1
|
Li P, Liu D, Gao P, Yuan M, Zhao Z, Zhang Y, Zhou Z, Zhang Q, Yuan M, Liu X, Tse G, Li G, Bao Q, Liu T. Mitigating ibrutinib-induced ventricular arrhythmia and cardiac dysfunction with metformin. CANCER INNOVATION 2025; 4:e151. [PMID: 39544722 PMCID: PMC11560382 DOI: 10.1002/cai2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 11/17/2024]
Abstract
Background Ibrutinib is a first-line drug that targets Bruton's tyrosine kinase for the treatment of B cell cancer. However, cardiotoxicity induced by ibrutinib is a major side effect that limits its clinical use. This study aimed to investigate the mechanism of ibrutinib-induced cardiotoxicity and evaluate the protective role of metformin. Methods The study utilized male C57BL/6 J mice, which were administered ibrutinib at a dosage of 30 mg/kg/day via oral gavage for 4 weeks to induce cardiotoxicity. Metformin was administered orally at 200 mg/kg/day for 5 weeks, starting 1 week before ibrutinib treatment. Cardiac function was assessed using echocardiography and electrophysiological studies, including surface electrocardiography and epicardial electrical mapping. Blood pressure was measured using a tail-cuff system. Western blot analysis was conducted to evaluate the activity of the PI3K-AKT and AMPK pathways, along with apoptosis markers. Results C57BL/6 J mice were treated with ibrutinib for 4 weeks to assess its effect on cardiac function. We observed that ibrutinib induced ventricular arrhythmia and abnormal conduction while reducing the left ventricular ejection fraction. Furthermore, pretreatment with metformin reversed ibrutinib-induced cardiotoxicity. Mechanistically, ibrutinib decreased PI3K-AKT activity, resulting in apoptosis of cardiomyocytes. Administration of metformin upregulated AMPK and PI3K-AKT activity, which contributed to the improvement of cardiac function. Conclusion The study concludes that metformin effectively mitigates ibrutinib-induced cardiotoxicity, including ventricular arrhythmia and cardiac dysfunction, by enhancing AMPK and PI3K-AKT pathway activity. These findings suggest that metformin holds potential as a therapeutic strategy to protect against the adverse cardiac effects associated with ibrutinib treatment, offering a promising approach for improving the cardiovascular safety of patients undergoing therapy for B cell cancers.
Collapse
Affiliation(s)
- Pengsha Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Pan Gao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ming Yuan
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Zandong Zhou
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Qingling Zhang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Xing Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Kent and Medway Medical SchoolCanterburyUK
| | - Guangping Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
2
|
Thompson A, Fleischmann KE, Smilowitz NR, de Las Fuentes L, Mukherjee D, Aggarwal NR, Ahmad FS, Allen RB, Altin SE, Auerbach A, Berger JS, Chow B, Dakik HA, Eisenstein EL, Gerhard-Herman M, Ghadimi K, Kachulis B, Leclerc J, Lee CS, Macaulay TE, Mates G, Merli GJ, Parwani P, Poole JE, Rich MW, Ruetzler K, Stain SC, Sweitzer B, Talbot AW, Vallabhajosyula S, Whittle J, Williams KA. 2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 150:e351-e442. [PMID: 39316661 DOI: 10.1161/cir.0000000000001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AIM The "2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery" provides recommendations to guide clinicians in the perioperative cardiovascular evaluation and management of adult patients undergoing noncardiac surgery. METHODS A comprehensive literature search was conducted from August 2022 to March 2023 to identify clinical studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (through PubMed), EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. STRUCTURE Recommendations from the "2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery" have been updated with new evidence consolidated to guide clinicians; clinicians should be advised this guideline supersedes the previously published 2014 guideline. In addition, evidence-based management strategies, including pharmacological therapies, perioperative monitoring, and devices, for cardiovascular disease and associated medical conditions, have been developed.
Collapse
Affiliation(s)
| | | | | | - Lisa de Las Fuentes
- Former ACC/AHA Joint Committee on Clinical Practice Guidelines member; current member during the writing effort
| | | | | | | | | | | | | | | | - Benjamin Chow
- Society of Cardiovascular Computed Tomography representative
| | | | | | | | | | | | | | | | | | | | | | - Purvi Parwani
- Society for Cardiovascular Magnetic Resonance representative
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Thompson A, Fleischmann KE, Smilowitz NR, de Las Fuentes L, Mukherjee D, Aggarwal NR, Ahmad FS, Allen RB, Altin SE, Auerbach A, Berger JS, Chow B, Dakik HA, Eisenstein EL, Gerhard-Herman M, Ghadimi K, Kachulis B, Leclerc J, Lee CS, Macaulay TE, Mates G, Merli GJ, Parwani P, Poole JE, Rich MW, Ruetzler K, Stain SC, Sweitzer B, Talbot AW, Vallabhajosyula S, Whittle J, Williams KA. 2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 84:1869-1969. [PMID: 39320289 DOI: 10.1016/j.jacc.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AIM The "2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery" provides recommendations to guide clinicians in the perioperative cardiovascular evaluation and management of adult patients undergoing noncardiac surgery. METHODS A comprehensive literature search was conducted from August 2022 to March 2023 to identify clinical studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (through PubMed), EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. STRUCTURE Recommendations from the "2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery" have been updated with new evidence consolidated to guide clinicians; clinicians should be advised this guideline supersedes the previously published 2014 guideline. In addition, evidence-based management strategies, including pharmacological therapies, perioperative monitoring, and devices, for cardiovascular disease and associated medical conditions, have been developed.
