1
|
Haim IR, Gruber A, Kazma N, Bashai C, Lichtig Kinsbruner H, Caspi O. Modeling Heart Failure With Preserved Ejection Fraction Using Human Induced Pluripotent Stem Cell-Derived Cardiac Organoids. Circ Heart Fail 2025:e011690. [PMID: 39873109 DOI: 10.1161/circheartfailure.124.011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF. METHODS Human induced pluripotent stem cells-derived cardiomyocytes were used to produce cardiac organoids. The generated organoids were then subjected to HFpEF-associated, comorbidity-inspired conditions, such as hypertension, diabetes, and obesity-related inflammation. To assess the development of HFpEF pathophysiological features, organoids were thoroughly evaluated for their structural, functional, electrophysiological, and metabolic properties. RESULTS Exposure to the combination of all comorbidity-mimicking conditions resulted in the largest cellular volume of 1692±52 versus 1346±84 µm3 in RPMI (Roswell Park Memorial Institute medium) control group (P=0.003), while lower in obesity, hypertension, and diabetes groups: 1059±40 µm3 (P=0.014), 1276±35 µm3 (P=0.940), and 1575±70 µm3 (P=0.146), respectively. Similarly, ultrastructural fibrosis was most significantly observed after exposure to the combination of all HFpEF-inducing conditions 14.6±1.2% compared with single condition exposure 5.2±1.3% (obesity), 6.7±3.5% (hypertension), and 9.0±1.1% (diabetes; P<0.001). Moreover, HFpEF-related conditions led to an increase in passive force compared with control (7.52±1.08 versus 2.33±0.46 mN/mm, P<0.001), whereas no significant alterations were noted in active contractile forces. Relaxation constant τ was significantly prolonged after exposure to HFpEF conditions showing a prolongation of 95.9 ms (36.4-106.4; P=0.028) compared with a shortening of 35.6 ms (43.3-67.3; P=0.80) in the control. Finally, organoid exposure to HFpEF conditions led to a significant increase in oxidative stress levels and a significant decline in oxygen consumption rate. CONCLUSIONS We established a novel, human, in vitro model for HFpEF, based on comorbidity-inspired conditions. The model faithfully recapitulated the structural, functional, and mechanistic features of HFpEF. This model holds the potential to provide mechanistic insights and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Idan Refael Haim
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Amit Gruber
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Noam Kazma
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Caroline Bashai
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Hava Lichtig Kinsbruner
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Oren Caspi
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| |
Collapse
|
2
|
Tripoli BA, Smyth JT. Septins regulate heart contractility through modulation of cardiomyocyte store-operated calcium entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621876. [PMID: 39574715 PMCID: PMC11580947 DOI: 10.1101/2024.11.04.621876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Highly regulated cardiomyocyte Ca 2+ fluxes drive heart contractions. Recent findings from multiple organisms demonstrate that the specific Ca 2+ transport mechanism known as store-operated Ca 2+ entry (SOCE) is essential in cardiomyocytes for proper heart function, and SOCE dysregulation results in cardiomyopathy. Mechanisms that regulate SOCE in cardiomyocytes are poorly understood. Here we tested the role of cytoskeletal septin proteins in cardiomyocyte SOCE regulation. Septins are essential SOCE modulators in other cell types, but septin functions in cardiomyocytes are nearly completely unexplored. We show using targeted genetics and intravital imaging of heart contractility in Drosophila that cardiomyocyte-specific depletion of septins 1, 2, and 4 results in heart dilation that phenocopies the effects of SOCE suppression. Heart dilation caused by septin 2 depletion was suppressed by SOCE upregulation, supporting the hypothesis that septin 2 is required in cardiomyocytes for sufficient SOCE function. A major function of SOCE is to support SERCA-dependent sarco/endoplasmic reticulum (S/ER) Ca 2+ stores, and augmenting S/ER store filling by SERCA overexpression also suppressed the septin 2 phenotype. We also ruled out several potential SOCE-independent septin functions, as septin 2 phenotypes were not due to septin function during development and septin 2 was not required for z-disk organization as defined by α-actinin labeling. These results demonstrate, for the first time, an essential role of septins in cardiomyocyte physiology and heart function that is due, at least in part, to septin regulation of SOCE function.
Collapse
|
3
|
MacIver DH, Zhang H. Quantifying myocardial active strain energy density: A comparative analysis of analytic and finite element methods for estimating left ventricular wall stress and strain. Int J Cardiol 2024; 408:132139. [PMID: 38705203 DOI: 10.1016/j.ijcard.2024.132139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
AIMS This study compared commonly used methods for calculating left ventricular wall stress with the finite element analysis and evaluated different approaches to strain estimation. We sought to improve the accuracy of contractance estimation by developing a novel stress equation. BACKGROUND Multiple methods for calculating LV contractile stress and strain exist. Contractance is derived from stress and strain information and is a measure of myocardial work per unit volume of muscle. Precise stress and strain information are essential for its accurate evaluation. METHODS AND RESULTS We compared widely used methods for stress and strain calculations across diverse clinical scenarios representing distinct types of left ventricular myocardial disease. Our analysis revealed significant discrepancies in both the stress and strain values obtained with different methods. However, a newly developed modified version of the Mirsky equation demonstrated close agreement with the finite element analysis results for circumferential stress, while the Lamé method produced results close to those of finite element analysis for longitudinal stress and improved contractance accuracy. CONCLUSION This study highlights significant inconsistencies in stress and strain values calculated using different methods, emphasising the potential impact on contractance calculations and subsequent clinical interpretation. We recommend adopting the Lamé method for longitudinal stress assessment and the modified Mirsky equation for circumferential stress analysis. These methods offer a balance between accuracy and feasibility, making them advantageous for clinical practice. By adopting these recommendations, we can improve the accuracy of LV wall stress and strain estimates, leading to more dependable contractance calculations, better prognostication and improved clinical decisions. CLINICAL AND TRANSLATIONAL IMPACT STATEMENT Accurately estimating myocardial stress and strain is of paramount significance in clinical practice because the calculation of the contractance, defined and quantified by myocardial active strain energy density, necessitates correct stress and strain data. Contractance, which assesses myocardial work per unit muscle volume, has emerged as a promising indicator of contractile function and a predictor of future risk. The new recommendations for calculating myocardial stress improve the reliability of calculating contractance and enhance the understanding of myocardial diseases.
Collapse
Affiliation(s)
- David H MacIver
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom; Department of Cardiology, Taunton & Somerset Hospital, United Kingdom.
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
MacIver DH, Zhang H, Johnson C, Papatheodorou E, Parry-Williams G, Sharma S, Oxborough D. Global longitudinal active strain energy density (GLASED): age and sex differences between young and veteran athletes. Echo Res Pract 2024; 11:17. [PMID: 39004742 PMCID: PMC11247749 DOI: 10.1186/s44156-024-00052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Global longitudinal active strain energy density (GLASED) is an innovative method for assessing myocardial function and quantifies the work performed per unit volume of the left ventricular myocardium. The GLASED, measured using MRI, is the best prognostic marker currently available. This study aimed to evaluate the feasibility of measuring the GLASED using echocardiography and to investigate potential differences in the GLASED among athletes based on age and sex. METHODS An echocardiographic study was conducted with male controls, male and female young athletes, and male and female veteran athletes. GLASED was calculated from the myocardial stress and strain. RESULTS The mean age (in years) of the young athletes was 21.6 for males and 21.4 for females, while the mean age of the veteran athletes was 53.5 for males and 54.2 for females. GLASED was found to be highest in young male athletes (2.40 kJ/m3) and lowest in female veterans (1.96 kJ/m3). Veteran males exhibited lower values (1.96 kJ/m3) than young male athletes did (P < 0.001). Young females demonstrated greater GLASED (2.28 kJ/m3) than did veteran females (P < 0.01). However, no significant difference in the GLASED was observed between male and female veterans. CONCLUSION Our findings demonstrated the feasibility of measuring GLASED using echocardiography. GLASED values were greater in young male athletes than in female athletes and decreased with age, suggesting possible physiological differences in their myocardium. The sex-related differences observed in GLASED values among young athletes were no longer present in veteran athletes. We postulate that measuring the GLASED may serve as a useful additional screening tool for cardiac diseases in athletes, particularly for those with borderline phenotypes of hypertrophic and dilated cardiomyopathies.
