1
|
Wang M, Guo J, Chen W, Wang H, Hou X. Emerging roles of tRNA-derived small RNAs in injuries. PeerJ 2024; 12:e18348. [PMID: 39465146 PMCID: PMC11512806 DOI: 10.7717/peerj.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of small noncoding RNAs, precisely cleaved from tRNA, functioning as regulatory molecules. The topic of tsRNAs in injuries has not been extensively discussed, and studies on tsRNAs are entering a new era. Here, we provide a fresh perspective on this topic. We systematically reviewed the classification, generation, and biological functions of tsRNAs in response to stress, as well as their potential as biomarkers and therapeutic targets in various injuries, including lung injury, liver injury, renal injury, cardiac injury, neuronal injury, vascular injury, skeletal muscle injury, and skin injury. We also provided a fresh perspective on the association between stress-induced tsRNAs and organ injury from a clinical perspective.
Collapse
Affiliation(s)
- Mengjun Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junfeng Guo
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Meidaninikjeh S, Mohammadi P, Elikaei A. Bacteriophages and bacterial extracellular vesicles, threat or opportunity? Life Sci 2024; 350:122749. [PMID: 38821215 DOI: 10.1016/j.lfs.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Emergence of antimicrobial-resistant bacteria (AMR) is one of the health major problems worldwide. The scientists are looking for a novel method to treat infectious diseases. Phage therapy is considered a suitable approach for treating infectious diseases. However, there are different challenges in this way. Some biological aspects can probably influence on therapeutic results and further investigations are necessary to reach a successful phage therapy. Bacteriophage activity can influence by bacterial defense system. Bacterial extracellular vesicles (BEVs) are one of the bacterial defense mechanisms which can modify the results of bacteriophage activity. BEVs have the significant roles in the gene transferring, invasion, escape, and spreading of bacteriophages. In this review, the defense mechanisms of bacteria against bacteriophages, especially BEVs secretion, the hidden linkage of BEVs and bacteriophages, and its possible consequences on the bacteriophage activity as well phage therapy will be discussed.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| |
Collapse
|
4
|
Luo X, Liu P, Ye X, He J, Lai Y, Lv Y, Wu X, Liu Y, Zhang Q, Yang H, Wei W, Deng C, Kuang S, Wu S, Xue Y, Rao F. Curcumin improves atrial fibrillation susceptibility by regulating tsRNA expression in aging mouse atrium. PeerJ 2024; 12:e17495. [PMID: 39076782 PMCID: PMC11285363 DOI: 10.7717/peerj.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/09/2024] [Indexed: 07/31/2024] Open
Abstract
Age is an independent risk factor for atrial fibrillation (AF), and curcumin can delay aging related disease through reducing oxidative stress and inflammation. However, its target in aging-related AF remains unclear. Transfer RNA-derived small RNA (tsRNA) is a novel short non-coding RNA (sncRNA), and exerts a potential regulatory function in aging. This study was to explore the therapeutic targets of curcumin in atrium of aged mice by PANDORA-seq. Aged mice (18 month) were treated with curcumin (100 mg/kg). Rapid transjugular atrial pacing was performed to observe AF inducibility. SA-β-gal staining, reactive oxygen species (ROS) detection and qRT-PCR were used to assess the degree of aging and oxidative stress/inflammation levels. PANDORA-seq was performed to reveal the differentially expressed sncRNAs in the atrium of mice. The results showed that curcumin reduced the susceptibility AF of aged mice by improving aging-related atrial fibrosis. Compared to young mice (5 month) group, aged mice yielded 473 significantly altered tsRNA sequences, while 947 tsRNA sequences were significantly altered after treated with curcumin. Enrichment analysis revealed that the target genes were mainly related to DNA damage and protein modification. Compared with the 5 month group, the expression levels of mature-mt_tRNA-Val-TAC_CCA_end, mature-mt_tRNA-Glu-TTC_CCA_end, and mature-tRNA-Asp-GTC_CCA_end were up-regulated in the 18 month group, while the expression of mature-mt_tRNA-Thr-TGT_5_end was down-regulated. This trend was reversed in the 18 month + curcumin group. Increased cellular ROS levels, inflammation expression and senescence in aged mice atrium were improved by the down-regulation of mature-mt_tRNA-Val-TAC_CCA_end. In conclusion, our findings identified mature-mt_tRNA-Val-TAC_CCA_end participated in the mechanism of aging-related atrial fibrosis, providing new intervention target of aging-related AF.
Collapse
Affiliation(s)
- Xueshan Luo
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Panyue Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Xingdong Ye
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Jintao He
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Yingyu Lai
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Yidong Lv
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Xiongbin Wu
- Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Qianhuan Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Chunyu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Sujuan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Shulin Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Yumei Xue
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Kaul S, Nair V, Gcanga L, Lakshmanan V, Kalamuddin M, Anang V, Rathore S, Dhawan S, Alam T, Khanna V, Lohiya S, Ali S, Mannan S, Rade K, Parihar SP, Khanna A, Malhotra P, Brombacher F, Dasaradhi PV, Guler R, Mohmmed A. Identifying quantitative sncRNAs signature using global sequencing as a potential biomarker for tuberculosis diagnosis and their role in regulating host response. Int J Biol Macromol 2024; 271:132714. [PMID: 38815937 DOI: 10.1016/j.ijbiomac.2024.132714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES The study aimed to identify a quantitative signature of circulating small non-coding RNAs (sncRNAs) as a biomarker for pulmonary tuberculosis disease (active-TB/ATB) and explore their regulatory roles in host-pathogen interactions and disease progression. METHODS We conducted a cross-sectional study recruiting subjects diagnosed with active-TB (drug-sensitive and drug-resistant) and healthy controls. Sera samples were collected and utilized for preparing small RNA libraries. Quantitative patterns of circulating sncRNAs (miRNAs, piRNAs and tRFs) were identified via high-throughput sequencing and DeSeq2 analysis and validated in independent active-TB cohorts. Functional knockdown for two selected miRNAs were also performed. RESULTS A diagnostic signature of four sncRNAs for both drug-sensitive and drug-resistant active-TB cases was validated, exhibiting an AUC of 0.96 (95% CI: 0.937-0.996, p < 0.001) with 86.7% sensitivity (95% CI: 0.775-0.932) and 91.7% specificity (95% CI: 0.730-0.990) in ROC analysis. Functional knockdown demonstrated regulatory roles of hsa-miR-223-5p and hsa-miR-10b-5p in Mycobacterium tuberculosis (Mtb) growth and pro-inflammatory cytokine expression (IL-6 and IL-8). CONCLUSION The study identified a diagnostic tool utilizing a signature of four sncRNAs with high specificity and sensitivity, enhancing our understanding of sncRNAs as ATB diagnostic biomarker. Additionally, hsa-miR-223-5p and hsa-miR-10b-5p demonstrated potential roles in Mtb pathogenesis and host-response to infection.