Collapse
|
4
|
Zhu H, Zhu T, Dubiao D, Zhang X. Metformin Attenuates Myocardial Ischemia-Reperfusion Injury through the AMPK-HMGCR-ROS Signaling Axis. KARDIOLOGIIA 2024; 64:48-56. [PMID: 39526518 DOI: 10.18087/cardio.2024.10.n2739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To explore the role and mechanism of metformin (MET) in regulating myocardial injury caused by cardiac ischemia-reperfusion. MATERIAL AND METHODS A rat model of myocardial ischemia-reperfusion injury was established by ligation of the anterior descending branch of the left coronary artery. The myocardial area at risk and the infarction size were measured by Evans blue and 2,3,5‑triphenyltetrazole chloride (TTC) staining, respectively. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling (TUNEL) staining was used to detect apoptosis of cardiomyocytes. The expression of 4‑hydroxynonenal (4‑HNE) was detected by immunohistochemical staining. Real-time quantitative polymerase chain reaction (RT-PCR) and Western blot were used to detect mRNA and expression of the Adenosine 5'-monophosphate-activated protein kinase (AMPK) - 3‑hydroxy-3‑methylglutaryl-CoA reductase (HMGCR) signaling pathway, respectively. RESULTS MET treatment decreased the infarct size and the activity of the myocardial enzyme profile, thus demonstrating protection of ischemic myocardium. The number of TUNEL positive cells significantly decreased. Immunohistochemical results showed that MET decreased the expression of 4‑HNE in myocardial tissue and the content of malondialdehyde (MDA) in myocardial cells. Further experimental results showed that MET decreased HMGCR transcription and protein expression, and increased AMPK phosphorylation. In the model of hypoxia and reoxygenation injury of cardiomyocytes, MET increased the viability of cardiomyocytes, decreased the activity of lactic dehydrogenase (LDH), decreased malondialdehyde content and intracellular reactive oxygen species (ROS) concentrations, and regulate the AMPK-HMGCR signaling pathway through coenzyme C (ComC). CONCLUSION MET inhibits the expression of HMGCR by activating AMPK, reduces oxidative damage and apoptosis of cardiomyocytes, and alleviates myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- He Zhu
- Department of Vascular Surgery, Zhejiang Chinese Medical University
| | - Tao Zhu
- Department of Vascular Surgery, Zhejiang Chinese Medical University
| | - Dubiao Dubiao
- Department of Cardiology, Kecheng District People's Hospital
| | - Xinmei Zhang
- Department of Vascular Surgery, Quzhou People's Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
5
|
Stone C, Sabe SA, Harris DD, Broadwin M, Kant RJ, Kanuparthy M, Abid MR, Sellke FW. Metformin Preconditioning Augments Cardiac Perfusion and Performance in a Large Animal Model of Chronic Coronary Artery Disease. Ann Surg 2024; 280:547-556. [PMID: 39041226 DOI: 10.1097/sla.0000000000006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To test the efficacy of metformin (MET) during the induction of coronary ischemia on myocardial performance in a large animal model of coronary artery disease (CAD) and metabolic syndrome (MS), with or without concomitant extracellular vesicular (EV) therapy. BACKGROUND Although surgical and endovascular revascularization are durably efficacious for many patients with CAD, up to one-third are poor candidates for standard therapies. For these patients, many of whom have comorbid MS, adjunctive strategies are needed. EV therapy has shown promise in this context, but its efficacy is attenuated by MS. We investigated whether MET pretreatment could ameliorate therapeutic decrements associated with MS. METHODS Yorkshire swine (n = 29) were provided a high-fat diet to induce MS, whereupon an ameroid constrictor was placed to induce CAD. Animals were initiated on 1000 mg oral MET or placebo; all then underwent repeat thoracotomy for intramyocardial injection of EVs or saline. Swine were maintained for 5 weeks before the acquisition of functional and perfusion data immediately before terminal myocardial harvest. Immunoblotting and immunofluorescence were performed on the most ischemic tissue from all groups. RESULTS Regardless of EV administration, animals that received MET exhibited significantly improved ejection fraction, cardiac index, and contractility at rest and during rapid myocardial pacing, improved perfusion to the most ischemic myocardial region at rest and during pacing, and markedly reduced apoptosis. CONCLUSIONS MET administration reduced apoptotic cell death, improved perfusion, and augmented both intrinsic and load-dependent myocardial performance in a highly translatable large animal model of chronic myocardial ischemia and MS.
Collapse
Affiliation(s)
- Christopher Stone
- Department of Surgery, Division of Cardiothoracic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Osorio-Llanes E, Villamizar-Villamizar W, Ospino Guerra MC, Díaz-Ariza LA, Castiblanco-Arroyave SC, Medrano L, Mengual D, Belón R, Castellar-López J, Sepúlveda Y, Vásquez-Trincado C, Chang AY, Bolívar S, Mendoza-Torres E. Effects of Metformin on Ischemia/Reperfusion Injury: New Evidence and Mechanisms. Pharmaceuticals (Basel) 2023; 16:1121. [PMID: 37631036 PMCID: PMC10459572 DOI: 10.3390/ph16081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The search for new drugs with the potential to ensure therapeutic success in the treatment of cardiovascular diseases has become an essential pathway to follow for health organizations and committees around the world. In June 2021, the World Health Organization listed cardiovascular diseases as one of the main causes of death worldwide, representing 32% of them. The most common is coronary artery disease, which causes the death of cardiomyocytes, the cells responsible for cardiac contractility, through ischemia and subsequent reperfusion, which leads to heart failure in the medium and short term. Metformin is one of the most-used drugs for the control of diabetes, which has shown effects beyond the control of hyperglycemia. Some of these effects are mediated by the regulation of cellular energy metabolism, inhibiting apoptosis, reduction of cell death through regulation of autophagy and reduction of mitochondrial dysfunction with further reduction of oxidative stress. This suggests that metformin may attenuate left ventricular dysfunction induced by myocardial ischemia; preclinical and clinical trials have shown promising results, particularly in the setting of acute myocardial infarction. This is a review of the molecular and pharmacological mechanisms of the cardioprotective effects of metformin during myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
- Allied Research Society S.A.S., Barranquilla 080001, Colombia;
- Global Disease Research Colombia, Barranquilla 080001, Colombia
| | - Wendy Villamizar-Villamizar
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - María Clara Ospino Guerra
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Luis Antonio Díaz-Ariza
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Sara Camila Castiblanco-Arroyave
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Luz Medrano
- Healthcare Pharmacy and Pharmacology Research Group, Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia; (L.M.); (D.M.); (S.B.)
| | - Daniela Mengual
- Healthcare Pharmacy and Pharmacology Research Group, Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia; (L.M.); (D.M.); (S.B.)
| | - Ricardo Belón
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Jairo Castellar-López
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Yanireth Sepúlveda
- Allied Research Society S.A.S., Barranquilla 080001, Colombia;
- Global Disease Research Colombia, Barranquilla 080001, Colombia
| | - César Vásquez-Trincado
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile;
| | - Aileen Y. Chang
- Department of Medicine, Faculty of Medicine, Foggy Bottom Campus, George Washington University, Washington, DC 20052, USA;
| | - Samir Bolívar
- Healthcare Pharmacy and Pharmacology Research Group, Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia; (L.M.); (D.M.); (S.B.)
