1
|
Yan M, Zhang S, Liang P, Huang H, Li G, A R, Wu H. Research Hotspots and Frontier Trends of Autophagy in Diabetic Cardiomyopathy From 2014 to 2024: A Bibliometric Analysis. J Multidiscip Healthc 2025; 18:837-860. [PMID: 39963325 PMCID: PMC11831922 DOI: 10.2147/jmdh.s507217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Objective In recent years, the investigation of autophagy mechanisms has gained prominence as a key focus for understanding the pathogenesis and therapeutic potential of diabetic cardiomyopathy. This study aims to present an overview of the current state, major research areas, and emerging trends in autophagy related to diabetic cardiomyopathy through bibliometric analysis, offering a scientific foundation for future research. Methods The Web of Science Core Collection served as the data source for this study, from which full-text publications were extracted. Using CiteSpace 6.3.R1, VOSviewer v1.6.18, and R-Bibliometrix, the analysis evaluated research output across dimensions such as subjects, countries, institutions, journals, authors, and co-cited references, generating a comprehensive visual map. Results A total of 367 publications met the inclusion criteria. Between 2014 and 2024, the volume of articles demonstrated a consistent upward trajectory. Research on autophagy in diabetic cardiomyopathy predominantly spans the disciplines of biology and medicine. China and the Fourth Military Medical University emerged as leading contributors among 41 countries and 505 institutions. Sun Dongdong was identified as the most prolific author, while Jia GH was the most frequently cited. Key journals in this field include Biochimica et Biophysica Acta - Molecular Basis of Disease and Frontiers in Cardiovascular Medicine, while Circulation Research recorded the highest number of co-citations. The most cited reference was an experimental study by Xie ZL. Current research focuses on autophagy, diabetic cardiomyopathy, oxidative stress, and their underlying mechanisms. Conclusion Research on the role of autophagy in diabetic cardiomyopathy has reached a stable phase of development. Future investigations should prioritize mechanistic studies and emphasize the clinical application of novel pharmacological interventions, thereby advancing therapeutic strategies and contributing to improved human health outcomes.
Collapse
Affiliation(s)
- Mei Yan
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Shizhao Zhang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Pengpeng Liang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hai Huang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Guiyun Li
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Ruhan A
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Hongyan Wu
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Simela C, Walker JM, Ghosh AK, Chen DH. SGLT2 inhibitors for prevention and management of cancer treatment-related cardiovascular toxicity: a review of potential mechanisms and clinical insights. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:15. [PMID: 39934910 DOI: 10.1186/s40959-024-00284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 02/13/2025]
Abstract
More evidence-based strategies are needed for preventing and managing cancer treatment-related cardiovascular toxicity (CTR-CVT). Owing to the growing body of evidence supporting their cardioprotective role in several cardiac injury scenarios, sodium-glucose cotransporter 2 inhibitors (SGLT2i) may be beneficial for preventing and treating CTR-CVT. In October 2024, a search was conducted of the PubMed database to review full studies investigating the cardioprotective role of SGLT2i against CTR-CVT. We identified 44 full published/pre-print studies and 3 ongoing randomised controlled trial across eight types of cancer treatment (anthracyclines, platinum-containing therapy, immune checkpoint inhibitors, HER2-targeted therapies, kinase inhibitors, androgen deprivation therapies, multiple myeloma therapies and 5-fluorouracil). Most studies used animal models and focussed on primary prevention. 43 of the 44 studies found some cardioprotective effect of SGLT2i against CTR-CVT, which in some cases included preventing ejection fraction decline and aberrations in cardiac electrophysiological parameters. Some studies also observed beneficial effects on mortality. A central triad of anti-inflammatory, anti-oxidative and anti-apoptotic mechanisms likely underlie SGLT2i-mediated cardioprotection against CTR-CVT. Overall, this growing body of research suggests that SGLT2i may be a promising candidate for preventing CTR-CVT either as monotherapy or in combination with other cardioprotective drugs. However, the literature is limited in that no prospective randomised controlled trials investigating SGLT2i for the prevention and management of CTR-CVT exist and most existing human retrospective data is based on diabetic populations. Future work must focus on addressing these limitations of the current literature.
Collapse
Affiliation(s)
- Carl Simela
- University College London Hospital, London, UK
| | - J Malcolm Walker
- University College London Hospital, London, UK
- Hatter Cardiovascular Institute, University College London, London, UK
| | - Arjun K Ghosh
- University College London Hospital, London, UK
- Hatter Cardiovascular Institute, University College London, London, UK
- Barts Heart Centre, London, UK
| | - Daniel H Chen
- University College London Hospital, London, UK.
- Hatter Cardiovascular Institute, University College London, London, UK.
- Barts Heart Centre, London, UK.
- Prince of Wales Hospital, Sydney, NSW, Australia.
- St George Hospital, Sydney NSW, Australia.
| |
Collapse
|
3
|
Wang J, Yang W. Advances in sodium-glucose transporter protein 2 inhibitors and tumors. Front Oncol 2025; 15:1522059. [PMID: 40007997 PMCID: PMC11850236 DOI: 10.3389/fonc.2025.1522059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor is a major challenge to global health and has received extensive attention worldwide due to its high degree of malignancy and poor prognosis. Although the clinical application of targeted therapy and immunotherapy has improved the status quo of tumor treatment, the development of new therapeutic tools for tumors is still necessary. Sodium-glucose transporter protein 2 (SGLT2) inhibitors are a new type of glycemic control drugs, which are widely used in clinical practice because of their effects on weight reduction and protection of cardiac and renal functions. SGLT2 has been found to be overexpressed in many tumors and involved in tumorigenesis, progression and metastasis, suggesting that SGLT2i has a wide range of applications in tumor therapy. The aim of this article is to provide a comprehensive understanding of the research progress of SGLT2i in different tumors by integrating the latest studies and to encourage further exploration of SGLT2i therapies in clinical trials. This could pave the way for more effective management strategies and improved outcomes for tumor patients.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Oncology, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Wenyong Yang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| |
Collapse
|
4
|
Camilli M, Viscovo M, Maggio L, Bonanni A, Torre I, Pellegrino C, Lamendola P, Tinti L, Teofili L, Hohaus S, Lanza GA, Ferdinandy P, Varga Z, Crea F, Lombardo A, Minotti G. Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond. Basic Res Cardiol 2025; 120:241-262. [PMID: 38935171 PMCID: PMC11790819 DOI: 10.1007/s00395-024-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy.
| | - Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Ilaria Torre
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Claudio Pellegrino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Luciana Teofili
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | | |
Collapse
|
5
|
Miao X, Zhang J, Huang W, Wang Y, Jin A, Cao J, Zhao Z. Research Progress of SGLT2 Inhibitors in Cancer Treatment. Drug Des Devel Ther 2025; 19:505-514. [PMID: 39872633 PMCID: PMC11771169 DOI: 10.2147/dddt.s485755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Sodium glucose co-transporter 2 (SGLT2) inhibitors represent a novel class of hypoglycemic drugs that have emerged in recent years. These inhibitors function primarily by blocking the reabsorption of glucose in the kidneys, specifically targeting the SGLT2 proteins in the proximal convoluted tubules. This inhibition results in the reduction of blood glucose levels through increased glucose excretion in the urine. Recent studies have identified SGLT2 expression in various cancer types, suggesting that SGLT2 inhibition can potentially suppress tumor growth. This article provides a comprehensive review of the role of SGLT2 in tumorigenesis and tumor progression, and explores the underlying mechanisms and potential therapeutic applications of SGLT2 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianing Zhang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Weiyan Huang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Aixia Jin
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhenzhen Zhao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Fuerlinger A, Stockner A, Sedej S, Abdellatif M. Caloric restriction and its mimetics in heart failure with preserved ejection fraction: mechanisms and therapeutic potential. Cardiovasc Diabetol 2025; 24:21. [PMID: 39827109 PMCID: PMC11742808 DOI: 10.1186/s12933-024-02566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
The global increase in human life expectancy, coupled with an unprecedented rise in the prevalence of obesity, has led to a growing clinical and socioeconomic burden of heart failure with preserved ejection fraction (HFpEF). Mechanistically, the molecular and cellular hallmarks of aging are omnipresent in HFpEF and are further exacerbated by obesity and associated metabolic diseases. Conversely, weight loss strategies, particularly caloric restriction, have shown promise in improving health status in patients with HFpEF and are considered the gold standard for promoting longevity and healthspan (disease-free lifetime) in model organisms. In this review, we implicate fundamental mechanisms of aging in driving HFpEF and elucidate how caloric restriction mitigates the disease progression. Furthermore, we discuss the potential for pharmacologically mimicking the beneficial effects of caloric restriction in HFpEF using clinically approved and emerging caloric restriction mimetics. We surmise that these compounds could offer novel therapeutic avenues for HFpEF and alleviate the challenges associated with the implementation of caloric restriction and other lifestyle modifications to reduce the burden of HFpEF at a population level.