Collapse
Affiliation(s)
- Sheetal Kaul
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Vivek Nair
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - M Kalamuddin
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vandana Anang
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sumit Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | - Shikha Dhawan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Vishal Khanna
- Chest Clinic (Tuberculosis), Lok Nayak Hospital, New Delhi, India
| | - Sheelu Lohiya
- Chest Clinic (Tuberculosis), Lok Nayak Hospital, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | | | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ashwani Khanna
- Chest Clinic (Tuberculosis), Lok Nayak Hospital, New Delhi, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
6
|
Karpagavalli M, Sivagurunathan S, Panda TS, Srikakulam N, Arora R, Dohadwala L, Tiwary BK, Sadras SR, Arunachalam JP, Pandi G, Chidambaram S. piRNAs in the human retina and retinal pigment epithelium reveal a potential role in intracellular trafficking and oxidative stress. Mol Omics 2024; 20:248-264. [PMID: 38314503 DOI: 10.1039/d3mo00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Long considered active only in the germline, the PIWI/piRNA pathway is now known to play a significant role in somatic cells, especially neurons. In this study, piRNAs were profiled in the human retina and retinal pigment epithelium (RPE). Furthermore, RNA immunoprecipitation with HIWI2 (PIWIL4) in ARPE19 cells yielded 261 piRNAs, and the expression of selective piRNAs in donor eyes was assessed by qRT-PCR. Intriguingly, computational analysis revealed complete and partial seed sequence similarity between piR-hsa-26131 and the sensory organ specific miR-183/96/182 cluster. Furthermore, the expression of retina-enriched piR-hsa-26131 was positively correlated with miR-182 in HIWI2-silenced Y79 cells. In addition, the lnc-ZNF169 sequence matched with two miRNAs of the let-7 family, and piRNAs, piR-hsa-11361 and piR-hsa-11360, which could modulate the regulatory network of retinal differentiation. Interestingly, we annotated four enriched motifs among the piRNAs and found that the piRNAs containing CACAATG and CTCATCAKYG motifs were snoRNA-derived piRNAs, which are significantly associated with developmental functions. However, piRNAs consisting of ACCACTANACCAC and AKCACGYTCSC motifs were mainly tRNA-derived fragments linked to stress response and sensory perception. Additionally, co-expression network analysis revealed cell cycle control, intracellular transport and stress response as the important biological functions regulated by piRNAs in the retina. Moreover, loss of piRNAs in HIWI2 knockdown ARPE19 confirmed altered expression of targets implicated in intracellular transport, circadian clock, and retinal degeneration. Moreover, piRNAs were dysregulated under oxidative stress conditions, indicating their potential role in retinal pathology. Therefore, we postulate that piRNAs, miRNAs, and lncRNAs might have a functional interplay during retinal development and functions to regulate retinal homeostasis.
Collapse
Affiliation(s)
| | - Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - T Sayamsmruti Panda
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Reety Arora
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry-607402, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| |
Collapse
|
7
|
Zhao Y, Wang K, Zhao C, Liu N, Wang Z, Yang W, Cheng Z, Zhou L, Wang K. The function of tRNA-derived small RNAs in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102114. [PMID: 38314096 PMCID: PMC10835008 DOI: 10.1016/j.omtn.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes. tsRNA actively participates in regulating many cellular processes, such as cell death, proliferation, and metabolism. tsRNAs could be promising diagnostic markers for cardiovascular diseases (CVDs). tsRNAs have been identified in serums, suggesting their utility as early indicators for the diagnosis of CVDs. Moreover, the regulatory roles of tsRNAs in CVDs make them promising targets for therapeutic intervention. This review provides a succinct overview of the characteristics, classification, and regulatory functions of tsRNAs in the context of CVDs. By shedding light on the intricate roles of tsRNAs, this knowledge could pave the way for the development of innovative diagnostic tools and therapeutic strategies for CVDs.