| | - Evelyn Mendoza-Torres
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| |
Collapse
|
7
|
Lopez-Candales A, Monte S, Sawalha K, Norgard NB. Time to revisit the true role of metformin in type 2 diabetes mellitus. Postgrad Med 2023; 135:539-542. [PMID: 37294638 DOI: 10.1080/00325481.2023.2224036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Affiliation(s)
- Angel Lopez-Candales
- Cardiovascular Medicine Division, University Health Truman Medical Center, University of Missouri-Kansas City, Missouri-Kansas, MO, USA
| | - Scott Monte
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, NY, USA
| | - Khalid Sawalha
- Nutrition and Metabolism, Department of Medicine, University of Missouri-Kansas City, Kansas, MO, USA
| | - Nicholas B Norgard
- Department of Medicine, University Health Truman Medical Center, University of Missouri-Kansas City, Kansas, MO, USA
| |
Collapse
|
8
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
9
|
Dihoum A, Rena G, Pearson ER, Lang CC, Mordi IR. Metformin: evidence from preclinical and clinical studies for potential novel applications in cardiovascular disease. Expert Opin Investig Drugs 2023; 32:291-299. [PMID: 36972373 DOI: 10.1080/13543784.2023.2196010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION For a long time, metformin has been the first-line treatment for glycaemic control in type 2 diabetes, however, the results of recent cardiovascular outcome trials of sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1 receptor agonists have caused many to question metformin's position in the guidelines. Although there are several plausible mechanisms by which metformin might have beneficial cardiovascular effects, for example its anti-inflammatory effects and metabolic properties, and numerous observational data suggesting improved cardiovascular outcomes with metformin use, the main randomised clinical trial data for metformin was published over 20 years ago. Nevertheless, the overwhelming majority of participants in contemporary type 2 diabetes trials were prescribed metformin. AREAS COVERED In this review we will summarise the potential mechanisms of cardiovascular benefit with metformin, before discussing clinical data in individuals with or without diabetes. EXPERT OPINION Metformin may have some cardiovascular benefit in patients with and without diabetes, however the majority of clinical trials were small and are before the use SGLT2 inhibitors and GLP1-RAs. Larger contemporary randomised trials with metformin evaluating its cardiovascular benefit are warranted.
Collapse
Affiliation(s)
- Adel Dihoum
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Ewan R Pearson
- Division of Population Health and Genomics, University of Dundee, Dundee, United Kingdom
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
10
|
Falode JA, Ajayi OI, Isinkaye TV, Adeoye AO, Ajiboye BO, Brai BIC, ADEOYE, Basiru Olaitan, AJIBOYE, BRAI BIC. Justicia carnea extracts ameliorated hepatocellular damage in streptozotocin-induced type 1 diabetic male rats via decrease in oxidative stress, inflammation and increasing other risk markers. Biomarkers 2023; 28:177-189. [PMID: 36511112 DOI: 10.1080/1354750x.2022.2157487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IntroductionDiabetes mellitus is still a raging disease not fully subdued globally, especially in Africa. Our study aims to evaluate the anti-diabetic potentials of Justicia carnea extracts [crude (JCC), free (JFP) and bound phenol (JBP) fractions], in streptozotocin (STZ)-induced type-1 diabetes in male albino rats.Materials and MethodsAbout thirty (30) animals were induced for type 1 diabetes with STZ; thereafter, treatment began for 14 days, after which the animals were euthanized, blood/serum was collected, the liver was removed and divided into two portions, for biochemical and histopathological analyses. Standard procedures were used to evaluate the liver biomarkers, like alanine transaminase (ALT), fructose-1,6-bisphosphatase, glucose-6- phosphatase, hexokinase activities, albumin, bilirubin, hepatic glucose concentrations; antioxidant status and pro- and anti-inflammatory cytokines were similarly assessed.ResultsThese results revealed that the extracts ameliorated the harmful effects of STZ-induced diabetes in the liver by enhancing the activities of liver-based biomarkers, reducing the concentrations of pro-inflammatory cytokines and increasing the anti-inflammatory cytokine.DiscussionThe results agreed with previous research, and the free phenol fraction showed excellent results compared to othersConclusionThese suggested that J. carnea could serve as an alternative remedy in ameliorating liver complications linked to oxidative damage and inflammation in STZ-induced type-1 diabetes.
Collapse
Affiliation(s)
- John Adeolu Falode
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Igbekele Ajayi
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Tolulope Victoria Isinkaye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi Oluwaseun Adeoye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I C Brai
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - ADEOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - AJIBOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I. C. BRAI
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
11
|
Van J, Hahn Y, Silverstein B, Li C, Cai F, Wei J, Katiki L, Mehta P, Livatova K, DelPozzo J, Kobayashi T, Huang Y, Kobayashi S, Liang Q. Metformin Inhibits Autophagy, Mitophagy and Antagonizes Doxorubicin-Induced Cardiomyocyte Death. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2023; 2:37-51. [PMID: 38487671 PMCID: PMC10939033 DOI: 10.53941/ijddp.0201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The antidiabetic drug metformin has been shown to reduce cardiac injury under various pathological conditions, including anticancer drug doxorubicin (DOX)-induced cardiotoxicity, which makes metformin a prime candidate for repurposing. However, the mechanisms that mediate the cardioprotective effects of metformin remain highly controversial. In this study, we tested a prevailing hypothesis that metformin activates autophagy/mitophagy to reduce DOX cardiotoxicity. FVB/N mice and H9C2 cardiac myoblasts were treated with metformin, respectively. Autophagy/mitophagy was determined by Western blot analysis of microtubule-associated protein light chain 3, form-II (LC3-II), a well-established marker of autophagic vesicles. Although metformin had minimal effects on basal LC3-II levels, it significantly inhibited the accumulation of LC3-II levels by the lysosomal protease inhibitors pepstatin A and E64d in both total cell lysates and mitochondrial fractions. Also, dual fluorescent autophagy/mitophagy reporters demonstrated that metformin slowed the degradation rate of autophagic cargos or mitochondrial fragments in the lysosomes. These surprising results suggest that metformin inhibits rather than stimulates autophagy/mitophagy, sharply contrasting the popular belief. In addition, metformin diminished DOX-induced autophagy/mitophagy as well as cardiomyocyte death. Together, these results suggest that the cardioprotective effects of metformin against DOX cardiotoxicity may be mediated by its ability to inhibit autophagy and mitophagy, although the underlying molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Jennifer Van
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Younghee Hahn
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Brett Silverstein
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Cairong Li
- Clinical Medical College, Hubei University of Science and Technology, Xianning 332306, China
| | - Fei Cai
- Clinical Medical College, Hubei University of Science and Technology, Xianning 332306, China
| | - Jia Wei
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Lokesh Katiki
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Puja Mehta
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Katherine Livatova
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Jaclyn DelPozzo
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Tamayo Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| |
Collapse
|
12
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. Int J Mol Sci 2022; 23:ijms232314503. [PMID: 36498830 PMCID: PMC9738696 DOI: 10.3390/ijms232314503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
As a widely prescribed anti-diabetic drug, metformin has been receiving novel attention for its analgesic potential. In the study of the complex etiology of neuropathic pain (NeP), male and female individuals exhibit quite different responses characterized by higher pain sensitivity and greater NeP incidence in women. This "gender gap" in our knowledge of sex differences in pain processing strongly limits the sex-oriented treatment of patients suffering from NeP. Besides, the current investigation of the analgesic potential of metformin has not addressed the "gender gap" problem. Hence, this study focuses on metformin and sex-dependent analgesia in a murine model of NeP induced by chronic constriction injury of the sciatic nerve. We investigated sexual dimorphism in signaling pathways involved by 7 days of metformin administration, such as changes in AMP-activated protein kinase and the positive regulation of autophagy machinery, discovering that metformin affected in a sexually dimorphic manner the immunological and inflammatory response to nerve lesion. These effects were complemented by morphological and adaptive changes occurring after peripheral nerve injury. Altogether these data can contribute to explaining a number of potential mechanisms responsible for the complete recovery from NeP found in male mice, as opposed to the failure of long-lasting recovery in female animals.
