1
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
2
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
3
|
Wang H, Lu Y. High calcium concentrations reduce cellular excitability of mouse MNTB neurons. Brain Res 2023; 1820:148568. [PMID: 37689332 PMCID: PMC10591835 DOI: 10.1016/j.brainres.2023.148568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Calcium, a universal intracellular signaling molecule, plays essential roles in neural functions. Historically, in most in vitro brain slice electrophysiology studies, the extracellular calcium concentration ([Ca2+]e) in artificial cerebrospinal fluid is of a wide range and typically higher than the physiological value. At high [Ca2+]e, synaptic transmission is generally enhanced. However, the effects and the underlying mechanisms of calcium on intrinsic neuronal properties are diverse. Using whole-cell patch clamp in acute brainstem slices obtained from mice of either sex, we investigated the effects and the underlying mechanisms of high [Ca2+]e on intrinsic neuronal properties of neurons in the medial nucleus of the trapezoid body (MNTB), an auditory brainstem component in the sound localization circuitry. Compared to the physiological [Ca2+]e (1.2 mM), high [Ca2+]e at 1.8 and 2.4 mM significantly reduced the cellular excitability of MNTB neurons, resulting in decreased spike firing rate, depolarized spike threshold, and decreased the ability to follow high frequency inputs. High extracellular magnesium concentrations at 1.8 and 2.4 mM produced similar but less robust effects, due to surface charge screening. Upon high calcium application, voltage-gated sodium channel currents remained largely unchanged. Calcium-sensing receptors were detected in MNTB neurons, but blocking these receptors did not eliminate the effects of high calcium on spontaneous spiking. We attribute the lack of significant effects in these last two experiments to the moderate changes in calcium we tested. Our results call for the use of physiological [Ca2+]e in brain slice experiments.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
4
|
Rajayer SR, Smith SM. Neurovirulent cytokines increase neuronal excitability in a model of coronavirus-induced neuroinflammation. Intensive Care Med Exp 2023; 11:71. [PMID: 37833408 PMCID: PMC10575822 DOI: 10.1186/s40635-023-00557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Neurological manifestations of severe coronavirus infections, including SARS-CoV-2, are wide-ranging and may persist following virus clearance. Detailed understanding of the underlying changes in brain function may facilitate the identification of therapeutic targets. We directly tested how neocortical function is impacted by the specific panel of cytokines that occur in coronavirus brain infection. Using the whole-cell patch-clamp technique, we determined how the five cytokines (TNFα, IL-1β, IL-6, IL-12p40 and IL-15 for 22-28-h) at concentrations matched to those elicited by MHV-A59 coronavirus brain infection, affected neuronal function in cultured primary mouse neocortical neurons. RESULTS We evaluated how acute cytokine exposure affected neuronal excitability (propensity to fire action potentials), membrane properties, and action potential characteristics, as well as sensitivity to changes in extracellular calcium and magnesium (divalent) concentration. Neurovirulent cytokines increased spontaneous excitability and response to low divalent concentration by depolarizing the resting membrane potential and hyperpolarizing the action potential threshold. Evoked excitability was also enhanced by neurovirulent cytokines at physiological divalent concentrations. At low divalent concentrations, the change in evoked excitability was attenuated. One hour after cytokine removal, spontaneous excitability and hyperpolarization of the action potential threshold normalized but membrane depolarization and attenuated divalent-dependent excitability persisted. CONCLUSIONS Coronavirus-associated cytokine exposure increases spontaneous excitability in neocortical neurons, and some of the changes persist after cytokine removal.
Collapse
Affiliation(s)
- Salil R Rajayer
- Section of Pulmonary, Critical Care, Allergy, and Sleep Medicine, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Road, R&D 24, Portland, OR, 97239, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Stephen M Smith
- Section of Pulmonary, Critical Care, Allergy, and Sleep Medicine, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Road, R&D 24, Portland, OR, 97239, USA.