Collapse
Affiliation(s)
- Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Chun Zhao
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Ning Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zhihong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Wenting Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zewei Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Luyu Zhou
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| |
Collapse
|
8
|
Xie L, Zhao Z, Xia H, Su S, He L, Huang Z, Li Y, Gao M, Chen J, Peng J, Ruan Y. A novel tsRNA-5008a promotes ferroptosis in cardiomyocytes that causes atrial structural remodeling predisposed to atrial fibrillation. Exp Cell Res 2024; 435:113923. [PMID: 38190870 DOI: 10.1016/j.yexcr.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Atrial fibrillation (AF) is an extremely common clinical arrhythmia disease, but whether its mechanism is associated with ferroptosis remains unclear. The tRNA-derived small RNAs (tsRNAs) are involved in a variety of cardiovascular diseases, however, their role and mechanism in atrial remodeling in AF have not been studied. We aimed to explore whether tsRNAs mediate ferroptosis in AF progression. The AF models were constructed to detect ferroptosis-related indicators, and Ferrostatin-1 (Fer-1) was introduced to clarify the relationship between ferroptosis and AF. Atrial myocardial tissue was used for small RNA sequencing to screen potential tsRNAs. tsRNA functioned on ferroptosis and AF was explored. Atrial fibrosis and changes in the cellular structures and arrangement were observed in AF mice model, and these alterations were accompanied by ferroptosis occurrence, exhibited by the accumulation of Fe2+ and MDA levels and the decrease of expression of FTH1, GPX4, and SLC7A11. Blocking above ferroptosis activation with Fer-1 resulted in a significant improvement for AF. A total of 7 tsRNAs were upregulated (including tsRNA-5008a) and 2 tsRNAs were downregulated in atrial myocardial tissue in the AF group compared with the sham group. We constructed a tsRNA-mRNA regulated network, which showed tsRNA-5008a targeted 16 ferroptosis-related genes. Knockdown of tsRNA-5008a significantly suppressed ferroptosis through targeting SLC7A11 and diminished myocardial fibrosis both in vitro and in vivo. On the contrary, tsRNA-5008a mimics promoted ferroptosis in cardiomyocytes. Collectively, tsRNA-5008a involved in AF through ferroptosis. Our study provides novel insights into the role of tsRNA-5008a mediated ferroptosis in AF progression.
Collapse
Affiliation(s)
- Liangzhen Xie
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liwei He
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Jian Peng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Liang Y, Kong L, Zhang Y, Zhang Y, Shi M, Huang J, Kong H, Qi S, Yang Y, Hong J, Zhu M, Zhu X, Sun X, Zhang S, Wu L, Zhao C. Transfer RNA derived fragment, tRF-Glu-CTC, aggravates the development of neovascular age-related macular degeneration. Theranostics 2024; 14:1500-1516. [PMID: 38389841 PMCID: PMC10879880 DOI: 10.7150/thno.92943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Angiogenesis expedites tissue impairment in many diseases, including age-related macular degeneration (AMD), a leading cause of irreversible blindness in elderly. A substantial proportion of neovascular AMD patients, characterized by aberrant choroidal neovascularization (CNV), exhibit poor responses or adverse reactions to anti-VEGF therapy. Herein, we aimed to unveil the function of newly identified transfer RNA-derived small RNA, tRF-Glu-CTC, in the pathology of CNV and determine its potential in inhibiting angiogenesis. Methods: Small non-coding RNA sequencing and quantitative polymerase chain reaction were conducted to detect expression pattern of tRF-Glu-CTC in CNV development. Immunofluorescence staining, fundus fluorescein angiography and ex vivo choroidal sprouting assays were employed for the evaluation of tRF-Glu-CTC's function in CNV development. The role of tRF-Glu-CTC in endothelial cells were determined by in vitro endothelial cell proliferation, migration and tube formation assays. Transcriptome sequencing, dual-luciferase reporter assay and in vitro experiments were conducted to investigate downstream mechanism of tRF-Glu-CTC mediated pathology. Results: tRF-Glu-CTC exhibited substantial up-regulation in AMD patients, laser-induced CNV model, and endothelial cells under hypoxia condition, which is a hallmark of CNV. Inhibiting tRF-Glu-CTC reduced angiogenesis and hypoxia stress in the neovascular region without neuroretina toxicity in laser-induced CNV model, showing an anti-angiogenic effect comparable to bevacizumab, while overexpression of tRF-Glu-CTC significantly augmented CNV. Mechanically, under hypoxia condition, angiogenin was involved in the production of tRF-Glu-CTC, which in turn triggered endothelial cell tubulogenesis, migration and promoted the secretion of inflammatory factors via the suppression of vasohibin 1 (VASH1). When downregulating VASH1 expression, the inhibition of tRF-Glu-CTC showed minimal suppression on angiogenesis. Conclusions: This study demonstrated the important role of tRF-Glu-CTC in the progression of angiogenesis. Targeting of tRF-Glu-CTC may be an alternative to current anti-VEGF therapy for CNV in AMD and other conditions with angiogenesis.
Collapse
Affiliation(s)
- Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yuelu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Mingsu Shi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Siyi Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Meidong Zhu
- Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Camperdown, NSW 2000, Australia
- New South Weals Tissue Bank, New South Weals Organ and Tissue Donation Service, Sydney Eye Hospital, 8 Macquarie Street, Sydney 2000, Australia
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
10
|
Zhang Y, Zhou H, Chen X, Wang N, Zhan Y, Huang Z, Ruan K, Qi Q, Deng M, Jiang Y. A novel tRNA-derived fragment tRF-3023b suppresses inflammation in RAW264.7 cells by targeting Cul4a through NF-κB signaling. Funct Integr Genomics 2024; 24:9. [PMID: 38221594 DOI: 10.1007/s10142-024-01285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
The role of transfer RNA (tRNA)-derived fragment (tRF) in various diseases has been established. However, the effect of tRF-3023b on inflammation remains unclear. Inflammation was imitated in RAW264.7 cells by adding Lipopolysaccharide (LPS). Cells were first divided into control, LPS, and LPS + Bulleyaconitine A (BLA) groups. The contents of TNF-α, IL-6, and MCP-1 were quantified using ELISA. The levels of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), and the phosphorylation of nuclear factor-kappa B (NF-κB)-P65 (p-P65) were detected by Western blotting. RNA sequencing was utilized to find differentially expressed tRFs (DE-tRFs) among three groups. The levels of various tRFs were checked by quantitative real-time PCR (qRT-PCR). Cell cycle and apoptosis were checked by flow cytometry. Dluciferase reporter assay was applied to predict and confirm the interaction between tRF-3023b and Cullin 4A (Cul4a), subsequently RNA pull-down followed by mass spectrometry analysis were conducted. BLA treatment decreased the contents of TNF-α, IL-6, MCP-1, and the expression levels of COX2, iNOS, p-P65. We found 6 DE-tRFs in LPS + BLA group compared to LPS group, tRF-3023b was high expression in control and BLA groups, and the lowest in LPS group. Cul4a was a direct target of tRF-3023b. tRF-3023b mimic affected the cell cycle distribution, promoted cells apoptosis, and suppressed the TNF-α, IL-6, MCP-1, COX2, iNOS and p-P65. The suppression of Cul4a affected the cell cycle distribution, resulted in an increase of cell apoptosis while a decrease of TNF-α, IL-6, MCP-1, COX2, iNOS and p-P65. Furthermore, Cul4a overexpression reversed the effect of tRF-3023b mimic. Cul4a knockdown reversed the effect of tRF-3023b inhibitor. Our study positions tRF-3023b as a compelling candidate, through its interaction with Cul4a, the underlying mechanism on inflammation maybe related to NF-κB pathway. The study provides a basis for exploring new therapeutic strategies for inflammation.