Collapse
|
14
|
Tompkins E, Mimic B, Cuevas-Mora K, Schorsch H, Shah SD, Deshpande DA, Benovic JL, Penn RB, Pera T. PD 102807 Induces M3 mAChR-Dependent GRK-/Arrestin-Biased Signaling in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2022; 67:550-561. [PMID: 35944139 PMCID: PMC9651198 DOI: 10.1165/rcmb.2021-0320oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells. PD 102807 induced M3-mediated β-arrestin recruitment but not calcium mobilization. PD 102807 inhibited methacholine (MCh)-induced calcium mobilization in (M3-expressing) ASM cells. PD 102807 induced phosphorylation of AMP-activated protein kinase (AMPK) and the downstream effector acetyl-coenzyme A carboxylase (ACC). PD 102807- induced phosphorylated (p)-AMPK levels were greatly reduced in ASM cells with minimal M3 expression and were not inhibited by the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC was inhibited by β-arrestin 1 or GRK2/3 knockdown. Similarly, MCh induced phosphorylation of AMPK/ACC, but these effects were Gq dependent and unaffected by GRK2/3 knockdown. Consistent with the known ability of AMPK to inhibit transforming growth factor β (TGF-β)-mediated functions, PD 102807 inhibited TGF-β-induced SMAD-Luc activity, sm-α-actin expression, actin stress fiber formation, and ASM cell hypercontractility. These findings reveal that PD 102807 is a biased M3 ligand that inhibits M3-transduced Gq signaling but promotes Gq protein-independent, GRK-/arrestin-dependent, M3-mediated AMPK signaling, which in turn regulates ASM phenotype and contractile function. Consequently, biased M3 ligands hold significant promise as therapeutic agents capable of exploiting the pleiotropic nature of M3 signaling.
Collapse
Affiliation(s)
- Eric Tompkins
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Bogdana Mimic
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Karina Cuevas-Mora
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Hannah Schorsch
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Sushrut D. Shah
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Deepak A. Deshpande
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Tonio Pera
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| |
Collapse
|
15
|
Hosey CM, Halpin K, Yan Y. Considering metformin as a second-line treatment for children and adolescents with prediabetes. J Pediatr Endocrinol Metab 2022; 35:727-732. [PMID: 35503504 DOI: 10.1515/jpem-2021-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
Abstract
Overweight and obesity affect approximately 1/3 of children in the United States and are risk factors for prediabetes and type 2 diabetes. Progression from prediabetes to diabetes carries substantial long-term health burdens, culminating in decreased life-expectancy. Earlier development of type 2 diabetes is associated with poorer prognoses, and children lose glycemic control more rapidly than adults. Metformin is approved by the USFDA for the treatment of type 2 diabetes in children, has limited toxicity, and may help prevent the development of type 2 diabetes. The more rapid disease progression in children and the safety of metformin suggests that initiation of metformin treatment to children with prediabetes who have not effectively responded to lifestyle changes may help prevent short- and long-term health damage resulting from prediabetic and diabetic dysglycemia.
Collapse
Affiliation(s)
- Chelsea M Hosey
- Department of Pediatrics, Division of Clinical Pharmacology, Toxicology, & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kelsee Halpin
- Division of Pediatric Endocrinology, Children's Mercy Kansas City, Kansas City, MO, USA.,University of Missouri, Kansas City School of Medicine, Kansas City, MO, USA
| | - Yun Yan
- Division of Pediatric Endocrinology, Children's Mercy Kansas City, Kansas City, MO, USA
| |
Collapse
|
16
|
Metformin and alpha lipoic acid ameliorate hypothyroidism and its complications in adult male rats. J Diabetes Metab Disord 2022. [DOI: 10.1007/s40200-022-01063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Tabatabaei Malazy O, Bandarian F, Qorbani M, Mohseni S, Mirsadeghi S, Peimani M, Larijani B. The effect of metformin on cognitive function: A systematic review and meta-analysis. J Psychopharmacol 2022; 36:666-679. [PMID: 35297284 DOI: 10.1177/02698811211057304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most people are familiar with metformin as a diabetic treatment option. Different positive benefits have been found for it, in addition to its anti-diabetes properties. Cognitive function enhancement is the most recent characteristic that has been studied. This study aimed to look at the evidence on the effects of metformin on cognitive performance. Web of Science, PubMed, Scopus, the Cochrane Library, EMBASE, and PsycINFO databases were searched systematically. After eliminating duplicates and irrelevant documents, the findings were screened. The documents that remained were scanned and data were extracted. Nineteen studies were qualified for meta-analysis after evaluating 3827 identified records. There was no significant relationship between metformin therapy and cognitive performance in none of the studies including cross-sectionals, cohorts, and clinical trials (p > 0.05). Results show that metformin has no significant effect on improving cognitive function or protecting against any dementia including vascular dementia and Alzheimer's disease, and cognitive impairment as well.
Collapse
Affiliation(s)
- Ozra Tabatabaei Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahrzad Mohseni
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Peimani
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Singh M, Nicol AT, DelPozzo J, Wei J, Singh M, Nguyen T, Kobayashi S, Liang Q. Demystifying the Relationship Between Metformin, AMPK, and Doxorubicin Cardiotoxicity. Front Cardiovasc Med 2022; 9:839644. [PMID: 35141304 PMCID: PMC8818847 DOI: 10.3389/fcvm.2022.839644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an extremely effective and wide-spectrum anticancer drug, but its long-term use can lead to heart failure, which presents a serious problem to millions of cancer survivors who have been treated with DOX. Thus, identifying agents that can reduce DOX cardiotoxicity and concurrently enhance its antitumor efficacy would be of great clinical value. In this respect, the classical antidiabetic drug metformin (MET) has stood out, appearing to have both antitumor and cardioprotective properties. MET is proposed to achieve these beneficial effects through the activation of AMP-activated protein kinase (AMPK), an essential regulator of mitochondrial homeostasis and energy metabolism. AMPK itself has been shown to protect the heart and modulate tumor growth under certain conditions. However, the role and mechanism of the hypothesized MET-AMPK axis in DOX cardiotoxicity and antitumor efficacy remain to be firmly established by in vivo studies using tumor-bearing animal models and large-scale prospective clinical trials. This review summarizes currently available literature for or against a role of AMPK in MET-mediated protection against DOX cardiotoxicity. It also highlights the emerging evidence suggesting distinct roles of the AMPK subunit isoforms in mediating the functions of unique AMPK holoenzymes composed of different combinations of isoforms. Moreover, the review provides a perspective regarding future studies that may help fully elucidate the relationship between MET, AMPK and DOX cardiotoxicity.
