Front Pharmacol 2022; 13:963245. [PMID: 36091774 PMCID: PMC9453560 DOI: 10.3389/fphar.2022.963245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Resveratrol (RES) has a protective effect on acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Our purpose was to conduct a meta−analysis to investigate the efficacy of RES for ALI/ARDS in animal models. Methods: PubMed, EMBASE and Web of Science were searched to screen relevant preclinical trials. The standardized mean difference (SMD) was used to compare the lung injury score, lung wet−dry weight ratio (W/D ratio), tumor necrosis factor−α (TNF−α), interleukin−1β (IL−1β), IL−6, IL−10, the number of neutrophils in bronchoalveolar lavage fluid (BALF) and the total protein in BALF between the treatment and control groups. SYRCLE’s risk of bias tool was used for quality assessment. Results: A total of 17 studies published from 2005 to 2021 were included in our study to calculate the SMD with corresponding confidence interval (CI). As compared with controls, RES significantly decreased the lung injury score (SMD −2.06; 95% CI −2.77, −1.35; p < 0.00001) and W/D ratio (SMD −1.92; 95% CI −2.62, −1.22; p < 0.00001). RES also reduced the number of neutrophils in BALF (SMD −3.03; 95% CI −3.83, −2.24; p < 0.00001) and the total protein in BALF (SMD −5.59; 95% CI −10.10, −1.08; p = 0.02). Furthermore, RES was found to downregulate proinflammatory mediators such as TNF−α (SMD −2.02; 95% CI −3.09, −0.95; p = 0.0002), IL−1β (SMD −2.51; 95% CI −4.00, −1.02; p = 0.001) and IL−6 (SMD −2.26; 95% CI −3.49, −1.04; p = 0.0003). But RES had little effect on the anti−inflammatory mediators such as IL−10 (SMD 2.80; 95% CI −0.04, 5.63; p = 0.05). Sensitivity analysis and stratified analysis were performed for the outcome indicators with heterogeneity. Conclusion: RES treatment is effective on reducing the severity of ALI. However, more animal studies and human trials are needed for further investigation. Our study may provide a reference for preclinical and clinical studies in the future to some extent.
Collapse
Affiliation(s)
- Yin Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|
42
|
Jurczyk M, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines 2022; 10:biomedicines10051187. [PMID: 35625921 PMCID: PMC9138983 DOI: 10.3390/biomedicines10051187] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
A growing interest in the use of a combination of chemosensitizers and cytostatics for overcoming cancer resistance to treatment and the development of their delivery systems has been observed. Resveratrol (Res) presents antioxidant, anti-inflammatory and chemopreventive properties but also limits multidrug resistance against docetaxel (Dtx), which is one of the main causes of failure in cancer therapy with this drug. However, the use of both drugs presents challenges, including poor bioavailability, the unfavourable pharmacokinetics and chemical instability of Res and the poor water solubility and dose-limiting toxicity of Dtx. In order to overcome these difficulties, attempts have been made to create different forms of delivery for both agents. This review is focused on the latest developments in nanoparticles for the delivery of Dtx, Res and for the combined delivery of those two drugs. The aim of this review was also to summarize the synergistic mechanism of action of Dtx and Res on cancer cells. According to recent reports, Dtx and Res loaded in a nano-delivery system exhibit better efficiency in cancer treatment compared to free drugs. Also, the co-delivery of Dtx and Res in one actively targeted delivery system providing the simultaneous release of both drugs in cancer cells has a chance to fulfil the requirements of effective anticancer therapy and reduce limitations in therapy caused by multidrug resistance (MDR).
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Correspondence: ; Tel.: +48-32-271-2969
| |
Collapse
|
43
|
Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G, Falahatpour Z, Bagheri H, Farhood B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22:142. [PMID: 35366874 PMCID: PMC8976963 DOI: 10.1186/s12935-022-02561-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Yadollahi
- Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
44
|
Yang S, Leong J, Wang Y, Sim R, Tan KH, Chua YH, Tan N, Lee ALZ, Tay J, Yang YY. Drug-free neutrally charged polypeptide nanoparticles as anticancer agents. J Control Release 2022; 345:464-474. [PMID: 35331785 DOI: 10.1016/j.jconrel.2022.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/11/2023]
Abstract
Cationic synthetic anticancer polymers and peptides have attracted increasing attention for advancing cancer treatment without causing drug resistance development. To circumvent in vivo instability and toxicity caused by cationic charges of the anticancer polymers/peptides, we report, for the first time, a nanoparticulate delivery system self-assembled from a negatively charged pH-sensitive polypeptide poly(ethylene glycol)-b-poly(ʟ-lysine)-graft-cyclohexene-1,2-dicarboxylic anhydride and a cationic anticancer polypeptide guanidinium-functionalized poly(ʟ-lysine) (PLL-Gua) via electrostatic interaction. The formation of nanoparticles (Gua-NPs) neutralized the positive charges of PLL-Gua. Both PLL-Gua and Gua-NPs killed cancer cells in a dose- and time-dependent manner, and induced cell death via apoptosis. Confocal microscopic studies demonstrated that PLL-Gua and Gua-NPs readily entered cancer cells, and Gua-NPs were taken up by the cells via endocytosis. Notably, Gua-NPs and PLL-Gua exhibited similar in vitro anticancer efficacy against MCF-7 and resistant MCF-7/ADR. PLL-Gua and Gua-NPs also induced similar morphological changes in MCF-7/ADR cells compared to MCF-7 cells, further indicating their ability to bypass drug resistance mechanisms in the MCF-7/ADR cells. More importantly, Gua-NPs with higher LD50 and enhanced tumor accumulation significantly inhibited tumor growth with negligible side effects in vivo. Our findings shed light on the in vivo delivery of anticancer peptides and opened a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Shengcai Yang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Jiayu Leong
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Rachel Sim
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Ko Hui Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yau Hong Chua
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Nathanael Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ashlynn L Z Lee
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore.