Collapse
Affiliation(s)
- Alexander Fuerlinger
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Alina Stockner
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
- Faculty of Medicine, University of Maribor, 2000, Maribor, Slovenia
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, 75006, France.
| |
Collapse
|
7
|
Liu M, Yao Y, Tan F, Wang J, Hu R, Du J, Jiang Y, Yuan X. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors ameliorate renal ischemia-reperfusion injury (IRI) by modulating autophagic processes. Transl Res 2025; 277:27-38. [PMID: 39761911 DOI: 10.1016/j.trsl.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated. In our research, we developed a model of IRI using male C57BL/6 mice by clamping the unilateral renal artery and administering empagliflozin Transcriptomic alterations were analyzed using RNA sequencing (RNA-Seq), complemented by proteomic analysis to investigate the effects of empagliflozin. Histological assessments revealed increased renal inflammatory cell infiltration, widespread renal tubular injury, and elevated autophagosomes formation in the IRI group compared to controls. These pathological changes were significantly attenuated following empagliflozin treatment. Besides, renal function impairment can be alleviated in empagliflozin-treated group. RNA-Seq analysis identified lysosomal autophagy as a key biological process in IRI mice. Empagliflozin exerted a renoprotective effect by downregulating lysosome-associated membrane proteins, primarily LAMP1, LAMP2, and LAMP4 (CD68), through the PI3K-Akt, MAPK, and mTOR signaling pathways, thereby inhibiting autophagic processes. In conclusion, this study highlights enhanced inflammation and disrupted metabolism as hallmark transcriptomic signatures of renal. Furthermore, it demonstrates the renoprotective effects of empagliflozin in alleviating renal IRI by modulating autophagic processes.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rong Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
8
|
Siddiqui R, Obi Y, Dossabhoy NR, Shafi T. Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney Disease? Curr Hypertens Rep 2024; 26:463-474. [PMID: 38913113 PMCID: PMC11455675 DOI: 10.1007/s11906-024-01314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW Chronic kidney disease and end-stage kidney disease (ESKD) are well-established risk factors for cardiovascular disease (CVD), the leading cause of mortality in the dialysis population. Conventional therapies, such as statins, blood pressure control, and renin-angiotensin-aldosterone system blockade, have inadequately addressed this cardiovascular risk, highlighting the unmet need for effective treatment strategies. Sodium-glucose transporter 2 (SGLT2) inhibitors have demonstrated significant renal and cardiovascular benefits among patients with type 2 diabetes, heart failure, or CKD at risk of progression. Unfortunately, efficacy data in dialysis patients is lacking as ESKD was an exclusion criterion for all major clinical trials of SGLT2 inhibitors. This review explores the potential of SGLT2 inhibitors in improving cardiovascular outcomes among patients with ESKD, focusing on their direct cardiac effects. RECENT FINDINGS Recent clinical and preclinical studies have shown promising data for the application of SGLT2 inhibitors to the dialysis population. SGLT2 inhibitors may provide cardiovascular benefits to dialysis patients, not only indirectly by preserving the remaining kidney function and improving anemia but also directly by lowering intracellular sodium and calcium levels, reducing inflammation, regulating autophagy, and alleviating oxidative stress and endoplasmic reticulum stress within cardiomyocytes and endothelial cells. This review examines the current clinical evidence and experimental data supporting the use of SGLT2 inhibitors, discusses its potential safety concerns, and outlines ongoing clinical trials in the dialysis population. Further research is needed to evaluate the safety and effectiveness of SGLT2 inhibitor use among patients with ESKD.
Collapse
Affiliation(s)
- Rehma Siddiqui
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Yoshitsugu Obi
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA.
| | - Neville R Dossabhoy
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Tariq Shafi
- Division of Kidney Diseases, Hypertension, & Transplantation, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Safaie N, Idari G, Ghasemi D, Hajiabbasi M, Alivirdiloo V, Masoumi S, Zavvar M, Majidi Z, Faridvand Y. AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity. Arch Physiol Biochem 2024:1-13. [PMID: 39526616 DOI: 10.1080/13813455.2024.2426494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diba Ghasemi
- Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Vanderbilt University of Medical center, Nashville, TN, USA
| | - Mahdi Zavvar
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Miceli G, Basso MG, Pennacchio AR, Cocciola E, Pintus C, Cuffaro M, Profita M, Rizzo G, Sferruzza M, Tuttolomondo A. The Potential Impact of SGLT2-I in Diabetic Foot Prevention: Promising Pathophysiologic Implications, State of the Art, and Future Perspectives-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1796. [PMID: 39596981 PMCID: PMC11596194 DOI: 10.3390/medicina60111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The impact of diabetic foot (DF) on the healthcare system represents a major public health problem, leading to a considerable clinical and economic burden. The factors contributing to DF's development and progression are strongly interconnected, including metabolic causes, neuropathy, arteriopathy, and inflammatory changes. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i), novel oral hypoglycemic drugs used as an adjunct to standard treatment, have recently changed the pharmacological management of diabetes. Nevertheless, data about the risk of limb amputation, discordant and limited to canagliflozin, which is currently avoided in the case of peripheral artery disease, have potentially discouraged the design of specific studies targeting DF. There is good evidence for the single immunomodulatory, neuroprotective, and beneficial vascular effects of SGLT2-i. Still, there is no clinical evidence about the early use of SGLT2-i in diabetic foot due to the lack of longitudinal and prospective studies proving the effect of these drugs without confounders. This narrative review aims to discuss the main evidence about the impact of SGLT2-i on the three complications of diabetes implicated in the development of DF, the state of the art, and the potential future implications.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariachiara Sferruzza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
11
|
Pan R, He Y, Melisandre W, Zhang Y, Su W, Feng J, Jia C, Li S, Liu B. Bibliometric and visual analysis of SGLT2 inhibitors in cardiovascular diseases. Front Pharmacol 2024; 15:1437760. [PMID: 39539627 PMCID: PMC11557488 DOI: 10.3389/fphar.2024.1437760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cardiovascular diseases (CVD) pose a significant threat to human health due to their high mortality and morbidity rates. Despite advances in treatments, the prevalence and impact of cardiovascular disease continue to increase. Sodium-glucose transporter 2 inhibitors (SGLT2i), initially approved for the treatment of type 2 diabetes, have important research value and promising applications in reducing CVD risk, especially in heart failure (HF) and atherosclerosis patients with cardiovascular disease (ASCVD). This study aims to comprehensively review the latest progress, research trends, cutting-edge hot spots, and future development directions of SGLT2i in the field of CVD through bibliometric analysis. Methods Articles related to MSCs in cardiovascular diseases were sourced from the Web of Science. The bibliometric analysis was conducted using CiteSpace and VOSviewer, and a knowledge map was created based on the data obtained from the retrieved articles. Results In this article, we screened 3,476 relevant studies, including 2,293 articles and 1,183 reviews. The analysis found that the number of papers related to the application of SGLT2i in CVD has generally increased, peaking in 2022. The United States and China contributed the largest number of papers, with the United States accounting for 36.97% of the total and also ranking first in terms of the number of citations. However, China's high-quality papers are slightly lacking and need further improvement. Keyword analysis showed that empagliflozin, dapagliflozin, diabetes, and heart failure were the most common terms, reflecting the main research interests in currently published papers in this field. Conclusion Bibliometric analysis showed a robust and growing interest in the application of SGLT2i for treating CVD. By summarizing the latest progress of SGLT2i in the field of CVD, exploring research hotspots, and looking forward to future research development trends, this article provides valuable insights for thinking about research prospects.
Collapse
Affiliation(s)
- Runfang Pan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Melisandre
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyi Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyuan Su
- Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Piperis C, Marathonitis A, Anastasiou A, Theofilis P, Mourouzis K, Giannakodimos A, Tryfou E, Oikonomou E, Siasos G, Tousoulis D. Multifaceted Impact of SGLT2 Inhibitors in Heart Failure Patients: Exploring Diverse Mechanisms of Action. Biomedicines 2024; 12:2314. [PMID: 39457625 PMCID: PMC11504660 DOI: 10.3390/biomedicines12102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heart failure (HF) is a growing concern due to the aging population and increasing prevalence of comorbidities. Despite advances in treatment, HF remains a significant burden, necessitating novel therapeutic approaches. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have emerged as a promising treatment option, demonstrating benefits across the entire spectrum of HF, regardless of left ventricular ejection fraction (LVEF). This review explores the multifaceted mechanisms through which SGLT2is exert cardioprotective effects, including modulation of energy metabolism, reduction of oxidative stress, attenuation of inflammation, and promotion of autophagy. SGLT2is shift myocardial energy substrate utilization from carbohydrates to more efficient fatty acids and ketone bodies, enhancing mitochondrial function and reducing insulin resistance. These inhibitors also mitigate oxidative stress by improving mitochondrial biogenesis, reducing reactive oxygen species (ROS) production, and regulating calcium-signaling pathways. Inflammation, a key driver of HF progression, is alleviated through the suppression of proinflammatory cytokines and modulation of immune cell activity. Additionally, SGLT2is promote autophagy, facilitating the clearance of damaged cellular components and preserving myocardial structure and function. Beyond their glucose-lowering effects, SGLT2is provide significant benefits in patients with chronic kidney disease (CKD) and HF, reducing the progression of CKD and improving overall survival. The pleiotropic actions of SGLT2is highlight their potential as a cornerstone in HF management. Further research is needed to fully elucidate their mechanisms and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Christos Piperis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Anastasios Marathonitis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Mourouzis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Alexios Giannakodimos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Elsi Tryfou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
13
|
Shaaban A, Scott SS, Greenlee AN, Binda N, Noor A, Webb A, Guo S, Purdy N, Pennza N, Habib A, Mohammad SJ, Smith SA. Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms. J Mol Cell Cardiol 2024; 194:118-132. [PMID: 38897563 PMCID: PMC11500699 DOI: 10.1016/j.yjmcc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Atrial fibrillation (AF) is a common arrhythmic complication in cancer patients and can be exacerbated by traditional cytotoxic and targeted anticancer therapies. Increased incidence of AF in cancer patients is independent of confounding factors, including preexisting myocardial arrhythmogenic substrates, type of cancer, or cancer stage. Mechanistically, AF is characterized by fast unsynchronized atrial contractions with rapid ventricular response, which impairs ventricular filling and results in various symptoms such as fatigue, chest pain, and shortness of breath. Due to increased blood stasis, a consequence of both cancer and AF, concern for stroke increases in this patient population. To compound matters, cardiotoxic anticancer therapies themselves promote AF; thereby exacerbating AF morbidity and mortality in cancer patients. In this review, we examine the relationship between AF, cancer, and cardiotoxic anticancer therapies with a focus on the shared molecular and electrophysiological mechanisms linking these disease processes. We also explore the potential role of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in the management of anticancer-therapy-induced AF.
