1
|
Hussain A, Saeed A. Hazardous or Advantageous: Uncovering the Roles of Heavy Metals and Humic Substances in Shilajit (Phyto-mineral) with Emphasis on Heavy Metals Toxicity and Their Detoxification Mechanisms. Biol Trace Elem Res 2024; 202:5794-5814. [PMID: 38393486 DOI: 10.1007/s12011-024-04109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Shilajit is a phyto-mineral diffusion and semi-solid matter used as traditional medicine with extraordinary health benefits. This study provides a comprehensive data on Shilajit with emphasis on heavy metal profile, associated toxicities, and metal detoxification mechanisms by humic substances present in Shilajit. Data was searched across papers and traditional books using Google Scholar, PubMed, Science Direct, Medline, SciELO, Web of Science, and Scopus as key scientific databases. Findings showed that Shilajit is distributed in almost 20 regions of the world with uses against 20 health problems as traditional medicine. With various humic substances, almost 11 biological activities were reported in Shilajit. This phyto-mineral diffusion possesses around 65 heavy metals including the toxic heavy metals like Cu, Al, Pb, As, Cd, and Hg. However, humic substances in Shilajit actively detoxify around 12 heavy metals. The recommended levels of heavy metals by WHO and FDA in herbal drugs is 0.20 and 0.30 ppm for Cd, 1 ppm for Hg, 10.00 ppm for As and Pb, 20 ppm for Cu, and 50 ppm for Zn. The levels of reported metals in Shilajit were found to be lower than the permissible limits set by WHO and FDA, except in few studies where exceeded levels were reported. Shilajit consumption without knowing permissible levels of metals is not safe and could pose serious health problems. Although the humic substances and few metals in Shilajit are beneficial in terms of chelating toxic heavy metals, the data on metal detoxification still needs to be clarified.
Collapse
Affiliation(s)
- Adil Hussain
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, 54600, Punjab, Pakistan.
| | - Asma Saeed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, 54600, Punjab, Pakistan
| |
Collapse
|
2
|
Kılıç Altun S, Paksoy N, Aydemir ME. Comprehensive risk assessment of lead concentrations in chicken, quail, and duck egg albumen and yolk using Monte Carlo simulations. Food Chem Toxicol 2024; 193:114987. [PMID: 39251035 DOI: 10.1016/j.fct.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
This study conducted a comparative analysis of the concentration of the lead (Pb) in the albumen and yolk of eggs from domesticated chicken, quail, and duck, with a concurrent assessment of the potential carcinogenic and non-carcinogenic risks associated with the consumption of eggs sourced from Türkiye. A total of 78 poultry egg samples were gathered from breeding farms and farmers' markets situated in Şanlıurfa province. Lead concentrations were assessed through inductively coupled plasma optical emission spectrometry (ICP-OES). Human health risk assessment adheres to the guidelines set forth by the United States Environmental Protection Agency (US EPA), which primarily emphasizes estimated daily intake (EDI), international lifetime cancer risk (ILCR), target hazard quotient (THQ), and Monte Carlo simulation (MCS) as a probabilistic approach. One-way analysis of variance (ANOVA) was employed to compare Pb concentrations within egg yolks and albumens, as well as among various types of eggs. The levels of Pb found in the albumen of chicken, quail, and duck eggs were measured to be 0.31 ± 0.11, 0.43 ± 0.11, and 0.47 ± 0.16 μg kg-1, respectively. The concentrations of Pb in the yolks of chicken, quail, and duck eggs were found to be 0.54 ± 0.19, 0.28 ± 0.11, and 0.69 ± 0.21 μg kg-1, respectively. These concentrations were below the maximum permitted levels set by the FAO/WHO. The results indicated that Pb content in all tested eggs was safe for consumption, with exposure levels significantly below Joint FAO/WHO Expert Committee on Food Additives (JECFA) risk thresholds. The THQ values were less than one, indicating no non-carcinogenic risk. In addition, this study provides accurate and reliable data for policy makers to improve food safety measures and reduce potential public health risks.
Collapse
Affiliation(s)
- Serap Kılıç Altun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Harran, 63200, Şanlıurfa, Turkey
| | - Nilgün Paksoy
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Harran, 63200, Şanlıurfa, Turkey.
| | - Mehmet Emin Aydemir
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Harran, 63200, Şanlıurfa, Turkey
| |
Collapse
|
3
|
Hubai K, Kováts N. Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2938. [PMID: 39458885 PMCID: PMC11511259 DOI: 10.3390/plants13202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Plants exposed to abiotic stressors show diverse physiological, biochemical, and molecular responses. Biosynthesis of plant secondary metabolites-including essential oils-is a vital plant defense mechanism. As these bioactive compounds are widely used in the pharmaceutical, cosmetic and food industries, it is essential to understand how their production is affected in various environments. While interaction between specific abiotic stressors such as salt stress has been widely studied, relatively less information is available on how essential oil production is affected by toxic contaminants. Present review intends to give an insight into the possible interaction between chemical stress and essential oil production, with special regard to soil and air pollution. Available studies clearly demonstrate that heavy metal induced stress does affect quantity and quality of EOs produced, however, pattern seems ambiguous as nature of effect depends on the plant taxon and on the EO. Considering mechanisms, genetic studies clearly prove that exposure to heavy metals influences the expression of genes being responsible for EO synthesis.
Collapse
Affiliation(s)
| | - Nora Kováts
- Centre for Natural Sciences, Affiliation University of Pannonia, P.O. Box 158, 8200 Veszprém, Hungary;
| |
Collapse
|
4
|
Zuo TT, Liu J, Zan K, Liu LN, Wang Q, Wang Z, Xu WY, Liu YX, Guo YS, Kang S, Jin HY, Wei F, Ma SC. Bioaccessibility and bioavailability of exogenous and endogenous toxic substances in traditional Chinese medicine and their significance in risk assessment. Pharmacol Res 2024; 208:107388. [PMID: 39243915 DOI: 10.1016/j.phrs.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Scientific risk assessment of exogenous and endogenous toxic substances in traditional Chinese medicine (TCM) is of great significance. The present review comprises a comprehensive summary of progress in the health risk assessment of harmful exogenous substances in TCMs. Such substances include heavy metals, pesticide residues, biotoxins, and endogenous toxic components involving pyrrolizidine alkaloids. The review also discusses the strengths and weaknesses of various bioaccessibility and bioavailability models, and their applications in risk assessment. Future avenues of risk assessment research are highlighted, including further exploration of risk assessment parameters, innovation of bioaccessibility and bioavailability techniques, enhancement of probabilistic risk assessment combined with bioavailability, improvement of cumulative risk assessment strategies, and formulation of strategies for reducing relative bioavailability (RBA) values in TCMs. Such efforts represent an attempt to develop a risk assessment system that is capable of evaluating the exogenous and endogenous toxic substances in TCMs to ensure its safe use in clinics, and to promote the sustainable development of the TCM industry.
Collapse
Affiliation(s)
- Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Ke Zan
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Li-Na Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Qi Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Wei-Yi Xu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Yuan-Xi Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Yuan-Sheng Guo
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Shuai Kang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Shuang-Cheng Ma
- Chinese Pharmacopeia Commission, Beijing 100061, China; National Key Laboratory of Medicine Regulatory Science, China.
| |
Collapse
|
5
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
6
|
Hoenders R, Ghelman R, Portella C, Simmons S, Locke A, Cramer H, Gallego-Perez D, Jong M. A review of the WHO strategy on traditional, complementary, and integrative medicine from the perspective of academic consortia for integrative medicine and health. Front Med (Lausanne) 2024; 11:1395698. [PMID: 38933107 PMCID: PMC11201178 DOI: 10.3389/fmed.2024.1395698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Despite important progress in modern medicine, widely regarded as an indispensable foundation of healthcare in all highly advanced nations and regions, not all patients respond well to available treatments in biomedicine alone. Additionally, there are concerns about side effects of many medications and interventions, the unsustainable cost of healthcare and the low resolution of chronic non-communicable diseases and mental disorders whose incidence has risen in the last decades. Besides, the chronic stress and burnout of many healthcare professionals impairs the therapeutic relationship. These circumstances call for a change in the current paradigm and practices of biomedicine healthcare. Most of the world population (80%) uses some form of traditional, complementary, and integrative medicine (T&CM), usually alongside biomedicine. Patients seem equally satisfied with biomedicine and T&CM, but in the field of T&CM there are also many challenges, such as unsupported claims for safety and/or efficacy, contamination of herbal medicines and problems with regulation and quality standards. As biomedicine and T&CM seem to have different strengths and weaknesses, integration of both approaches may be beneficial. Indeed, WHO has repeatedly called upon member states to work on the integration of T&CM into healthcare systems. Integrative medicine (IM) is an approach that offers a paradigm for doing so. It combines the best of both worlds (biomedicine and T&CM), based on evidence for efficacy and safety, adopting a holistic personalized approach, focused on health. In the last decades academic health centers are increasingly supportive of IM, as evidenced by the foundation of national academic consortia for integrative medicine in Brazil (2017), the Netherlands (2018), and Germany (2024) besides the pioneering American consortium (1998). However, the integration process is slow and sometimes met with criticism and even hostility. The WHO T&CM strategies (2002-2005 and 2014-2023) have provided incipient guidance on the integration process, but several challenges are yet to be addressed. This policy review proposes several possible solutions, including the establishment of a global matrix of academic consortia for IM, to update and extend the WHO T&CM strategy, that is currently under review.