Collapse
Affiliation(s)
- David H MacIver
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, UK.
- Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, UK.
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, UK
| | - Christopher Johnson
- Research Institute for Sports and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | | | - Gemma Parry-Williams
- Research Institute for Sports and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | | | - David Oxborough
- Research Institute for Sports and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
5
|
Kerstens TP, Weerts J, van Dijk APJ, Weijers G, Knackstedt C, Eijsvogels TMH, Oxborough D, van Empel VPM, Thijssen DHJ. Association of left ventricular strain-volume loop characteristics with adverse events in patients with heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging 2023; 24:1168-1176. [PMID: 37259911 PMCID: PMC10445262 DOI: 10.1093/ehjci/jead117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
AIMS Patients with heart failure with preserved ejection fraction (HFpEF) are characterized by impaired diastolic function. Left ventricular (LV) strain-volume loops (SVL) represent the relation between strain and volume during the cardiac cycle and provide insight into systolic and diastolic function characteristics. In this study, we examined the association of SVL parameters and adverse events in HFpEF. METHODS AND RESULTS In 235 patients diagnosed with HFpEF, LV-SVL were constructed based on echocardiography images. The endpoint was a composite of all-cause mortality and Heart Failure (HF)-related hospitalization, which was extracted from electronic medical records. Cox-regression analysis was used to assess the association of SVL parameters and the composite endpoint, while adjusting for age, sex, and NYHA class. HFpEF patients (72.3% female) were 75.8 ± 6.9 years old, had a BMI of 29.9 ± 5.4 kg/m2, and a left ventricular ejection fraction of 60.3 ± 7.0%. Across 2.9 years (1.8-4.1) of follow-up, 73 Patients (31%) experienced an event. Early diastolic slope was significantly associated with adverse events [second quartile vs. first quartile: adjusted hazards ratio (HR) 0.42 (95%CI 0.20-0.88)] after adjusting for age, sex, and NYHA class. The association between LV peak strain and adverse events disappeared upon correction for potential confounders [adjusted HR 1.02 (95% CI 0.96-1.08)]. CONCLUSION Early diastolic slope, representing the relationship between changes in LV volume and strain during early diastole, but not other SVL-parameters, was associated with adverse events in patients with HFpEF during 2.9 years of follow-up.
Collapse
Affiliation(s)
- Thijs P Kerstens
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P. Debyeplein 25, 6200 MD Maastricht, The Netherlands
| | - Arie P J van Dijk
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gert Weijers
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P. Debyeplein 25, 6200 MD Maastricht, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Vanessa P M van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P. Debyeplein 25, 6200 MD Maastricht, The Netherlands
| | - Dick H J Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK
| |
Collapse
|
6
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Tumor Necrosis Factor-α Mediates Inflammation-induced Early-Stage Left Ventricular Systolic Dysfunction. J Cardiovasc Pharmacol 2023; 81:411-422. [PMID: 37078863 DOI: 10.1097/fjc.0000000000001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
ABSTRACT Elevated systemic inflammation contributes to pathogenesis of heart failure with preserved ejection fraction (HFpEF), but molecular mechanisms are poorly understood. Although left ventricular (LV) diastolic dysfunction is the main cause of HFpEF, subclinical systolic dysfunction also contributes. We have previously shown that rats with collagen-induced arthritis (CIA) have systemic inflammation, LV diastolic dysfunction, and that increased circulating TNF-α contributes to inflammation-induced HFpEF pathogenesis, but does not mediate LV diastolic dysfunction in CIA rats. Contribution of systemic inflammation to dysfunction of the active process of LV diastolic and systolic function are unknown. In the present study, we used the CIA rat model to investigate the effects of systemic inflammation and TNF-α blockade on systolic function, and mRNA expression of genes involved in active diastolic relaxation and of myosin heavy chain (MyHC) isoforms. Collagen inoculation and TNF-α blockade did not affect LV mRNA expression of genes that mediate active LV diastolic function. Collagen-induced inflammation impaired LV global longitudinal strain ( P = 0.03) and velocity ( P = 0.04). This impairment of systolic function was prevented by TNF-α blockade. Collagen inoculation decreased mRNA expression of α-MyHC ( Myh6, P = 0.03) and increased expression of β-MyHC ( Myh7, P = 0.0002), a marker, which is upregulated in failing hearts. TNF-α blockade prevented this MyHC isoform-switch. These results show that increased circulating TNF-α changes the relative expression of MyHC isoforms, favoring β-MyHC, which may underlie changes in contractile function that impair systolic function. Our results indicate that TNF-α initiates early-stage LV systolic, rather than LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | | | |
Collapse
|
7
|
Kurpas A, Supel K, Wieczorkiewicz P, Bodalska Duleba J, Zielinska M. Fibroblast Growth Factor 23: Potential Marker of Invisible Heart Damage in Diabetic Population. Biomedicines 2023; 11:1523. [PMID: 37371618 PMCID: PMC10294899 DOI: 10.3390/biomedicines11061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Two-dimensional speckle-tracking echocardiography (2DSTE) detects myocardial dysfunction despite a preserved left ventricular ejection fraction. Fibroblast growth factor 23 (FGF23) has become a promising biomarker of cardiovascular risk. This study aimed to determine whether FGF23 may be used as a marker of myocardial damage among patients with diabetes mellitus type 2 (T2DM) and no previous history of myocardial infarction. The study enrolled 71 patients with a median age of 70 years. Laboratory data were analyzed retrospectively. Serum FGF23 levels were determined using a sandwich enzyme-linked immunosorbent assay. All patients underwent conventional echocardiography and 2DSTE. Baseline characteristics indicated that the median time elapsed since diagnosis with T2DM was 19 years. All subjects were divided into two groups according to left ventricular diastolic function. Individuals with confirmed left ventricular diastolic dysfunction had significantly lower levels of estimated glomerular filtration rate and higher values of hemoglobin A1c. Global circumferential strain (GCS) was reduced in the majority of patients. Only an epicardial GCS correlated significantly with the FGF23 concentration in all patients. The study indicates that a cardiac strain is a reliable tool for a subtle myocardial damage assessment. It is possible that FGF23 may become an early diagnostic marker of myocardial damage in patients with T2DM.
Collapse
Affiliation(s)
- Anna Kurpas
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| | - Karolina Supel
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| | - Paulina Wieczorkiewicz
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| | | | - Marzenna Zielinska
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| |
Collapse
|
8
|
MacIver DH, Scrase T, Zhang H. Left ventricular contractance: A new measure of contractile function. Int J Cardiol 2023; 371:345-353. [PMID: 36084798 DOI: 10.1016/j.ijcard.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
AIMS Myocardial contractility is poorly defined and difficult to compare between studies. Contractance or myocardial active strain energy density (MASED) measures the mechanical work done per unit volume (with units of kJ/m3) by any cardiac tissue during contraction. Contractance is an ideal candidate for measuring contractile function as it combines information from both stress and strain. METHODS AND RESULTS Data obtained from three previously published experimental studies using trabecular tissue was used to provide contemporaneous nominal stress and strain data in 18 different scenarios with different loading conditions. Contractance varied in the differing loading conditions with values of 1.16 (low preload), 2.02 (high afterload) and 3.76 kJ/m3 (normal). Contractance varied between 0 with isometric loading and 2.14 kJ/m3 with an isotonic and moderate afterload. Increasing inotropy increased contractance to 4.7 kJ/m3. CONCLUSION We showed that calculating MASED was feasible and provided a measure of energy production (work done) per unit volume of myocardium during contraction. The new term for contractile function, contractance, can be defined and quantified by MASED. Contractance measures contractile function in differing preload, afterload and inotropic settings. The method of measuring contractance is transferable to the assessment of global and regional systolic function.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton & Somerset Hospital, United Kingdom; Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom.