Collapse
Affiliation(s)
- Adnan Shaaban
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | - Shane S Scott
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashley N Greenlee
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nkongho Binda
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | - Ali Noor
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Averie Webb
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shuliang Guo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Najhee Purdy
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nicholas Pennza
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Alma Habib
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA
| | - Somayya J Mohammad
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sakima A Smith
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
15
|
Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol 2024; 23:252. [PMID: 39010053 PMCID: PMC11251349 DOI: 10.1186/s12933-024-02312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Collapse
Affiliation(s)
- Hong-Yi Duan
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China.
| |
Collapse
|
16
|
Fath AR, Aglan M, Aglan A, Chilton RJ, Trakhtenbroit A, Al-Shammary OA, Oppong-Nkrumah O, Lenihan DJ, Dent SF, Otchere P. Cardioprotective Potential of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Cancer Treated With Anthracyclines: An Observational Study. Am J Cardiol 2024; 222:175-182. [PMID: 38692401 DOI: 10.1016/j.amjcard.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Anthracyclines are pivotal in cancer treatment, yet their clinical utility is hindered by the risk of cardiotoxicity. Preclinical studies highlight the effectiveness of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in mitigating anthracycline-induced cardiotoxicity. Nonetheless, the translation of these findings to clinical practice remains uncertain. This study aims to evaluate the safety and potential of SGLT2i for preventing cardiotoxicity in patients with cancer, without preexisting heart failure (HF), receiving anthracyclines therapy. Using the TriNetX Global Research Network, patients with cancer, without previous HF diagnosis, receiving anthracycline therapy were identified and classified into 2 groups based on SGLT2i usage. A 1:1 propensity score matching was used to control for baseline characteristics between the 2 groups. Patients were followed for 2 years. The primary end point was new-onset HF, and the secondary end points were HF exacerbation, new-onset arrhythmia, myocardial infarction, all-cause mortality, and all-cause hospitalization. Safety outcomes included acute renal failure and creatinine levels. A total of 79,074 patients were identified, and 1,412 were included post-matching (706 in each group). They comprised 53% females, 62% White, with a mean age of 62.5 ± 11.4 years. Over the 2-year follow-up period, patients on SGLT2i had lower rates of new-onset HF (hazard ratio 0.147, 95% confidence interval 0.073 to 0.294) and arrhythmia (hazard ratio 0.397, 95% confidence interval 0.227 to 0.692) compared with those not on SGLT2i. The incidence of all-cause mortality, myocardial infarction, all-cause hospitalization, and safety outcomes were similar between both groups. In conclusion, among patients with cancer receiving anthracycline therapy without preexisting HF, SGLT2i use demonstrates both safety and effectiveness in reducing anthracycline-induced cardiotoxicity, with a decreased incidence of new-onset HF, HF exacerbation, and arrhythmias.
Collapse
Affiliation(s)
- Ayman R Fath
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas.
| | - Mostafa Aglan
- Internal Medicine Department, Lahey Hospital and Medical Center, Burlington Massachusetts
| | - Amro Aglan
- Internal Medicine Department, Lahey Hospital and Medical Center, Burlington Massachusetts
| | - Robert J Chilton
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Anatole Trakhtenbroit
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Odaye A Al-Shammary
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Oduro Oppong-Nkrumah
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Daniel J Lenihan
- Cardiology Department, Saint Francis Healthcare System, Cape Girardeau, Missouri
| | - Susan F Dent
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Prince Otchere
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
17
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
18
|
Lee SA, Riella LV. Narrative Review of Immunomodulatory and Anti-inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int Rep 2024; 9:1601-1613. [PMID: 38899203 PMCID: PMC11184259 DOI: 10.1016/j.ekir.2024.02.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 06/21/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have evolved from their initial role as antidiabetic drugs to garner recognition for their remarkable cardio-protective and reno-protective attributes. They have become a crucial component of therapeutic guidelines for congestive heart failure and proteinuric chronic kidney disease (CKD). These benefits extend beyond glycemic control, because improvements in cardiovascular and renal outcomes occur swiftly. Recent studies have unveiled the immunomodulatory properties of SGLT2 inhibitors; thus, shedding light on their potential to influence the immune system and inflammation. This comprehensive review explores the current state of knowledge regarding the impact of SGLT2 inhibitors on the immune system and inflammation, focusing on preclinical and clinical evidence. The review delves into their antiinflammatory and immunomodulating effects, offering insights into clinical implications, and exploring emerging research areas related to their prospective immunomodulatory impact.
Collapse
Affiliation(s)
- Sul A. Lee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine and Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Kurochkina ON, Korotkov DA, Sazhina AS, Bogomolov AN. Metabolic reprogramming as the basis for sodium-glucose co-transporter type 2 inhibitors cardio- and nephroprotective effect. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2024; 20:258-264. [DOI: 10.20996/1819-6446-2024-3014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
In recent years, it has been shown that sodium-g lucose co-transporter type 2 inhibitors (SGLT2), drugs for type 2 diabetes mellitus treatment, significantly improve metabolic parameters and have protective effect on the kidneys and heart not only in patients with type 2 diabetes mellitus. New research indicates that the progression of chronic heart failure (CHF) and chronic kidney disease (CKD) involves metabolic reprogramming, which consists of a deterioration in energy metabolism in the heart as a result of a mismatch between glucose uptake and its oxidation, leading to the accumulation of glucose-6-phosphate (G6P), glycogen and activation of the pentose phosphate pathway. This nutrient excess activates the mammalian target of rapamycin (mTOR), thereby promoting pathological myocardial remodeling, and at the same time suppresses the nutrient deficiency sensors SIRT1, AMPK and PGC-1α, which is accompanied by mitochondrial dysfunction, increased oxidative stress and decreased fatty acid oxidation. Similar processes occur in the proximal convoluted tubules of the kidneys in CKD, leading to renal dysfunction, albuminuria, and interstitial fibrosis. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule, which leads to increased urinary glucose excretion and moderate osmotic diuresis and natriuresis. Nutrient deficiency resulting from glucose excretion promotes the activation of AMPK, which is involved in the regulation of mitochondrial biogenesis by stimulating PGC-1α, stimulates catabolic metabolism and activates autophagy by inhibiting mTORC1, which is accompanied by antiinflammatory effects, reduced oxidative stress and apoptosis and increased autophagy. These processes are accompanied by a decrease in blood pressure and a decrease in the load on the myocardium, with a simultaneous decrease in the tone of the sympathetic nervous system. Taking SGLT2 inhibitors is accompanied by normalization of tubuloglomerular feedback and a decrease in hyperfiltration, which has a beneficial effect on glomerular hemodynamics, as well as stimulation of erythropoiesis as a result of simulating systemic hypoxia. The described processes may serve as the basis for the cardioprotective and nephroprotective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - A N. Bogomolov
- St. Petersburg Institute of Bioregulation and Gerontology
| |
Collapse
|
20
|
Kuo HH, Wang KT, Chen HH, Lai ZY, Lin PL, Chuang YJ, Liu LYM. Cardiovascular outcomes associated with SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and cancer: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:108. [PMID: 38773486 PMCID: PMC11110336 DOI: 10.1186/s13098-024-01354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Cancer patients with diabetes are at increased risk for cardiovascular diseases due to common risk factors and well-documented drug-associated cardiotoxicity. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown cardiovascular benefits in patients with diabetes, but their effects on cancer patients remain unclear. This study aimed to evaluate the cardiovascular outcomes associated with SGLT2 inhibitor therapy in patients with concomitant diabetes and cancer. METHODS We conducted a systematic review and meta-analysis of cohort studies comparing cardiovascular outcomes between cancer patients with diabetes receiving SGLT2 inhibitors and those not receiving SGLT2 inhibitors. PubMed, Embase, and the Cochrane Library were searched from inception to February 29, 2024. The primary outcome was all-cause mortality, and the secondary outcomes were heart failure hospitalization, and adverse events. Random-effect models were used to calculate pooled risk ratios (RR) with 95% confidence intervals (CI). Subgroup and sensitivity analyses were conducted to identify potential sources of heterogeneity and explore the effect of SGLT2 inhibitors on mitigating cardiotoxicity. RESULTS Nine cohort studies involving 82,654 patients were included. SGLT2 inhibitor use was associated with a significantly lower risk of all-cause mortality (RR 0.46, 95% CI 0.31-0.68, P < 0.0001; I2 = 98%) and heart failure hospitalization (RR 0.49, 95% CI 0.30-0.81, P = 0.006; I2 = 21%) compared to non-use. The mortality benefit remained significant in patients receiving anthracycline chemotherapy (RR 0.50, 95% CI 0.28-0.89, P = 0.02; I2 = 71%). SGLT2 inhibitor use was also associated with a lower risk of sepsis (RR 0.32, 95% CI 0.23-0.44, P < 0.00001; I2 = 0%) and no increased risk of diabetic ketoacidosis (RR 0.66, 95% CI 0.20-2.16, P = 0.49; I2 = 0%). CONCLUSIONS SGLT2 inhibitor therapy is associated with lower risks of all-cause mortality and heart failure hospitalization in patients with concomitant diabetes and cancer. These findings suggest that SGLT2 inhibitors may offer cardiovascular benefits in this high-risk population. Randomized controlled trials are needed to validate these findings and evaluate the safety and efficacy of SGLT2 inhibitors in specific cancer types and treatment regimens.