Collapse
Affiliation(s)
- Rogier Hoenders
- Dutch Consortium for Integrative Care and Health, Center for Integrative Psychiatry, Lentis, Groningen, The Netherlands and Faculty of Religion, Culture and Society, University of Groningen, Groningen, Netherlands
| | - Ricardo Ghelman
- Brazilian Academic Consortium for Integrative Health and Department of Medicine on Primary Care, Faculty of Medicine Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio Portella
- Brazilian Academic Consortium for Integrative Health and Universidade de São Paulo, Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, São Paulo, Brazil
| | - Samantha Simmons
- Academic Consortium for Integrative Medicine and Health, Lake Oswego, OR, United States
| | - Amy Locke
- Academic Consortium for Integrative Medicine and Health and Department of Family and Preventive Medicine University of Utah Health, Salt Lake City, UT, United States
| | - Holger Cramer
- Academic Consortium for Traditional & Integrative Medicine and Health, Germany and Institute of General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany and Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Daniel Gallego-Perez
- Physical Medicine and Rehabilitation Department University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miek Jong
- National Research Center in Complementary and Alternative Medicine (NAFKAM), Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Choi D, Im HB, Choi SJ, Han D. Safety classification of herbal medicine use among hypertensive patients: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1321523. [PMID: 38881876 PMCID: PMC11176523 DOI: 10.3389/fphar.2024.1321523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of herbal medicines (HMs) for the treatment of hypertension (HTN) is increasing globally, but research on the potential adverse effects and safety of HMs in HTN patients is limited. Therefore, this systematic review and meta-analysis aim to determine the global prevalence of HM usage among HTN patients and assess the safety of identified herbs based on current scientific evidence. Methods The PubMed/MEDLINE, EMBASE (Ovid), and Cumulated Index to Nursing and Allied Health Literature (CINAHL) databases were searched for cross-sectional studies on the use of HM among HTN patients. Our review includes studies published in English up to the year 2023. After extracting and appraising the data from the studies, a meta-analysis was conducted using the Stata version 16.0 to estimate the pooled prevalence of HM use in patients with HTN (PROSPERO: CRD42023405537). The safety classification of the identified HM was done based on the existing scientific literature. Results This study analyzed 37 cross-sectional studies from 21 countries and found that 37.8% of HTN patients used HM to manage their health. The prevalence of HM use varied significantly based on publication year and geographical region. Among the 71 identified herbs, Allium sativum L., Hibiscus sabdariffa L., and Olea europaea L. were the most commonly used. However, four herbs were identified as contraindicated, 50 herbs required caution, and only 11 herbs were considered safe for use. Conclusion The study highlights the potential risks of toxicities and adverse effects associated with HM use in the treatment of HTN. Ensuring patient safety involves using safe HMs in appropriate doses and avoiding contraindicated HMs. Future research should focus on identifying commonly used herbs, especially in resource-limited countries with poor HTN management, and additional clinical research is required to assess the toxicity and safety of commonly used HMs.
Collapse
Affiliation(s)
- Dain Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Hyea Bin Im
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Soo Jeung Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Dongwoon Han
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
9
|
Onaji MO, Ibrahim U, Chia MA. Metals in vegetables from markets in Zaria, Nigeria and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024:1-11. [PMID: 38616549 DOI: 10.1080/19393210.2024.2339310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This study, investigated the concentrations of cadmium, lead and arsenic in vegetables grown with irrigation and sold in Sabon gari and Samaru markets in Zaria, Nigeria. Cadmium was absent in amaranthus, pepper and tomatoes purchased from Samaru market. Nevertheless, amaranthus and lettuce had higher concentrations of these toxic metals than pepper. Total arsenic concentrations in the investigated vegetables were higher than the maximum levels set by the World Health Organization. Total daily intake of the metals was higher than the maximum levels for consuming vegetables from these markets. Therefore, individuals who consume these foods may be at risk. These results indicate the possibility of toxic metal contamination in vegetables purchased from Zaria markets.
Collapse
Affiliation(s)
| | - Umar Ibrahim
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria
- Department of Ecology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
10
|
Chen R, Li X, Li W, Yang R, Lu Y, You Z, Liu F. Crater-Spectrum Feature Fusion Method for Panax notoginseng Cadmium Detection Using Laser-Induced Breakdown Spectroscopy. Foods 2024; 13:1083. [PMID: 38611387 PMCID: PMC11011736 DOI: 10.3390/foods13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Panax notoginseng (P. notoginseng) is a valuable herbal medicine, as well as a dietary food supplement known for its satisfactory clinical efficacy in alleviating blood stasis, reducing swelling, and relieving pain. However, the ability of P. notoginseng to absorb and accumulate cadmium (Cd) poses a significant environmental pollution risk and potential health hazards to humans. In this study, we employed laser-induced breakdown spectroscopy (LIBS) for the rapid detection of Cd. It is important to note that signal uncertainty can impact the quantification performance of LIBS. Hence, we proposed the crater-spectrum feature fusion method, which comprises ablation crater morphology compensation and characteristic peak ratio correction (CPRC), to explore the feasibility of signal uncertainty reduction. The crater morphology compensation method, namely, adding variables using multiple linear regression (MLR) analysis, decreased the root-mean-square error of the prediction set (RMSEP) from 7.0233 μg/g to 5.4043 μg/g. The prediction results were achieved after CPRC pretreatment using the calibration curve model with an RMSEP of 3.4980 μg/g, a limit of detection of 1.92 μg/g, and a limit of quantification of 6.41 μg/g. The crater-spectrum feature fusion method reached the lowest RMSEP of 2.8556 μg/g, based on a least-squares support vector machine (LSSVM) model. The preliminary results suggest the effectiveness of the crater-spectrum feature fusion method for detecting Cd. Furthermore, this method has the potential to be extended to detect other toxic metals in addition to Cd, which significantly contributes to ensuring the quality and safety of agricultural production.
Collapse
Affiliation(s)
- Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Xiaolong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Weijiao Li
- School of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Yi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Zhengkai You
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| |
Collapse
|
11
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
12
|
Qin C, Wang X, Du L, Yang L, Jiao Y, Jiang D, Zhang X, Zhang T, Gao X. Heavy metals in meat products from Shandong, China and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:56-65. [PMID: 38093555 DOI: 10.1080/19393210.2023.2286008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024]
Abstract
In this study 13 heavy metals were analysed in representative livestock meat, poultry meat, livestock offal and poultry offal samples (20 per category) from marketplaces and retail stores in 16 cities in Shandong province, China. The investigated heavy metals were Cu, Cr, V, Ni, As, Se, Sn, Cd, Pb, Sb, Mn, Ba and Hg. Results revealed mean levels of total heavy metals in meat and offal of 1.56 mg/kg and 39.8 mg/kg, respectively. Cu, Cr, Mn, Ni, Se, Ba and Pb were found in all samples (100%), followed by Hg (95.0%), V (91.3%), Sn (73.8%), Cd (51.3%), As (21.3%) and Sb (11.3%). Hazard Quotient (HQ) and Hazard Index (HI) values showed that high meat intake can cause potential health risks. Thus, continuous monitoring of health risks and trends of heavy metals in meat products is needed, both for food safety and consumer's health.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Xiaolin Wang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, P. R. China
| | - Lei Du
- Shandong Public Health Clinical Center, Affiliated to Shandong University, Jinan, P. R. China
| | - Luping Yang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, P. R. China
| | - Yanni Jiao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, P. R. China
| | - Dafeng Jiang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, P. R. China
| | - Xinxin Zhang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, P. R. China
| | - Tianliang Zhang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, P. R. China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
13
|
An YJ, Kim YH. Assessment of toxicological validity using tobacco emission condensates: A comparative analysis of emissions and condensates from 3R4F reference cigarettes and heated tobacco products. ENVIRONMENT INTERNATIONAL 2024; 185:108502. [PMID: 38368717 DOI: 10.1016/j.envint.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
The tobacco emission condensate, henceforth referred to as "tobacco condensate," plays a critical role in assessing the toxicity of tobacco products. This condensate, derived from tobacco emissions, provides an optimized liquid concentrate for storage and concentration control. Thus, the validation of its constituents is vital for toxicity assessments. This study used tobacco condensates from 3R4F cigarettes and three heated tobacco product (HTP) variants to quantify and contrast organic compounds (OCs) therein. The hazard index (HI) for tobacco emissions and condensates was determined to ascertain the assessment validity. The total particulate matter (TPM) for 3R4F registered at 17,667 μg cig-1, with its total OC (TOC) at 3777 μg cig-1. HTPs' TPM and TOC were 9342 ± 1918 μg cig-1 and 5258 ± 593 μg stick-1, respectively. 3R4F's heightened TPM likely arises from tar, while HTPs' OC concentrations are influenced by vegetable glycerin (2236-2688 μg stick-1) and propylene glycol (589-610 μg stick-1). During the condensation process, a substantial proportion of OCs in 3R4F smoke underwent significant concentration decreases, in contrast to HTPs, where fewer than half of the examined OCs exhibited notable concentration declines. The HI for tobacco emissions exhibited a marginally higher value compared to tobacco condensate, with variations ranging from 7.92% (HTPs) to 18.6% (3R4F), denoting a minimal differential. These observations emphasize the importance of accurate OC recovery techniques to maintain the validity and reliability of toxicity assessments based on tobacco condensates. This study not only deepens the comprehension of chemical behaviors in tobacco products but also establishes a novel benchmark for their toxicity evaluation, with profound implications for public health strategies and consumer protection.