Collapse
Affiliation(s)
- Manrose Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Akito T. Nicol
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Jaclyn DelPozzo
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Jia Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Mandeep Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Tony Nguyen
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Satoru Kobayashi
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
- *Correspondence: Qiangrong Liang
| |
Collapse
|
19
|
Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way. Mol Med 2021; 27:156. [PMID: 34895136 PMCID: PMC8666063 DOI: 10.1186/s10020-021-00416-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease worldwide. However, no effective treatment could delay or prevent the progression of the disease due to the poor understanding of its pathological mechanism. Many studies showed that metformin exerted beneficial effects on multiple cardiovascular diseases by mediating multiple proteins such as AMPK, NF-κB, and AKT. This study aims to verify whether metformin can inhibit aortic calcification through the PI3K/AKT signaling pathway. METHODS We first analyzed four microarray datasets to screen differentially expressed genes (DEGs) and signaling pathways related to CAVD. Then aortic valve samples were used to verify selected genes and pathways through immunohistochemistry (IHC) and western blot (WB) assays. Aortic valve interstitial cells (AVICs) were isolated from non-calcific aortic valves and then cultured with phosphate medium (PM) with or without metformin to verify whether metformin can inhibit the osteogenic differentiation and calcification of AVICs. Finally, we used inhibitors and siRNA targeting AMPK, NF-κB, and AKT to study the mechanism of metformin. RESULTS We screened 227 DEGs; NF-κB and PI3K/AKT signaling pathways were implicated in the pathological mechanism of CAVD. IHC and WB experiments showed decreased AMPK and AKT and increased Bax in calcific aortic valves. PM treatment significantly reduced AMPK and PI3K/AKT signaling pathways, promoted Bax/Bcl2 ratio, and induced AVICs calcification. Metformin treatment ameliorated AVICs calcification and apoptosis by activating the PI3K/AKT signaling pathway. AMPK activation and NF-κB inhibition could inhibit AVICs calcification induced by PM treatment; however, AMPK and AKT inhibition reversed the protective effect of metformin. CONCLUSIONS This study, for the first time, demonstrates that metformin can inhibit AVICs in vitro calcification by activating the PI3K/AKT signaling pathway; this suggests that metformin may provide a potential target for the treatment of CAVD. And the PI3K/AKT signaling pathway emerges as an important regulatory axis in the pathological mechanism of CAVD.
Collapse
|
20
|
Adoga JO, Channa ML, Nadar A. Kolaviron attenuates cardiovascular injury in fructose-streptozotocin induced type-2 diabetic male rats by reducing oxidative stress, inflammation, and improving cardiovascular risk markers. Biomed Pharmacother 2021; 144:112323. [PMID: 34656062 DOI: 10.1016/j.biopha.2021.112323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
The prevalence of cardiovascular disease among type-2 diabetic patients has become a source of major concern world over. This study explored the protective effect of kolaviron, a bioflavonoid, against oxidative cardiovascular injury in fructose- streptozotocin-induced type 2 diabetic male Sprague Dawley rats. After acclimatization, induction, and confirmation of type-2 diabetes, kolaviron was administered for 28days, after which the animals were anesthetized with Isofor and euthanized. Blood from each rat were collected, and blood samples were then centrifuged for serum and plasma. Cardiac troponin I (cTnI), creatine kinase myocardial band (CK-MB), Creatine phosphokinase (CK), and insulin levels were immediately determined in serum, while remaining samples (serum, plasma, and organs) were stored in the bio-freezer at - 80 °C and 10% formalin for enzyme-link immunosorbent assay (ELISA), biochemical, molecular, and histopathological studies. The results show that type-2 diabetes induction with fructose and streptozotocin led to increased blood glucose levels, decreased insulin levels and cardiac antioxidant enzyme activities, increased malondialdehyde levels, cardiac biomarkers and pro-inflammatory cytokines levels, resulted in abnormal lipid profile, increased blood pressure and angiotensin-converting enzyme (ACE) activity, and decreased plasma endothelial nitric oxide synthase (eNOS) concentration. The histopathological examination of the cardiac tissue revealed severe lesion, hypertrophy, and myofibrils degeneration. However, administration of kolaviron for 28days remarkably improved these conditions. Hence the result from the study validates the potency of kolaviron, and suggests it could serve as an alternative to existing remedy in ameliorating or protecting against cardiovascular injury in type-2 diabetes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/pharmacology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blood Pressure/drug effects
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Flavonoids/pharmacology
- Fructose
- Inflammation Mediators/blood
- Insulin/blood
- Lipids/blood
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Peptidyl-Dipeptidase A/blood
- Rats, Sprague-Dawley
- Streptozocin
- Rats
Collapse
Affiliation(s)
- Jeffrey O Adoga
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Mahendra L Channa
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Anand Nadar
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
21
|
Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. Int J Mol Sci 2021; 22:ijms22179393. [PMID: 34502314 PMCID: PMC8430638 DOI: 10.3390/ijms22179393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease with a higher incidence of myocardial infarction. This study explores the role of metformin, a first-line antihyperglycemic agent, in postinfarction fibrotic and inflammatory remodeling in mice. Three-month-old C57BI/6J mice were submitted to 30 min cardiac ischemia followed by reperfusion for 14 days. Intraperitoneal treatment with metformin (5 mg/kg) was initiated 15 min after the onset of reperfusion and maintained for 14 days. Real-time PCR was used to determine the levels of COL3A1, αSMA, CD68, TNF-α and IL-6. Increased collagen deposition and infiltration of macrophages in heart tissues are associated with upregulation of the inflammation-associated genes in mice after 14 days of reperfusion. Metformin treatment markedly reduced postinfarction fibrotic remodeling and CD68-positive cell population in mice. Moreover, metformin resulted in reduced expression of COL3A1, αSMA and CD68 after 14 days of reperfusion. Taken together, these results open new perspectives for the use of metformin as a drug that counteracts adverse myocardial fibroticand inflammatory remodeling after MI.