| | - Thomas Scrase
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Parra-Lucares A, Romero-Hernández E, Villa E, Weitz-Muñoz S, Vizcarra G, Reyes M, Vergara D, Bustamante S, Llancaqueo M, Toro L. New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside… and Back. Biomedicines 2022; 11:70. [PMID: 36672578 PMCID: PMC9856156 DOI: 10.3390/biomedicines11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health problem in nearly 50% of patients with heart failure. Therefore, research on new strategies for its diagnosis and management has become imperative in recent years. Few drugs have successfully improved clinical outcomes in this population. Therefore, numerous attempts are being made to find new pharmacological interventions that target the main mechanisms responsible for this disease. In recent years, pathological mechanisms such as cardiac fibrosis and inflammation, alterations in calcium handling, NO pathway disturbance, and neurohumoral or mechanic impairment have been evaluated as new pharmacological targets showing promising results in preliminary studies. This review aims to analyze the new strategies and mechanical devices, along with their initial results in pre-clinical and different phases of ongoing clinical trials for HFpEF patients. Understanding new mechanisms to generate interventions will allow us to create methods to prevent the adverse outcomes of this silent pandemic.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Esteban Romero-Hernández
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sebastián Weitz-Muñoz
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Martín Reyes
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Diego Vergara
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sergio Bustamante
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Marcelo Llancaqueo
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
10
|
Weissmann J, Charles CJ, Richards AM, Yap CH, Marom G. Material property alterations for phenotypes of heart failure with preserved ejection fraction: A numerical study of subject-specific porcine models. Front Bioeng Biotechnol 2022; 10:1032034. [PMID: 36312535 PMCID: PMC9614036 DOI: 10.3389/fbioe.2022.1032034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
A substantial proportion of heart failure patients have a preserved left ventricular (LV) ejection fraction (HFpEF). This condition carries a high burden of morbidity and mortality and has limited therapeutic options. left ventricular pressure overload leads to an increase in myocardial collagen content, causing left ventricular stiffening that contributes to the development of heart failure patients have a preserved left ventricular ejection fraction. Although several heart failure patients have a preserved left ventricular ejection fraction models have been developed in recent years to aid the investigation of mechanical alterations, none has investigated different phenotypes of the disease and evaluated the alterations in material properties. In this study, two similar healthy swine were subjected to progressive and prolonged pressure overload to induce diastolic heart failure characteristics, providing a preclinical model of heart failure patients have a preserved left ventricular ejection fraction. Cardiac magnetic resonance imaging (cMRI) scans and intracardiac pressures were recorded before and after induction. In both healthy and disease states, a corresponding finite element (FE) cardiac model was developed via mesh morphing of the Living Heart Porcine model. The material properties were derived by calibrating to its passive and active behavior. The change in the passive behavior was predominantly isotropic when comparing the geometries before and after induction. Myocardial thickening allowed for a steady transition in the passive properties while maintaining tissue incompressibility. This study highlights the importance of hypertrophy as an initial compensatory response and might also pave the way for assessing disease severity.
Collapse
Affiliation(s)
- Jonathan Weissmann
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Christopher J. Charles
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells 2022; 11:cells11182842. [PMID: 36139417 PMCID: PMC9496758 DOI: 10.3390/cells11182842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Ferroptosis is a recently identified cell death characterized by an excessive accumulation of iron-dependent reactive oxygen species (ROS) and lipid peroxides. Intracellular iron overload can not only cause damage to macrophages, endothelial cells, and cardiomyocytes through responses such as lipid peroxidation, oxidative stress, and inflammation, but can also affect cardiomyocyte Ca2+ handling, impair excitation–contraction coupling, and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF). However, the mechanisms through which ferroptosis initiates the development and progression of HFpEF have not been established. This review explains the possible correlations between HFpEF and ferroptosis and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
12
|
MacIver DH, Agger P, Rodrigues JCL, Zhang H. Left ventricular active strain energy density is a promising new measure of systolic function. Sci Rep 2022; 12:12717. [PMID: 35882913 PMCID: PMC9325776 DOI: 10.1038/s41598-022-15509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
The left ventricular ejection fraction does not accurately predict exercise capacity or symptom severity and has a limited role in predicting prognosis in heart failure. A better method of assessing ventricular performance is needed to aid understanding of the pathophysiological mechanisms and guide management in conditions such as heart failure. In this study, we propose two novel measures to quantify myocardial performance, the global longitudinal active strain energy (GLASE) and its density (GLASED) and compare them to existing measures in normal and diseased left ventricles. GLASED calculates the work done per unit volume of muscle (energy density) by combining information from myocardial strain and wall stress (contractile force per unit cross sectional area). Magnetic resonance images were obtained from 183 individuals forming four cohorts (normal, hypertension, dilated cardiomyopathy, and cardiac amyloidosis). GLASE and GLASED were compared with the standard ejection fraction, the corrected ejection fraction, myocardial strains, stroke work and myocardial forces. Myocardial shortening was decreased in all disease cohorts. Longitudinal stress was normal in hypertension, increased in dilated cardiomyopathy and severely decreased in amyloid heart disease. GLASE was increased in hypertension. GLASED was mildly reduced in hypertension (1.39 ± 0.65 kJ/m3), moderately reduced in dilated cardiomyopathy (0.86 ± 0.45 kJ/m3) and severely reduced in amyloid heart disease (0.42 ± 0.28 kJ/m3) compared to the control cohort (1.94 ± 0.49 kJ/m3). GLASED progressively decreased in the hypertension, dilated cardiomyopathy and cardiac amyloid cohorts indicating that mechanical work done and systolic performance is severely reduced in cardiac amyloid despite the relatively preserved ejection fraction. GLASED provides a new technique for assessing left ventricular myocardial health and contractile function.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, UK.
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, UK.
| | - Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonathan C L Rodrigues
- Department of Radiology, Royal United Hospital Bath NHS Trust, Bath, UK
- Department of Health, University of Bath, Bath, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Das BB. Therapeutic Approaches in Heart Failure with Preserved Ejection Fraction (HFpEF) in Children: Present and Future. Paediatr Drugs 2022; 24:235-246. [PMID: 35501560 DOI: 10.1007/s40272-022-00508-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
For a long time, pediatric heart failure (HF) with preserved systolic function (HFpEF) has been noted in patients with cardiomyopathies and congenital heart disease. HFpEF is infrequently reported in children and instead of using the HFpEF terminology the HF symptoms are attributed to diastolic dysfunction. Identifying HFpEF in children is challenging because of heterogeneous etiologies and unknown pathophysiological mechanisms. Advances in echocardiography and cardiac magnetic resonance imaging techniques have further increased our understanding of HFpEF in children. However, the literature does not describe the incidence, etiology, clinical features, and treatment of HFpEF in children. At present, treatment of HFpEF in children is extrapolated from clinical trials in adults. There are significant differences between pediatric and adult HF with reduced ejection fraction, supported by a lack of adequate response to adult HF therapies. Evidence-based clinical trials in children are still not available because of the difficulty of conducting trials with a limited number of pediatric patients with HF. The treatment of HFpEF in children is based upon the clinician's experience, and the majority of children receive off-level medications. There are significant differences between pediatric and adult HFpEF pharmacotherapies in many areas, including side-effect profiles, underlying pathophysiologies, the β-receptor physiology, and pharmacokinetics and pharmacodynamics. This review describes the present and future treatments for children with HFpEF compared with adults. This review also highlights the need to urgently test new therapies in children with HFpEF to demonstrate the safety and efficacy of drugs and devices with proven benefits in adults.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Pediatrics, Division of Cardiology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS, 39216, USA.
| |
Collapse
|
14
|
Tóth N, Soós A, Váradi A, Hegyi P, Tinusz B, Vágvölgyi A, Orosz A, Solymár M, Polyák A, Varró A, Farkas AS, Nagy N. Effect of ivabradine in heart failure: a meta-analysis of heart failure patients with reduced versus preserved ejection fraction. Can J Physiol Pharmacol 2021; 99:1159-1174. [PMID: 34636643 DOI: 10.1139/cjpp-2020-0700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In clinical trials of heart failure reduced ejection fraction (HFrEF), ivabradine seemed to be an effective heart rate lowering agent associated with lower risk of cardiovascular death. In contrast, ivabradine failed to improve cardiovascular outcomes in heart failure preserved ejection fraction (HFpEF) despite the significant effect on heart rate. This meta-analysis is the first to compare the effects of ivabradine on heart rate and mortality parameters in HFpEF versus HFrEF. We screened three databases: PubMed, Embase, and Cochrane Library. The outcomes of these studies were mortality, reduction in heart rate, and left ventricular function improvement. We compared the efficacy of ivabradine treatment in HFpEF versus HFrEF. Heart rate analysis of pooled data showed decrease in both HFrEF (-17.646 beats/min) and HFpEF (-11.434 beats/min), and a tendency to have stronger bradycardic effect in HFrEF (p = 0.094) in randomized clinical trials. Left ventricular ejection fraction analysis revealed significant improvement in HFrEF (5.936, 95% CI: [4.199-7.672], p < 0.001) when compared with placebo (p < 0.001). We found that ivabradine significantly improves left ventricular performance in HFrEF, at the same time it exerts a tendency to have improved bradycardic effect in HFrEF. These disparate effects of ivabradine and the higher prevalence of non-cardiac comorbidities in HFpEF may explain the observed beneficial effects in HFrEF and the unchanged outcomes in HFpEF patients after ivabradine treatment.