Collapse
Affiliation(s)
- Young-Ji An
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yong-Hyun Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
14
|
Ullah I, Adnan M, Nawab J, Khan S. Ethnobotanical, ecological and health risk assessment of some selected wild medicinal plants collected along mafic and Ultra Mafic rocks of Northwest Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:278. [PMID: 38367088 DOI: 10.1007/s10661-024-12403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The current study investigated wild plant resources and health risk assessment along with northern Pakistan's mafic and ultramafic regions. Ethnobotanical data was collected through field visits and semi-structured questionnaire surveys conducted from local inhabitants and healers. Six potentially toxic elements (PTEs) such as lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), manganese (Mn), and zinc (Zn) were extracted with acids and analyzed using atomic absorption spectrophotometer (AAS, Perkin Elmer-7000) in nine selected wild medicinal plants. Contamination factor (CF), pollution load index (PLI), estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were used to determine the health risk assessment of the studied medicinal plants. The results showed that the selected medicinal plants were used for the treatments of cough, joint swelling, cardiovascular disorders, toothaches, diabetes, and skin pimples by the local inhabitants due to their low-cost and easy accessibility. The concentrations of Pb (3.4-53 mg kg-1), Cd (0.03-0.39 mg kg-1), Ni (17.5-82 mg kg-1), Cr (29-315 mg kg-1), Mn (20-142 mg kg-1), and Zn (7.4-64 mg kg-1) in the studied medicinal plants were found above the safe limits (except Zn) set by WHO/FAO/USEPA (1984/2010). The Pb contamination factor was significantly (p < 0.05) higher in A. modesta (7.84) and D. viscosa (6.81), and Cd contamination factor was significantly higher in C. officinalis (26.67), followed by A. modesta (8.0) mg kg-1. Based on PTE concentrations, the studied plants are considered not suitable for human consumption purposes. Pollution load index values for A. modesta, A. barbadensis, A. caudatus, A. indica, C. procera (2.93), D. viscosa (2.79), and C. officinalis (2.83), R. hastatus (3.12), and Z. armatum were observed as 1.00, 2.80, 2.29, 2.29, 2.93, 2.79, 2.83, 3.12 and 2.19, respectively. Hazard index values were in order of R. hastatus (1.32 × 10-1) ˃ C. procera (1.21 × 10-1) ˃ D. viscosa (1.10 × 10-1) ˃ A. caudatus (9.11 × 10-2) ˃ A. barbadensis (8.66 × 10-2) ˃ Z. armatum (7.99 × 10-2) ˃ A. indica (6.87 × 10-2) ˃ A. modesta (5.6 × 10-2) ˃ C. officinalis (5.42 × 10-2). The health risk index values suggested that consumption of these plants individually or in combination would cause severe health problems in the consumers. Pearson's correlation results showed a significant correlation (p ≤ 0.001) between Zn and Mn in the studied medicinal plants. The current study suggests that wild medicinal plants should be adequately addressed for PTEs and other carcinogenic pollutants before their uses in the study area. Open dumping of mining waste should be banned and eco-friendly technology like organic amendments application should be used to mitigate PTEs in the study area.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Botany, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Adnan
- Department of Botany, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Javed Nawab
- Department of Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Pereira Junior JB, Carvalho VS, Ferreira WQ, Araujo RGO, Ferreira SLC. Green sample preparation of medicinal herbs in closed digester block for elemental determination by ICP OES. J Pharm Biomed Anal 2024; 238:115810. [PMID: 37944460 DOI: 10.1016/j.jpba.2023.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
This work presents a simple, cost-effective, and environmentally friendly digestion method employing inductively coupled plasma optical emission spectrometry (ICP OES) for the determination of As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, Sr, and Zn in medicinal herbs. A fractional factorial design uses a multivariate strategy to optimize the experimental parameters. At 180 ºC and 120 min of sample digestion, the optimal condition for a closed block digester was achieved with a mixture consisting of 1.38 mL of HNO3 65% m m-1, 1.00 mL of H2O2 30% m m-1, and 2.62 mL of deionized water, using a mass of 0.10 g medicinal herb sample. The optimized procedure resulted in low dissolved organic carbon content and residual acidity concentration. The values of limits of detection (LOD) and of quantification (LOQ) ranging from 0.06 (Cd) to 1.9 (P) mg kg-1 and 0.2 (Cd) to 6.3 mg kg-1 (P), respectively. Accuracy was confirmed through the analysis of three certified reference materials, where agreement ranged from 83 (Sr) to 116% (As) for all analytes. The AGREE metric has confirmed the greenness of the proposed method. Twenty-seven medicinal herbs samples were used to assess the applicability of the developed procedure. Principal component analysis (PCA) was applied to inorganic constituent concentration data to classify the medicinal herbs, an excellent tool for classifying samples.
Collapse
Affiliation(s)
- João B Pereira Junior
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil.
| | - Vanessa S Carvalho
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil
| | - William Q Ferreira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil
| | - Rennan G O Araujo
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil.
| | - Sérgio L C Ferreira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-270 Salvador, Bahia, Brazil.
| |
Collapse
|
16
|
Alharbi SF, Althbah AI, Mohammed AH, Alrasheed MA, Ismail M, Allemailem KS, Alnuqaydan AM, Baabdullah AM, Alkhalifah A. Microbial and heavy metal contamination in herbal medicine: a prospective study in the central region of Saudi Arabia. BMC Complement Med Ther 2024; 24:2. [PMID: 38166914 PMCID: PMC10759756 DOI: 10.1186/s12906-023-04307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Herbal medicine is a medical system based on the utilization of plants or plant extracts for therapy. The continual increase in global consumption and the trade of herbal medicine has raised safety concerns in many regions. These concerns are mainly linked to microbial contamination, which could spread infections with multi-resistant bacteria in the community, and heavy metal contamination that may lead to cancers or internal organs' toxicity. METHODS This study was performed using an experimental design. A total of 47 samples, herbal medicine products sold in local stores in Qassim region, were used in the experiments. They were tested for bacterial contamination, alongside 32 samples for heavy metal analysis. Bacterial contamination was determined by the streak plate method and further processed to determine their antimicrobial susceptibility patterns using MicroScan WalkAway96 pulse; heavy metals were determined using a spectrometer instrument. RESULTS A total of 58 microorganisms were isolated. All samples were found to be contaminated with at least one organism except three samples. The majority of the isolated bacterial species were gram negative bacteria, such as Klebsiella spp., Pseudomonas spp. and E. coli., which could be of fecal origin and may lead to pneumonia, skin, or internal infections. Furthermore, most of the gram-positive bacteria were found to be multi-drug resistant. Moreover, for heavy metals, all samples had levels exceeding the regulatory limits. CONCLUSION This study demonstrated the presence of bacteria and heavy metals in samples of herbal medicines. Using these contaminated products may spread resistant infections, metal toxicities, or even cancers in the community.
Collapse
Affiliation(s)
- Sarah F Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ameerah I Althbah
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Amal H Mohammed
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Mishaal A Alrasheed
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, 52211, Buraydah, Kingdom of Saudi Arabia
| | - Mukhtar Ismail
- Department of Chemistry, College of Science and Arts, Qassim University, Al-Rass, Kingdom of Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Azzam Alkhalifah
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia.
| |
Collapse
|
17
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
18
|
Mlangeni AT. Health risk assessment of toxic metal(loids) (As, Cd, Pb, Cr, and Co) via consumption of medicinal herbs marketed in Malawi. Toxicol Rep 2023; 11:145-152. [PMID: 37538931 PMCID: PMC10393791 DOI: 10.1016/j.toxrep.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
This study aimed to assess the potential health risks associated with consuming three commonly consumed medicinal herbs in Malawi: Azadirachta indica, Mondia whitei, and Moringa oleifera. The concentrations of five metal(loids) (As, Cd, Pb, Cr, and Co) were determined using inductively coupled plasma mass spectrometry, while their safety was assessed by comparing the measured values with the legislated maximum contaminant levels (MCL)and reported metal(loids) concentrations in other countries. The results indicated significant variations of metal(loids) concentrations amongst the studied medicinal herbs, with Azadirachta indica containing the highest mean As (0.078 ± 0.010 mg kg-1) and Cd (0.049 ± 0.05 mg kg-1) concentrations and Mondia whitei and Moringa oleifera contained the highest mean Co (1.01 ± 0.05 mg kg-1) and Cr (1.42 ± 1.18 mg kg-1) concentrations, respectively. However, the mean concentrations of As, Cd, Pb, Cr, and Co fell below the MCL set by World Health Organization (WHO), Alimentarius Commissions, and European Commission. The estimated daily intake (EDI) for each metal(loid) was less than 1, indicating that the studied medicinal herbs do not pose serious health risks to non-regular consumers. The study also emphasizes the importance of assessing the potential risks associated with consuming medicinal herbs contaminated with heavy metals or metalloids, as it can seriously threaten human health.
Collapse
|
19
|
Abd-El-Haleem D. Alpha-glucan: a novel bacterial polysaccharide and its application as a biosorbent for heavy metals. J Genet Eng Biotechnol 2023; 21:133. [PMID: 37993735 PMCID: PMC10665280 DOI: 10.1186/s43141-023-00609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
This study identified an extracellular bacterial polysaccharide produced by Bacillus velezensis strain 40B that contains more than 90% of the monosaccharide glucose as alpha-glucan. A prominent peak at 1074 cm-1, a characteristic of glycoside couplings, was visible in the FTIR spectrum. There were traces of xylose, sucrose, and lactose, according to the HPLC study. The ability of this bacterial glucan to operate as a biosorbent of the heavy metals cobalt, chromium, copper, and lead from aqueous solutions was investigated in conjunction with Ca-alginate beads. It proved that glucan 40B has a low affinity for chromium ions and is selective for lead. Initial concentration measurements showed an inverse relationship between concentration and the amount of metal ions eliminated. Lead and chromium removal increased as the glucan dose was increased. It was shown that as the pH of the starting solution is elevated, there is an increase in the sorption of metal ions onto the glucan. It was clear that when the temperature increased, the fraction of metal ion sorption slightly increased. Glucan has a wide range of industrial applications, from food and medicine to health and nutrition. As a result, the investigation's scope was expanded to include heavy metal removal.