Collapse
Affiliation(s)
- Hsiao-Huai Kuo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pharmacy, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
- Department of Pharmacy, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Kuang-Te Wang
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsin-Hao Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Nursing, and Management, MacKay Junior College of Medicine, Taipei, Taiwan
- Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Lin Lin
- Nursing, and Management, MacKay Junior College of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lawrence Yu-Min Liu
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Department of Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.
| |
Collapse
|
21
|
Mohamad HE, Askar ME, Shaheen MA, Baraka NM, Mahmoud YK. Sacubitril/valsartan alleviates sunitinib-induced cardiac fibrosis and oxidative stress via improving TXNIP/TRX system and downregulation of NF-ĸB/Wnt/β-catenin/SOX9 signaling. Int Immunopharmacol 2024; 132:111963. [PMID: 38560962 DOI: 10.1016/j.intimp.2024.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
We aimed in this study to investigate the possible cardioprotective effects of sacubitril/valsartan against sunitinib-induced cardiac fibrosis (CF) and oxidative stress via targeting thioredoxin-interacting protein/thioredoxin (TXNIP/TRX) system and nuclear factor-kappa B (NF-κB)/Wingless-related MMTV integration site (Wnt)/β-catenin/Sex-determining region Y box 9 (SOX9) signaling. CF was induced in male Wistar albino rats by cumulative dose of sunitinib (300 mg/kg, given over 4 weeks as: 25 mg/kg orally, three times a week), which were co-treated with sacubitril/valsartan (68 mg/kg/day, orally) for four weeks. Significant elevation in blood pressure, cardiac inflammatory and fibrotic markers besides cardiac dysfunction were observed. These alterations were associated with disruption of TXNIP/TRX system, upregulation of NF-κB/Wnt/β-catenin/SOX9 pathway along with marked increase in lysyl oxidase (LOX) and matrix metalloproteinase-1 (MMP-1) expressions and extensive deposition of collagen fibers in cardiac tissues. Luckily, sacubitril/valsartan was able to reverse all of the aforementioned detrimental effects in sunitinib-administered rats. These findings illustrate a potential role of sacubitril/valsartan in alleviating CF and oxidative stress induced by sunitinib via antioxidant, anti-inflammatory and antifibrotic properties. These remarkable effects of sacubitril/valsartan were mediated by its ability to improve TXNIP/TRX system and downregulate NF-κB/Wnt/β-catenin/SOX9 signaling in addition to decreasing LOX and MMP-1 expressions in cardiac tissues. In summary, this study highlights sacubitril/valsartan as a potential therapeutic agent in mitigating CF and oxidative stress especially in cancer cases treated with sunitinib.
Collapse
Affiliation(s)
- Hoda E Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nourhan M Baraka
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yasmin K Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
22
|
Chen B, Guo J, Ye H, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Mol Med Rep 2024; 29:73. [PMID: 38488029 PMCID: PMC10955520 DOI: 10.3892/mmr.2024.13197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiovascular diseases are caused by pathological cardiac remodeling, which involves fibrosis, inflammation and cell dysfunction. This includes autophagy, apoptosis, oxidative stress, mitochondrial dysfunction, changes in energy metabolism, angiogenesis and dysregulation of signaling pathways. These changes in heart structure and/or function ultimately result in heart failure. In an effort to prevent this, multiple cardiovascular outcome trials have demonstrated the cardiac benefits of sodium‑glucose cotransporter type 2 inhibitors (SGLT2is), hypoglycemic drugs initially designed to treat type 2 diabetes mellitus. SGLT2is include empagliflozin and dapagliflozin, which are listed as guideline drugs in the 2021 European Guidelines for Heart Failure and the 2022 American Heart Association/American College of Cardiology/Heart Failure Society of America Guidelines for Heart Failure Management. In recent years, multiple studies using animal models have explored the mechanisms by which SGLT2is prevent cardiac remodeling. This article reviews the role of SGLT2is in cardiac remodeling induced by different etiologies to provide a guideline for further evaluation of the mechanisms underlying the inhibition of pathological cardiac remodeling by SGLT2is, as well as the development of novel drug targets.
Collapse
Affiliation(s)
- Bixian Chen
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jing Guo
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Hongmei Ye
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xinyu Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yufei Feng
- Clinical Trial Institution, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
23
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Vafa RG, Sabahizadeh A, Mofarrah R. Guarding the heart: How SGLT-2 inhibitors protect against chemotherapy-induced cardiotoxicity: SGLT-2 inhibitors and chemotherapy-induced cardiotoxicity. Curr Probl Cardiol 2024; 49:102350. [PMID: 38128634 DOI: 10.1016/j.cpcardiol.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The introduction of chemotherapy agents has significantly transformed cancer treatment, with anthracyclines being one of the most commonly used drugs. While these agents have proven to be highly effective against various types of cancers, they come with complications, including neurotoxicity, nephrotoxicity, and cardiotoxicity. Among these side effects, cardiotoxicity is the leading cause of morbidity and mortality, with anthracyclines being the primary culprit. Chemotherapy medications have various mechanisms that can lead to cardiac injury. Hence, numerous studies have been conducted to decrease the cardiotoxicity of these treatments. Combination therapy with beta-blockers, Angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers have effectively reduced such outcomes. However, a definitive preventive strategy is yet to be established. Meanwhile, sodium-glucose co-transporter-2 (SGLT-2) inhibitors lower blood glucose levels in type 2 diabetes by reducing its re-absorption in the kidneys. They are thus considered potent drugs for glycemic control and reduction of cardiovascular risks. Recent studies have shown that SGLT-2 inhibitors are crucial in preventing chemotherapy-induced cardiotoxicity. They enhance heart cell viability, prevent degenerative changes, stimulate autophagy, and reduce cell death. This drug class also reduces inflammation by inhibiting reactive oxygen species and inflammatory cytokine production. Moreover, it can not only reverse the harmful effects of anticancer agents on the heart structure but also enhance the effectiveness of chemotherapy by minimizing potential consequences on the heart. In conclusion, SGLT-2 inhibitors hold promise as a therapeutic strategy for protecting cancer patients from chemotherapy-induced heart damage and improving cardiovascular outcomes.
Collapse
|
25
|
Qin W, Li S, Cheng Z, Xue W, Tian M, Mou F, Guo H, Shao S, Liu B. Astragaloside IV attenuates sunitinib-associated cardiotoxicity by inhibiting COUP-TFII. Heliyon 2024; 10:e24779. [PMID: 38314260 PMCID: PMC10837548 DOI: 10.1016/j.heliyon.2024.e24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Sunitinib (SU) is widely used to treat solid tumors but it can be cardiotoxic and often leads to drug withdrawn or discontinuation. Astragaloside IV (ASIV) is the essential active component of the Chinese herb Astragalus membranaceus which shows potential cardioprotective effects. Herein, we investigated the effect of ASIV on SU-associated cardiotoxicity and its mechanisms. We showed that ASIV significantly ameliorated SU-induced myocardial injury in mice, as evidenced by an improvement in left ventricular ejection fraction (EF) and a decrease in blood pressure and serum concentration of myocardial injury markers. ASIV attenuated SU-induced myocardial inflammatory infiltration and fibrotic lesions. In addition, ASIV suppressed SU-induced myocardial oxidative stress and apoptosis both in vitro and in vivo. Furthermore, SU increased COUP-TFII expression both in mRNA and protein levels in mice myocardial tissue, primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cell lines, and this effect was rescued by ASIV. Knockdown of COUP-TFII reduced the oxidative stress and apoptosis induced by SU in NRCMs and H9c2 cell lines. However, the overexpression of COUP-TFII blocked the protective effects of ASIV on SU-treated cardiomyocytes. Thus, our results demonstrated that ASIV ameliorated SU-indued cardiotoxicity by inhibiting COUP-TFII, suggesting that ASIV might be a potential therapeutic strategy for the prevention of SU-associated cardiotoxicity.
Collapse
Affiliation(s)
- Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mingyue Tian
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fangfang Mou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
26
|
Fu WJ, Huo JL, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P, Gao ZX. Emerging role of antidiabetic drugs in cardiorenal protection. Front Pharmacol 2024; 15:1349069. [PMID: 38384297 PMCID: PMC10880452 DOI: 10.3389/fphar.2024.1349069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
The global prevalence of diabetes mellitus (DM) has led to widespread multi-system damage, especially in cardiovascular and renal functions, heightening morbidity and mortality. Emerging antidiabetic drugs sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DPP-4i) have demonstrated efficacy in preserving cardiac and renal function, both in type 2 diabetic and non-diabetic individuals. To understand the exact impact of these drugs on cardiorenal protection and underlying mechanisms, we conducted a comprehensive review of recent large-scale clinical trials and basic research focusing on SGLT2i, GLP-1RAs, and DPP-4i. Accumulating evidence highlights the diverse mechanisms including glucose-dependent and independent pathways, and revealing their potential cardiorenal protection in diabetic and non-diabetic cardiorenal disease. This review provides critical insights into the cardiorenal protective effects of SGLT2i, GLP-1RAs, and DPP-4i and underscores the importance of these medications in mitigating the progression of cardiovascular and renal complications, and their broader clinical implications beyond glycemic management.