Collapse
Affiliation(s)
- Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alex Váradi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Benedek Tinusz
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary.,First Department of Medicine, Medical School, University of Pécs, Ifjúság Street 13, Pécs 7624, Hungary
| | - Anna Vágvölgyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Andrea Orosz
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alexandra Polyák
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Attila S Farkas
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
15
|
Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021; 12:734210. [PMID: 34690808 PMCID: PMC8533677 DOI: 10.3389/fphys.2021.734210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology—UMR-S 1180, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
16
|
Shavik SM, Wall S, Sundnes J, Guccione JM, Sengupta P, Solomon SD, Burkhoff D, Lee LC. Computational Modeling Studies of the Roles of Left Ventricular Geometry, Afterload, and Muscle Contractility on Myocardial Strains in Heart Failure with Preserved Ejection Fraction. J Cardiovasc Transl Res 2021; 14:1131-1145. [PMID: 33928526 DOI: 10.1007/s12265-021-10130-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Global longitudinal strain and circumferential strain are found to be reduced in HFpEF, which some have interpreted that the global left ventricular (LV) contractility is impaired. This finding is, however, contradicted by a preserved ejection fraction (EF) and confounded by changes in LV geometry and afterload resistance that may also affect the global strains. To reconcile these issues, we used a validated computational framework consisting of a finite element LV model to isolate the effects of HFpEF features in affecting systolic function metrics. Simulations were performed to quantify the effects on myocardial strains due to changes in LV geometry, active tension developed by the tissue, and afterload. We found that only a reduction in myocardial contractility and an increase in afterload can simultaneously reproduce the blood pressures, EF and strains measured in HFpEF patients. This finding suggests that it is likely that the myocardial contractility is reduced in HFpEF patients. Graphical abstract.
Collapse
Affiliation(s)
- Sheikh Mohammad Shavik
- Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA.,Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | | | | | - Julius M Guccione
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Partho Sengupta
- Division of Cardiology, West Virginia Heart and Vascular Institute, Morgantown, WV, USA
| | - Scott D Solomon
- Brigham and Women's Hospital Division of Cardiovascular Medicine and Harvard Medical School, Boston, MA, USA
| | | | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
Bode D, Rolim NPL, Guthof T, Hegemann N, Wakula P, Primessnig U, Berre AMO, Adams V, Wisløff U, Pieske BM, Heinzel FR, Hohendanner F. Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:1806-1818. [PMID: 33768692 PMCID: PMC8120378 DOI: 10.1002/ehf2.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/13/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Natale P L Rolim
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim Guthof
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Marie Ormbostad Berre
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
18
|
Gan Y, Zhao M, Feng J. Association of fetuin-A levels and left ventricular diastolic dysfunction in patients on haemodialysis. Int Urol Nephrol 2021; 53:1689-1694. [PMID: 33675483 DOI: 10.1007/s11255-021-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To identify the relationship between serum fetuin-A levels and left ventricular diastolic dysfunction (LVDD) among maintenance haemodialysis patients. METHODS In a cross-sectional study, 75 dialysis patients with end-stage renal disease (ESRD) were recruited, and fetuin-A levels were detected using an enzyme-linked immunosorbent assay (ELISA). Echocardiography measurements were recorded according to the recommendations of the American Society of Echocardiography. The ratio of early diastolic transmitral inflow velocity (E) to early diastolic annular velocity (E') was measured using tissue Doppler imaging and E/E' > 15 was defined as diastolic dysfunction. The association of serum fetuin-A concentrations with echocardiographic parameters was analysed by calculating the bivariate linear correlation. A binary logistic regression analysis was conducted to determine the variables associated with LVDD. RESULTS Compared to patients without diastolic dysfunction, patients with diastolic dysfunction were older, a higher percentage had a history of coronary artery disease, and presented with a high systolic pressure, high parathyroid hormone level, high N-terminal pro-brain natriuretic peptide (NT-proBNP) level, high LV mass index, high left atrium diameter, and low serum creatinine and fetuin-A levels. Serum fetuin-A levels showed a negative correlation with E/E' (r = - 0.299, P = 0.009). Fetuin-A levels were considered an independent predictor of diastolic dysfunction. CONCLUSION A decrease in the serum fetuin-A level is associated with an increased risk of LVDD in patients on haemodialysis.
Collapse
Affiliation(s)
- Yangang Gan
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingming Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinhong Feng
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
19
|
Effects of Left Ventricular Hypertrophy and Myocardial Stiffness on Myocardial Strain Under Preserved Ejection Fraction. Ann Biomed Eng 2021; 49:1670-1687. [PMID: 33575930 DOI: 10.1007/s10439-020-02706-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Despite numerous experimental observations regarding heart failure with preserved ejection fraction (HFpEF), which is characterized mainly by left ventricular hypertrophy and a left ventricular ejection fraction over 50%, myocardial dynamics under HFpEF have not yet been fully clarified, particularly regarding the relationship between myocardial strain distribution and myocardial work. To address this issue, we numerically investigated radial distribution of myocardial strain during a cardiac cycle with fixed internal volume at the end of the systolic and diastolic phases under different mechanical conditions, such as those involving myocardial thickness and elasticity of myocardial fibers. The myocardium was a modeled as a visco-hyperelastic continuous material. This model was taken into account that active contractile stress along the myocardial fiber direction depends on membrane potential change. Our numerical results showed that both radial and circumferential strains decreased as wall thickness increased, which reflected cardiac hypertrophy, but that myocardial work became larger than that observed with thin ventricular walls. Further, the change in left ventricular diastolic internal pressure caused circumferential strain, while fiber stiffness contributed to radial strain. Since peak circumferential strain was well estimated by the maximum difference between total internal and myocardial volumes, measuring the epicardial contraction rate should be helpful in understanding patients with HFpEF.
Collapse
|
20
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Mokotedi L, Michel FS, Mogane C, Gomes M, Woodiwiss AJ, Norton GR, Millen AME. Associations of inflammatory markers with impaired left ventricular diastolic and systolic function in collagen-induced arthritis. PLoS One 2020; 15:e0230657. [PMID: 32208438 PMCID: PMC7092986 DOI: 10.1371/journal.pone.0230657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background High-grade inflammation may play a pivotal role in the pathogenesis of left ventricular (LV) dysfunction. Evidence to support a role of systemic inflammation in mediating impaired LV function in experimental models of rheumatoid arthritis (RA) remains limited. The aim of the present study was to determine the effects of high-grade systemic inflammation on LV diastolic and systolic function in collagen-induced arthritis (CIA). Methods To induce CIA, bovine type-II collagen emulsified in incomplete Freund’s adjuvant was injected at the base of the tail into 21 three-month old Sprague Dawley rats. Nine-weeks after the first immunisation, LV function was assessed by pulsed Doppler, tissue Doppler imaging and Speckle tracking echocardiography. Cardiac collagen content was determined by picrosirius red staining; circulating inflammatory markers were measured using ELISA. Results Compared to controls (n = 12), CIA rats had reduced myocardial relaxation as indexed by lateral e’ (early diastolic mitral annular velocity) and e’/a’ (early-to-late diastolic mitral annular velocity) and increased filling pressures as indexed by E/e’. No differences in ejection fraction and LV endocardial fractional shortening between the groups were recorded. LV global radial and circumferential strain and strain rate were reduced in CIA rats compared to controls. Higher concentrations of circulating inflammatory markers were associated with reduced lateral e’, e’/a’, radial and circumferential strain and strain rate. Greater collagen content was associated with increased concentrations of circulating inflammatory markers and E/e’. Conclusion High-grade inflammation is associated with impaired LV diastolic function and greater myocardial deformation independent of haemodynamic load in CIA rats.