Collapse
Affiliation(s)
- Desouky Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications, Burgelarab, Alexandria, 21934, Egypt.
| |
Collapse
|
20
|
Chu Z, Zhu N, Shao L, Xu H, Li J, Wang X, Jiao Y, Jiang D, Yang P. Occurrence of 8 trace elements in Rhizoma Cibotii from China and exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115907-115914. [PMID: 37897570 DOI: 10.1007/s11356-023-30576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
The contamination of trace elements in Chinese edible herbs has attracted worldwide concern over the world. The objective of the present study was to investigate the occurrence and exposure assessment of eight trace elements in Rhizoma Cibotii from China. For this purpose, the method of inductively coupled plasma mass spectrometry was employed to detect the contamination levels of target trace elements in 58 Rhizoma Cibotii samples. The results demonstrated that the trace elements of Cr, Ni, Cu, Zn, and Pb were detected in all analyzed samples; the occurrence frequencies of As, Se, and Cd were 98.3%, 96.6%, and 98.3%, respectively. The highest mean levels were found in Zn (17.32 mg/kg), followed by Pb (8.50 mg/kg) and Cu (3.51 mg/kg). For a further step, one-way ANOVA was used to compare the difference of eight elements levels among groups, and Pearson's correlation analysis was used to explore the correlation between elements in Rhizoma Cibotii. A strong positive correlation between Zn and Cd was observed by Pearson's correlation analysis, which indicated that the possible presence of Cd contamination in Rhizoma Cibotii. Based on the contamination levels, the mean exposure of individual element and the health risks of eight trace elements in Rhizoma Cibotii were estimated by health risk assessment models. The calculated HQ values were less than 1, indicating that the contamination of trace elements in Rhizoma Cibotii did not pose significant health risks to human. In conclusion, the study provided baseline information on the contamination levels of trace elements in Rhizoma Cibotii. Moreover, it is necessary to monitor the trend of trace elements levels in Rhizoma Cibotii, which will be useful for ingredient control and human health protection.
Collapse
Affiliation(s)
- Zhijie Chu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Nannan Zhu
- Xintai Hospital of Traditional Chinese Medicine, Taian, 271200, People's Republic of China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Hongxia Xu
- Department of Clinical Laboratory, The Third People's Hospital of Liaocheng, Liaocheng, 252000, People's Republic of China
| | - Jin Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Xiaolin Wang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China.
| | - Peimin Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| |
Collapse
|
21
|
Kim DY, Jeon H, Shin HS. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods 2023; 12:3750. [PMID: 37893647 PMCID: PMC10606903 DOI: 10.3390/foods12203750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The purpose of this study is to quantify several heavy metals (Pb, Cd, Hg, Me-Hg, and metalloid arsenic) contained in Korean fishery products (seven categories, 1186 samples) and assess their health risk. Heavy metals quantification was conducted using inductively coupled plasma mass spectrometry (ICP-MS) and a direct mercury analysis (DMA). The good linearity (R2 > 0.999), limits of detection (1.0-3.2 µg/kg), limits of quantification (3.1-9.6 µg/kg), accuracy (88.14-113.80%), and precision (0.07-6.02%) of the five heavy metals were obtained, and these results meet the criteria recommended by the AOAC. The average heavy metal concentrations of fishery products were in the following order: As > Cd > Pb > Hg > Me-Hg for sea algae, crustaceans, mollusks, and echinoderms, As > Hg > Me-Hg > Pb > Cd for freshwater fish and marine fish, and As > Pb > Cd > Hg > Me-Hg for tunicates. Heavy metal concentrations were lower than MFDS, EU, CODEX, and CFDA standards. In addition, the exposure, non-carcinogenic, and carcinogenic evaluation results, considering the intake of aquatic products for Koreans, were very low. It was concluded that this study will provide basic data for food safety and risk assessment.
Collapse
Affiliation(s)
| | | | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (D.-Y.K.); (H.J.)
| |
Collapse
|
22
|
Kor A, Thakur LS, Tayade K. Chronic arsenic toxicity. Oxf Med Case Reports 2023; 2023:omad110. [PMID: 37881271 PMCID: PMC10597616 DOI: 10.1093/omcr/omad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Akshay Kor
- Department of Cardiology, LTMMC and GH, Mumbai, India
| | | | | |
Collapse
|
23
|
Alam MNE, Hosen MM, Ullah AKMA, Maksud MA, Khan SR, Lutfa LN, Choudhury TR, Quraishi SB. Lead Exposure of Four Biologically Important Common Branded and Non-branded Spices: Relative Analysis and Health Implication. Biol Trace Elem Res 2023; 201:4972-4984. [PMID: 36627477 PMCID: PMC9838428 DOI: 10.1007/s12011-022-03553-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023]
Abstract
Technological advances and socioeconomic development of Bangladesh are leading to the best choice between branded and non-branded powdered spices. But toxic metal issues can be another factor to elect them. So lead (Pb) exposure and its consequence on the human body for these two categories of four common spices have been ascertained here. A validated laboratory method using hot plate digestion and flame atomic absorption spectrometry (FAAS) has been used for that. The obtained mean concentration of Pb in branded and non-branded spice powders followed the decreasing order of turmeric > coriander > red chili > cumin powder and turmeric > red chili > cumin > coriander powder, respectively, where, in any analysis mode, the non-branded items are potentially ahead of Pb exposure. The market-based mean concentration between these two categories was not a significant difference (t-test). Approximately 90% of the spice samples have shown within the maximum allowable limit by Bangladesh Standard. The sum of estimated daily intake indicated that most of the city market (67%) for non-branded items and some branded (33%) samples have crossed the maximum tolerable daily intake (> 0.21 mg/kg). So, the human health risk assumption for the inhabitant of studied areas suggests there is no significant level of risk for them due to the consumption of spices regarding non-carcinogenic risk factor (THQ and total THQ) and carcinogenic risk factor (CR). But the development of a quality control process for loose spice powders as well as toxic metal screening from raw materials to finish products urgently needed and continuous monitoring with identifying the source of toxic metal is highly recommended.
Collapse
Affiliation(s)
- M. Nur E. Alam
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - M. Mozammal Hosen
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - A. K. M. Atique Ullah
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - M. A. Maksud
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - S. R. Khan
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - L. N. Lutfa
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| | - Shamshad B. Quraishi
- Analytical Chemistry Laboratory, Atomic Energy Center, Bangladesh, Atomic Energy Commission, Dhaka, 1000 Bangladesh
| |
Collapse
|
24
|
Xu W, Chen S, Song L, Jin H, Pu F, Su W, Lou Z, Xu X. Mechanochemical synthesis of cysteine-gum acacia intermolecular complex for multiple metal(loid) sequestration from herbal extracts. CHEMOSPHERE 2023; 338:139612. [PMID: 37482312 DOI: 10.1016/j.chemosphere.2023.139612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The ubiquitous heavy metal(loid)s (HMs) contamination has triggered great concern about food safety, while sequestration and separation of trace HMs from herbal extracts still calls for appropriate sorbent materials. In this work, gum acacia was modified by cysteine to form a cysteine-acacia intermolecular complex (Cys-GA complex) via facile mechanochemical synthesis, aiming at capturing multiple HMs simultaneously. Preliminary screening confirms the superiority of Cys-CA complex for both cationic and anionic HMs, and determines an optimum Cys/GA mass ratio of 9:1 to achieve high removal capacities for Pb(II) (938 mg g-1), Cd(II) (834 mg g-1), As(V) (496 mg g-1), and Cr(VI) (647 mg g-1) in simulated aqueous solution. The analysis on HMs-exhausted Cys-GA complex indicates that Pb(II), As(V), and Cr(VI) tend to be removed through chelation, electrostatic attraction, and reduction, while Cd(II) can only be chelated or adsorbed by electrostatic interaction. The batch experiments on commercial herbal (e.g. Panax ginseng, Glycine max, Sophora flavescens, Gardenia jasminoides, Cyclocarya paliurus, and Bamboo leaf) extracts indicate that Cys-GA complex can reduce HMs concentration to attain acceptable level that comply with International Organization for Standardization, with negligible negative effect on its active ingredients. This work provides a practical and convenient strategy to purify HMs-contaminated foods without introducing secondary pollution.
Collapse
Affiliation(s)
- Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ludi Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huachang Jin
- National and Local Joint Engineering Research Center, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Faxiang Pu
- Research and Development Department, Zhejiang Suichang Limin Pharmaceutical Co., Ltd, Suichang, 323300, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zimo Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Rojas P, Ruiz-Sánchez E, Rojas C, García-Martínez BA, López-Ramírez AM, Osorio-Rico L, Ríos C, Reséndiz-Albor AA. Human Health Risk Assessment of Arsenic and Other Metals in Herbal Products Containing St. John's Wort in the Metropolitan Area of Mexico City. TOXICS 2023; 11:801. [PMID: 37755811 PMCID: PMC10537233 DOI: 10.3390/toxics11090801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Consumption of St. John's wort plant is high worldwide due to its various medicinal properties. However, herbal products containing St. John's wort may be contaminated with toxic metals. This is often related to contamination of both water and the atmosphere, lack of proper cultivation methods, and inadequate plant storage conditions, as well as a lack of stricter sanitary supervision. A safety assessment of copper (Cu), lead (Pb), cadmium (Cd) and arsenic (As) content in 23 products containing St. John's wort (pharmaceutical herbal products, food supplements and traditional herbal remedies) sold in the metropolitan area of Mexico City was conducted. The analysis of metals was determined using a graphite-furnace atomic absorption spectrometer. All herbal products were contaminated with Cu, Pb, Cd and As. The pharmaceutical herbal items showed less contamination by metals. The daily human intake (DHI) values for Pb exceeded the permissible limits in the group of traditional herbal remedies. The DHI calculation for As exceeded the permitted intake values for all items in the group of traditional herbal remedies, five food supplements and one pharmaceutical herbal product. The hazard indicator calculation of the non-carcinogenic cumulative risk values for traditional herbal remedies was greater than 1, suggesting a risk to human health.
Collapse
Affiliation(s)
- Patricia Rojas
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico;
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S., Avenida Insurgentes Sur No. 3877, Mexico City 14269, Mexico; (E.R.-S.); (L.O.-R.)
| | - Carolina Rojas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Betzabeth A. García-Martínez
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, S.S., Calzada México-Xochimilco 289, Mexico City 14389, Mexico; (B.A.G.-M.); (C.R.)
| | - Arely M. López-Ramírez
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S., Avenida Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - Laura Osorio-Rico
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S., Avenida Insurgentes Sur No. 3877, Mexico City 14269, Mexico; (E.R.-S.); (L.O.-R.)
| | - Camilo Ríos
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, S.S., Calzada México-Xochimilco 289, Mexico City 14389, Mexico; (B.A.G.-M.); (C.R.)