Collapse
Affiliation(s)
- Ying Zhang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Hua Zhou
- Department of Physiology, Anhui Medical College, Hefei, China
| | - Xu Chen
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Ningning Wang
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Yunfei Zhan
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Ziyi Huang
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Kaiyi Ruan
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Qiulan Qi
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
| | - Min Deng
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Nanhu District, Jiaxing, 314000, China.
| | - Yuxin Jiang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
| |
Collapse
|
11
|
Jiang QL, Xu JY, Yao QP, Jiang R, Xu Q, Zhang BT, Li T, Jiang J. Transfer RNA-derived small RNA tRF-Glu-CTC attenuates neointimal formation via inhibition of fibromodulin. Cell Mol Biol Lett 2024; 29:2. [PMID: 38172726 PMCID: PMC10763295 DOI: 10.1186/s11658-023-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-β1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.
Collapse
Affiliation(s)
- Qi-Lan Jiang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Ying Xu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China
| | - Qing-Ping Yao
- Institute of Mechanobiology and Medical Engineering, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qin Xu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China
| | - Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
12
|
Shi Y, Feng Y, Wang Q, Dong G, Xia W, Jiang F. The Role of tRNA-Centered Translational Regulatory Mechanisms in Cancer. Cancers (Basel) 2023; 16:77. [PMID: 38201505 PMCID: PMC10778012 DOI: 10.3390/cancers16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. While numerous factors have been identified as contributing to the development of malignancy, our understanding of the mechanisms involved remains limited. Early cancer detection and the development of effective treatments are therefore critical areas of research. One class of molecules that play a crucial role in the transmission of genetic information are transfer RNAs (tRNAs), which are the most abundant RNA molecules in the human transcriptome. Dysregulated synthesis of tRNAs directly results in translation disorders and diseases, including cancer. Moreover, various types of tRNA modifications and the enzymes responsible for these modifications have been implicated in tumor biology. Furthermore, alterations in tRNA modification can impact tRNA stability, and impaired stability can prompt the cleavage of tRNAs into smaller fragments known as tRNA fragments (tRFs). Initially believed to be random byproducts lacking any physiological function, tRFs have now been redefined as non-coding RNA molecules with distinct roles in regulating RNA stability, translation, target gene expression, and other biological processes. In this review, we present recent findings on translational regulatory models centered around tRNAs in tumors, providing a deeper understanding of tumorigenesis and suggesting new directions for cancer treatment.
Collapse
Affiliation(s)
- Yuanjian Shi
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Qinglin Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Zeidler M, Tavares-Ferreira D, Brougher J, Price TJ, Kress M. NOCICEPTRA2.0 - A comprehensive ncRNA atlas of human native and iPSC-derived sensory neurons. iScience 2023; 26:108525. [PMID: 38162030 PMCID: PMC10755718 DOI: 10.1016/j.isci.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Omiqa Bioinformatics, Berlin, Germany
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis 2023; 14:748. [PMID: 37973899 PMCID: PMC10654580 DOI: 10.1038/s41419-023-06250-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs produced by specific endonucleases following the processing and splicing of precursor or mature tRNAs upon starvation, oxidative stress, hypoxia, and other adverse conditions. tRNAs are classified into two major categories, tRNA fragments (tRFs) and tRNA-derived stress-induced small RNAs (tiRNAs), based on differences in splice sites. With the development of high-throughput sequencing technologies in recent years, tsRNAs have been found to have important biological functions, including inhibition of apoptosis, epigenetic regulation, cell-cell communication, translation, and regulation of gene expression. Additionally, these molecules have been found to be aberrantly expressed in various diseases and to be involved in several pathological processes. In this article, the classification and nomenclature, biological functions, and potential use of tsRNAs as diagnostic biomarkers and therapeutic targets in non-neoplastic diseases are reviewed. Although tsRNA research is at its infancy, their potential in the treatment of non-tumor diseases warrants further investigation.