| |
Collapse
|
45
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
46
|
De Luca A, Bellavia D, Raimondi L, Carina V, Costa V, Fini M, Giavaresi G. Multiple Effects of Resveratrol on Osteosarcoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:342. [PMID: 35337142 PMCID: PMC8956103 DOI: 10.3390/ph15030342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone sarcoma affecting the life of pediatric patients. The clinical treatment faces numerous difficulties, including the adverse effects of chemotherapies, chemoresistance, and recurrences. In this study, the effects of resveratrol (RSV), a natural polyphenol, on OS cell lines were investigated to evaluate its action as an adjuvant therapy to the current chemotherapy regimens. RSV exhibited multiple tumor-suppressing activities on OS cell lines, inducing a series of critical events. We found (1) a cell growth inhibition due to an increase in cell distress, which was, in part, due to the involvement of the AKT and caspase-3 pathways, (2) an increase in cellular differentiation due to major gene expression levels of the osteoblastic differentiation genes, (3) an inhibition of IL-6 secretion due to an epigenetic effect on the IL-6 promoter, and (4) an inhibition of OS cells migration related to the decrease in IL-8 secretion levels due to an epigenetic effect on its promoter. Finally, the cotreatment of RSV with doxorubicin and cisplatin increased their cytotoxic effect on OS cells. Although further investigations are mandatory, it seems RSV might be a promising therapeutic adjuvant agent for OS cell treatment, exerting an antitumor effect when combined with chemotherapy.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies—SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (D.B.); (L.R.); (V.C.); (V.C.); (M.F.); (G.G.)
| | | | | | | | | | | | | |
Collapse
|
47
|
Robertson I, Wai Hau T, Sami F, Sajid Ali M, Badgujar V, Murtuja S, Saquib Hasnain M, Khan A, Majeed S, Tahir Ansari M. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int J Pharm 2022; 618:121605. [DOI: 10.1016/j.ijpharm.2022.121605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
48
|
Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Imran M, Moussa AY, Mostafa NM, El-Shazly M, Batiha GES, Qusti S, Alshammari EM, Sener B, Schoebitz M, Martorell M, Alshehri MM, Dey A, Cruz-Martins N. Resveratrol’ biotechnological applications: enlightening its antimicrobial and antioxidant properties. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100550] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Klein RS, Taniguchi MM, Dos Santos PD, Bonafe EG, Martins AF, Monteiro JP. Trans-resveratrol electrochemical detection using portable device based on unmodified screen-printed electrode. J Pharm Biomed Anal 2022; 207:114399. [PMID: 34653743 DOI: 10.1016/j.jpba.2021.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Trans-resveratrol (t-RESV) is an important and natural polyphenolic antioxidant generally found in grapes and in its derivatives such as red wine and grape juices. The t-RESV has been explored in the pharmaceutical industry for its anti-inflammatory, anti-cancer, and neuroprotective properties. The t-RESV electrochemical determination has basically been carried out using modified electrodes-based sensors. Although these devices show good analytical performance, the electrode preparation can be laborious, and the devices may lack reproducibility. In this sense, it was proposed here a new methodology for the t-RESV electrochemical detection using unmodified screen-printed electrodes and differential pulse voltammetry (DPV). The response of the anodic signal has optimized varying the most important parameters of DPV (pulse time, pulse potential, and pulse step) using the response surface methodology. We showed based on analysis of variance that the new mathematical model developed can predict responses for the t-RESV using DPV. Furthermore, the new analytical method was validated from the limits of detection and quantification. We have still shown that t-RESV can be quantified in commercial drug using DPV with the optimized parameters. The selectivity test also showed that the sensor can be used to determine the antioxidant in other more complex matrices. Additionally, the proposed electrochemical system is completely portable and can work with its own energy, which facilitates point-of-care analysis.
Collapse
Affiliation(s)
- Rosecler Scacchetti Klein
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900, Maringá, PR, Brazil
| | - Maiara Mitiko Taniguchi
- Laboratório de Materiais e Sensores (LMSEN), Universidade Estadual de Maringá (UEM), Av colombo 5790, 87020-900, Maringá, State of Paraná, Brazil
| | - Patricia Daniele Dos Santos
- Grupo Aple-A, Programa de Pós-Graduação em Química, Universidade Estadual de Maringá (UEM), Ac Colombo 5790, 87020-900, Maringá, State of Paraná, Brazil
| | - Elton Guntendorfer Bonafe
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil
| | - Alessandro Francisco Martins
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil
| | - Johny Paulo Monteiro
- Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil.
| |
Collapse
|
50
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|