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico;
| |
Collapse
|
26
|
Im HB, Ghelman R, Portella CFS, Hwang JH, Choi D, Kunwor SK, Moraes SDTDA, Han D. Assessing the safety and use of medicinal herbs during pregnancy: a cross-sectional study in São Paulo, Brazil. Front Pharmacol 2023; 14:1268185. [PMID: 37795036 PMCID: PMC10546009 DOI: 10.3389/fphar.2023.1268185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Background: Despite the lack of evidence supporting the safety and clinical efficacy of herbal medicine (HM), its use among pregnant women continues to increase. Given the high prevalence of contraindicated herbs among the pregnant population in Brazil, it is crucial to examine the use of HM and evaluate its safety based on the current scientific literature to ensure that women are using HM appropriately. Methods: A cross-sectional study was conducted from October 2022 to January 2023 at a public teaching hospital in São Paulo, Brazil. A total of 333 postpartum women in the postnatal wards and postnatal clinic were interviewed using a semi-structured questionnaire. The survey instrument consisted of 51 items covering the use of HM during pregnancy, sociodemographic and health-related characteristics, COVID-19 experiences, and pregnancy outcomes. For data analysis, chi-square and multivariate logistic regression were conducted using SPSS ver. 26.0. Results: Approximately 20% of respondents reported using HM during their most recent pregnancy, with a higher use observed among women from ethnic minority groups and those with prior HM experience. Among the 20 medicinal herbs identified, 40% were found to be contraindicated or recommended for use with caution during pregnancy. However, only half of the women discussed their HM use with obstetric care providers. Conclusion: This study emphasizes the continued public health concern regarding the use of contraindicated or potentially harmful HM among pregnant women in Brazil, highlighting the need for sustained efforts to reduce the risk of inappropriate HM use. By updating antenatal care guidelines based on the latest scientific evidence, healthcare providers can make informed clinical decisions and effectively monitor pregnant women's HM use, ultimately promoting safer and more effective healthcare practices.
Collapse
Affiliation(s)
- Hyea Bin Im
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Ricardo Ghelman
- Brazilian Academic Consortium for Integrative Health, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Caio Fábio Schlechta Portella
- Brazilian Academic Consortium for Integrative Health, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jung Hye Hwang
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Dain Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Sangita Karki Kunwor
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | | | - Dongwoon Han
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Liu X, Chi H, Tan Z, Yang X, Sun Y, Li Z, Hu K, Hao F, Liu Y, Yang S, Deng Q, Wen X. Heavy metals distribution characteristics, source analysis, and risk evaluation of soils around mines, quarries, and other special areas in a region of northwestern Yunnan, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132050. [PMID: 37459760 DOI: 10.1016/j.jhazmat.2023.132050] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
In this study, based on the assessment of soil heavy metals (HMs) pollution using relevant indices, a comprehensive approach combined network environ analysis (NEA), human health risk assessment (HHRA) method and positive definite matrix factor (PMF) model to quantify the risks among ecological communities in a special environment around mining area in northwest Yunnan, calculated the risk to human health caused by HMs in soil, and analyzed the pollution sources of HMs. The integrated risks for soil microorganisms, vegetations, herbivores, and carnivores were 2.336, 0.876, 0.114, and 0.082, respectively, indicating that soil microorganisms were the largest risk receptors. The total hazard indexes (HIT) for males, females, and children were 0.542, 0.591, and 1.970, respectively, revealing a relatively high and non-negligible non-carcinogenic risks (NCR) for children. The total cancer risks (TCR) for both females and children exceeded 1.00E-04, indicating that soil HMs posed carcinogenic risks (CR) to them. Comparatively, Pb was the high-risk metal, accounting for 53.76%, 57.90%, and 68.09% of HIT in males, females, and children, respectively. PMF analysis yielded five sources of pollution, F1 (industry), F2 (agriculture), F3 (domesticity), F4 (nature), and F5 (traffic).
Collapse
Affiliation(s)
- Xin Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Huajian Chi
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yiping Sun
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Zongtao Li
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
28
|
Ullah S, Ennab W, Wei Q, Wang C, Quddus A, Mustafa S, Hadi T, Mao D, Shi F. Impact of Cadmium and Lead Exposure on Camel Testicular Function: Environmental Contamination and Reproductive Health. Animals (Basel) 2023; 13:2302. [PMID: 37508079 PMCID: PMC10375966 DOI: 10.3390/ani13142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The free grazing habits of camels from various sources may cause heavy metals to bioaccumulate in their tissues and organs, possibly resulting in higher amounts of these toxic substances in their bodies over time. The aim of this study was to assess the exposure impact of lead (Pb) and cadmium (Cd) on bull camels of the Lassi breed, aged 7 to 8 years, at a site near the industrial area and another two non-industrial sites, to analyze the presence of heavy metals. Samples from three sites were collected from thirty camels (n = 10/each), soil and water (n = 30), and five different plants (n = 15/each) for analysis. Testes were collected for atomic absorption spectrometry (AAS), and hematoxylin-eosin (HE) staining. Serum samples were obtained to measure testosterone levels by radioimmunoassay (RIA). Samples were obtained from plants, soil, water, blood, serum and urine for AAS. According to the results, the testes' weight, length, width, and volume significantly decreased at the industrial site compared with the other two sites as a result of exposure to Cd and Pb. Additionally, blood testosterone concentrations were considerably lower at the industrial site, indicating a detrimental impact on testicular steroidogenesis. The histological investigation of the industrial site indicated structural disturbances, including seminiferous tubule degeneration and shedding, cellular debris in seminiferous tubules, lining epithelium depletion, and vacuolation. Elevated amounts of Cd and Pb were found at the industrial site when analyzed using water, soil, plants, testes, serum, and urine. These findings demonstrate the adverse effects of Pb and Cd exposure on camel testicular function, including decreased weight and altered steroidogenesis. These findings are essential for understanding the impact of exposure to Pb and Cd on camel reproductive function and for developing successful prevention and management plans for these exposures in this species.
Collapse
Affiliation(s)
- Saif Ullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wael Ennab
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency, Breeding and Ecological Feeding, College of Agronomy, Liaocheng 252000, China
| | - Abdul Quddus
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Pakistan
| | - Sheeraz Mustafa
- Faculty of Veterinary and Animal Sciences, Ziaddin University, Karachi 75000, Pakistan
| | - Tavakolikazerooni Hadi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Hu Z, Wu L, Gan H, Lan H, Zhu B, Ye X. Toxicological effects, residue levels and risks of endocrine-disrupting chemicals in Chinese medicine: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79724-79743. [PMID: 37332031 DOI: 10.1007/s11356-023-28138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Traditional Chinese medicine (TCM) that is used worldwide possesses the satisfactory function of disease prevention, treatment and health care, and this natural medicine seems to be favored due to its low side effects. Endocrine disrupting chemicals (EDCs), which exist in all aspects of our lives, may interfere with the synthesis, action and metabolism of human sex steroid hormones, resulting in the development and fertility problems as well as obesity and the disturbance of energy homeostasis. From planting to processing, TCM may be polluted by various EDCs. Many studies pay attention to this problem, but there are still few reviews on the residues and toxicity risks of EDCs in TCM. In this paper, researches related to EDCs in TCM were screened. The possible contamination sources of TCM from planting to processing and its toxic effects were introduced. Moreover, the residues of metals, pesticides and other EDCs in TCM as well as the health risks of human exposure to EDCs through ingestion of TCM materials were reviewed.
Collapse
Affiliation(s)
- Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
30
|
Barbeș L, Bărbulescu A, Dumitriu CŞ. Human Health Risk Assessment to the Consumption of Medicinal Plants with Melliferous Potential from the Romanian South-Eastern Region. TOXICS 2023; 11:520. [PMID: 37368620 DOI: 10.3390/toxics11060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
This study presents the impact on human health by consuming medicinal herbs with high melliferous potential (HMPs) from botanical areas with different pollution levels. First, the bioaccumulation of the plants' parts has been determined. The study assessed the potential health risks associated with the ingestion of various mineral species (macroelements-K, Ca, Mg, Na; microelements-Fe, Mn, Cu, Zn, and one trace element Cd) from three types of HMPs (Sambucus nigra (SnL), Hypericum perforatum (Hp), and Tilia tomentosa (Tt)). The average concentrations of these elements were not similar even in the same type of HMPs. Nevertheless, all samples contained detectable levels of the studied elements. The average concentrations of the studied elements were very low (significantly lower than the legal limit set by the WHO). The study's findings indicated that the potential health risks associated with ingesting the elements in HMPs were within acceptable limits for children and adults. The hazard quotient (HQ) for Fe, Mn, Cu, Zn, and Cd and the hazard index (HI) for the minerals from HMPs were significantly lower than the acceptable limit (HQ and HI = 1). Similarly, the carcinogenic risk for chemical substances (Riskccs) were lower than or close to the acceptable limit (1 × 10-4).
Collapse
Affiliation(s)
- Lucica Barbeș
- Department of Chemistry and Chemical Engineering, "Ovidius" University of Constanța, 124 Mamaia Bd., 900112 Constanta, Romania
- Doctoral School of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania
| | - Cristian Ştefan Dumitriu
- Faculty of Mechanical and Robotic Engineering in Construction, Technical University of Civil Engineering of Bucharest, 124 Lacul Tei Av., 020396 Bucharest, Romania
| |
Collapse
|
31
|
Bakr S, Sayed MA, Salem KM, Morsi EM, Masoud M, Ezzat EM. Lead (Pb) and cadmium (Cd) blood levels and potential hematological health risk among inhabitants of the claimed hazardous region around Qaroun Lake in Egypt. BMC Public Health 2023; 23:1071. [PMID: 37277752 DOI: 10.1186/s12889-023-16007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Lead (Pb) and cadmium (Cd) heavy metals are considered potentially hazardous toxins which cause serious health problems. Many studies reported that the water of Qaroun Lake in Fayoum, Egypt with its fish farms was contaminated with Pb and Cd above permissible levels. However, there is a lack of studies addressing levels of these toxic metals among inhabitants. OBJECTIVES We aimed to evaluate blood levels of Pb and Cd and their potential health risk among inhabitants around Qaroun Lake. MATERIALS AND METHODS This case-control study estimated Pb and Cd blood levels among 190 individuals from two destinations (near and far away) of Qaroun Lack using an atomic absorption spectrometer after full history taking and routine checkup investigations; Full blood count, serum ferritin, liver enzyme (ALT), and creatinine levels. RESULTS There was a significant difference between blood levels of Pb and Cd heavy metals of inhabitants from near and far away Qaroun Lake destinations (p-value < 0.001). The majority of inhabitants around Qaroun Lake had Pb and Cd blood levels above permissible levels (100% and 60% respectively). Critical levels out of them were 12.1% and 30.3% respectively. In comparison to inhabitants faraway Qaroun Lake, three individuals (2.4%) had Cd above the permissible level, while all of them (100%) had Pb level within the permissible level. There were no statistically significant differences between the two sampled populations as regards hemoglobin level, ALT, creatinine, and ferritin serum levels (p-value > 0.05). The difference between studied populations regarding types of anemia was not statistically significant. Subclinical leucopenia was higher in the population near Qaroun Lake when compare to inhabitants far from the lake (13.6% vs. 4.8%, p-value 0.032). CONCLUSION Bio-monitoring of populations exposed to Pb and Cd hazardous substances could help in generating an early warning system to reduce the disease burden associated with their toxicity.