Collapse
Affiliation(s)
- Liou Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
15
|
Nguyen J, Le Q, Win PW, Hill KA, Singh SM, Castellani CA. Decoding mitochondrial-nuclear (epi)genome interactions: the emerging role of ncRNAs. Epigenomics 2023; 15:1121-1136. [PMID: 38031736 DOI: 10.2217/epi-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Phyo W Win
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Wu Q, Zou S, Liu W, Liang M, Chen Y, Chang J, Liu Y, Yu X. A novel onco-cardiological mouse model of lung cancer-induced cardiac dysfunction and its application in identifying potential roles of tRNA-derived small RNAs. Biomed Pharmacother 2023; 165:115117. [PMID: 37406509 DOI: 10.1016/j.biopha.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing body of research suggests cancer-induced cardiovascular diseases, leading to the appearance of an interdisciplinary study known as onco-cardiology. Lung cancer has the highest incidence and mortality. Cardiac dysfunction constitutes a major cause of death in lung cancer patients. However, its mechanism has not been elucidated because suitable animal models that adequately mimic clinical features are lacking. Here, we established a novel chemically induced lung cancer mouse model using benzo[a]pyrene and urethane to recapitulate the general characteristics of cardiac dysfunction caused by lung cancer, the cardiac disorders in the context of the progression of lung cancer were evaluated using echocardiographic and histological approaches. The pathological changes included myocardial ischaemia, pericarditis, cardiac pre-cachexia, and pulmonary artery hypertension. We performed sequencing to detect the tRNA-derived fragments and tRNA-derived stress-induced RNAs (tRFs/tiRNAs) expressions in mouse heart tissue. 22 upregulated and 16 downregulated tRFs/tiRNAs were identified. Subsequently, the top 10 significant results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were presented. The in vitro model was established by exposing neonatal rat cardiomyocytes and myocardial fibroblasts to lung tumour cell-conditioned medium, respectively. Western blotting revealed significant changes in cardiac failure markers (atrial natriuretic peptide and α-myosin heavy chain) and cardiac fibrosis markers (Collagen-1 and Collagen-3). Our model adequately reflects the pathological features of lung cancer-induced cardiac dysfunction. Furthermore, the altered tRF/tiRNA profiles showed great promise as novel targets for therapies. These results might pave the way for research on therapeutic targets in onco-cardiology.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shiting Zou
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wanjie Liu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Miao Liang
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuling Chen
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jishuo Chang
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xiyong Yu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
17
|
Siddiq A, Dong G, Balan B, Harrison LG, Jex A, Olivier M, Allain T, Buret AG. A thermo-resistant and RNase-sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e109. [PMID: 38938375 PMCID: PMC11080815 DOI: 10.1002/jex2.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) recently emerged as important players in the pathophysiology of parasitic infections. While the protist parasite Giardia duodenalis can produce EVs, their role in giardiasis remains obscure. Giardia can disrupt gut microbiota biofilms and transform commensal bacteria into invasive pathobionts at sites devoid of colonizing trophozoites via unknown mechanisms. We hypothesized that Giardia EVs could modify gut bacterial behaviour via a novel mode of trans-kingdom communication. Our findings indicate that Giardia EVs exert bacteriostatic effects on Escherichia coli HB101 and Enterobacter cloacae TW1, increasing their swimming motility. Giardia EVs also decreased the biofilm-forming ability of E. coli HB101 but not by E. cloacae TW1, supporting the hypothesis that these effects are, at least in part, bacteria-selective. E. coli HB101 and E. cloacae TW1 exhibited increased adhesion/invasion onto small intestine epithelial cells when exposed to Giardia EVs. EVs labelled with PKH67 revealed colocalization with E. coli HB101 and E. cloacae TW1 bacterial cells. Small RNA sequencing revealed a high abundance of ribosomal RNA (rRNA)- and transfer RNA (tRNA)-derived small RNAs, short-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) within Giardia EVs. Proteomic analysis of EVs uncovered the presence of RNA chaperones and heat shock proteins that can facilitate the thermal stability of EVs and its sRNA cargo, as well as protein-modifying enzymes. In vitro, RNase heat-treatment assays showed that total RNAs in EVs, but not proteins, are responsible for modulating bacterial swimming motility and biofilm formation. G. duodenalis small RNAs of EVs, but not proteins, were responsible for the increased bacterial adhesion to intestinal epithelial cells induced upon exposure to Giardia EVs. Together, the findings indicate that Giardia EVs contain a heat-stable, RNase-sensitive cargo that can trigger the development of pathobiont characteristics in Enterobacteria, depicting a novel trans-kingdom cross-talk in the gut.
Collapse
Affiliation(s)
- Affan Siddiq
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| | - George Dong
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Program in Infectious Diseases and Immunology in Global HeathMontréalQCCanada
| | - Balu Balan
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
- The University of MelbourneMelbourneAustralia
| | - Luke G. Harrison
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| | - Aaron Jex
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
- The University of MelbourneMelbourneAustralia
| | - Martin Olivier
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Program in Infectious Diseases and Immunology in Global HeathMontréalQCCanada
| | - Thibault Allain
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| | - Andre G. Buret
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
18
|
Cao J, Wang X, Advani V, Lu YW, Malizia AP, Singh GB, Huang ZP, Liu J, Wang C, Oliveira EM, Mably JD, Chen K, Wang DZ. mt-Ty 5'tiRNA regulates skeletal muscle cell proliferation and differentiation. Cell Prolif 2023; 56:e13416. [PMID: 36756712 PMCID: PMC10392060 DOI: 10.1111/cpr.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
In this study, we sought to determine the role of tRNA-derived fragments in the regulation of gene expression during skeletal muscle cell proliferation and differentiation. We employed cell culture to examine the function of mt-Ty 5' tiRNAs. Northern blotting, RT-PCR as well as RNA-Seq, were performed to determine the effects of mt-Ty 5' tiRNA loss and gain on gene expression. Standard and transmission electron microscopy (TEM) were used to characterize cell and sub-cellular structures. mt-Ty 5'tiRNAs were found to be enriched in mouse skeletal muscle, showing increased levels in later developmental stages. Gapmer-mediated inhibition of tiRNAs in skeletal muscle C2C12 myoblasts resulted in decreased cell proliferation and myogenic differentiation; consistent with this observation, RNA-Seq, transcriptome analyses, and RT-PCR revealed that skeletal muscle cell differentiation and cell proliferation pathways were also downregulated. Conversely, overexpression of mt-Ty 5'tiRNAs in C2C12 cells led to a reversal of these transcriptional trends. These data reveal that mt-Ty 5'tiRNAs are enriched in skeletal muscle and play an important role in myoblast proliferation and differentiation. Our study also highlights the potential for the development of tiRNAs as novel therapeutic targets for muscle-related diseases.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Environment and Life, Beijing University of Technology, Beijing, P. R. China
| | - Xin Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Advani
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea P Malizia
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gurinder Bir Singh
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunbo Wang
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Edilamar M Oliveira
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - John D Mably
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
19
|
Migunova E, Rajamani S, Bonanni S, Wang F, Zhou C, Dubrovsky EB. Cardiac RNase Z edited via CRISPR-Cas9 drives heart hypertrophy in Drosophila. PLoS One 2023; 18:e0286214. [PMID: 37228086 PMCID: PMC10212119 DOI: 10.1371/journal.pone.0286214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiomyopathy (CM) is a group of diseases distinguished by morphological and functional abnormalities in the myocardium. It is etiologically heterogeneous and may develop via cell autonomous and/or non-autonomous mechanisms. One of the most severe forms of CM has been linked to the deficiency of the ubiquitously expressed RNase Z endoribonuclease. RNase Z cleaves off the 3'-trailer of both nuclear and mitochondrial primary tRNA (pre-tRNA) transcripts. Cells mutant for RNase Z accumulate unprocessed pre-tRNA molecules. Patients carrying RNase Z variants with reduced enzymatic activity display a plethora of symptoms including muscular hypotonia, microcephaly and severe heart hypertrophy; still, they die primarily due to acute heart decompensation. Determining whether the underlying mechanism of heart malfunction is cell autonomous or not will provide an opportunity to develop novel strategies of more efficient treatments for these patients. In this study, we used CRISPR-TRiM technology to create Drosophila models that carry cardiomyopathy-linked alleles of RNase Z only in the cardiomyocytes. We found that this modification is sufficient for flies to develop heart hypertrophy and systolic dysfunction. These observations support the idea that the RNase Z linked CM is driven by cell autonomous mechanisms.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Saathvika Rajamani
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Stefania Bonanni
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Edward B. Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY, United States of America
| |
Collapse
|
20
|
Gong M, Deng Y, Xiang Y, Ye D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun Signal 2023; 21:62. [PMID: 36964534 PMCID: PMC10036988 DOI: 10.1186/s12964-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/13/2023] [Indexed: 03/26/2023] Open
Abstract
Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.