Collapse
Affiliation(s)
- Lebogang Mokotedi
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Frederic S. Michel
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Conrad Mogane
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Gomes
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela J. Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R. Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M. E. Millen
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications. Circ Res 2020; 126:395-412. [PMID: 31999537 PMCID: PMC7004450 DOI: 10.1161/circresaha.119.315891] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Normal cardiac function requires that intracellular Ca2+ concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca2+ concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca2+ concentration. It then considers how the control of systolic and diastolic intracellular Ca2+ concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - David C Hutchings
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| |
Collapse
|
24
|
Dabiri Y, Van der Velden A, Sack KL, Choy JS, Kassab GS, Guccione JM. Prediction of Left Ventricular Mechanics Using Machine Learning. FRONTIERS IN PHYSICS 2019; 7:117. [PMID: 31903394 PMCID: PMC6941671 DOI: 10.3389/fphy.2019.00117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The goal of this paper was to provide a real-time left ventricular (LV) mechanics simulator using machine learning (ML). Finite element (FE) simulations were conducted for the LV with different material properties to obtain a training set. A hyperelastic fiber-reinforced material model was used to describe the passive behavior of the myocardium during diastole. The active behavior of the heart resulting from myofiber contractions was added to the passive tissue during systole. The active and passive properties govern the LV constitutive equation. These mechanical properties were altered using optimal Latin hypercube design of experiments to obtain training FE models with varied active properties (volume and pressure predictions) and varied passive properties (stress predictions). For prediction of LV pressures, we used eXtreme Gradient Boosting (XGboost) and Cubist, and XGBoost was used for predictions of LV pressures, volumes as well as LV stresses. The LV pressure and volume results obtained from ML were similar to FE computations. The ML results could capture the shape of LV pressure as well as LV pressure-volume loops. The results predicted by Cubist were smoother than those from XGBoost. The mean absolute errors were as follows: XGBoost volume: 1.734 ± 0.584 ml, XGBoost pressure: 1.544 ± 0.298 mmHg, Cubist volume: 1.495 ± 0.260 ml, Cubist pressure: 1.623 ± 0.191 mmHg, myofiber stress: 0.334 ± 0.228 kPa, cross myofiber stress: 0.075 ± 0.024 kPa, and shear stress: 0.050 ± 0.032 kPa. The simulation results show ML can predict LV mechanics much faster than the FE method. The ML model can be used as a tool to predict LV behavior. Training of our ML model based on a large group of subjects can improve its predictability for real world applications.
Collapse
Affiliation(s)
- Yaghoub Dabiri
- California Medical Innovations Institute, San Diego, CA, United States
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | | | - Kevin L. Sack
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jenny S. Choy
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S. Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| | - Julius M. Guccione
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Lomivorotov VV, Leonova EA, Belletti A, Shmyrev VA, Landoni G. Calcium Administration During Weaning From Cardiopulmonary Bypass: A Narrative Literature Review. J Cardiothorac Vasc Anesth 2019; 34:235-244. [PMID: 31350149 DOI: 10.1053/j.jvca.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
The search for safe and effective patient management strategies during weaning from cardiopulmonary bypass is ongoing; intravenous calcium is occasionally used as a first-line drug. The physiologic role of calcium suggests that it can support the function of the cardiovascular system during this critical period. Patients may be mildly hypocalcemic after cardiopulmonary bypass; however, this degree of hypocalcemia does not significantly impair the cardiovascular system. The transient beneficial effects of calcium administration (increase in arterial blood pressure, systemic vascular resistance, cardiac index, stroke volume, and coronary perfusion pressure) might be helpful in cases of moderate contractility reduction or vasoplegia. Nonetheless, effects on clinically relevant endpoints are unknown, and possible systemic side effects, such as transient reduction in internal mammary artery graft flow, attenuation of the effects of β-sympathomimetics, "stone heart" phenomenon, and pancreatic cellular injury, may limit the use of calcium salts. Further studies are needed to expand the understanding of the effects of calcium administration on patient outcomes.
Collapse
Affiliation(s)
- Vladimir V Lomivorotov
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Elizaveta A Leonova
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vladimir A Shmyrev
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
26
|
Jirak P, Stechemesser L, Moré E, Franzen M, Topf A, Mirna M, Paar V, Pistulli R, Kretzschmar D, Wernly B, Hoppe UC, Lichtenauer M, Salmhofer H. Clinical implications of fetuin-A. Adv Clin Chem 2019; 89:79-130. [PMID: 30797472 DOI: 10.1016/bs.acc.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fetuin-A, also termed alpha2-Heremans-Schmid glycoprotein, is a 46kDa hepatocyte derived protein (hepatokine) and serves multifaceted functions.
Collapse
Affiliation(s)
- Peter Jirak
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Lars Stechemesser
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Elena Moré
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Franzen
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Albert Topf
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Rudin Pistulli
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Wernly
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| | - Hermann Salmhofer
- Department of Internal Medicine I, Divisions of Nephrology and Endocrinology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
27
|
Rouhana S, Farah C, Roy J, Finan A, Rodrigues de Araujo G, Bideaux P, Scheuermann V, Saliba Y, Reboul C, Cazorla O, Aimond F, Richard S, Thireau J, Fares N. Early calcium handling imbalance in pressure overload-induced heart failure with nearly normal left ventricular ejection fraction. Biochim Biophys Acta Mol Basis Dis 2019; 1865:230-242. [DOI: 10.1016/j.bbadis.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
28
|
Bamaiyi AJ, Norton GR, Peterson V, Norman G, Mojiminiyi FB, Woodiwiss AJ. Limited Impact of β-Adrenergic Receptor Activation on Left Ventricular Diastolic Function in Rat Models of Hypertensive Heart Disease. J Cardiovasc Pharmacol 2018; 72:242-251. [PMID: 30403389 DOI: 10.1097/fjc.0000000000000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypertension is a major cause of left ventricular (LV) diastolic dysfunction. Although β-adrenergic receptor (β-AR) blockers are often used to manage hypertension, the impact of β-AR activation on LV lusitropic effects and hence filling pressures in the hypertensive heart with LV diastolic dysfunction is uncertain. METHODS Using tissue Doppler imaging and Speckle tracking software, we assessed LV function in isoflurane anesthetised spontaneously hypertensive (SHR) and Dahl salt-sensitive (DSS) rats before and after β-AR activation [isoproterenol (ISO) administration]. RESULTS As compared to normotensive Wistar Kyoto control rats, or DSS rats not receiving NaCl in the drinking water, SHR and DSS rats receiving NaCl in the drinking water had a reduced myocardial relaxation as indexed by lateral wall e' (early diastolic tissue velocity at the level of the mitral annulus) and an increased LV filling pressure as indexed by E/e'. However, LV ejection fraction and deformation and motion were preserved in both SHR and DSS rats. The administration of ISO resulted in a marked increase in ejection fraction and decrease in LV filling volumes in all groups, and an increase in e' in SHR, but not DSS rats. However, after ISO administration, although E/e' decreased in DSS rats in association with a reduced filling volume, E/e' in SHR remained unchanged and SHR retained greater values than Wistar Kyoto control. CONCLUSIONS The hypertensive heart is characterized by reductions in myocardial relaxation and increases in filling pressures, but β-AR activation may fail to improve myocardial relaxation and when this occurs, it does not reduce LV filling pressures.