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Cobb-Lewis DE, Sansalone L, Khaliq ZM. Contributions of the Sodium Leak Channel NALCN to Pacemaking of Medial Ventral Tegmental Area and Substantia Nigra Dopaminergic Neurons. J Neurosci 2023; 43:6841-6853. [PMID: 37640554 PMCID: PMC10573758 DOI: 10.1523/jneurosci.0930-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
We tested the role of the sodium leak channel, NALCN, in pacemaking of dopaminergic neuron (DAN) subpopulations from adult male and female mice. In situ hybridization revealed NALCN RNA in all DANs, with lower abundance in medial ventral tegmental area (VTA) relative to substantia nigra pars compacta (SNc). Despite lower relative abundance of NALCN, we found that acute pharmacological blockade of NALCN in medial VTA DANs slowed pacemaking by 49.08%. We also examined the electrophysiological properties of projection-defined VTA DAN subpopulations identified by retrograde labeling. Inhibition of NALCN reduced pacemaking in DANs projecting to medial nucleus accumbens (NAc) and others projecting to lateral NAc by 70.74% and 31.98%, respectively, suggesting that NALCN is a primary driver of pacemaking in VTA DANs. In SNc DANs, potentiating NALCN by lowering extracellular calcium concentration speeded pacemaking in wildtype but not NALCN conditional knockout mice, demonstrating functional presence of NALCN. In contrast to VTA DANs, however, pacemaking in SNc DANs was unaffected by inhibition of NALCN. Instead, we found that inhibition of NALCN increased the gain of frequency-current plots at firing frequencies slower than spontaneous firing. Similarly, inhibition of the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance increased gain but had little effect on pacemaking. Interestingly, simultaneous inhibition of NALCN and HCN resulted in significant reduction in pacemaker rate. Thus, we found NALCN makes substantial contributions to driving pacemaking in VTA DAN subpopulations. In SNc DANs, NALCN is not critical for pacemaking but inhibition of NALCN makes cells more sensitive to hyperpolarizing stimuli.SIGNIFICANCE STATEMENT Pacemaking in midbrain dopaminergic neurons (DAN) relies on multiple subthreshold conductances, including a sodium leak. Whether the sodium leak channel, NALCN, contributes to pacemaking in DANs located in the VTA and the SNc has not yet been determined. Using electrophysiology and pharmacology, we show that NALCN plays a prominent role in driving pacemaking in projection-defined VTA DAN subpopulations. By contrast, pacemaking in SNc neurons does not rely on NALCN. Instead, the presence of NALCN regulates the excitability of SNc DANs by reducing the gain of the neuron's response to inhibitory stimuli. Together, these findings will inform future efforts to obtain DAN subpopulation-specific treatments for use in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dana E Cobb-Lewis
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lorenzo Sansalone
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Zayd M Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
6
|
Zhang P, Maruoka M, Suzuki R, Katani H, Dou Y, Packwood DM, Kosako H, Tanaka M, Suzuki J. Extracellular calcium functions as a molecular glue for transmembrane helices to activate the scramblase Xkr4. Nat Commun 2023; 14:5592. [PMID: 37696806 PMCID: PMC10495444 DOI: 10.1038/s41467-023-40934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023] Open
Abstract
The "eat me" signal, phosphatidylserine is exposed on the surface of dying cells by phospholipid scrambling. Previously, we showed that the Xkr family protein Xkr4 is activated by caspase-mediated cleavage and binding of the XRCC4 fragment. Here, we show that extracellular calcium is an additional factor needed to activate Xkr4. The constitutively active mutant of Xkr4 is found to induce phospholipid scrambling in an extracellular, but not intracellular, calcium-dependent manner. Importantly, other Xkr family members also require extracellular calcium for activation. Alanine scanning shows that D123 and D127 of TM1 and E310 of TM3 coordinate calcium binding. Moreover, lysine scanning demonstrates that the E310K mutation-mediated salt bridge between TM1 and TM3 bypasses the requirement of calcium. Cysteine scanning proves that disulfide bond formation between TM1 and TM3 also activates phospholipid scrambling without calcium. Collectively, this study shows that extracellular calcium functions as a molecular glue for TM1 and TM3 of Xkr proteins for activation, thus demonstrating a regulatory mechanism for multi-transmembrane region-containing proteins.
Collapse
Affiliation(s)
- Panpan Zhang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, 606-8501, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics (CiMPhy), Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
| | - Hikaru Katani
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
| | - Yu Dou
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, 606-8501, Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Motomu Tanaka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
- Center for Integrative Medicine and Physics (CiMPhy), Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, 606-8501, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
7
|
Murugan AK, Alzahrani AS. Potential impacts of SARS-CoV-2 on parathyroid: current advances and trends. Endocrine 2023; 81:391-408. [PMID: 37328666 DOI: 10.1007/s12020-023-03415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection affects several important organs including endocrine glands. Experimental studies demonstrated that the virus exploits the ACE2, a transmembrane glycoprotein on the cell surface as a receptor for cellular entry. This entry process is exclusively facilitated by other intracellular protein molecules such as TMPRSS2, furin, NRP1, and NRP2. Recent findings documented the involvement of the SARS-CoV-2 in inducing various parathyroid disorders including hypoparathyroidism and hypocalcemia, which received significant attention. This review extensively describes rapidly evolving knowledge on the potential part of SARS-CoV-2 in emerging various parathyroid disorders due to SARS-CoV-2 infection particularly parathyroid malfunction in COVID-19 cases, and post-COVID-19 conditions. Further, it presents the expression level of various molecules such as ACE2, TMPRSS2, furin, NRP1, and NRP2 in the parathyroid cells that facilitate the SARS-CoV-2 entry into the cell, and discusses the possible mechanism of parathyroid gland infection. Besides, it explores parathyroid malfunction in COVID-19 vaccine-administered cases. It also explains the possible long-COVID-19 effect on parathyroid and post-COVID-19 management of parathyroid. A complete understanding of the mechanisms of SARS-CoV-2-triggered pathogenesis in parathyroid dysfunctions may curtail treatment options and aid in the management of SARS-CoV-2-infected cases.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Division of Molecular Endocrinology, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Ali S Alzahrani
- Division of Molecular Endocrinology, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
8
|
Wang H, Peng K, Curry RJ, Li D, Wang Y, Wang X, Lu Y. Group I metabotropic glutamate receptor-triggered temporally patterned action potential-dependent spontaneous synaptic transmission in mouse MNTB neurons. Hear Res 2023; 435:108822. [PMID: 37285615 PMCID: PMC10330867 DOI: 10.1016/j.heares.2023.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.