Collapse
|
22
|
Yu W, Chen C, Cheng J. The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail 2020; 7:3497-3504. [PMID: 33089967 PMCID: PMC7755013 DOI: 10.1002/ehf2.13065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiac hypertrophy can lead to heart failure and cardiovascular events and has become a research hotspot in the field of cardiovascular disease. Despite extensive and in-depth research, the pathogenesis of cardiac hypertrophy is far from being fully understood. Increasing evidence has shown that the transcription factor forkhead box protein O 1 (FoxO1) is closely related to the occurrence and development of cardiac hypertrophy. This review summarizes the current literature on the role and molecular mechanism of FoxO1 in cardiac hypertrophy. We searched the database MEDLINE via PubMed for available evidence on the effect of FoxO1 on cardiac hypertrophy. FoxO1 has many effects on multiple diseases, including cardiovascular diseases, diabetes, cancer, aging, and stem cell activity. Recent studies have shown that FoxO1 plays a critical role in the development of cardiac hypertrophy. Evidence for this relationship includes the following. (i) FoxO1 can regulate cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy and (ii) is controlled by several upstream signalling molecules (e.g. phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and sirtuins) and regulates many downstream transcription proteins (e.g. ubiquitin ligases muscle RING finger 1/muscle atrophy F-box, calcineurin/nuclear factor of activated T cells, and microRNAs). In response to stress or external stimulation (e.g. low energy, oxidative stress, or growth factor signalling), FoxO1 undergoes post-translational modification and transfers from the cytoplasm to nucleus, thus regulating the expression of a series of target genes in myocardium that are involved in cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy. (iii) Finally, targeted regulation of FoxO1 is an effective method of intervening in myocardial hypertrophy. The information reviewed here should be significant for understanding the roles of FoxO1 in cardiac hypertrophy and should contribute to the design of further studies related to FoxO1 and the hypertrophic response. It should also shed light on a potential treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| | - Chunjuan Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical College69 Dong Xia North RoadShantou515041China
| | - Jidong Cheng
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| |
Collapse
|
23
|
Sahay RK, Mittal V, Gopal GR, Kota S, Goyal G, Abhyankar M, Revenkar S. Glimepiride and Metformin Combinations in Diabetes Comorbidities and Complications: Real-World Evidence. Cureus 2020; 12:e10700. [PMID: 33133865 PMCID: PMC7594657 DOI: 10.7759/cureus.10700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 11/05/2022] Open
Abstract
Objective To evaluate the usage of various strengths of glimepiride and metformin fixed-dose combinations in the management of type 2 diabetes mellitus (T2DM) patients with comorbidities and complications. Methods A retrospective, non-randomized, non-comparative, multi-centric real-world study included T2DM patients (age > 18 years) taking glimepiride and metformin fixed-dose combinations. Age, duration of diabetes, diabetes complications, comorbidities (hypertension and dyslipidemia), dosage frequency, and concomitant medications were analyzed from medical charts. Results A total of 4858 T2DM patients were included, with a mean age of 52.67 years and males being predominant in the study population (60.85%). The laboratory investigations showed a mean glycated hemoglobin (HbA1c) of 7.5, low-density lipoprotein (LDL) cholesterol of 104.81 ± 38.19 mg/dL, and serum creatinine of 0.88 ± 0.26 mg/dL. Around 2055 (42.30%) T2DM patients were hypertensive, and telmisartan alone and a telmisartan-based combination were the drugs of choice for hypertension management. Similarly, 1073 (22.08%) T2DM patients were having dyslipidemia and were primarily managed with rosuvastatin and its combination in 664 (62%) patients. Macrovascular complications were observed in 339 (6.97%) T2DM patients, among which coronary artery disease (CAD) had maximum prevalence, affecting 273 (5.61%) T2DM patients. Microvascular complications were 1010 (20.79%) T2DM patients, among which neuropathy had affected a maximum of 686 (14.12%) followed by retinopathy (2.34%) and nephropathy (1.81%). Among the available 11 strengths, the glimepiride 2 mg and metformin 500 mg combination were most widely prescribed in 1297 (26.69%), followed by glimepiride 1 mg and metformin 500 mg in 1193 (24.57%) patients, and the preferred dosage pattern was twice a daily in 2665 (54.85%) T2DM patients. An age-wise prescription analysis showed that glimepiride and metformin combinations were the preferred choice for the management of diabetes across all the age groups. Conclusion The real-world evidence in the Indian clinical setting indicates that glimepiride and metformin fixed-dose combinations are widely used in the management in T2DM patients with comorbidities like hypertension, dyslipidemia, and diabetes complications. Glimepiride and metformin fixed-dose combinations are suitable for early as well as long-standing diabetes.
Collapse
Affiliation(s)
| | - Vinod Mittal
- Centre for Diabetes & Metabolic Diseases, Delhi Heart & Lung Institute, New Delhi, IND
| | - G Raja Gopal
- Department of Endocrinology and Diabetes, Sriridhi Endocrinology & Diabetes Super Specialty Clinic, Kurnool, IND
| | - Sunil Kota
- Department of Endocrinology, Endocare Hospital, Vijaywada, IND
| | - Ghanshyam Goyal
- Department of Endocrinology, S K Diabetes Research and Education Centre, Kolkata, IND
| | | | | |
Collapse
|
24
|
Zhang M, Sun W, Du J, Gou Y, Liu L, Wang R, Xu X. Protective Effect of Metformin on Sepsis Myocarditis in Zebrafish. Dose Response 2020; 18:1559325820938543. [PMID: 32694962 PMCID: PMC7350400 DOI: 10.1177/1559325820938543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: We found in previous study that metformin could treat sepsis myocarditis in a mouse model. We employed the zebrafish model organism to investigate the effect of metformin on sepsis myocarditis. Methods and Results: Wild-type zebrafish was used to establish a sepsis myocarditis model and combined with image software analysis and cytokine detection, the protective dose of metformin was determined. The results showed that immersion with Escherichia coli could cause 75% mortality in zebrafish and make larvae appear as characteristics of severe sepsis myocarditis. Pretreatment with 10 mM metformin for 3 hours could effectively reduce heart congestion and swelling in zebrafish with sepsis myocarditis and increased the heart rate. It could reduce the mortality and prolong the survival time of zebrafish with sepsis myocarditis; Tg(mpx: EGFP) transgenic zebrafish were adopted to explore the number of neutrophils in zebrafish heart before and after metformin protection, and metformin could maintain the number of neutrophils in zebrafish heart; quantitative real-time reverse transcription–polymerase chain reaction showed that metformin could reduce the expression of pro-inflammatory factors, tumor necrosis factor-α and interleukin (IL)-6, and could promote the anti-inflammatory factor, transforming growth factor-β and IL-10 expression. Conclusion: We established a zebrafish sepsis myocarditis model and applied metformin in advance to provide a protective effect on the zebrafish heart.