Collapse
Affiliation(s)
- Adamu J Bamaiyi
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vernice Peterson
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Glenda Norman
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank B Mojiminiyi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Angela J Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Michalson KT, Groban L, Howard TD, Shively CA, Sophonsritsuk A, Appt SE, Cline JM, Clarkson TB, Carr JJ, Kitzman DW, Register TC. Estradiol Treatment Initiated Early After Ovariectomy Regulates Myocardial Gene Expression and Inhibits Diastolic Dysfunction in Female Cynomolgus Monkeys: Potential Roles for Calcium Homeostasis and Extracellular Matrix Remodeling. J Am Heart Assoc 2018; 7:e009769. [PMID: 30571375 PMCID: PMC6404177 DOI: 10.1161/jaha.118.009769] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Background Left ventricular ( LV ) diastolic dysfunction often precedes heart failure with preserved ejection fraction, the dominant form of heart failure in postmenopausal women. The objective of this study was to determine the effect of oral estradiol treatment initiated early after ovariectomy on LV function and myocardial gene expression in female cynomolgus macaques. Methods and Results Monkeys were ovariectomized and randomized to receive placebo (control) or oral estradiol at a human-equivalent dose of 1 mg/day for 8 months. Monkeys then underwent conventional and tissue Doppler imaging to assess cardiac function, followed by transcriptomic and histomorphometric analyses of LV myocardium. Age, body weight, blood pressure, and heart rate were similar between groups. Echocardiographic mitral early and late inflow velocities, mitral annular velocities, and mitral E deceleration slope were higher in estradiol monkeys (all P<0.05), despite similar estimated LV filling pressure. MCP1 (monocyte chemoattractant protein 1) and LV collagen staining were lower in estradiol animals ( P<0.05). Microarray analysis revealed differential myocardial expression of 40 genes (>1.2-fold change; false discovery rate, P<0.05) in estradiol animals relative to controls, which implicated pathways associated with better calcium ion homeostasis and muscle contraction and lower extracellular matrix deposition ( P<0.05). Conclusions Estradiol treatment initiated soon after ovariectomy resulted in enhanced LV diastolic function, and altered myocardial gene expression towards decreased extracellular matrix deposition, improved myocardial contraction, and calcium homeostasis, suggesting that estradiol directly or indirectly modulates the myocardial transcriptome to preserve cardiovascular function.
Collapse
Affiliation(s)
- Kristofer T. Michalson
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Leanne Groban
- Department of AnesthesiologyWake Forest University School of MedicineWinston‐SalemNC
| | - Timothy D. Howard
- Department of BiochemistryWake Forest University School of MedicineWinston‐SalemNC
| | - Carol A. Shively
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Areepan Sophonsritsuk
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Susan E. Appt
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - J. Mark Cline
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Thomas B. Clarkson
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - J. Jeffrey Carr
- Department of RadiologyVanderbilt University School of MedicineNashvilleTN
| | - Dalane W. Kitzman
- Section on CardiologyDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC
| | - Thomas C. Register
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| |
Collapse
|
30
|
Dabiri Y, Sack KL, Shaul S, Sengupta PP, Guccione JM. Relationship of Transmural Variations in Myofiber Contractility to Left Ventricular Ejection Fraction: Implications for Modeling Heart Failure Phenotype With Preserved Ejection Fraction. Front Physiol 2018; 9:1003. [PMID: 30197595 PMCID: PMC6117406 DOI: 10.3389/fphys.2018.01003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
The pathophysiological mechanisms underlying preserved left ventricular (LV) ejection fraction (EF) in patients with heart failure and preserved ejection fraction (HFpEF) remain incompletely understood. We hypothesized that transmural variations in myofiber contractility with existence of subendocardial dysfunction and compensatory increased subepicardial contractility may underlie preservation of LVEF in patients with HFpEF. We quantified alterations in myocardial function in a mathematical model of the human LV that is based on the finite element method. The fiber-reinforced material formulation of the myocardium included passive and active properties. The passive material properties were determined such that the diastolic pressure-volume behavior of the LV was similar to that shown in published clinical studies of pressure-volume curves. To examine changes in active properties, we considered six scenarios: (1) normal properties throughout the LV wall; (2) decreased myocardial contractility in the subendocardium; (3) increased myocardial contractility in the subepicardium; (4) myocardial contractility decreased equally in all layers, (5) myocardial contractility decreased in the midmyocardium and subepicardium, (6) myocardial contractility decreased in the subepicardium. Our results indicate that decreased subendocardial contractility reduced LVEF from 53.2 to 40.5%. Increased contractility in the subepicardium recovered LVEF from 40.5 to 53.2%. Decreased contractility transmurally reduced LVEF and could not be recovered if subepicardial and midmyocardial contractility remained depressed. The computational results simulating the effects of transmural alterations in the ventricular tissue replicate the phenotypic patterns of LV dysfunction observed in clinical practice. In particular, data for LVEF, strain and displacement are consistent with previous clinical observations in patients with HFpEF, and substantiate the hypothesis that increased subepicardial contractility may compensate for subendocardial dysfunction and play a vital role in maintaining LVEF.
Collapse
Affiliation(s)
- Yaghoub Dabiri
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin L Sack
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Semion Shaul
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Partho P Sengupta
- Section of Cardiology, West Virginia University Heart and Vascular Institute, West Virginia University, Morgantown, WV, United States
| | - Julius M Guccione
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
31
|
Abstract
More than 50% of patients with clinical heart failure have a preserved ejection fraction. Despite mortality that is similar to or slightly lower than heart failure with reduced ejection fraction, trials to date have not shown a therapy that imparts a mortality benefit in heart failure with preserved ejection fraction (HFpEF). HFpEF represents a heterogeneous disorder with a complex pathophysiologic basis, and this may contribute to the negative results in clinical trials. Geographic variations in both patient selection and adherence to study medications confound the interpretation of the trial results. Mineralocorticoid receptor antagonists may be useful in selected patients.
Collapse
Affiliation(s)
- Ajith Nair
- Department of Medicine, Section of Cardiology, Baylor College of Medicine, 6620 Main Street, 12th Floor, Suite 1225, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Medicine, Section of Cardiology, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Shavik SM, Wall ST, Sundnes J, Burkhoff D, Lee LC. Organ-level validation of a cross-bridge cycling descriptor in a left ventricular finite element model: effects of ventricular loading on myocardial strains. Physiol Rep 2018; 5:5/21/e13392. [PMID: 29122952 PMCID: PMC5688770 DOI: 10.14814/phy2.13392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Although detailed cell‐based descriptors of cross‐bridge cycling have been applied in finite element (FE) heart models to describe ventricular mechanics, these multiscale models have never been tested rigorously to determine if these descriptors, when scaled up to the organ‐level, are able to reproduce well‐established organ‐level physiological behaviors. To address this void, we here validate a left ventricular (LV) FE model that is driven by a cell‐based cross‐bridge cycling descriptor against key organ‐level heart physiology. The LV FE model was coupled to a closed‐loop lumped parameter circulatory model to simulate different ventricular loading conditions (preload and afterload) and contractilities. We show that our model is able to reproduce a linear end‐systolic pressure volume relationship, a curvilinear end‐diastolic pressure volume relationship and a linear relationship between myocardial oxygen consumption and pressure–volume area. We also show that the validated model can predict realistic LV strain‐time profiles in the longitudinal, circumferential, and radial directions. The predicted strain‐time profiles display key features that are consistent with those measured in humans, such as having similar peak strains, time‐to‐peak‐strain, and a rapid change in strain during atrial contraction at late‐diastole. Our model shows that the myocardial strains are sensitive to not only LV contractility, but also to the LV loading conditions, especially to a change in afterload. This result suggests that caution must be exercised when associating changes in myocardial strain with changes in LV contractility. The methodically validated multiscale model will be used in future studies to understand human heart diseases.
Collapse
Affiliation(s)
| | | | | | - Daniel Burkhoff
- Cardiovascular Research Foundation and Department of Medicine, Columbia University, New York, New York
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| |
Collapse
|
33
|
Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA. Biological Phenotypes of Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2017; 70:2186-2200. [PMID: 29050567 DOI: 10.1016/j.jacc.2017.09.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) involves multiple pathophysiological mechanisms, which result in the heterogeneous phenotypes that are evident clinically, and which have potentially confounded previous HFpEF trials. A greater understanding of the in vivo human processes involved, and in particular, which are the causes and which are the downstream effects, may allow the syndrome of HFpEF to be distilled into distinct diagnoses based on the underlying biology. From this, specific interventions can follow, targeting individuals identified on the basis of their biological phenotype. This review describes the biological phenotypes of HFpEF and therapeutic interventions aimed at targeting these phenotypes.