Collapse
Affiliation(s)
- Huimei Wang
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kang Peng
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dong Li
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
9
|
Boal AM, McGrady NR, Holden JM, Risner ML, Calkins DJ. Retinal ganglion cells adapt to ionic stress in experimental glaucoma. Front Neurosci 2023; 17:1142668. [PMID: 37051140 PMCID: PMC10083336 DOI: 10.3389/fnins.2023.1142668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionIdentification of early adaptive and maladaptive neuronal stress responses is an important step in developing targeted neuroprotective therapies for degenerative disease. In glaucoma, retinal ganglion cells (RGCs) and their axons undergo progressive degeneration resulting from stress driven by sensitivity to intraocular pressure (IOP). Despite therapies that can effectively manage IOP many patients progress to vision loss, necessitating development of neuronal-based therapies. Evidence from experimental models of glaucoma indicates that early in the disease RGCs experience altered excitability and are challenged with dysregulated potassium (K+) homeostasis. Previously we demonstrated that certain RGC types have distinct excitability profiles and thresholds for depolarization block, which are associated with sensitivity to extracellular K+.MethodsHere, we used our inducible mouse model of glaucoma to investigate how RGC sensitivity to K+ changes with exposure to elevated IOP.ResultsIn controls, conditions of increased K+ enhanced membrane depolarization, reduced action potential generation, and widened action potentials. Consistent with our previous work, 4 weeks of IOP elevation diminished RGC light-and current-evoked responses. Compared to controls, we found that IOP elevation reduced the effects of increased K+ on depolarization block threshold, with IOP-exposed cells maintaining greater excitability. Finally, IOP elevation did not alter axon initial segment dimensions, suggesting that structural plasticity alone cannot explain decreased K+ sensitivity.DiscussionThus, in response to prolonged IOP elevation RGCs undergo an adaptive process that reduces sensitivity to changes in K+ while diminishing excitability. These experiments give insight into the RGC response to IOP stress and lay the groundwork for mechanistic investigation into targets for neuroprotective therapy.
Collapse
|
10
|
Shoenhard H, Jain RA, Granato M. The calcium-sensing receptor (CaSR) regulates zebrafish sensorimotor decision making via a genetically defined cluster of hindbrain neurons. Cell Rep 2022; 41:111790. [PMID: 36476852 PMCID: PMC9813870 DOI: 10.1016/j.celrep.2022.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Decision making is a fundamental nervous system function that ranges widely in complexity and speed of execution. We previously established larval zebrafish as a model for sensorimotor decision making and identified the G-protein-coupled calcium-sensing receptor (CaSR) to be critical for this process. Here, we report that CaSR functions in neurons to dynamically regulate the bias between two behavioral outcomes: escapes and reorientations. By employing a computational guided transgenic strategy, we identify a genetically defined neuronal cluster in the hindbrain as a key candidate site for CaSR function. Finally, we demonstrate that transgenic CaSR expression targeting this cluster consisting of a few hundred neurons shifts behavioral bias in wild-type animals and restores decision making deficits in CaSR mutants. Combined, our data provide a rare example of a G-protein-coupled receptor that biases vertebrate sensorimotor decision making via a defined neuronal cluster.