Collapse
Affiliation(s)
- Salwa Bakr
- Department of Clinical Pathology/ Hematology & Transfusion Medicine, Faculty of Medicine, Fayoum University, P.O Box: 63514, Fayoum, Egypt.
| | - Makram Ahmed Sayed
- Head of Environmental and Food Pollutants Analysis Lab, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Karem Mohamed Salem
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas Mohamed Morsi
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mohamed Masoud
- Department of Public Health and Community Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman Mahmoud Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
32
|
Hoseini H, Abedi A, Mohammadi‐Nasrabadi F, Salmani Y, Esfarjani F. Risk assessment of lead and cadmium concentrations in hen's eggs using Monte Carlo simulations. Food Sci Nutr 2023; 11:2883-2894. [PMID: 37324917 PMCID: PMC10261825 DOI: 10.1002/fsn3.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/17/2023] Open
Abstract
The hen egg is one of the main sources of cheap, great quality, and nutritious food. This study aimed at determining the level of lead (Pb) and cadmium (Cd) in hen eggs and at assessing the carcinogenic and non-carcinogenic risks caused by the consumption of hen eggs collected in Iran. A total of 42 hen eggs from 17 major brands were randomly sampled from supermarkets. Lead and cadmium concentrations were determined by using inductively coupled plasma mass spectrometry (ICP-MS). Additionally, using the Monte Carlo simulation (MCS) method to calculate dietary exposure, target hazard quotient (THQ), and incremental lifetime cancer risk (ILCR), the related human health risk associated with ingesting these hazardous metals for adults was evaluated. The average Pb and Cd concentrations in whole eggs were 7.16 ± 0.248, and 2.83 ± 0.151 μg kg-1, respectively, which were less than the maximum permitted levels, established by FAO/WHO and the Institute of Standards and Industrial Research of Iran (ISIRI). Pb and Cd concentrations were significantly correlated at the 0.05 level (r = 0.350). Regarding the levels of Pb and Cd in eggs, overall, the estimated weekly intake (EWI) of these metals for adults by egg consumption was determined 0.014 and 0.007 mg/week, respectively, which were lower than the risk values suggested. The carcinogenic and non-carcinogenic indexes of Cd and Pb indicated that the adult population in Iran was safe (THQ Pb and Cd <1, ILCR <10-6 Pb). It should be emphasized that this research primarily focuses on egg consumption, which may account for a relatively small portion of Iranian consumers' overall exposure to Pb and Cd. Therefore, a comprehensive study on the risk assessment of these metals through whole-diet foods is recommended. The findings showed that lead and cadmium levels in all evaluated eggs were suitable for human consumption. Adults' Pb and Cd exposure from eating eggs was significantly lower than the risk levels established by Joint FAO/WHO Expert Committee on Food Additives (JECFA), per the exposure assessment. According to the THQ values of these dangerous metals, which were below one value, egg eating by Iranian consumers does not present a non-carcinogenic risk. In addition, this finding provides accurate and reliable information for policymakers to improve food safety status to reduce public health hazards.
Collapse
Affiliation(s)
- Hedayat Hoseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Abdol‐Samad Abedi
- Food and Nutrition Policy and Planning Research Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Mohammadi‐Nasrabadi
- Food and Nutrition Policy and Planning Research Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Yeganeh Salmani
- Food and Nutrition Policy and Planning Research Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Esfarjani
- Food and Nutrition Policy and Planning Research Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
33
|
Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol 2023; 11:1178680. [PMID: 37122866 PMCID: PMC10133563 DOI: 10.3389/fbioe.2023.1178680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Toxic heavy metal accumulation is one of anthropogenic environmental pollutions, which poses risks to human health and ecological systems. Conventional heavy metal remediation approaches rely on expensive chemical and physical processes leading to the formation and release of other toxic waste products. Instead, microbial bioremediation has gained interest as a promising and cost-effective alternative to conventional methods, but the genetic complexity of microorganisms and the lack of appropriate genetic engineering technologies have impeded the development of bioremediating microorganisms. Recently, the emerging synthetic biology opened a new avenue for microbial bioremediation research and development by addressing the challenges and providing novel tools for constructing bacteria with enhanced capabilities: rapid detection and degradation of heavy metals while enhanced tolerance to toxic heavy metals. Moreover, synthetic biology also offers new technologies to meet biosafety regulations since genetically modified microorganisms may disrupt natural ecosystems. In this review, we introduce the use of microorganisms developed based on synthetic biology technologies for the detection and detoxification of heavy metals. Additionally, this review explores the technical strategies developed to overcome the biosafety requirements associated with the use of genetically modified microorganisms.
Collapse
Affiliation(s)
| | | | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Moghaddam M, Mehdizadeh L. Comments on Letter to editor on "Macro- and microelement content and health risk assessment of heavy metals in various herbs of Iran" by Taghizadeh, Seyedeh Faezeh (ESPR-D-22-16984) (https://doi.org/10.1007/s11356-020-07789-2). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51380-51384. [PMID: 36849687 DOI: 10.1007/s11356-023-26124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Affiliation(s)
- Mohammad Moghaddam
- Department of Horticultural Science and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91775-1163, Iran.
| | - Leila Mehdizadeh
- Department of Horticultural Science and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91775-1163, Iran
| |
Collapse
|
35
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
36
|
Al-Thani G, Ibrahim AE, Alomairi M, Salman BI, Hegazy MM, Al-Harrasi A, El Deeb S. Toxic Elemental Impurities in Herbal Weight Loss Supplements; A Study Using ICP-OES Microwave-Assisted Digestion. TOXICS 2023; 11:272. [PMID: 36977037 PMCID: PMC10053313 DOI: 10.3390/toxics11030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The tendency of using weight loss herbal preparations is continuously increasing, especially for the widespread consumption of junk food that is characterized by high calories. Weight loss herbal preparations are considered a type of food supplement product, and, as such, the regulations governing their quality control might be minimal. These products could be locally formulated in any country or internationally imported. Being non-controlled products, the herbal weight-loss products may contain high levels of elemental impurities that might exceed the permissible ranges. Moreover, these products contribute to the total daily intake (TDI) of such elements, which might represent concerns about their potential toxicological danger. In this research, the elemental contents in such products were investigated. The inductively coupled plasma with optical emission spectrometer (ICP-OES) was used to determine the levels of 15 elemental contents, namely, Na, K, Ca, Mg, Al, Cu, Fe, Li, Mn, As, Co, Cr, Cd, Ni and Pb. The results showed that seven micro-elements, namely Cd, Co, Ni, Cr, Pb, Li and Cu, were either not detectable or at a concentration much lower than their tolerable limits. However, all studied macro-elements (Na, K, Ca and Mg), together with Fe, were found at considerable, yet safe levels. On the other hand, Mn, Al and As contents showed perturbing levels in some of the studied products. Finally, a conclusion was highlighted for the necessity for stricter surveillance of such herbal products.
Collapse
Affiliation(s)
- Ghanim Al-Thani
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port Said 42526, Egypt
| | - Mohammed Alomairi
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Baher I. Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mostafa M. Hegazy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
37
|
Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: targeting Nrf2 signaling pathway, inflammatory mediators, and apoptosis. Inflammopharmacology 2023; 31:1465-1480. [PMID: 36884189 DOI: 10.1007/s10787-023-01167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Potassium dichromate (PD) is an environmental xenobiotic commonly recognized as teratogenic, carcinogenic, and mutagenic in animals and humans. The present study was conducted to investigate the role of tangeretin (TNG) as a neuro-protective drug against PD-induced brain injury in rats. Thirty-two male adult Wistar rats were blindly divided into four groups (8 rats/group). The first group received saline intranasally (i.n.). The second group received a single dose of PD (2 mg/kg, i.n.). The third group received TNG (50 mg/kg; orally), for 14 days followed by i.n. of PD on the last day of the experiment. The fourth group received TNG (100 mg/kg; orally) for 14 days followed by i.n. of PD on the last day of the experiment. Behavioral indices were evaluated 18 h after PD administration. Neuro-biochemical indices and histopathological studies were evaluated 24 h after PD administration. Results of the present study revealed that rats intoxicated with PD induced- oxidative stress and inflammation via an increase in malondialdehyde (MDA) and a decrease in nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and glutathione(GSH) levels with an increase in brain contents of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6). Pre-treatment with TNG (100 mg/kg; orally) ameliorated behavior, cholinergic activities, and oxidative stress and decreased the elevated levels of pro-inflammatory mediators; TNF-α and IL-6 with a decrease in brain content of chromium residues detected by Plasma-Optical Emission Spectrometer. Also, the histopathological picture of the brain was improved significantly in rats that received TNG (100 mg/kg). Additionally, TNG decreased caspase-3 expression in the brain of PD rats. In conclusion, TNG possesses a significant neuroprotective role against PD-induced acute brain injury via modulating the Nrf2 signaling pathway and quenching the release of inflammatory mediators and apoptosis in rats.