Collapse
Affiliation(s)
- Mingming Zhang
- China-Japan Union Hospital, Jilin University, Jilin, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Contributed equally to this work
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Contributed equally to this work
| | - Jianan Du
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yawei Gou
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lingling Liu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ruonan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- China-Japan Union Hospital, Jilin University, Jilin, China
| |
Collapse
|
25
|
Lv L, Zheng N, Zhang L, Li R, Li Y, Yang R, Li C, Fang R, Shabanova A, Li X, Liu Y, Liang H, Zhou Y, Shan H. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur J Pharmacol 2020; 881:173131. [PMID: 32450177 DOI: 10.1016/j.ejphar.2020.173131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Cardiac conduction delay may occur as a common complication of several cardiac diseases. A few therapies and drugs have a good effect on cardiac conduction delay. Metformin (Met) has a protective effect on the heart. This study's aim was to investigate whether Met could ameliorate cardiac conduction delay and its potential mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI) mouse models were used. Mice were administered with Met in an intragastric manner. We found that the expression of miR-1 was significantly up-regulated in H2O2 treated cardiomyocytes as well as in TG and MI mice. The protein levels of inwardly rectifying potassium channel 2.1 (Kir2.1) and Connexin43 (CX43) were down-regulated both in cardiomyocytes treated with H2O2 as well as cardiac tissues of TG and MI mice, as compared to their controls. Furthermore, the PR and QT intervals were prolonged, action potential duration (APD) was delayed, and conduction velocity (CV) was reduced, with upregulation of miR-1 in the hearts. In the meanwhile, intercalated disc injuries were found in the hearts of MI mice. Interestingly, Met can noticeably inhibit miR-1 upregulation and attenuate the changes mentioned above. Taken together, this suggested that Met could play an important role in improving cardiac conduction delay through inhibition of miR-1 expression. Our study proposes that Met is a potential candidate for the treatment of cardiac conduction delay and provides a new idea of treating arrhythmia with a drug.
Collapse
Affiliation(s)
- Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; The Centre of Functional Experiment Teaching, Department of Basic Medicine, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Nan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruotong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingnan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Chao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruonan Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Azaliia Shabanova
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Outpatient and Emergency Pediatric, Bashkir State Medical University, Ground Floor, Teatralnaya Street, 2a, 450000, Ufa, Russia
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
26
|
Chen J, Zhang S, Pan G, Lin L, Liu D, Liu Z, Mei S, Zhang L, Hu Z, Chen J, Luo H, Wang Y, Xin Y, You Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci 2020; 249:117498. [PMID: 32142765 DOI: 10.1016/j.lfs.2020.117498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
AIMS Doxorubicin (DOX) is an effective anthracycline anticancer drug. However, the clinical usage of it is limited due to its severe cardiotoxicity side effects. Metformin (Met) is a kind of first-line antihyperglycemic drug which has a potential protective effect on the heart,it is often used for oral treatment of type 2 diabetes. In this study, we explored whether Met could attenuate cardiotoxicity induced by DOX. MATERIALS AND METHODS For the sake of exploring the Met protective effect and mechanism, we established the DOX-induced cardiotoxicity models both in H9C2 cells incubated with 5 μM DOX in vitro and Sprague-Dawley rats treated with 20 mg/kg cumulative dose of DOX. KEY FINDINGS Met is able to inhibit growth inhibition and apoptosis of H9C2 cells induced by DOX. The heart indexes of rats were examined to evaluate the Met cardiotoxicity protection. Met improved the abnormal indexes, serum markers of cardiac heart injury, echocardiography, electrocardiogram, cardiac pathology, cardiomyocyte apoptosis, and oxidative stress markers induced by DOX. Furthermore, in vivo and in vitro studies demonstrated that Met protected against DOX-induced increasing cleaved caspase-3 and Bax. Met also prevented the downregulation of Bcl-2, activated the AMPK pathway, and inhibited the MAPK pathway. SIGNIFICANCE Met showed protective effects on DOX-induced cardiotoxicity by reducing oxidative stress and apoptosis, as well as regulating AMPK and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiaoting Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China; Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guixuan Pan
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Lin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongying Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Song Mei
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijing Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihang Hu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianguo Chen
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huaxing Luo
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanfei Xin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Zhenqiang You
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
You G, Long X, Song F, Huang J, Tian M, Xiao Y, Deng S, Wu Q. Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to Induce Autophagy and Inhibit Atherosclerosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:457-468. [PMID: 32099330 PMCID: PMC7006854 DOI: 10.2147/dddt.s233932] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/11/2020] [Indexed: 12/25/2022]
Abstract
Background Metformin has been shown to inhibit the proliferation and migration of vascular wall cells. However, the mechanism through which metformin acts on atherosclerosis (AS) via the long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is still unknown. Thus, this research investigated the effect of metformin and lncRNA TUG1 on AS. Methods First, qRT-PCR was used to detect the expression of lncRNA TUG1 in patients with coronary heart disease (CHD). Then, the correlation between metformin and TUG1 expression in vitro and their effects on proliferation, migration, and autophagy in vascular wall cells were examined. Furthermore, in vivo experiments were performed to verify the anti-AS effect of metformin and TUG1 to provide a new strategy for the prevention and treatment of AS. Results qRT-PCR results suggested that lncRNA TUG1 expression was robustly upregulated in patients with CHD. In vitro experiments indicated that after metformin administration, the expression of lncRNA TUG1 decreased in a time-dependent manner. Metformin and TUG1 knockdown via small interfering RNA both inhibited proliferation and migration while promoted autophagy via the AMPK/mTOR pathway in vascular wall cells. In vivo experiments with a rat AS model further demonstrated that metformin and sh-TUG1 could inhibit the progression of AS. Conclusion Taken together, our data demonstrate that metformin might function to prevent AS by activating the AMPK/mTOR pathway via lncRNA TUG1.