Collapse
Affiliation(s)
- Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roshan A Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Cherkashin AP, Rogachevskaja OA, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca 2+ in the Extracellular Medium. Cells 2022; 11:1369. [PMID: 35456048 PMCID: PMC9030112 DOI: 10.3390/cells11081369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5-5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislav S. Kolesnikov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (A.P.C.); (O.A.R.); (N.V.K.); (P.D.K.); (M.F.B.)
| |
Collapse
|
12
|
Won EJ, Byeon E, Lee YH, Jeong H, Lee Y, Kim MS, Jo HW, Moon JK, Wang M, Lee JS, Shin KH. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. MARINE POLLUTION BULLETIN 2022; 175:113396. [PMID: 35149311 PMCID: PMC8824532 DOI: 10.1016/j.marpolbul.2022.113396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/06/2023]
Abstract
The increased use of disinfectants due to the spread of the novel coronavirus infection (e.g. COVID-19) has caused burden in the environment but knowledge on its ecotoxicological impact on the estuary environment is limited. Here we report in vivo and molecular endpoints that we used to assess the effects of chloroxylenol (PCMX) and benzalkonium chloride (BAC), which are ingredients in liquid handwash, dish soap products, and sanitizers used by consumers and healthcare workers on the estuarine rotifer Brachionus koreanus. PCMX and BAC significantly affected the life table parameters of B. koreanus. These chemicals modulated the activities of antioxidant enzymes such as superoxide dismutase and catalase and increased reactive oxygen species even at low concentrations. Also, PCMX and BAC caused alterations in the swimming speed and rotation rate of B. koreanus. Furthermore, an RNA-seq-based ingenuity pathway analysis showed that PCMX affected several signaling pathways, allowing us to predict that a low concentration of PCMX will have deleterious effects on B. koreanus. The neurotoxic and mitochondrial dysfunction event scenario induced by PCMX reflects the underlying molecular mechanisms by which PCMX produces outcomes deleterious to aquatic organisms.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, South Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyeong-Wook Jo
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, South Korea
| | - Joon-Kwan Moon
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, South Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
13
|
Effects of divalent cations on Schaffer collateral axon function. Exp Brain Res 2021; 239:3045-3057. [PMID: 34363514 DOI: 10.1007/s00221-020-06026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/24/2020] [Indexed: 10/20/2022]
Abstract
Previously, we reported that distal Schaffer collaterals undergo biphasic changes in excitability during high-frequency stimulation (HFS), with an early hyper-excitability period followed by an excitability depression period. The extracellular divalent cations calcium and magnesium can regulate membrane excitability in neuronal tissue. Therefore, we hypothesized that altering the concentrations of extracellular calcium and magnesium would alter the biphasic excitability changes. We tested this hypothesis by recording distal Schaffer collateral fiber volleys in stratum radiatum of hippocampal area CA1 during 100 Hz HFS in artificial cerebral spinal fluid (ACSF) containing normal and altered concentrations of extracellular divalent cations. Our normal ACSF contained 2.0 mM calcium and 2.0 mM magnesium. We examined four solutions with altered divalent cation concentrations: (1) high-calcium/low-magnesium (3.8 mM/0.2 mM), (2) low-calcium/high-magnesium (0.2 mM/3.8 mM), (3) high-calcium/normal-magnesium (3.8 mM/2.0 mM), or (4) normal-calcium/high-magnesium (2.0 mM/10.0 mM), and assessed the effects on Schaffer collateral responses. Increasing or decreasing extracellular calcium enhanced or reduced (respectively) the early hyper-excitable period whereas increasing extracellular magnesium reduced the later excitability depression. Because these results might be explained by altered calcium influx through voltage-gated calcium (CaV) channels, we tested CaV blockers (ω-agatoxin IVA, ω-conotoxin-GVIA, cadmium), but observed no effects on responses during HFS. Some of the effects of altered divalent cation concentration may be explained by altered membrane surface charge. Although this mechanism does not completely explain our findings, calcium influx through CaV channels is not required.