Collapse
|
38
|
Capuana M, Michelozzi M, Colzi I, Menicucci F, Cencetti G, Gonnelli C. In vitro and in vivo copper-treated Myrtus communis L.: terpene profiles and evidence for potential cultivation on metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33101-33112. [PMID: 36474036 DOI: 10.1007/s11356-022-24484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The intensive application of agro-chemicals, and in particular of copper (Cu)-based compounds, causes increasing pollution of agricultural land, with serious risks for human health. Aromatic plants used for purposes other than food, can be considered for the exploitation and/or remediation of metal-polluted substrates, since contamination of the essential oils by these metals was not significant. Myrtle (Myrtus communis L.) is a Mediterranean evergreen shrub whose essential oil has many commercial applications. In this work, the effect of an excess of Cu in respect to control conditions was assessed on M. communis growth and foliar terpene composition. Metal accumulation in roots and shoots was also evaluated for the possible use of this species in phytoremediation. The amount of Cu applied in our experiments minimally affected the terpene profiles of in vitro grown plants, whereas no variations were detected in in vivo plants. The presence of the metal in the soil did not significantly impair plant growth, thus allowing its cultivation on polluted substrates. On the other hand, the amount of Cu in the plant was not enough to result in a significant reduction of Cu levels in the soil. Therefore, myrtle plants proved to be good candidates for the re-vegetation of Cu-contaminated lands.
Collapse
Affiliation(s)
- Maurizio Capuana
- Institute of Biosciences and BioResources, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
| | - Marco Michelozzi
- Institute of Biosciences and BioResources, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, Via Micheli 1, 50121, Florence, Italy
| | - Felicia Menicucci
- Institute for the Chemistry of OrganoMetallic Compounds, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Gabriele Cencetti
- Institute of Biosciences and BioResources, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, Via Micheli 1, 50121, Florence, Italy
| |
Collapse
|
39
|
Tabassum H, Alrashed M, Malik A, Alanazi ST, Alenzi ND, Ali MN, AlJaser FS, Altoum GH, Hijazy SM, Alfadhli RA, Alrashoudi R, Akhtar S. A unique investigation of thallium, tellurium, osmium, and other heavy metals in recurrent pregnancy loss: A novel approach. Int J Gynaecol Obstet 2023; 160:790-796. [PMID: 35929844 DOI: 10.1002/ijgo.14390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the impact of heavy metals especially tellurium, thallium, and osmium, in recurrent pregnancy loss (RPL) and to study their association with antioxidant status and DNA damage. METHODS This case-control study included women with RPL (n = 30) and healthy pregnant women as control (n = 30). Following blood collection, serum levels of thallium, tellurium, osmium, lead, mercury, and cadmium were estimated by inductively coupled plasma mass spectrophotometer. RESULTS Women with RPL exhibited significantly higher levels of heavy metals (P < 0.001) when compared with control women. Intriguingly, increased levels of serum thallium, tellurium, osmium, and lead were negatively correlated with total antioxidant status (P < 0.05). Further, the RPL group demonstrated strong positive correlation between heavy metals (thallium, tellurium, osmium, lead) and DNA damage (P < 0.05). No significant correlation between other heavy metals and markers of cellular damage was noted. CONCLUSION Enhanced levels of heavy metals in women with RPL and correlation of thallium, tellurium, osmium, and lead with markers of cellular damage reflect the role of heavy metal poisoning, especially thallium, tellurium, and osmium, as potential risk factor in the etiology underlying recurrent miscarriage.
Collapse
Affiliation(s)
- Hajera Tabassum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Naif D Alenzi
- Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Mir Naiman Ali
- Department of Microbiology, Mumtaz Degree & P.G. College, Hyderabad, India.,Department of Microbiology, Green lab, Alkhuraiji Industries, Riyadh, Saudi Arabia
| | - Feda S AlJaser
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghadah H Altoum
- Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Sereen M Hijazy
- Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Reem A Alfadhli
- Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Reem Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| |
Collapse
|
40
|
Aung WW, Panich K, Watthanophas S, Naridsirikul S, Ponphaiboon J, Krongrawa W, Kulpicheswanich P, Limmatvapirat S, Limmatvapirat C. Preparation of Bioactive De-Chlorophyll Rhein-Rich Senna alata Extract. Antibiotics (Basel) 2023; 12:antibiotics12010181. [PMID: 36671382 PMCID: PMC9854576 DOI: 10.3390/antibiotics12010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Senna alata leaves display various biological activities as a result of their rhein and phenolic composition. The objective of this study was to develop bioactive de-chlorophyll rhein-rich S. alata extracts. The rhein content was quantified using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. The best process parameters for maximizing rhein were established using ultrasound-assisted extraction (UAE). The optimal conditions for the parameters were determined using the Box-Behnken design (BBD); 95% v/v ethanol was used as the extraction solvent at 59.52 °C for 18.4 min with a solvent-to-solid ratio of 25.48:1 (mL/g) to obtain the predicted value of rhein at 10.44 mg/g extract. However, the color of the rhein-rich extract remained dark brown. For the removal of chlorophyll, liquid-liquid extraction with vegetable oils and adsorption with bleaching agents were employed. The bleaching agents were significantly more effective at removing chlorophyll and had less of an effect on the reduction in rhein content than vegetable oils. The presence of rhein and phenolics in the de-chlorophyll extracts might be responsible for their antioxidant, anti-inflammatory, and antibacterial activities. These findings indicate that rhein-rich extract and its de-chlorophyll extracts possess sufficient biological activities for the further development of cosmeceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokpon Panich
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Suchawalee Watthanophas
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sutada Naridsirikul
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | | | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: ; Tel.: +66-34-255800; Fax: +66-34-255801
| |
Collapse
|
41
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
42
|
Chemical Constituents, Quantitative Analysis, Anti-SARS-CoV-2 and Antioxidant Activities of Herbal Formula “Ping An Fang Yu Yin”. Processes (Basel) 2022. [DOI: 10.3390/pr10112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
COVID-19 is a global pandemic infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The herbal formula, Ping An Fang Yu Yin (PAFYY), has been used to prevent respiratory viral infections for many years. This study aims to evaluate the effect of PAFYY on SARS-CoV-2 infection, oxidative stress, and inflammation via in vitro, investigate the chemical composition by full constituent quantitative analysis, and verify its anti-viral potential against SARS-CoV-2 using in silico. In this study, a total of eleven compounds, twenty amino acids, saccharide compositions, and trace elements were found and quantitatively determined by chromatographic techniques. PAFYY displayed free radical scavenging activity (DPPH, SC50: 1.24 ± 0.09 mg/mL), SOD activity (68.71 ± 1.28%), inhibition of lipoxygenase activity (75.96 ± 7.64 mg/mL) and interfered the interaction of SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (48.04 ± 3.18%). Furthermore, in-silico analysis results supported that liquiritin, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside with the highest affinity between SARS-CoV-2 RBD and human angiotensin-converting enzyme II (hACE2) receptor. Our findings suggest that PAFYY has the potential for anti-SARS-CoV-2 infection, anti-oxidation stress, and anti-inflammation, and may be used as supplements for amelioration or prevention of COVID-19 symptoms, as well as the representative compounds can be used for quality control of PAFYY in the future.
Collapse
|
43
|
Jeong HI, Han JE, Shin BC, Jang S, Won JH, Kim KH, Sung SH. Herbal Decoctions for the Levels of Sulfur Dioxide, Benzopyrene, and Mycotoxin from Traditional Korean Medicine Clinics: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13595. [PMID: 36294180 PMCID: PMC9602765 DOI: 10.3390/ijerph192013595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, we investigated whether the levels of sulfur dioxide (SO2), benzopyrene, and mycotoxins in herbal decoctions in Korea in 2019 were within normal limits. In total, 30 decoctions composed of multi-ingredient traditional herbs were sampled from traditional Korean medicine (TKM) clinics, TKM hospitals, and external herbal dispensaries in 2019. The decoctions were analyzed for SO2, benzopyrene, and mycotoxins using 10 samples. SO2 and benzopyrene were not detected in any of the herbal decoctions. With regard to mycotoxins, aflatoxin B1 was not detected, but B2 was detected in 7 cases (0.00~0.04 ppb), G1 in 13 cases (0.03~0.29 ppb), and G2 in 9 cases (0.02~0.93 ppb). None of these values exceeded the restrictions in prior studies. Thus, we confirm that the amounts of SO2, benzopyrene, and mycotoxins in herbal decoctions are at safe levels and provides the basis of establishing safety management criteria for herbal decoctions.
Collapse
Affiliation(s)
- Hye In Jeong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ji-Eun Han
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Korea
| | - Byung-Cheul Shin
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Soobin Jang
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38609, Korea
| | - Jae-Hee Won
- Department of Public Infrastructure Operation, National Institute of Korean Medicine Development, Seoul 04554, Korea
| | - Kyeong Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Korea
| | - Soo-Hyun Sung
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Korea
| |
Collapse
|
44
|
Kenny CR, Ring G, Sheehan A, Mc Auliffe MAP, Lucey B, Furey A. Novel metallomic profiling and non-carcinogenic risk assessment of botanical ingredients for use in herbal, phytopharmaceutical and dietary products using HR-ICP-SFMS. Sci Rep 2022; 12:17582. [PMID: 36266322 PMCID: PMC9584900 DOI: 10.1038/s41598-022-16873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 01/13/2023] Open
Abstract
Knowledge of element concentrations in botanical extracts is relevant to assure consumer protection given the increased interest in plant-based ingredients. This study demonstrates successful multi-element investigations in order to address the lack of comprehensive profiling data for botanical extracts, while reporting for the first time the metallomic profile(s) of arnica, bush vetch, sweet cicely, yellow rattle, bogbean, rock-tea and tufted catchfly. Key element compositions were quantified using a validated HR-ICP-SFMS method (µg kg-1) and were found highly variable between the different plants: Lithium (18-3964); Beryllium (3-121); Molybdenum (75-4505); Cadmium (5-325); Tin (6-165); Barium (747-4646); Platinum (2-33); Mercury (5-30); Thallium (3-91); Lead (12-4248); Bismuth (2-30); Titanium (131-5827); Vanadium (15-1758); Chromium (100-4534); Cobalt (21-652); Nickel (230-6060) and Copper (1910-6340). Compendial permissible limits were not exceeded. Overall, no evidence of a health risk to consumers could be determined from consumption of the investigated plants at reasonable intake rates. Mathematical risk modelling (EDI, CDI, HQ, HI) estimated levels above safe oral thresholds only for Cd (16%) and Pb (8%) from higher intakes of the respective plant-derived material. Following high consumption of certain plants, 42% of the samples were categorised as potentially unsafe due to cumulative exposure to Cu, Cd, Hg and Pb. PCA suggested a potential influence of post-harvest processing on Cr, Ti and V levels in commercially-acquired plant material compared to wild-collected and farm-grown plants. Moreover, a strong correlation was observed between Pb-Bi, Be-V, Bi-Sn, and Tl-Mo occurrence. This study may support future research by providing both robust methodology and accompanying reference profile(s) suitable for the quality evaluation of essential elements and/or metal contaminants in botanical ingredients.