Collapse
Affiliation(s)
- Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
21
|
Garcez EM, Gomes N, Moraes AS, Pogue R, Uenishi RH, Hecht M, Carvalho JL. Extracellular vesicles in the context of Chagas Disease - A systematic review. Acta Trop 2023; 242:106899. [PMID: 36935050 DOI: 10.1016/j.actatropica.2023.106899] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicle (EVs) traffic is considered an important cellular communication process between cells that can be part of a single organism or belong to different living beings. The relevance of EV-mediated cellular communication is increasingly studied and appreciated, especially in relation to pathological conditions, including parasitic disorders, in which the EV release and uptake processes have been documented. In the context of Chagas Disease (CD), EVs have been explored, however, current data have not been systematically revised in order to provide an overview of the published literature and the main results obtained thus far. In this systematic review, 25 studies involving the investigation of EVs in CD were identified. The studies involved Trypanosoma cruzi (Tc)-derived EVs (Tc-EVs), as well as EVs derived from T. cruzi-infected mammalian cells-derived EVs, mainly isolated by ultracentrifugation and poorly characterized. The objectives of the identified studies included the characterization of the protein and RNA cargo of Tc-EVs, as well as investigation of EVs in parasitic infections and immune-related processes. Overall, our systematic review reveals that EVs play critical roles in several mechanisms related to the interaction between T. cruzi and mammalian hosts, their contribution to immune system evasion by the parasite, and to chronic inflammation in the host. Future studies will benefit from the consolidation of isolation and characterization methods, as well as the elucidation of the role of EVs in CD.
Collapse
Affiliation(s)
- Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Nélio Gomes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Aline Silva Moraes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil
| | - Rosa Harumi Uenishi
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Mariana Hecht
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil.
| |
Collapse
|
22
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Zhou Y, Tao D, Shao Z, Wang X, Xu J, Li Y, Li K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front Cell Dev Biol 2022; 10:942133. [PMID: 36035989 PMCID: PMC9399354 DOI: 10.3389/fcell.2022.942133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence that exosomes derived from the lipoma tissue (Exo-LT) have a stronger capacity to promote the proliferation and migration of adipose-derived stem cells (ADSCs) than those from the adipose tissue (Exo-AT). But the Exo-LT do not have a significant effect on the adipogenic differentiation of the ADSCs. Recently, certain exosomal tRNA-derived fragments (tRFs) have been shown to play a crucial role in the pathogenesis of certain tumors. Therefore, it is necessary to identify the differently expressed tRFs in Exo-LT to further elucidate their molecular functions in lipomas. High-throughput sequencing was performed to examine the tRFs and mRNAs from the all samples belonging to the Exo-LT and Exo-AT groups. Target prediction and bioinformatics analysis were performed to explore their downstream mRNAs and biological functions. In total, 456 differently expressed tRFs and tiRNAs were identified in the Exo-LT group, 12 of which were up-regulated and 12 were down-regulated, respectively. Notably, tRF-1001 was most obviously down-regulated and tRF-3004a was most obviously up-regulated in the Exo-LT group. Moreover, among the target genes of tRF-1001 and tRF-3004a, both JAG2 and VSIG4 were significantly down-regulated in the Exo-LT group, while WNT5A, COL1A1, and PPARGC1A were highly expressed in both the Exo-LT and Exo-AT groups. The significant down-regulation of JAG2 and VSIG4 in the Exo-LT group could be due to the fact that Exo-LT had a stronger capacity to promote the proliferation and migration of ADSCs compared to the Exo-AT. The high expression of WNT5A, COL1A1, and PPARGC1A in both the Exo-LT and Exo-AT groups could be due to the similar ability of Exo-LT and Exo-AT to promote the adipogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Daixi Tao
- Department of Changsha Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Zifei Shao
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jinhao Xu
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Kun Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- *Correspondence: Kun Li,
| |
Collapse
|
24
|
Woudenberg T, Kruyt ND, Quax PHA, Nossent AY. Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure. Curr Heart Fail Rep 2022; 19:255-266. [PMID: 35876969 PMCID: PMC9534797 DOI: 10.1007/s11897-022-00561-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Purpose of Review Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure. Recent Findings With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Summary Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2’-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
25
|
Deng L, Wang H, Fan T, Chen L, Shi Z, Mi J, Huang W, Wang R, Hu K. Potential Functions of the tRNA-Derived Fragment tRF-Gly-GCC Associated With Oxidative Stress in Radiation-Induced Lung Injury. Dose Response 2022; 20:15593258221128744. [PMID: 36176737 PMCID: PMC9513591 DOI: 10.1177/15593258221128744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Transfer RNA-derived small RNAs (tsRNAs) are a novel type of non-coding RNA with various regulatory functions. They are associated with oxidative stress in various diseases, but their potential functions in radiation-induced lung injury (RILI) remain uncertain. Methods To explore the role of tsRNAs in RILI, we used X-rays to irradiate human bronchial epithelial cells and examined the expression profile of altered tsRNAs by RNA sequencing and bioinformatics analysis. Sequencing results were verified by qRT-PCR. tsRNA functions were explored using several methods, including CCK-8, reactive oxygen species (ROS) assays, cell transfection, and western blotting. Results Eighty-six differentially expressed tRNA-derived fragments (tRFs) were identified: 64 were upregulated, and 22 were downregulated. Among them, the regulation of tRF-Gly-GCC, associated with oxidative stress, may be mediated by the inhibition of cell proliferation, promotion of ROS production, and apoptosis in the occurrence and development of RILI. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the underlying molecular mechanism may involve the PI3K/AKT and the FOXO1 signaling pathways. Conclusion Our findings provide new insights into the molecular mechanisms underpinning RILI, advancing the clinical prevention and treatment of this disease.