Collapse
|
14
|
Biochemical analysis of serum mineral and vitamin levels in benign essential blepharospasm. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.924395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Ryczko D, Hanini‐Daoud M, Condamine S, Bréant BJB, Fougère M, Araya R, Kolta A. S100β‐mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. J Physiol 2020; 599:677-707. [DOI: 10.1113/jp280501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dimitri Ryczko
- Département de Neurosciences Université de Montréal Montréal QC Canada
- Département de Pharmacologie‐Physiologie Université de Sherbrooke Sherbrooke QC Canada
- Centre de recherche du CHUS Sherbrooke QC Canada
- Institut de Pharmacologie de Sherbrooke Sherbrooke QC Canada
- Centre d'excellence en neurosciences de l'Université de Sherbrooke Sherbrooke QC Canada
| | | | - Steven Condamine
- Département de Neurosciences Université de Montréal Montréal QC Canada
| | | | - Maxime Fougère
- Département de Pharmacologie‐Physiologie Université de Sherbrooke Sherbrooke QC Canada
| | - Roberto Araya
- Département de Neurosciences Université de Montréal Montréal QC Canada
| | - Arlette Kolta
- Département de Neurosciences Université de Montréal Montréal QC Canada
- Faculté de Médecine Dentaire Université de Montréal Montréal QC Canada
| |
Collapse
|
16
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
17
|
Serefoglu Cabuk K, Tunc U, Ozturk Karabulut G, Fazil K, Karaagac Gunaydin Z, Asik Nacaroglu S, Taskapili M. Serum calcium, magnesium, phosphorus, and vitamin D in benign essential blepharospasm. Graefes Arch Clin Exp Ophthalmol 2020; 258:1293-1297. [PMID: 32236706 DOI: 10.1007/s00417-020-04650-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This study aims to compare serum calcium, magnesium, phosphorus, and 25-hydroxy (OH)-vitamin D levels in patients with benign essential blepharospasm (BEB) and healthy subjects and to determine their association with disease severity and frequency. METHODS This is a prospective study conducted in a tertiary care hospital. Fifty patients (female, 39; male, 11) with BEB and 22 healthy subjects (female, 15; male, 7) included in the study. Serum calcium, magnesium, phosphorus, and vitamin D levels of BEB and healthy groups were measured. Blepharospasm severity and frequency were assessed using scales ranging from 0 to 4 by following the Jankovic Rating Scale (JRS). RESULTS Though there was no significant difference regarding magnesium, phosphorus, and 25(OH)-vitamin D levels between the two groups, serum calcium levels of the BEB group were significantly lower than the control group (9.5 ± 0.4 and 9.9 ± 0.4 mg/dl, respectively; P = 0.002), although in the normal range (9-10.5 mg/dl). In the BEB group, the mean Jankovic severity and frequency scores were 3.29 ± 0.54 and 3.59 ± 0.61, respectively. There was a moderate negative correlation between serum 25(OH)-vitamin D levels and Jankovic severity score (r = - 0.332; P = 0.022). CONCLUSION Serum calcium levels of the BEB group were significantly lower than the healthy group. Serum vitamin D levels showed a moderate negative correlation with disease severity. The role of calcium and vitamin D in the evolution of the BEB need further investigation at the cellular and anatomical levels.
Collapse
Affiliation(s)
- Kubra Serefoglu Cabuk
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey.
| | - Ugur Tunc
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey
| | - Gamze Ozturk Karabulut
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey
| | - Korhan Fazil
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey
| | - Zehra Karaagac Gunaydin
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey
| | - Senay Asik Nacaroglu
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey
| | - Muhittin Taskapili
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Mahallesi, Bereketzade Camii Sokak, NO:2, Pbx: 34420 Beyoğlu, Istanbul, Turkey
| |
Collapse
|
18
|
Viotti JS, Dresbach T. Differential Effect on Hippocampal Synaptic Facilitation by the Presynaptic Protein Mover. Front Synaptic Neurosci 2019; 11:30. [PMID: 31803042 PMCID: PMC6873103 DOI: 10.3389/fnsyn.2019.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
Neurotransmitter release relies on an evolutionarily conserved presynaptic machinery. Nonetheless, some proteins occur in certain species and synapses, and are absent in others, indicating that they may have modulatory roles. How such proteins expand the power or versatility of the core release machinery is unclear. The presynaptic protein Mover/TPRGL/SVAP30 is heterogeneously expressed among synapses of the rodent brain, suggesting that it may add special functions to subtypes of presynaptic terminals. Mover is a synaptic vesicle-attached phosphoprotein that binds to Calmodulin and the active zone scaffolding protein Bassoon. Here we use a Mover knockout mouse line to investigate the role of Mover in the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse and Schaffer collateral to CA1. While Schaffer collateral synapses were unchanged by the knockout, the MFs showed strongly increased facilitation. The effect of Mover knockout in facilitation was both calcium- and age-dependent, having a stronger effect at higher calcium concentrations and in younger animals. Increasing cyclic adenosine monophosphate (cAMP) levels by forskolin equally potentiated both wildtype and knockout MF synapses, but occluded the increased facilitation observed in the knockout. These discoveries suggest that Mover has distinct roles at different synapses. At MF terminals, it acts to constrain the extent of presynaptic facilitation.