Collapse
Affiliation(s)
- Wen-Jia Fu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jin-Ling Huo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
27
|
Yamashita Y, Tokunaga A, Aoki K, Ishizuka T, Uematsu H, Sakamoto H, Fujita S, Tanoue S. Assessing the Safety of Mechanically Fibrillated Cellulose Nanofibers (fib-CNF) via Toxicity Tests on Mice: Single Intratracheal Administration and 28 Days' Oral Intake. TOXICS 2024; 12:121. [PMID: 38393216 PMCID: PMC10893282 DOI: 10.3390/toxics12020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Mechanically fibrillated cellulose nanofibers, known as fib-CNF (fiber length: 500 nm; diameter: 45 nm), are used in composites and as a natural thickener in foods. To evaluate their safety, we conducted a 28-day study in mice with inhalation exposure at 0.2 mg/body and oral administration of 400 mg/kg/day. Inhalation exposure to fib-CNF caused transient weight loss, changes in blood cell counts, and increased lung weights. These changes were attributed to adaptive responses. The oral administration of fib-CNF for 28 days resulted in no apparent toxic effects except for a slight decrease in platelet counts. The fib-CNF administration using the protocols studied appears to be safe in mice.
Collapse
Affiliation(s)
- Yoshihiro Yamashita
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
| | - Akinori Tokunaga
- Life Science Research Laboratory, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| | - Koji Aoki
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Pharmacology, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tamotsu Ishizuka
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Third Department of Internal Medicine, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Hideyuki Uematsu
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Shuichi Tanoue
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| |
Collapse
|
28
|
Xu H, Fu J, Tu Q, Shuai Q, Chen Y, Wu F, Cao Z. The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy. J Physiol Biochem 2024; 80:27-39. [PMID: 37792168 DOI: 10.1007/s13105-023-00974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/10/2023] [Indexed: 10/05/2023]
Abstract
Cardiovascular disease due to atherosclerosis is one of the leading causes of death worldwide; however, the underlying mechanism has yet to be defined. The sodium-dependent glucose transporter 2 inhibitor (SGLT2i) empagliflozin is a new type of hypoglycemic drug. Recent studies have shown that empagliflozin not only reduces high glucose levels but also exerts cardiovascular-protective effects and slows the process of atherosclerosis. The purpose of this study was to elucidate the mechanism by which empagliflozin ameliorates atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat Western diet to establish an atherosclerosis model. The area and size of atherosclerotic lesions in ApoE-/- mice were then assessed by performing hematoxylin-eosin (HE) staining after empagliflozin treatment. Concurrently, oxidized low-density lipoprotein (oxLDL) was used to mimic atherosclerosis in three different types of cells. Then, following empagliflozin treatment of macrophage cells (RAW264.7), human aortic smooth muscle cells (HASMCs), and human umbilical vein endothelial cells (HUVECs), western blotting was applied to measure the levels of autophagy-related proteins and proinflammatory cytokines, and green fluorescent protein (GFP)-light chain 3 (LC3) puncta were detected using confocal microscopy to confirm autophagosome formation. Oil Red O staining was performed to detect the foaming of macrophages and HASMCs, and flow cytometry was used for the cell cycle analysis. 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and scratch assays were also performed to examine the proliferation and migration of HASMCs. Empagliflozin suppressed the progression of atherosclerotic lesions in ApoE-/- mice. Empagliflozin also induced autophagy in RAW246.7 cells, HASMCs, and HUVECs via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, and it significantly increased the levels of the Beclin1 protein, the LC3B-II/I ratio, and p-AMPK protein. In addition, empagliflozin decreased the expression of P62 and the protein levels of inflammatory cytokines, and it inhibited the foaming of RAW246.7 cells and HASMCs, as well as the expression of inflammatory factors by inducing autophagy. Empagliflozin activated autophagy through the AMPK signaling pathway to delay the progression of atherosclerosis. Furthermore, the results of flow cytometry, EdU assays, CCK-8 cell viability assays, and scratch assays indicated that empagliflozin blocked HASMCs proliferation and migration. Empagliflozin activates autophagy through the AMPK signaling pathway to delay the evolution of atherosclerosis, indicating that it may represent a new and effective drug for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hualin Xu
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie Fu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiang Tu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qingyun Shuai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yizhi Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zheng Cao
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
29
|
Copur S, Yildiz AB, Covic A, Kanbay M. Is there any robust evidence showing that SGLT2 inhibitor predisposes to cancer? Eur J Clin Invest 2024; 54:e14131. [PMID: 38010034 DOI: 10.1111/eci.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/07/2023] [Accepted: 06/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The exact pathophysiological mechanisms of SGLT-2 inhibitors in the development, progression or treatment of malignancies are not fully understood, but multiple hypotheses have been proposed. SGLT-2 inhibitors have potential anti-proliferative roles due to several underlying pathophysiological mechanisms, such as inhibition of ATP production, activation of AMPK signalling, induction of apoptosis and ferroptosis, inhibition of glutamate dehydrogenase activity and inhibition of DNA and RNA synthesis. However, heterogeneity among tumour cells and SGLT-2 inhibitor drugs limit the generalizability of pre-clinical studies. METHODS This is a narrative review discussing the potential anti-cancer effects of SGLT-2 inhibitors, an oral glucose-lowering medication used in patients with type II diabetes mellitus. This review discusses underlying mechanisms, pre-clinical and clinical trial data, epidemiological data and future perspectives on the use of SGLT-2 inhibitors in cancer treatment. RESULTS Type II diabetes is linked to various comorbidities and malignancies, but some glucose-slowering medications may have a preventive role in cancer. The use of SGLT-2 inhibitors was associated with bladder cancer based on mice studies. However, meta-analyses showed no significant increase in overall malignancy incidence of any specific type, except for empagliflozin and bladder cancer association. SGLT-2 inhibitors can potentially reduce the heart damage caused by doxorubicin and sunitinib, while enhancing the anti-cancer effects of doxorubicin. Combining SGLT-2 inhibitors with doxorubicin may allow higher doses of chemotherapy use. Multiple ongoing clinical trials are investigating the potential therapeutic potential of SGLT-2 inhibitors in various types of cancer. CONCLUSION More large-scale pre-clinical and clinical studies are needed to explore their potential preventive and therapeutic roles of SGLT-2 inhibitors in cancer treatment. In this narrative review, our aim is to explore the pre-clinical and clinical data regarding the potential anti-cancer effects of SGLT-2 inhibitors including the hypothetical pathophysiological mechanisms.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
30
|
Fages V, Jannin A, Maanaoui M, Glowacki F, Do Cao C. Proteinuria reduction with SGLT2 inhibitors in a patient treated with tyrosine kinase inhibitor lenvatinib. J Nephrol 2024; 37:187-189. [PMID: 37418091 DOI: 10.1007/s40620-023-01701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023]
Abstract
We describe the case of a 66-year-old woman treated with tyrosine kinase inhibitor Lenvatinib for thyroid carcinoma who had persistent proteinuria above 2 g/24 h despite maximal dose of angiotensin-converting enzyme inhibitor. We initiated a treatment with SGLT2 inhibitor Dapagliflozin. Three months after Dapagliflozin initiation, her proteinuria decreased to 1 g/24 h, and after 6 months of follow-up was 0.6 g/24 h. To our knowledge, this is the first case of successful proteinuria reduction with SGLT2i in a patient treated with Lenvatinib. Specific renal effects of SGLT2i seem promising and their effects on tyrosine kinase inhibitor renal adverse effects need to be validated in clinical trials involving cancer patients.