Collapse
Affiliation(s)
- Lin Deng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Housheng Wang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyin Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiling Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - JingLin Mi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - WeiMei Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research. Noncoding RNA 2022; 8:ncrna8030037. [PMID: 35736634 PMCID: PMC9231384 DOI: 10.3390/ncrna8030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) belong to a group of transfer ribonucleic acid (tRNA)-derived fragments that have recently gained interest as molecules with specific biological functions. Their involvement in the regulation of physiological processes and pathological phenotypes suggests molecular roles similar to those of miRNAs. tsRNA biogenesis under specific physiological conditions will offer new perspectives in understanding diseases, and may provide new sources for biological marker design to determine and monitor the health status of farm animals. In this review, we focus on the latest discoveries about tsRNAs and give special attention to molecules initially thought to be mainly associated with tRNA-derived stress-induced RNAs (tiRNAs). We present an outline of their biological functions, offer a collection of useful databases, and discuss future research perspectives and applications in livestock basic and applied research.
Collapse
|
27
|
Liu X, Wen YZ, Huang ZL, Shen X, Wang JH, Luo YH, Chen WX, Lun ZR, Li HB, Qu LH, Shan H, Zheng LL. SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:751-762. [PMID: 35003892 PMCID: PMC8719421 DOI: 10.1016/j.omtn.2021.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3′CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.
Collapse
Affiliation(s)
- Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Yan-Zi Wen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Liang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xia Shen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511458, P. R. China.,Center for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Jun-Hao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yi-Hai Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Xin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hui-Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.,Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Ling-Ling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
28
|
Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5067544. [PMID: 35132351 PMCID: PMC8817848 DOI: 10.1155/2022/5067544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
A recent study showed that peroxiredoxins (Prxs) play an important role in the development of pathological cardiac hypertrophy. However, the involvement of Prx5 in cardiac hypertrophy remains unclear. Therefore, this study is aimed at investigating the role and mechanisms of Prx5 in pathological cardiac hypertrophy and dysfunction. Transverse aortic constriction (TAC) surgery was performed to establish a pressure overload-induced cardiac hypertrophy model. In this study, we found that Prx5 expression was upregulated in hypertrophic hearts and cardiomyocytes. In addition, Prx5 knockdown accelerated pressure overload-induced cardiac hypertrophy and dysfunction in mice by activating oxidative stress and cardiomyocyte apoptosis. Importantly, heart deterioration caused by Prx5 knockdown was related to mitogen-activated protein kinase (MAPK) pathway activation. These findings suggest that Prx5 could be a novel target for treating cardiac hypertrophy and heart failure.
Collapse
|
29
|
Lu Z, Su K, Wang X, Zhang M, Ma S, Li H, Qiu Y. Expression Profiles of tRNA-Derived Small RNAs and Their Potential Roles in Primary Nasopharyngeal Carcinoma. Front Mol Biosci 2022; 8:780621. [PMID: 34988117 PMCID: PMC8722782 DOI: 10.3389/fmolb.2021.780621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs, are divided into two categories: tRNA-related fragments (tRFs) and tRNA halves (tiRNAs). Abnormal expression of tsRNAs has been found in diverse cancers, which indicates that further understanding of the function of tsRNAs will help identify new biomarkers and potential therapeutic targets. Until now, the underlying roles of tsRNAs in primary nasopharyngeal carcinoma (NPC) are still unknown. Methods: tRF and tiRNA sequencing was performed on four pairs of NPC tissues and healthy controls. Thirty pairs of NPC samples were used for quantitative real-time polymerase chain reaction (qRT-PCR) verification, and the ROC analysis was used to evaluate the diagnostic efficiency initially. Target prediction and bioinformatics analysis of validated tRFs and tiRNAs were conducted to explore the mechanisms of tsRNAs in NPC’s pathogenesis. Results: A total of 158 differentially expressed tRFs and tiRNAs were identified, of which 88 are upregulated and 70 are downregulated in NPC. Three validated tRFs in the results of qRT-PCR were consistent with the sequencing data: two upregulations (tRF-1:28-Val-CAC-2 and tRF-1:24-Ser-CGA-1-M3) and one downregulation (tRF-55:76-Arg-ACG-1-M2). The GO and KEGG pathway enrichment analysis showed that the potential target genes of validated tRFs are widely enriched in cancer pathways. The related modules may play an essential role in the pathogenesis of NPC. Conclusions: The tsRNAs may become a novel class of biological diagnostic indicators and possible targets for NPC.