Collapse
Affiliation(s)
| | - Thomas Dresbach
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells. Exp Mol Med 2019; 51:1-14. [PMID: 31601786 PMCID: PMC6802672 DOI: 10.1038/s12276-019-0325-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The sodium leak channel NALCN is a key player in establishing the resting membrane potential (RMP) in neurons and transduces changes in extracellular Ca2+ concentration ([Ca2+]e) into increased neuronal excitability as the downstream effector of calcium-sensing receptor (CaSR). Gain-of-function mutations in the human NALCN gene cause encephalopathy and severe intellectual disability. Thus, understanding the regulatory mechanisms of NALCN is important for both basic and translational research. This study reveals a novel mechanism for NALCN regulation by arginine methylation. Hippocampal dentate granule cells in protein arginine methyltransferase 7 (PRMT7)-deficient mice display a depolarization of the RMP, decreased threshold currents, and increased excitability compared to wild-type neurons. Electrophysiological studies combined with molecular analysis indicate that enhanced NALCN activities contribute to hyperexcitability in PRMT7−/− neurons. PRMT7 depletion in HEK293T cells increases NALCN activity by shifting the dose-response curve of NALCN inhibition by [Ca2+]e without affecting NALCN protein levels. In vitro methylation studies show that PRMT7 methylates a highly conserved Arg1653 of the NALCN gene located in the carboxy-terminal region that is implicated in CaSR-mediated regulation. A kinase-specific phosphorylation site prediction program shows that the adjacent Ser1652 is a potential phosphorylation site. Consistently, our data from site-specific mutants and PKC inhibitors suggest that Arg1653 methylation might modulate Ser1652 phosphorylation mediated by CaSR/PKC-delta, leading to [Ca2+]e-mediated NALCN suppression. Collectively, these data suggest that PRMT7 deficiency decreases NALCN methylation at Arg1653, which, in turn, decreases CaSR/PKC-mediated Ser1652 phosphorylation, lifting NALCN inhibition, thereby enhancing neuronal excitability. Thus, PRMT7-mediated NALCN inhibition provides a potential target for the development of therapeutic tools for neurological diseases. The addition of a methyl group to an arginine residue on the ion channel NALCN contributes to suppress the activity of this membrane protein and reduces neuronal excitability. Hana Cho, Jong-Sun Kang and colleagues at Sungkyunkwan University in South Korea found that neurons in the hippocampus of mice lacking an enzyme that mediates the transfer of methyl groups to proteins have increased NALCN activity and are more likely to fire an electrical signal. Furthermore, they showed that NALCN methylation facilitates the phosphorylation of an adjacent amino acid that prevents channel activation in response to extracellular calcium concentrations. These findings suggest that NALCN methylation has a key role in regulating the channel’s sensitivity to calcium. Moreover, they reveal a new mechanism for regulating neuronal excitability that could be targeted therapeutically to ameliorate diseases characterised by neuronal hyperexcitability.
Collapse
|
20
|
The Nervous System Relevance of the Calcium Sensing Receptor in Health and Disease. Molecules 2019; 24:molecules24142546. [PMID: 31336912 PMCID: PMC6680999 DOI: 10.3390/molecules24142546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023] Open
Abstract
The calcium sensing receptor (CaSR) was first identified in parathyroid glands, and its primary role in controlling systemic calcium homeostasis by the regulation of parathyroid hormone (PTH) secretion has been extensively described in literature. Additionally, the receptor has also been investigated in cells and tissues not directly involved in calcium homeostasis, e.g., the nervous system (NS), where it plays crucial roles in early neural development for the differentiation of neurons and glial cells, as well as in the adult nervous system for synaptic transmission and plasticity. Advances in the knowledge of the CaSR's function in such physiological processes have encouraged researchers to further broaden the receptor's investigation in the neuro-pathological conditions of the NS. Interestingly, pre-clinical data suggest that receptor inhibition by calcilytics might be effective in counteracting the pathomechanism underlying Alzheimer's disease and ischemia, while a CaSR positive modulation with calcimimetics has been proposed as a potential approach for treating neuroblastoma. Importantly, such promising findings led to the repurposing of CaSR modulators as novel pharmacological alternatives for these disorders. Therefore, the aim of this review article is to critically appraise evidence which, so far, has been yielded from the investigation of the role of the CaSR in physiology of the nervous system and to focus on the most recent emerging concepts which have reported the receptor as a therapeutic target for neurodegeneration and neuroblastic tumors.