Collapse
Affiliation(s)
- Victor Fages
- Service de Néphrologie, CHRU Lille, Hôpital Huriez, Rue Michel Polonowski, 59037, Lille, France.
| | - Arnaud Jannin
- Department of Diabetology, Endocrinology, Metabolism and Nutrition, Centre Hospitalier Regional Universitaire de Lille, Lille University Hospital, Lille, France
| | - Mehdi Maanaoui
- Service de Néphrologie, CHRU Lille, Hôpital Huriez, Rue Michel Polonowski, 59037, Lille, France
| | - François Glowacki
- Service de Néphrologie, CHRU Lille, Hôpital Huriez, Rue Michel Polonowski, 59037, Lille, France
| | - Christine Do Cao
- Department of Diabetology, Endocrinology, Metabolism and Nutrition, Centre Hospitalier Regional Universitaire de Lille, Lille University Hospital, Lille, France
| |
Collapse
|
31
|
Avula V, Sharma G, Kosiborod MN, Vaduganathan M, Neilan TG, Lopez T, Dent S, Baldassarre L, Scherrer-Crosbie M, Barac A, Liu J, Deswal A, Khadke S, Yang EH, Ky B, Lenihan D, Nohria A, Dani SS, Ganatra S. SGLT2 Inhibitor Use and Risk of Clinical Events in Patients With Cancer Therapy-Related Cardiac Dysfunction. JACC. HEART FAILURE 2024; 12:67-78. [PMID: 37897456 DOI: 10.1016/j.jchf.2023.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Certain antineoplastic therapies are associated with an increased risk of cardiomyopathy and heart failure (HF). Sodium glucose co-transporter 2 (SGLT2) inhibitors improve outcomes in patients with HF. OBJECTIVES This study aims to examine the efficacy of SGLT2 inhibitors in patients with cancer therapy-related cardiac dysfunction (CTRCD) or HF. METHODS The authors conducted a retrospective cohort analysis of deidentified, aggregate patient data from the TriNetX research network. Patients aged ≥18 years with a history of type 2 diabetes mellitus, cancer, and exposure to potentially cardiotoxic antineoplastic therapies, with a subsequent diagnosis of cardiomyopathy or HF between January 1, 2013, and April 30, 2020, were identified. Patients with ischemic heart disease were excluded. Patients receiving guideline-directed medical therapy were divided into 2 groups based on SGLT2 inhibitor use. After propensity score matching, odds ratios (ORs) and Cox proportional HRs were used to compare outcomes over a 2-year follow-up period. RESULTS The study cohort included 1,280 patients with CTRCD/HF (n = 640 per group; mean age: 67.6 years; 41.6% female; 68% White). Patients on SGLT2 inhibitors in addition to conventional guideline-directed medical therapy had a lower risk of acute HF exacerbation (OR: 0.483 [95% CI: 0.36-0.65]; P < 0.001) and all-cause mortality (OR: 0.296 [95% CI: 0.22-0.40]; P = 0.001). All-cause hospitalizations or emergency department visits (OR: 0.479; 95% CI: 0.383-0.599; P < 0.001), atrial fibrillation/flutter (OR: 0.397 [95% CI: 0.213-0.737]; P = 0.003), acute kidney injury (OR: 0.486 [95% CI: 0.382-0.619]; P < 0.001), and need for renal replacement therapy (OR: 0.398 [95% CI: 0.189-0.839]; P = 0.012) were also less frequent in patients on SGLT2 inhibitors. CONCLUSIONS SGLT2 inhibitor use is associated with improved outcomes in patients with CTRCD/HF.
Collapse
Affiliation(s)
- Vennela Avula
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Garima Sharma
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA; University of Missouri, Kansas City, Missouri, USA
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas G Neilan
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Teresa Lopez
- Department of Cardiology, La Paz University Hospital, Madrid, Spain
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Lauren Baldassarre
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marielle Scherrer-Crosbie
- Division of Cardiology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana Barac
- Cardio-Oncology Program, Division of Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Jennifer Liu
- Cardio-Oncology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumanth Khadke
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Eric H Yang
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Lenihan
- International Cardio-Oncology Society, Tampa, Florida, USA; St. Francis Healthcare, Cape Girardeau, Missouri, USA
| | - Anju Nohria
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sourbha S Dani
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA
| | - Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, Massachusetts, USA.
| |
Collapse
|
32
|
Refaie MMM, Shehata S, El-Hussieny M, Fawzy MA, Ahmed NZM, Marey H, Hishmat AM, Alkully T, Rahman ESMAE. Molecular mechanism of empagliflozin cardioprotection in 5-fluorouracil (5-FU)-induced cardiotoxicity via modulation of SGLT2 and TNFα/TLR/NF-κB signaling pathway in rats. Toxicol Res 2024; 40:139-151. [PMID: 38223670 PMCID: PMC10786789 DOI: 10.1007/s43188-023-00204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 01/16/2024] Open
Abstract
One of the commoly used chemotherapeutic agents is 5-Fluorouracil (5-FU). Unfortunately, the clinical administration of 5-FU is complicated with serious cardiotoxic effects and the safe use becomes an urgent task in cardio-oncology. Till now, there are no studies discussed the role of empagliflozin (EMP) against 5-FU cardiotoxicity. Thus, we investigated this effect and the involved mechanisms in 5-FU induced heart injury. Forty male rats of Wistar albino species were used and divided randomly into four groups. Group I is the control group, group II is EMP given group, group III is 5-FU cardiotoxic group and group IV is 5-FU plus EMP group. 5-FU (150 mg/kg) was administered as a single intraperitoneal (i.p.) dose on 1st day to induce cardiotoxicity with or without EMP (30 mg/kg/d) orally for 5 days. The dose of 5-FU is relevant to the human toxic dose. Our data showed that 5-FU given group caused cardiotoxicity with significant increase of serum cardiac enzymes, toll like receptors, enhancement of nuclear factor kappa B (NF-κB), interleukin1β (IL1β), IL6, myeloid-differentiation-factor 88 (MYD88), heart weight, malondialdehyde (MDA), tumor-necrosis-factor-alpha (TNFα), sodium glucose co-transporter 2 (SGLT2), P53 and caspase3 expression with clear histopathological features of cardiotoxicity. Moreover, there is a significant decrease in reduced glutathione (GSH) and total antioxidant capacity (TAC). Interestingly, co-administration of EMP could ameliorate 5-FU induced biochemical and histopathological changes. This effect may be due to modulation of SGLT2, decreasing inflammation, oxidative stress and apoptosis with downregulation of an essential inflammatory cascade that mediates 5-FU cardiotoxicity; TNFα/TLR/NF-κB. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00204-1.
Collapse
Affiliation(s)
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511 Egypt
| | - Nagwa Zenhom Mustafa Ahmed
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
- Department of Biochemistry, Faculty of Medicine, Al-Baha University, 65525 Albaha, Saudi Arabia
| | - Heba Marey
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Asmaa Mohammed Hishmat
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Turki Alkully
- Department of Internal Medicine, Faculty of Medicine, Al-Baha University, 65525 Albaha, Saudi Arabia
| | | |
Collapse
|
33
|
Beretta GL. Ferroptosis-induced Cardiotoxicity and Antitumor Drugs. Curr Med Chem 2024; 31:4935-4957. [PMID: 37469161 DOI: 10.2174/0929867331666230719124453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
The induction of regulated cell death ferroptosis in tumors is emerging as an intriguing strategy for cancer treatment. Numerous antitumor drugs (e.g., doxorubicin, etoposide, tyrosine kinase inhibitors, trastuzumab, arsenic trioxide, 5-fluorouracil) induce ferroptosis. Although this mechanism of action is interesting for fighting tumors, the clinical use of drugs that induce ferroptosis is hampered by cardiotoxicity. Besides in cancer cells, ferroptosis induced by chemotherapeutics can occur in cardiomyocytes, and this feature represents an important drawback of antitumor therapy. This inconvenience has been tackled by developing less or no cardiotoxic antitumor drugs or by discovering cardioprotective agents (e.g., berberine, propofol, fisetin, salidroside, melatonin, epigallocatechin- 3gallate, resveratrol) to use in combination with conventional chemotherapeutics. This review briefly summarizes the molecular mechanisms of ferroptosis and describes the ferroptosis dependent mechanisms responsible for cardiac toxicity developed by cancer- suffering patients following the administration of some chemotherapeutics. Additionally, the pharmacological strategies very recently proposed for potentially preventing this inconvenience are considered.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| |
Collapse
|
34
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
35
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
36
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
37
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
38
|
Panico C, Bonora B, Camera A, Chilelli NC, Prato GD, Favacchio G, Grancini V, Resi V, Rondinelli M, Zarra E, Pintaudi B. Pathophysiological basis of the cardiological benefits of SGLT-2 inhibitors: a narrative review. Cardiovasc Diabetol 2023; 22:164. [PMID: 37391739 PMCID: PMC10314539 DOI: 10.1186/s12933-023-01855-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 07/02/2023] Open
Abstract
In recent years, GLP-1 receptor agonists (GLP-1RA), and SGLT-2 inhibitors (SGLT-2i) have become available, which have become valuable additions to therapy for type 2 diabetes as they are associated with low risk for hypoglycemia and cardiovascular benefits. Indeed, SGLT-2i have emerged as a promising class of agents to treat heart failure (HF). By inhibiting SGLT-2, these agents lead to excretion of glucose in urine with subsequent lowering of plasma glucose, although it is becoming clear that the observed benefits in HF cannot be explained by glucose-lowering alone. In fact, multiple mechanisms have been proposed to explain the cardiovascular and renal benefits of SGLT-2i, including hemodynamic, anti-inflammatory, anti-fibrotic, antioxidant, and metabolic effects. Herein, we review the available evidence on the pathophysiology of the cardiological benefits of SGLT-2i. In diabetic heart disease, in both clinical and animal models, the effect of SGLT-2i have been shown to improve diastolic function, which is even more evident in HF with preserved ejection fraction. The probable pathogenic mechanisms likely involve damage from free radicals, apoptosis, and inflammation, and therefore fibrosis, many of which have been shown to be improved by SGLT-2i. While the effects on systolic function in models of diabetic heart disease and HF with preserved ejection fraction is limited and contrasting, it is a key element in patients with HF and reduced ejection fraction both with and without diabetes. The significant improvement in systolic function appears to lead to subsequent structural remodeling of the heart with a reduction in left ventricle volume and a consequent reduction in pulmonary pressure. While the effects on cardiac metabolism and inflammation appear to be consolidated, greater efforts are still warranted to further define the entity to which these mechanisms contribute to the cardiovascular benefits of SGLT-2i.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy.