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon G Williams
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Colin Cunnington
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, United Kingdom
| | - Fozia Ahmed
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, United Kingdom
| | | | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
34
|
Electrical and mechanical alternans during ventricular tachycardia with moderate chronic heart failure. J Electrocardiol 2017; 51:33-37. [PMID: 29129349 DOI: 10.1016/j.jelectrocard.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 11/20/2022]
Abstract
A chronic heart failure (CHF) rat underwent epicardial programmed electrical stimulation (PES). Ventricular tachycardia (VT) developed during PES. Mechanical alternans was noted despite fixed tachycardia cycle length. Anti-tachycardia pacing attempts initiated a second VT that generated pulse intermittently and then degenerated into pulseless VT with electrical alternans.To our knowledge electrical and mechanical alternans have not been recorded in animal models of CHF during VT. The distinct events of mechanical alternans and electrical alternans may be indicative of progressively worsened calcium handling in the compromised cardiomyocytes.Although ion channel differences between rodents and humans exist, this work attempts to demonstrate this rat model's usefulness in understanding cardiac electrophysiology in CHF.
Collapse
|
35
|
Shillcutt SK, Chacon MM, Brakke TR, Roberts EK, Schulte TE, Markin N. Heart Failure With Preserved Ejection Fraction: A Perioperative Review. J Cardiothorac Vasc Anesth 2017; 31:1820-1830. [PMID: 28869075 DOI: 10.1053/j.jvca.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Sasha K Shillcutt
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE.
| | - M Megan Chacon
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Tara R Brakke
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Ellen K Roberts
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Thomas E Schulte
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| | - Nicholas Markin
- University of Nebraska Medical Center, Department of Anesthesiology, Omaha, NE
| |
Collapse
|
36
|
Oskouie SK, Prenner SB, Shah SJ, Sauer AJ. Differences in Repolarization Heterogeneity Among Heart Failure With Preserved Ejection Fraction Phenotypic Subgroups. Am J Cardiol 2017; 120:601-606. [PMID: 28651852 DOI: 10.1016/j.amjcard.2017.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a highly heterogeneous syndrome associated with multiple medical comorbidities and pathophysiologic pathways or phenotypes. We recently developed a phenomapping method combining deep phenotyping with machine learning analysis to classify HFpEF patients into 3 clinically distinct phenotypic subgroups (phenogroups) with different clinical outcomes. Phenogroup #1 was younger with lower B-type natriuretic peptide levels, phenogroup #2 had the highest prevalence of obesity and diabetes mellitus, and phenogroup #3 was the oldest with the most factors for chronic kidney disease, the most dysfunctional myocardial mechanics, and the highest adverse outcomes. The pathophysiological differences between these phenogroups, however, remain incompletely described. We sought to evaluate whether these 3 groups differ on the basis of repolarization heterogeneity, which has previously been linked to adverse outcomes in HFpEF. The T-peak to T-end (TpTe) interval, a well-validated index of repolarization heterogeneity, was measured by 2 readers blinded to each other and all other clinical data on the electrocardiograms of 201 HFpEF patients enrolled in a systematic observational study. TpTe duration was associated with higher B-type natriuretic peptide level (p = 0.006), increased QRS-T angle (p = 0.008), and lower septal e' velocity (p = 0.007). TpTe duration was greatest in phenogroup #3 (100.4 ± 24.5 ms) compared with phenogroups #1 (91.2 ± 17.3 ms) and #2 (90.2 ± 17.0 ms) (p = 0.0098). On multivariable analyses, increased TpTe was independently associated with the high-risk phenogroup #3 classification. In conclusion, repolarization heterogeneity is a marker of a specific subset of HFpEF patients identified using unsupervised machine learning analysis and therefore may be a key pathophysiologic marker in this subset of HFpEF patients.
Collapse
|
37
|
Cardiovascular susceptibility to in vivo ischemic myocardial injury in male and female rat offspring exposed to prenatal hypoxia. Clin Sci (Lond) 2017; 131:2303-2317. [DOI: 10.1042/cs20171122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
Intrauterine growth restriction (IUGR) following prenatal hypoxia exposure leads to a higher risk of developing cardiovascular disease (CVD) in later life. Our aim was to evaluate cardiac susceptibility and its pathophysiological mechanisms following acute myocardial infarction (MI) in adult rat offspring exposed to prenatal hypoxia. Male and female rat offspring, which experienced normoxia (21% O2) or hypoxia (11% O2) in utero underwent sham or MI surgery at 12 weeks of age. Echocardiographic data revealed that both sexes had systolic dysfunction following MI surgery, independent of prenatal hypoxia. Male offspring exposed to prenatal hypoxia, however, had left ventricular dilatation, global dysfunction, and signs of diastolic dysfunction following MI surgery as evident by increased left ventricular internal diameter (LVID) during diastole (MI effect, P<0.01), Tei index (MI effect, P<0.001), and E/E′ ratio (prenatal hypoxia or MI effect, P<0.01). In contrast, diastolic dysfunction in female offspring was not as evident. Cardiac superoxide levels increased only in prenatal hypoxia exposed male offspring. Cardiac sarcoendoplasmic reticulum Ca2+-ATPase2a (SERCA2a) levels, a marker of cardiac injury and dysfunction, decreased in both male and female MI groups independent of prenatal hypoxia. Prenatal hypoxia increased cardiac ryanodine receptor 2 (RYR2) protein levels, while MI reduced RYR2 in only male offspring. In conclusion, male offspring exposed to prenatal hypoxia had an increased susceptibility to ischemic myocardial injury involving cardiac phenotypes similar to heart failure involving diastolic dysfunction in adult life compared with both offspring from healthy pregnancies and their female counterparts.
Collapse
|
38
|
Bhattacharya P, Viceconti M. Multiscale modeling methods in biomechanics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:e1375. [PMID: 28102563 PMCID: PMC5412936 DOI: 10.1002/wsbm.1375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023]
Abstract
More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Pinaki Bhattacharya
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| | - Marco Viceconti
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
39
|
Cardiovascular Mechanisms of Extravascular Lung Water Accumulation in Divers. Am J Cardiol 2017; 119:929-932. [PMID: 28189252 DOI: 10.1016/j.amjcard.2016.11.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022]
Abstract
This study assessed the relation between altered cardiac function and the development of interstitial pulmonary edema in scuba divers. Fifteen healthy men performed a 30-minute scuba dive in open sea. They were instructed to fin for 30 minutes and were wearing wet suits. Before and immediately after immersion, cardiac indexes and extravascular lung water were measured using echocardiography and lung ultrasound, respectively. The mean ultrasound lung comet score increased from 0 to 4.6 ± 3.4. The diameter of the inferior caval vein increased by 47 ± 5.2%, systolic pulmonary artery pressure by 105 ± 8.6%, left atrial volume by 18.0 ± 3.3%, and left ventricle end-diastolic volume by 10 ± 2.4% suggesting that both right and left ventricular (LV) filling pressures were elevated. Doppler studies showed an increased mitral E peak (+2.5 ± 0.3%) and E/A ratio (+22.5 ± 3.4%) with a decreased mitral A peak (-16.4 ± 2.7%), E peak deceleration time (-14.5 ± 2.4%) consistent with rapid early LV filling but without a change in LV stroke volume. There was an increase in right/left ventricle diameter ratio (+33.6 ± 4.8%) suggesting a relative increase in right-sided heart output compared with the left. Furthermore, the lung comet score correlated significantly with inferior caval vein diameter, systolic pulmonary artery pressure, right/left ventricle diameter ratio, and E-wave deceleration time. In conclusion, the altered right/left heart stroke volume balance could play an essential role in the development of immersion pulmonary edema. Our findings have important implications for the pathogenesis of cardiogenic pulmonary edema.
Collapse
|
40
|
Maarman GJ, Mendham AE, Lamont K, George C. Review of a causal role of fructose-containing sugars in myocardial susceptibility to ischemia/reperfusion injury. Nutr Res 2017. [PMID: 28633867 DOI: 10.1016/j.nutres.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In 2012, the World Health Organization Global Status Report on noncommunicable diseases showed that 7.4 million deaths were due to ischemic heart disease. Consequently, cardiovascular disease is a significant health burden, especially when partnered with comorbidities such as obesity, metabolic syndrome, and type 2 diabetes mellitus. Of note, these diseases can all be induced or exacerbated by diet. Carbohydrates, in particular, fructose and glucose, generally form the largest part of the human diet. Accumulating evidence from animal studies suggests that if large amounts of fructose are consumed either in isolation or in combination with glucose (fructose-containing sugars), myocardial susceptibility to ischemia/reperfusion (I/R) injury increases. However, the underlying mechanisms that predisposes the myocardium to I/R injury in the fructose model are not elucidated, and no single mechanistic pathway has been described. Based on all available data on this topic, this review describes previously investigated mechanisms and highlights 3 main mechanistic pathways whereby fructose has shown to increase myocardial susceptibility to I/R injury. These pathways include (1) increased reactive oxygen species, resulting in reduced nitric oxide synthase and coronary flow; (2) elevated plasma fatty acids and insulin, leading to increased cardiac triglyceride content and lipotoxicity; and (3) disrupted myocardial calcium handling/homeostasis. Moreover, we highlight various factors that should be taken into account when the fructose animal model is used, such as rat strain, treatment periods, and doses. We argue that failure to do so would result in erratic inferences drawn from the existing body of evidence on fructose animal models.