Collapse
|
21
|
Sensory Axon Growth Requires Spatiotemporal Integration of CaSR and TrkB Signaling. J Neurosci 2019; 39:5842-5860. [PMID: 31123102 DOI: 10.1523/jneurosci.0027-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Neural circuit development involves the coordinated growth and guidance of axons. During this process, axons encounter many different cues, but how these cues are integrated and translated into growth is poorly understood. In this study, we report that receptor signaling does not follow a linear path but changes dependent on developmental stage and coreceptors involved. Using developing chicken embryos of both sexes, our data show that calcium-sensing receptor (CaSR), a G-protein-coupled receptor important for regulating calcium homeostasis, regulates neurite growth in two distinct ways. First, when signaling in isolation, CaSR promotes growth through the PI3-kinase-Akt pathway. At later developmental stages, CaSR enhances tropomyosin receptor kinase B (TrkB)/BDNF-mediated neurite growth. This enhancement is facilitated through a switch in the signaling cascade downstream of CaSR (i.e., from the PI3-kinase-Akt pathway to activation of GSK3α Tyr279). TrkB and CaSR colocalize within late endosomes, cotraffic and coactivate GSK3, which serves as a shared signaling node for both receptors. Our study provides evidence that two unrelated receptors can integrate their individual signaling cascades toward a nonadditive effect and thus control neurite growth during development.SIGNIFICANCE STATEMENT This work highlights the effect of receptor coactivation and signal integration in a developmental setting. During embryonic development, neurites grow toward their targets guided by cues in the extracellular environment. These cues are sensed by receptors at the surface that trigger intracellular signaling events modulating the cytoskeleton. Emerging evidence suggests that the effects of guidance cues are diversified, therefore expanding the number of responses. Here, we show that two unrelated receptors can change the downstream signaling cascade and regulate neuronal growth through a shared signaling node. In addition to unraveling a novel signaling pathway in neurite growth, this research stresses the importance of receptor coactivation and signal integration during development of the nervous system.
Collapse
|
22
|
Forsberg M, Seth H, Björefeldt A, Lyckenvik T, Andersson M, Wasling P, Zetterberg H, Hanse E. Ionized calcium in human cerebrospinal fluid and its influence on intrinsic and synaptic excitability of hippocampal pyramidal neurons in the rat. J Neurochem 2019; 149:452-470. [PMID: 30851210 DOI: 10.1111/jnc.14693] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
It is well-known that the extracellular concentration of calcium affects neuronal excitability and synaptic transmission. Less is known about the physiological concentration of extracellular calcium in the brain. In electrophysiological brain slice experiments, the artificial cerebrospinal fluid traditionally contains relatively high concentrations of calcium (2-4 mM) to support synaptic transmission and suppress neuronal excitability. Using an ion-selective electrode, we determined the fraction of ionized calcium in healthy human cerebrospinal fluid to 1.0 mM of a total concentration of 1.2 mM (86%). Using patch-clamp and extracellular recordings in the CA1 region in acute slices of rat hippocampus, we then compared the effects of this physiological concentration of calcium with the commonly used 2 mM on neuronal excitability, synaptic transmission, and long-term potentiation (LTP) to examine the magnitude of changes in this range of extracellular calcium. Increasing the total extracellular calcium concentration from 1.2 to 2 mM decreased spontaneous action potential firing, induced a depolarization of the threshold, and increased the rate of both de- and repolarization of the action potential. Evoked synaptic transmission was approximately doubled, with a balanced effect between inhibition and excitation. In 1.2 mM calcium high-frequency stimulation did not result in any LTP, whereas a prominent LTP was observed at 2 or 4 mM calcium. Surprisingly, this inability to induce LTP persisted during blockade of GABAergic inhibition. In conclusion, an increase from the physiological 1.2 mM to 2 mM calcium in the artificial cerebrospinal fluid has striking effects on neuronal excitability, synaptic transmission, and the induction of LTP. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 435.
Collapse
Affiliation(s)
- My Forsberg
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Seth
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Björefeldt
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Tim Lyckenvik
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Andersson
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, Queen Square, London, UK.,The Dementia Research Institute at UCL, London, UK
| | - Eric Hanse
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Antagonism of Ca 2+-sensing receptors by NPS 2143 is transiently masked by p38 activation in mouse brain bEND.3 endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:823-832. [PMID: 30826858 DOI: 10.1007/s00210-019-01637-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Ca2+-sensing receptors (CaSR) are G protein-coupled receptors which are activated by a rise in extracellular Ca2+. CaSR activation has been known to inhibit parathyroid hormone release and stimulate calcitonin release from parathyroid glands and thyroid parafollicular C cells, respectively. The roles of CaSR in other cell types including endothelial cells (EC) are much less understood. In this work, we demonstrated protein and functional expression of CaSR in mouse cerebral EC (bEND.3). Unexpectedly, CaSR response (high Ca2+-elicited cytosolic [Ca2+] elevation) was unaffected by edelfosine or U73122 but strongly suppressed by SK&F 96365, ruthenium red, and 2-aminoethoxydiphenyl borate (2-APB), suggesting involvement of TRPV and TRPC channels but not Gq-phospholipase C. Acute application of NPS2143, a negative allosteric modulator of CaSR, suppressed CaSR response. However, a 40-min NPS2143 pre-treatment surprisingly enhanced CaSR response. After 4-24 h of application, this enhancement faded away and suppression of CaSR response was observed again. Similar results were obtained when La3+ and Sr2+ were used as CaSR agonists. The transient NPS 2143 enhancement effect was abolished by SB203580, a p38 inhibitor. Consistently, NPS 2143 triggered a transient p38 activation. Taken together, results suggest that in bEND.3 cells, NPS 2143 caused acute suppression of CaSR response, but then elicited a transient enhancement of CaSR response in a p38-dependent manner. NPS 2143 effects on CaSR in bEND.3 cells therefore depended on drug exposure time. These findings warrant cautious use of this agent as a CaSR modulator and potential cardiovascular drug.