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy.
| | - Benedetta Bonora
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, Padua, 35128, Italy
| | | | - Nino Cristiano Chilelli
- Diabetology and Internal Medicine, Hospital of Cittadella, AULSS 6 Euganea (Padua), Padua, Italy
| | - Giuliana Da Prato
- Divisione di Endocrinologia, Diabetologia e Malattie del Metabolismo, Dipartimento di Medicina, Azienda Ospedaliera Universitaria Integrata di Verona, Ospedale Maggiore, Verona, Italy
| | - Giuseppe Favacchio
- U.O di Endocrinologia e Diabetologia, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Valeria Grancini
- Endocrinology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Veronica Resi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Rondinelli
- Diabetes Endocrine and Metabolic Diseases Unit, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Emanuela Zarra
- S.C. Medicina Diabetologia, Dipartimento di Continuità di Cura e Fragilità, ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
39
|
Tao W, Yang X, Zhang Q, Bi S, Yao Z. Optimal treatment for post-MI heart failure in rats: dapagliflozin first, adding sacubitril-valsartan 2 weeks later. Front Cardiovasc Med 2023; 10:1181473. [PMID: 37383701 PMCID: PMC10296765 DOI: 10.3389/fcvm.2023.1181473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Background Based on previous research, both dapagliflozin (DAPA) and sacubitril-valsartan (S/V) improve the prognosis of patients with heart failure (HF). Our study aims to investigate whether the early initiation of DAPA or the combination of DAPA with S/V in different orders would exert a greater protective effect on heart function than that of S/V alone in post-myocardial infarction HF (post-MI HF). Methods Rats were randomized into six groups: (A) Sham; (B) MI; (C) MI + S/V (1st d); (D) MI + DAPA (1st d); (E) MI + S/V (1st d) + DAPA (14th d); (F) MI + DAPA (1st d) + S/V (14th d). The MI model was established in rats via surgical ligation of the left anterior descending coronary artery. Histology, Western blotting, RNA-seq, and other approaches were used to explore the optimal treatment to preserve the heart function in post-MI HF. A daily dose of 1 mg/kg DAPA and 68 mg/kg S/V was administered. Results The results of our study revealed that DAPA or S/V substantially improved the cardiac structure and function. DAPA and S/V monotherapy resulted in comparable reduction in infarct size, fibrosis, myocardium hypertrophy, and apoptosis. The administration of DAPA followed by S/V results in a superior improvement in heart function in rats with post-MI HF than those in other treatment groups. The administration of DAPA following S/V did not result in any additional improvement in heart function as compared to S/V monotherapy in rats with post-MI HF. Our findings further suggest that the combination of DAPA and S/V should not be administered within 3 days after acute myocardial infarction (AMI), as it resulted in a considerable increase in mortality. Our RNA-Seq data revealed that DAPA treatment after AMI altered the expression of genes related to myocardial mitochondrial biogenesis and oxidative phosphorylation. Conclusions Our study revealed no notable difference in the cardioprotective effects of singular DAPA or S/V in rats with post-MI HF. Based on our preclinical investigation, the most effective treatment strategy for post-MI HF is the administration of DAPA during the 2 weeks, followed by the addition of S/V to DAPA later. Conversely, adopting a therapeutic scheme whereby S/V was administered first, followed by later addition of DAPA, failed to further improve the cardiac function compared to S/V monotherapy.
Collapse
Affiliation(s)
- Wenqi Tao
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Yang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qing Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuli Bi
- School of Medicine, Nankai University, Tianjin, China
| | - Zhuhua Yao
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| |
Collapse
|
40
|
El-Horany HES, Atef MM, Abdel Ghafar MT, Fouda MH, Nasef NA, Hegab II, Helal DS, Elseady W, Hafez YM, Hagag RY, Seleem MA, Saleh MM, Radwan DA, Abd El-Lateef AE, Abd-Ellatif RN. Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. Int J Mol Sci 2023; 24:ijms24119481. [PMID: 37298433 DOI: 10.3390/ijms24119481] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms underlying these effects require further elucidation. Therefore, this study aimed to evaluate the ameliorative effect of EMPA against bleomycin (BLM)-induced PF and the potential mechanisms. Twenty-four male Wister rats were randomly divided into four groups: control, BLM treated, EMPA treated, and EMPA+BLM treated. EMPA significantly improved the histopathological injuries illustrated by both hematoxylin and eosin and Masson's trichrome-stained lung tissue sections, as confirmed by electron microscopic examination. It significantly reduced the lung index, hydroxyproline content, and transforming growth factor β1 levels in the BLM rat model. It had an anti-inflammatory effect, as evidenced by a decrease in the inflammatory cytokines' tumor necrosis factor alpha and high mobility group box 1, inflammatory cell infiltration into the bronchoalveolar lavage fluid, and the CD68 immunoreaction. Furthermore, EMPA mitigated oxidative stress, DNA fragmentation, ferroptosis, and endoplasmic reticulum stress, as evidenced by the up-regulation of nuclear factor erythroid 2-related factor expression, heme oxygenase-1 activity, glutathione peroxidase 4 levels, and a decrease in C/EBP homologous protein levels. This protective potential could be explained on the basis of autophagy induction via up-regulating lung sestrin2 expression and the LC3 II immunoreaction observed in this study. Our findings indicated that EMPA protected against BLM-induced PF-associated cellular stress by enhancing autophagy and modulating sestrin2/adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling.
Collapse
Affiliation(s)
- Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Biochemistry, College of Medicine, Ha'il University, Hail 81411, Saudi Arabia
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Mohamed H Fouda
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| | - Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Rasha Youssef Hagag
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Mai Mahmoud Saleh
- Chest Diseases Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
41
|
Hsu CN, Hsuan CF, Liao D, Chang JKJ, Chang AJW, Hee SW, Lee HL, Teng SIF. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life (Basel) 2023; 13:1024. [PMID: 37109553 PMCID: PMC10144651 DOI: 10.3390/life13041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin-angiotensin II-aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients.
Collapse
Affiliation(s)
- Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jack Keng-Jui Chang
- Biological Programs for Younger Scholar, Academia Sinica, Taipei 115, Taiwan
| | - Allen Jiun-Wei Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sean I. F. Teng
- Department of Cardiology, Ming-Sheng General Hospital, Taoyuan 330, Taiwan
| |
Collapse
|
42
|
Lyu Y, Huo J, Jiang W, Yang W, Wang S, Zhang S, Cheng Y, Jiang Z, Shan Q. Empagliflozin ameliorates cardiac dysfunction in heart failure mice via regulating mitochondrial dynamics. Eur J Pharmacol 2023; 942:175531. [PMID: 36690056 DOI: 10.1016/j.ejphar.2023.175531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Empagliflozin has cardioprotective effects in patients with heart failure (HF). However, the mechanism by which empagliflozin protects against HF remains controversial. Study aimed to evaluate the effect of empagliflozin on myocardial fibrosis and cardiac function in HF mice and its possible mechanism. C57BL/6 mice were induced with HF by ligation of the left anterior descending coronary artery. At 4 weeks postoperation, mice were randomly given normal saline or empagliflozin for 8 weeks. Echocardiography was used to assess cardiac function. Masson's staining, immunohistochemistry and Western blot analysis were used to detect the degree of myocardial fibrosis. Changes in mitochondria were detected by observing mitochondrial morphology, measuring mitochondrial dynamics-related proteins and analysing the levels of adenosine triphosphate (ATP), adenosine monophosphate (AMP) and adenosine diphosphate (ADP). The mitochondrial fission inhibitor, mdivi1, was used to detect the relationship between mitochondrial dysfunction and cardiac dysfunction in HF mice. HF led to myocardial fibrosis and cardiac dysfunction. However, treatment with empagliflozin reduced these effects. Empagliflozin inhibited mitochondrial fission and improved energy metabolic efficiency in HF mice by regulating the expression of mitochondrial dynamics-related proteins. Similarly, mdivi1 attenuated mitochondrial dysfunction and cardiac dysfunction by inhibiting mitochondrial fission in HF mice. Regulation of mitochondrial dynamics, especially inhibition of mitochondrial fission, may be a potential target for reducing cardiac damage in patients with HF. Empagliflozin improved myocardial fibrosis and cardiac dysfunction by modulating mitochondrial dynamics in HF mice. Thus, the cardiac protective effect of empagliflozin may be related to the normalization of mitochondria and the increase in ATP production.