Collapse
Affiliation(s)
- Zhaoyi Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Kai Su
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaomin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingjie Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hui Li
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Yang ZY, Li PF, Li ZQ, Tang T, Liu W, Wang Y. Altered Expression of Transfer-RNA-Derived Small RNAs in Human With Rheumatic Heart Disease. Front Cardiovasc Med 2021; 8:716716. [PMID: 34926598 PMCID: PMC8671610 DOI: 10.3389/fcvm.2021.716716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Rheumatic heart disease (RHD) remains a severe public health problem in developing countries. Atrial fibrillation (AF) is a medical complication of RHD. Although the understanding of disease pathogenesis has advanced in recent years, the key questions need to be addressed. Transfer RNA–derived small RNAs (tsRNAs) are a novel type of short non-coding RNAs with potential regulatory functions in various physiological and pathological processes. The present study used tsRNAs sequencing to investigate the relationship between RHD and atrial fibrillation (AF). Three paired cardiac papillary muscles were taken from six rheumatic RHD patients with AF (3 cases) or without AF (3 cases) from January 2016 to January 2017 in Xiangya Hospital, Central South University. A total of 219 precisely matched tsRNAs were identified, and 77 tsRNAs (fold change > 2.0 and P < 0.05) were differently changed. Three tsRNAs (AS-tDR-001269, AS-tDR-001363, AS-tDR-006049) were randomly selected and confirmed by qRT-PCR. The results of qRT-PCR were consistent with tsRNAs sequencing, suggesting the tsRNAs sequencing was reliable. Subsequently, we predicted the target mRNAs of the three tsRNAs. Moreover, we verified the functions of tsRNAs targeting mRNAs in vitro. Finally, bioinformatics analysis indicated that the target genes were abundant in regulation of transcription, DNA binding, intracellular. Most of the genes were predicted to interplay with cytokine-cytokine receptor by KEGG analysis. Our findings uncover the pathological process of AF in RHD through tsRNAs sequencing. This research provides a new perspective for future research on elucidating the mechanism of AF in RHD and offers potential new candidates for the treatment and diagnosis.
Collapse
Affiliation(s)
- Zhao-Yu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qing Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Tang Z, Zhang S, Ling Z. Development of a tRNA-Derived Small RNA Prognostic Panel and Their Potential Functions in Osteosarcoma. Front Oncol 2021; 11:652040. [PMID: 34408975 PMCID: PMC8366061 DOI: 10.3389/fonc.2021.652040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Therapeutic outcomes of osteosarcoma treatment have not significantly improved in several decades. Therefore, strong prognostic biomarkers are urgently needed. METHODS We first extracted the tRNA-derived small RNA (tsRNA) expression profiles of osteosarcoma from the GEO database. Then, we performed a unique module analysis and use the LASSO-Cox model to select survival-associated tsRNAs. Model effectiveness was further verified using an independent validation dataset. Target genes with selected tsRNAs were predicted using RNAhybrid. RESULTS A LASSO-Cox model was established to select six prognostic tsRNA biomarkers: tRF-33-6SXMSL73VL4YDN, tRF-32-6SXMSL73VL4YK, tRF-32-M1M3WD8S746D2, tRF-35-RPM830MMUKLY5Z, tRF-33-K768WP9N1EWJDW, and tRF-32-MIF91SS2P46I3. We developed a prognostic panel for osteosarcoma patients concerning their overall survival by high-low risk. Patients with a low-risk profile had improved survival rates in training and validation dataset. CONCLUSIONS The suggested prognostic panel can be utilized as a reliable biomarker to predict osteosarcoma patient survival rates.
Collapse
Affiliation(s)
| | | | - Zhougui Ling
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
32
|
Ma X, Liu C, Cao X. Plant transfer RNA-derived fragments: Biogenesis and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1399-1409. [PMID: 34114725 DOI: 10.1111/jipb.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Processing of mature transfer RNAs (tRNAs) produces complex populations of tRNA-derived fragments (tRFs). Emerging evidence shows that tRFs have important functions in bacteria, animals, and plants. Here, we review recent advances in understanding plant tRFs, focusing on their biological and cellular functions, such as regulating stress responses, mediating plant-pathogen interactions, and modulating post-transcriptional gene silencing and translation. We also review sequencing strategies and bioinformatics resources for studying tRFs in plants. Finally, we discuss future directions for plant tRF research, which will expand our knowledge of plant non-coding RNAs.
Collapse
Affiliation(s)
- Xuan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
34
|
Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front Pharmacol 2021; 12:663322. [PMID: 34122082 PMCID: PMC8194257 DOI: 10.3389/fphar.2021.663322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are the key organelles that supply cellular energy. As the most active organ in the body, the energy required to maintain the mechanical function of the heart requires a high quantity of high-quality mitochondria in cardiomyocytes. MicroRNAs (miRNAs) are single-stranded noncoding RNAs, approximately 22 nt in length, which play key roles in mediating post-transcriptional gene silencing. Numerous studies have confirmed that miRNAs can participate in the occurrence and development of cardiac diseases by regulating mitochondrial function-related genes and signaling pathways. Therefore, elucidating the crosstalk that occurs between miRNAs and mitochondria is important for the prevention and treatment of cardiac diseases. In this review, we discuss the biogenesis of miRNAs, the miRNA-mediated regulation of major genes involved in the maintenance of mitochondrial function, and the effects of miRNAs on mitochondrial function in cardiac diseases in order to provide a theoretical basis for the clinical prevention and treatment of cardiac disease and the development of new drugs.
Collapse
Affiliation(s)
- Guang-Qiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Sheng-Quan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling-Yun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yi-Ni Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| |
Collapse
|
35
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:e2014188118. [PMID: 33619090 PMCID: PMC7936275 DOI: 10.1073/pnas.2014188118] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
36
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:2014188118. [PMID: 33619090 DOI: 10.1073/pnas.2014188118/suppl_file/pnas.2014188118.sapp.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
37
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|