Collapse
Affiliation(s)
- Ciara-Ruth Kenny
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Gavin Ring
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Aisling Sheehan
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Michael A P Mc Auliffe
- Centre for Advanced Photonics and Process Analysis (CAPPA), Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Brigid Lucey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Ambrose Furey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
| |
Collapse
|
45
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
46
|
Winiarska-Mieczan A, Jachimowicz K, Kwiecień M, Krusiński R, Kislova S, Sowińska L, Zasadna Z, Yanovych D. The Content of Cd and Pb in Herbs and Single-Component Spices Used in Polish Cuisine. Biol Trace Elem Res 2022; 201:3567-3581. [PMID: 36205876 PMCID: PMC10160165 DOI: 10.1007/s12011-022-03437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
Spices and herbs play an important role in the human diet, mostly due to the presence of essential oils and high antioxidant activity. Therefore, the toxicity of metals raises concerns about the safety of consumption of spices and herbs. This paper examines the content of Cd and Pb in fresh and dried herbs and single-component spices that are the most popular in Polish cuisine: 100 samples of nine kinds of dried herbs, 184 samples of 15 kinds of fresh herbs and 148 samples of 14 kinds of loose single-component spices. The level of Cd and Pb was determined using the GF AAS method. The safety of herbs and spices for consumption was estimated based on the percentage intake of Cd and Pb compared with the tolerable intake (% TWI, % BMDL), chronic daily intake (CDI), target hazard quotient (THQ), hazard index (HI) and comparisons of the results of chemical analyses with the maximum admissible levels of Cd and Pb in Poland and in the European Union. Calculated per fresh weight of the product, dried herbs on average contained 0.134 ± 0.168 mg of Cd and 0.548 ± 0.161 mg of Pb per kg-1, fresh herbs on average contained 0.004 ± 0.007 mg of Cd and 0.039 ± 0.033 mg of Pb per kg-1, and the mean content of Cd in spices was 0.017 ± 0.019 mg per kg-1 and 0.064 ± 0.050 mg of Pb. The % TWI, % BMDL, CDI, THQ and HI (Cd + Pb) for all the analysed products were lower than 1. The results do not imply a risk due to the supply of Cd and Pb with the diet to the human body, primarily due to the small intake of these products. However, it should be highlighted that the content of Cd in dried coriander and estragon and that of Pb in watercress, jiaogulan, celery, basil and dill exceeded the acceptable limit. Thus, their consumption for people from particularly sensitive groups such as babies, pregnant and breastfeeding women and people should be carefully limited.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Robert Krusiński
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Svitlana Kislova
- State Scientific-Research Control Institute of Veterinary Medical Products and Feed Additives, Lviv, Ukraine
| | - Lesya Sowińska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Zvenyslava Zasadna
- State Scientific-Research Control Institute of Veterinary Medical Products and Feed Additives, Lviv, Ukraine
| | - Dmytro Yanovych
- State Scientific-Research Control Institute of Veterinary Medical Products and Feed Additives, Lviv, Ukraine
| |
Collapse
|
47
|
Khan A, Khan AA, Irfan M, Sayeed Akhtar M, Hasan SA. Lead-induced modification of growth and yield of Linum usitatissimum L. and its soil remediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1067-1076. [PMID: 36178175 DOI: 10.1080/15226514.2022.2128040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study was designed to evaluate the pre-reproductive and reproductive responses of Linum usitatissimum L. (flax, linseed plant) to different levels of Pb in the soil. Flax seeds were sown in garden soil-filled earthen pots and treated with three different levels of lead as lead chloride (150, 450, and 750 mg Pb kg-1 soil) except control, and each treatment was replicated three times. Growth and reproductive parameters and photosynthetic pigments were significantly reduced (p ≤ 0.05) for all treatments. Quantitatively, Chlorophyll b content decreased more than chlorophyll a and the amount of proline content in the leaves increased in lockstep with the increase of Pb levels in the soil. Pb was found in substantial amounts in the roots, shoots, and seeds. The pattern of Pb accumulation in different organs was root > shoot > seeds. Pb levels in seeds obtained from 750 mg Pb kg-1 soil-treated plants exceeded the permissible limits. Biological concentration factor (BCF), biological accumulation coefficient (BAC) and translocation factor (TF) values showed that roots of L. usitatissimum absorbed and accumulated a substantial quantity of Pb but translocated only a fraction of that to the shoots. Therefore, L. usitatissimum L. can be used in phytostabilization rather than phytoextraction of Pb.
Collapse
Affiliation(s)
- Adnan Khan
- Environmental Botany Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Athar Ali Khan
- Environmental Botany Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohd Irfan
- Department of Botany, Sanskriti University, Mathura, India
| | | | - Syed Aiman Hasan
- Department of Biology, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Popović K, Nikolić MA, Dražić B, Jovanović D, Tanasković S. Assessment of the Quality of Herbal Teas from Šabac, Serbia in Terms of the Content of Heavy Metals. Pharm Chem J 2022; 56:827-837. [PMID: 36193231 PMCID: PMC9520112 DOI: 10.1007/s11094-022-02716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/30/2022]
Abstract
Chemical components of teas have received great interest because they are related to health. In this work, data on the determination of foreign matter, loss on drying/water content, total ash and ash insoluble in hydrochloric acid are presented. The content of seven heavy metals including Cu, Fe, Mn, Zn, Ni, Cd and Pb were determined by atomic absorption spectrometry in samples of several herbal teas: Matricariae flos, Thymi herba, Menthae piperitae folium, Betulae folium, Quercus cortex, Gentianae radix, Frangulae cortex, Althaeae radix, Uvae ursi folium and Glycyrrhizae radix collected from Šabac's market, Serbia. The sample preparation procedure involved dry digestion and dissolution of the ash in 6M HCl and then in 0.1 M HNO3. Herbal teas showed the concentration of heavy metals Cu, Fe, Mn, Zn and Ni in the range: 2.9 ± 0.1 - 22.2 ± 0.9 mg/kg, 118.5 ± 1.1 - 755.5 ± 2.5 mg/kg, 19.0 ± 5.8 - 561.0 ± 1.9 mg/kg, 6.5 ± 0.4 - 242.5 ± 1.4 mg/kg and 2.5 ± 0.1 - 10 ± 1.1 mg/kg, respectively. The level of copper in all samples was uniform. The highest content of Fe was in Thymi herba, while Mn and Zn were at maximum in Betulae folium. The levels of toxic heavy metals Cd and Pb were below the detection limit. The obtained values were compared with data available from literature. The herbal tea samples analyzed contained essential heavy metals (Cu, Fe, Mn, Zn) and probably essential in trace (Ni), and could obey the daily dietary requirements. Noncancer health risk assessment detected that the herbal teas of Betulae folium and Frangulae cortex can manifest some health risk to consumers.
Collapse
Affiliation(s)
- Kosana Popović
- Academy of Applied Studies Šabac, Department for Medical, Business and Technological Studies, Šabac, Serbia
| | | | - Branka Dražić
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000 Serbia
| | - Dragoljub Jovanović
- Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, Belgrade, 11000 Serbia
| | - Slađana Tanasković
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000 Serbia
| |
Collapse
|
49
|
Pandey AK, Zorić L, Sun T, Karanović D, Fang P, Borišev M, Wu X, Luković J, Xu P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant-Rhizosphere Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2554. [PMID: 36235420 PMCID: PMC9572132 DOI: 10.3390/plants11192554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization, urbanization, and mine tailings runoff are the main sources of heavy metal contamination of agricultural land, which has become one of the major constraints to crop growth and productivity. Finding appropriate solutions to protect plants and agricultural land from heavy metal pollution/harmful effects is important for sustainable development. Phytoremediation and plant growth-promoting rhizobacteria (PGPR) are promising methods for this purpose, which both heavily rely on an appropriate understanding of the anatomical structure of plants. Specialized anatomical features, such as those of epidermis and endodermis and changes in the root vascular tissue, are often associated with heavy metal tolerance in legumes. This review emphasizes the uptake and transport of heavy metals by legume plants that can be used to enhance soil detoxification by phytoremediation processes. Moreover, the review also focuses on the role of rhizospheric organisms in the facilitation of heavy metal uptake, the various mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera involved in these processes. The information presented here can be exploited for improving the growth and productivity of legume plants in metal-prone soils.
Collapse
Affiliation(s)
- Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lana Zorić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Dunja Karanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Xinyang Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Jadranka Luković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
50
|
Rahmatullah M, Jahan R, Nissapatorn V, Pereira MDL, Wiart C. Editorial: Emerging and old viral diseases: Antiviral drug discovery from medicinal plants. Front Pharmacol 2022; 13:976592. [PMID: 36059941 PMCID: PMC9437638 DOI: 10.3389/fphar.2022.976592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
- *Correspondence: Mohammed Rahmatullah,
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria De Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|