Collapse
Affiliation(s)
- YiTing Lyu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - JunYu Huo
- Department of Cardiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - WanYing Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ShengChan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ShiGeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - YanDi Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZhiXin Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - QiJun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Scisciola L, Taktaz F, Fontanella RA, Pesapane A, Surina, Cataldo V, Ghosh P, Franzese M, Puocci A, Paolisso P, Rafaniello C, Marfella R, Rizzo MR, Barbato E, Vanderheyden M, Barbieri M. Targeting high glucose-induced epigenetic modifications at cardiac level: the role of SGLT2 and SGLT2 inhibitors. Cardiovasc Diabetol 2023; 22:24. [PMID: 36732760 PMCID: PMC9896756 DOI: 10.1186/s12933-023-01754-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Sodium-glucose co-transporters (SGLT) inhibitors (SGLT2i) showed many beneficial effects at the cardiovascular level. Several mechanisms of action have been identified. However, no data on their capability to act via epigenetic mechanisms were reported. Therefore, this study aimed to investigate the ability of SGLT2 inhibitors (SGLT2i) to induce protective effects at the cardiovascular level by acting on DNA methylation. METHODS To better clarify this issue, the effects of empagliflozin (EMPA) on hyperglycemia-induced epigenetic modifications were evaluated in human ventricular cardiac myoblasts AC16 exposed to hyperglycemia for 7 days. Therefore, the effects of EMPA on DNA methylation of NF-κB, SOD2, and IL-6 genes in AC16 exposed to high glucose were analyzed by pyrosequencing-based methylation analysis. Modifications of gene expression and DNA methylation of NF-κB and SOD2 were confirmed in response to a transient SGLT2 gene silencing in the same cellular model. Moreover, chromatin immunoprecipitation followed by quantitative PCR was performed to evaluate the occupancy of TET2 across the investigated regions of NF-κB and SOD2 promoters. RESULTS Seven days of high glucose treatment induced significant demethylation in the promoter regions of NF-kB and SOD2 with a consequent high level in mRNA expression of both genes. The observed DNA demethylation was mediated by increased TET2 expression and binding to the CpGs island in the promoter regions of analyzed genes. Indeed, EMPA prevented the HG-induced demethylation changes by reducing TET2 binding to the investigated promoter region and counteracted the altered gene expression. The transient SGLT2 gene silencing prevented the DNA demethylation observed in promoter regions, thus suggesting a role of SGLT2 as a potential target of the anti-inflammatory and antioxidant effect of EMPA in cardiomyocytes. CONCLUSIONS In conclusion, our results demonstrated that EMPA, mainly acting on SGLT2, prevented DNA methylation changes induced by high glucose and provided evidence of a new mechanism by which SGLT2i can exert cardio-beneficial effects.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Pasquale Paolisso
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
44
|
Mohamad HE, Asker ME, Shaheen MA, Baraka NM, Fantoukh OI, Alqahtani A, Salama AE, Mahmoud YK. Secukinumab and Black Garlic Downregulate OPG/RANK/RANKL Axis and Devitalize Myocardial Interstitial Fibrosis Induced by Sunitinib in Experimental Rats. Life (Basel) 2023; 13:life13020308. [PMID: 36836664 PMCID: PMC9962443 DOI: 10.3390/life13020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Sunitinib has been associated with several cardiotoxic effects such as cardiac fibrosis. The present study was designed to explore the role of interleukin (IL)-17 in sunitinib-induced myocardial fibrosis (MF) in rats and whether its neutralization and/or administration of black garlic (BG), a form of fermented raw garlic (Allium sativum L.), could extenuate this adverse effect. Male Wistar albino rats received sunitinib (25 mg/kg three times a week, orally) and were co-treated with secukinumab (3 mg/kg, subcutaneously, three times total) and/or BG (300 mg/kg/day, orally) for four weeks. Administration of sunitinib induced significant increase in cardiac index, cardiac inflammatory markers, and cardiac dysfunction that were ameliorated by both secukinumab and BG, and to a preferable extent, with the combined treatment. Histological examination revealed disruption in the myocardial architecture and interstitial fibrosis in cardiac sections of the sunitinib group, which were reversed by both secukinumab and BG treatments. Both drugs and their co-administration restored normal cardiac functions, downregulated cardiac inflammatory cytokines, mainly IL-17 and NF-κB, along with increasing the MMP1/TIMP1 ratio. Additionally, they attenuated sunitinib-induced upregulation of the OPG/RANK/RANKL axis. These findings highlight another new mechanism through which sunitinib can induce interstitial MF. The current results propose that neutralizing IL-17 by secukinumab and/or supplementation with BG can be a promising therapeutic approach for ameliorating sunitinib-induced MF.
Collapse
Affiliation(s)
- Hoda E. Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +20-10-2799-4483
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nourhan M. Baraka
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa E. Salama
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmin K. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
45
|
Mescherina NS, Stepchenko MA, Leontieva TS, Khardikova EM, Mikhailenko TS. Approaches to early diagnosis and prevention of cardiovascular toxicity induced by targeted drugs and immune checkpoint inhibitors in oncohematology: a literature review. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2023. [DOI: 10.15829/1728-8800-2023-3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The development of targeted drugs and immune checkpoint inhibitors (ICIs), as well as their implementation into clinical practice has allowed increasing the overall and event-free survival of oncohematological patients. Currently, assessment of the efficacy of a therapeutic strategy in each specific case includes the evaluation of an acceptable tolerability profile. The subject of discussion includes cardiovascular complications induced by target drugs and ICIs. The review mainly presents the issues of cardiovascular toxicity (CVT) in certain groups of oncohematological patients (with chronic lymphocytic leukemia, chronic myeloid leukemia, multiple myeloma). The spectrum of cardiovascular adverse effects associated with targeted and ICI therapy in oncohematological practice is quite wide — coronary artery disease, peripheral arterial disease, myocarditis, heart failure, arrhythmias, hypertension. The high importance of the problem of using targeted and immunosuppressive therapy dictates the need to predict adverse effects. The diagnosis of heart failure (one of CVT manifestations) is based on determining the decreased left ventricular ejection fraction during echocardiography, less often — during cardiac magnetic resonance imaging; global longitudinal myocardial strain is a significant parameter of preclinical heart failure, which is determined using the speckle tracking technique. To determine vascular toxicity, a special attention is paid to the vascular wall structure and microcirculation parameters — capillary density at rest, percentage of capillary recovery and perfused capillaries, stiffness index for large blood vessels, reflection index for small arteries, laboratory markers of inflammation and endothelial dysfunction (C-reactive protein, fibrinogen, homocysteine, endothelin 1, vascular endothelial growth factor). CVT prevention presumes the determination of the risk group, correction of risk factors, and administration of protective therapy to very high and high-risk patients. One of the promising directions for preventing vascular toxicity is the use of sodium-glucose linked transporter-2 inhibitors.
Collapse
|
46
|
Yang Y, Li Q, Ling Y, Leng L, Ma Y, Xue L, Lu G, Ding Y, Li J, Tao S. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis. Front Immunol 2023; 13:1094556. [PMID: 36685533 PMCID: PMC9845768 DOI: 10.3389/fimmu.2022.1094556] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The dysregulation of autophagy contributes to renal fibrosis. N6-Methyladenosine (m6A) RNA modification is a critical mediator of autophagy. Our previous studies have reported that the disorder of the PPARα/fatty acid oxidation (FAO) axis in renal tubular cells is suppressed by STAT6, which is involved in the regulation of renal fibrotic processes. Here, we found that canagliflozin significantly upregulates SQSTM1/P62, promoting PPARα-mediated FAO by inducing autophagy-dependent STAT6 degradation both in TGF-β1-treated HK2 cells and in unilateral ureteral occlusion (UUO) and ischemia-reperfusion (I/R) renal fibrosis mouse models. Knockdown of P62/SQSTM1 led to the impairment autophagic flux and the dysregulation of the STAT6/PPARα axis, which was confirmed by SQSTM1/P62cKO mice with UUO treatment along with bioinformatics analysis. Furthermore, SQSTM1/P62 deficiency in renal tubular cells inhibited canagliflozin's effects that prevent FAO disorder in renal tubular cells and renal fibrosis. Mechanistically, the level of m6A eraser FTO, which interacted with SQSTM1 mRNA, decreased in the renal tubular cells both in vitro and in vivo after canagliflozin administration. Decrease in FTO stabilized SQSTM1 mRNA, which induced autophagosome formation. Collectively, this study uncovered a previously unrecognized function of canagliflozin in FTO in the autophagy modulation through the regulation of SQSTM1 mRNA stability in the renal tubular STAT6/PPARα/FAO axis and renal fibrosis.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China
| | - Qianmin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Linxin Leng
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yue Ding
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Jianzhong Li, ; Shasha Tao,
| | - Shasha Tao
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China,School of Public Health, Medical College of Soochow University, Suzhou, China,*Correspondence: Jianzhong Li, ; Shasha Tao,
| |
Collapse
|
47
|
SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel) 2022; 14:cancers14235811. [PMID: 36497303 PMCID: PMC9738342 DOI: 10.3390/cancers14235811] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A new group of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT-2 inhibitors), have recently been shown to have anticancer effects and their expression has been confirmed in many cancer cell lines. Given the metabolic reprogramming of these cells in a glucose-based model, the ability of SGLT-2 inhibitors to block the glucose uptake by cancer cells appears to be an attractive therapeutic approach. In addition to tumour cells, SGLT-2s are only found in the proximal tubules in the kidneys. Furthermore, as numerous clinical trials have shown, the use of SGLT-2 inhibitors is well-tolerated and safe in patients with diabetes and/or heart failure. In vitro cell culture studies and preclinical in vivo studies have confirmed that SGLT-2 inhibitors exhibit antiproliferative effects on certain types of cancer. However, the mechanisms of this action remain unclear. Even in those tumour cell types in which SGLT-2 is present, there is sometimes an SGLT-2-independent mechanism of anticancer action of this group of drugs. This article presents the current state of knowledge of the potential mechanisms of the anticancer action of SGLT-2 inhibitors and their possible future application in clinical oncology.
Collapse
|
48
|
DJ-1 activates the AMPK/mTOR pathway by binding RACK1 to induce autophagy and protect the myocardium from ischemia/hypoxia injury. Biochem Biophys Res Commun 2022; 637:276-285. [DOI: 10.1016/j.bbrc.2022.10.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
|
49
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
50
|
Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol 2022; 18:867-882. [PMID: 36111579 DOI: 10.2217/fca-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|