Collapse
Affiliation(s)
- Gerald J Maarman
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, PO Box 115, 7725, Cape Town, South Africa.
| | - Amy E Mendham
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, PO Box 115, 7725, Cape Town, South Africa.
| | - Kim Lamont
- Soweto Cardiovascular Research Unit, University of the Witwatersrand, 3Q05, 7 York Rd, Parktown, 2193, Johannesburg, South Africa.
| | - Cindy George
- Non-Communicable Diseases Research Unit, South African Medical Research Council, PO Box 19070, Tygerberg, Cape Town, South Africa.
| |
Collapse
|
41
|
Agger P, Stephenson RS, Dobrzynski H, Atkinson A, Iaizzo PA, Anderson RH, Jarvis JC, Allan SL, Partridge JB, Zhao J, Zhang H, MacIver DH. Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone. Echocardiography 2016; 33:1546-1556. [DOI: 10.1111/echo.13324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic and Vascular Surgery; Deptartment of Clinical Medicine; Aarhus University Hospital; Aarhus Denmark
| | - Robert S. Stephenson
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool United Kingdom
- School of Dentistry; The University of Central Lancashire; Preston United Kingdom
| | - Halina Dobrzynski
- School of Medicine; University of Manchester; Manchester United Kingdom
| | - Andrew Atkinson
- School of Medicine; University of Manchester; Manchester United Kingdom
| | - Paul A. Iaizzo
- Institute for Engineering in Medicine; Department of Surgery; University of Minnesota; Minneapolis Minnesota
| | - Robert H. Anderson
- Institute of Genetic Medicine; Newcastle University; Newcastle Upon Tyne United Kingdom
- Division of Biomedical Sciences; University College London; London United Kingdom
| | - Jonathan C. Jarvis
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool United Kingdom
| | - Sarah L. Allan
- Department of Cardiology; Taunton & Somerset Hospital; Taunton United Kingdom
| | - John B. Partridge
- Eurobodalla Unit; Rural Clinical School of the ANU College of Medicine, Biology & Environment; Batemans Bay NSW Australia
| | - Jichao Zhao
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
| | - Henggui Zhang
- Biological Physics Group; School of Astronomy and Physics; University of Manchester; Manchester United Kingdom
| | - David H. MacIver
- Department of Cardiology; Taunton & Somerset Hospital; Taunton United Kingdom
- Biological Physics Group; School of Astronomy and Physics; University of Manchester; Manchester United Kingdom
| |
Collapse
|
42
|
Li J, Wu N, Dai W, Jiang L, Li Y, Li S, Wen Z. Association of serum calcium and heart failure with preserved ejection fraction in patients with type 2 diabetes. Cardiovasc Diabetol 2016; 15:140. [PMID: 27716206 PMCID: PMC5048602 DOI: 10.1186/s12933-016-0458-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/24/2016] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a recognized trigger factor for heart failure with preserved ejection fraction (HFpEF). Recent studies show that higher serum calcium level is associated with greater risk of both T2DM and heart failure. We speculate that increased serum calcium is related to HFpEF prevalence in patients with T2DM. METHODS In this cross-sectional echocardiographic study, 807 normocalcemia and normophosphatemia patients with T2DM participated, of whom 106 had HFpEF. Multinomial logistic regression was carried out to determine the variables associated with HFpEF. The associations between serum calcium and metabolic parameters, as well as the rate of HFpEF were examined using bivariate linear correlation and binary logistic regression, respectively. The predictive performance of serum calcium for HFpEF was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS Patients with HFpEF have significantly higher serum calcium than those without HFpEF. Serum calcium was positively associated with total cholesterol, triglycerides, low-density lipoprotein cholesterol, serum uric acid, HOMA-IR and fasting plasma glucose. Compared with patients in the lowest serum calcium quartile, the odds ratio (OR) for HFpEF in patients in the highest quartile was 2.331 (95 % CI 1.088-4.994, p = 0.029). When calcium was analyzed as a continuous variable, per 1 mg/dL increase, the OR (95 % CI) for HFpEF was [2.712 (1.471-5.002), p = 0.001]. Serum calcium can predict HFpEF [AUC = 0.673, 95 % CI (0.620-0.726), p < 0.001]. CONCLUSIONS An increase in serum calcium level is associated with an increased risk of HFpEF in patients with T2DM.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Nan Wu
- Department of Geriatrics, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Wenling Dai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liu Jiang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yintao Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong University School of Medicine, Jinan, 250012, China
| | - Shibao Li
- Department of Medical Laboratory, The Affiliated Hospital of Xuzhou Medical College, No. 99 Huaihai West Road, Xuzhou, 221000, China.
| | - Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
43
|
Adeniran I, MacIver DH, Garratt CJ, Ye J, Hancox JC, Zhang H. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics - Insights from a 3D Model of the Human Atria. PLoS One 2015; 10:e0142397. [PMID: 26606047 PMCID: PMC4659575 DOI: 10.1371/journal.pone.0142397] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022] Open
Abstract
Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients.
Collapse
Affiliation(s)
- Ismail Adeniran
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - David H. MacIver
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- Taunton & Somerset Hospital, Somerset, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jianqiao Ye
- Department of Engineering, Lancaster University, Lancaster, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Physiology and Pharmacology, and Cardiovascular Research Laboratories, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
MacIver DH, Adeniran I, Zhang H. Left ventricular ejection fraction is determined by both global myocardial strain and wall thickness. IJC HEART & VASCULATURE 2015; 7:113-118. [PMID: 28785658 PMCID: PMC5497228 DOI: 10.1016/j.ijcha.2015.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/08/2014] [Accepted: 03/31/2015] [Indexed: 01/13/2023]
Abstract
Objectives The purpose of this study was to determine the mathematical relationship between left ventricular ejection fraction and global myocardial strain. A reduction in myocardial strain would be expected to cause a fall in ejection fraction. However, there is abundant evidence that abnormalities of myocardial strain can occur with a normal ejection fraction. Explanations such as a compensatory increase in radial or circumferential strain are not supported by clinical studies. We set out to determine the biomechanical relationship between ejection fraction, wall thickness and global myocardial strain. Methods The study used an established abstract model of left ventricular contraction to examine the effect of global myocardial strain and wall thickness on ejection fraction. Equations for the relationship between ejection fraction, wall thickness and myocardial strain were obtained using curve fitting methods. Results The mathematical relationship between ejection fraction, ventricular wall thickness and myocardial strain was derived as follows: φ = e(0.14Ln(ε) + 0.06)ω + (0.9Ln(ε) + 1.2), where φ is ejection fraction (%), ω is wall thickness (cm) and ε is myocardial strain (−%). Conclusion The findings of this study explain the coexistence of reduced global myocardial strain and normal ejection fraction seen in clinical observational studies. Our understanding of the pathophysiological processes in heart failure and associated conditions is substantially enhanced. These results provide a much better insight into the biophysical inter-relationship between myocardial strain and ejection fraction. This improved understanding provides an essential foundation for the design and interpretation of future clinical mechanistic and prognostic studies. Ejection fraction has a limited value in predicting mortality and functional capacity. Myocardial mechanics including the relationship between myocardial strain and ejection fraction are currently poorly understood. We showed that there is biophysical relationship between end-diastolic wall thickness, myocardial strain and ejection fraction. Such a relationship explains the poor correlation of ejection fraction with prognosis and functional capacity. The study provides the foundation for determining the relationship between ventricular hypertrophy, ejection fraction and prognosis. words
Collapse
Affiliation(s)
- David H MacIver
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK.,Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, Taunton, UK.,Medical Education, University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Ismail Adeniran
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|