Collapse
Affiliation(s)
- Ganhua You
- Guizhou University School of Medicine, Guiyang 550025, People's Republic of China.,Guizhou Institute for Food and Drug Control, Guiyang 550004, People's Republic of China
| | - Xiangshu Long
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| |
Collapse
|
28
|
Zhang DP, Xu L, Wang LF, Wang HJ, Jiang F. Effects of antidiabetic drugs on left ventricular function/dysfunction: a systematic review and network meta-analysis. Cardiovasc Diabetol 2020; 19:10. [PMID: 31969144 PMCID: PMC6977298 DOI: 10.1186/s12933-020-0987-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although a variety of antidiabetic drugs have significant protective action on the cardiovascular system, it is still unclear which antidiabetic drugs can improve ventricular remodeling and fundamentally delay the process of heart failure. The purpose of this network meta-analysis is to compare the efficacy of sodium glucose cotransporter type 2 (SGLT-2) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) agonists, metformin (MET), sulfonylurea (SU) and thiazolidinediones (TZDs) in improving left ventricular (LV) remodeling in patients with type 2 diabetes (T2DM) and/or cardiovascular disease (CVD). METHODS We searched articles published before October 18, 2019, regardless of language or data, in 4 electronic databases: PubMed, EMBASE, Cochrane Library and Web of Science. We included randomized controlled trials in this network meta-analysis, as well as a small number of cohort studies. The differences in the mean changes in left ventricular echocardiographic parameters between the treatment group and control group were evaluated. RESULTS The difference in the mean change in LV ejection fraction (LVEF) between GLP-1 agonists and placebo in treatment effect was greater than zero (MD = 2.04% [0.64%, 3.43%]); similar results were observed for the difference in the mean change in LV end-diastolic diameter (LVEDD) between SGLT-2 inhibitors and placebo (MD = - 3.3 mm [5.31, - 5.29]), the difference in the mean change in LV end-systolic volume (LVESV) between GLP-1 agonists and placebo (MD = - 4.39 ml [- 8.09, - 0.7]); the difference in the mean change in E/e' between GLP-1 agonists and placebo (MD = - 1.05[- 1.78, - 0.32]); and the difference in the mean change in E/e' between SGLT-2 inhibitors and placebo (MD = - 1.91[- 3.39, - 0.43]). CONCLUSIONS GLP-1 agonists are more significantly associated with improved LVEF, LVESV and E/e', SGLT-2 inhibitors are more significantly associated with improved LVEDD and E/e', and DPP-4 inhibitors are more strongly associated with a negative impact on LV end-diastolic volume (LVEDV) than are placebos. SGLT-2 inhibitors are superior to other drugs in pairwise comparisons.
Collapse
Affiliation(s)
- Da-Peng Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Li Xu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Hong-Jiang Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Feng Jiang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| |
Collapse
|
29
|
Ram E, Lavee J, Tenenbaum A, Klempfner R, Fisman EZ, Maor E, Ovdat T, Amunts S, Sternik L, Peled Y. Metformin therapy in patients with diabetes mellitus is associated with a reduced risk of vasculopathy and cardiovascular mortality after heart transplantation. Cardiovasc Diabetol 2019; 18:118. [PMID: 31526382 PMCID: PMC6747732 DOI: 10.1186/s12933-019-0925-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Background Cardiac allograft vasculopathy (CAV) is a major cause of morbidity and mortality following heart transplantation (HT). Reduced cardiovascular mortality and morbidity have been reported in non-HT patients treated with metformin. Given the high prevalence of type 2 diabetes mellitus (T2DM) in HT patients, we investigated the association between metformin therapy and cardiovascular outcomes after HT. Methods The study population comprised 103 DM patients who had undergone HT between 1994 and 2018 and were prospectively followed-up. We excluded from the study patients with type 1 diabetes mellitus. Fifty-five HT patients (53%) in the cohort were treated with metformin. Clinical data were recorded on prospectively designed forms. The primary outcomes included CAV, survival, and the combined end-point of CAV or cardiovascular mortality. Results Kaplan–Meier survival analysis showed that the CAV rate at 20 years of follow-up was lower in DM patients treated with metformin than in those who were not (30 vs. 65%; log-rank p = 0.044). Similarly, the combined risk of CAV or cardiovascular mortality was lower in the metformin-treated patients than in those not receiving metformin (32 vs. 68%; log rank p = 0.01). Consistently, multivariate analysis adjusted for age and comorbidities showed that metformin therapy was independently associated with a significant 90% reduction (95% confidence interval 0.02–0.46, p = 0.003) in the risk for the development of CAV, and a 91% reduction (95% confidence interval 0.02–0.42; p = 0.003) in the risk for CAV or cardiovascular mortality. Conclusions In diabetic HT patients, metformin therapy is independently associated with a significant reduction in the long-term risk for CAV and the combined end-point of CAV or cardiovascular mortality after HT.
Collapse
Affiliation(s)
- Eilon Ram
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Lavee
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Tenenbaum
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Robert Klempfner
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Enrique Z Fisman
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Maor
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ovdat
- Israeli Association for Cardiovascular Trials, Ramat Gan, Israel
| | - Sergei Amunts
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Sternik
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Peled
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
30
|
Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol 2019; 18:96. [PMID: 31362743 PMCID: PMC6668189 DOI: 10.1186/s12933-019-0900-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metformin is the most widely prescribed drug to lower glucose and has a definitive effect on the cardiovascular system. The goal of this systematic review and meta-analysis is to assess the effects of metformin on mortality and cardiac function among patients with coronary artery disease (CAD). METHODS Relevant studies reported before October 2018 was retrieved from databases including PubMed, EMBASE, Cochrane Library and Web of Science. Hazard ratio (HR) was calculated to evaluate the all-cause mortality, cardiovascular mortality and incidence of cardiovascular events (CV events), to figure out the level of left ventricular ejection fraction (LVEF), creatine kinase MB (CK-MB), type B natriuretic peptide (BNP) and to compare the average level of low density lipoprotein (LDL). RESULTS In this meta-analysis were included 40 studies comprising 1,066,408 patients. The cardiovascular mortality, all-cause mortality and incidence of CV events were lowered to adjusted HR (aHR) = 0.81, aHR = 0.67 and aHR = 0. 83 respectively after the patients with CAD were given metformin. Subgroup analysis showed that metformin reduced all-cause mortality in myocardial infarction (MI) (aHR = 0.79) and heart failure (HF) patients (aHR = 0.84), the incidence of CV events in HF (aHR = 0.83) and type II diabetes mellitus (T2DM) patients (aHR = 0.83), but had no significant effect on MI (aHR = 0.87) and non-T2DM patients (aHR = 0.92). Metformin is superior to sulphonylurea (aHR = 0.81) in effects on lowering the incidence of CV events and in effects on patients who don't use medication. The CK-MB level in the metformin group was lower than that in the control group standard mean difference (SMD) = - 0.11). There was no significant evidence that metformin altered LVEF (MD = 2.91), BNP (MD = - 0.02) and LDL (MD = - 0.08). CONCLUSION Metformin reduces cardiovascular mortality, all-cause mortality and CV events in CAD patients. For MI patients and CAD patients without T2DM, metformin has no significant effect of reducing the incidence of CV events. Metformin has a better effect of reducing the incidence of CV events than sulfonylureas.
Collapse
Affiliation(s)
- Yechen Han
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hongzhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yongtai Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Peng Gao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xufei Yang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Zhujun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|