Collapse
|
24
|
Cid-Castro C, Hernández-Espinosa DR, Morán J. ROS as Regulators of Mitochondrial Dynamics in Neurons. Cell Mol Neurobiol 2018; 38:995-1007. [PMID: 29687234 DOI: 10.1007/s10571-018-0584-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolina Cid-Castro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico
| | - Diego Rolando Hernández-Espinosa
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico.
| |
Collapse
|
25
|
Okada S, Bartelle BB, Li N, Breton-Provencher V, Lee JJ, Rodriguez E, Melican J, Sur M, Jasanoff A. Calcium-dependent molecular fMRI using a magnetic nanosensor. NATURE NANOTECHNOLOGY 2018; 13:473-477. [PMID: 29713073 PMCID: PMC6086382 DOI: 10.1038/s41565-018-0092-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin B Bartelle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent Breton-Provencher
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiyoung J Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elisenda Rodriguez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James Melican
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mriganka Sur
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
26
|
Tang L, Jiang L, McIntyre ME, Petrova E, Cheng SX. Calcimimetic acts on enteric neuronal CaSR to reverse cholera toxin-induced intestinal electrolyte secretion. Sci Rep 2018; 8:7851. [PMID: 29777154 PMCID: PMC5959902 DOI: 10.1038/s41598-018-26171-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Treatment of acute secretory diarrheal illnesses remains a global challenge. Enterotoxins produce secretion through direct epithelial action and indirectly by activating enteric nervous system (ENS). Using a microperfused colonic crypt technique, we have previously shown that R568, a calcimimetic that activates the calcium-sensing receptor (CaSR), can act on intestinal epithelium and reverse cholera toxin-induced fluid secretion. In the present study, using the Ussing chamber technique in conjunction with a tissue-specific knockout approach, we show that the effects of cholera toxin and CaSR agonists on electrolyte secretion by the intestine can also be attributed to opposing actions of the toxin and CaSR on the activity of the ENS. Our results suggest that targeting intestinal CaSR might represent a previously undescribed new approach for treating secretory diarrheal diseases and other conditions with ENS over-activation.
Collapse
Affiliation(s)
- Lieqi Tang
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Lingli Jiang
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Megan E McIntyre
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Ekaterina Petrova
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sam X Cheng
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA. .,Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
Jain RA, Wolman MA, Marsden KC, Nelson JC, Shoenhard H, Echeverry FA, Szi C, Bell H, Skinner J, Cobbs EN, Sawada K, Zamora AD, Pereda AE, Granato M. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Curr Biol 2018; 28:1357-1369.e5. [PMID: 29681477 DOI: 10.1016/j.cub.2018.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/24/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.
Collapse
Affiliation(s)
- Roshan A Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA.
| | - Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Christina Szi
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emilia N Cobbs
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Keisuke Sawada
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Amy D Zamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Silva RBM, Greggio S, Venturin GT, da Costa JC, Gomez MV, Campos MM. Beneficial Effects of the Calcium Channel Blocker CTK 01512-2 in a Mouse Model of Multiple Sclerosis. Mol Neurobiol 2018; 55:9307-9327. [PMID: 29667130 DOI: 10.1007/s12035-018-1049-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Abstract
Voltage-gated calcium channels (VGCCs) play a critical role in neuroinflammatory diseases, such as multiple sclerosis (MS). CTK 01512-2 is a recombinant version of the peptide Phα1β derived from the spider Phoneutria nigriventer, which inhibits N-type VGCC/TRPA1-mediated calcium influx. We investigated the effects of this molecule in the mouse model of experimental autoimmune encephalomyelitis (EAE). The effects of CTK 01512-2 were compared to those displayed by ziconotide-a selective N-type VGCC blocker clinically used for chronic pain-and fingolimod-a drug employed for MS treatment. The intrathecal (i.t.) treatment with CTK 01512-2 displayed beneficial effects, by preventing nociception, body weight loss, splenomegaly, MS-like clinical and neurological scores, impaired motor coordination, and memory deficits, with an efficacy comparable to that observed for ziconotide and fingolimod. This molecule displayed a favorable profile on EAE-induced neuroinflammatory changes, including inflammatory infiltrate, demyelination, pro-inflammatory cytokine production, glial activation, and glucose metabolism in the brain and spinal cord. The recovery of spatial memory, besides a reduction of serum leptin levels, allied to central and peripheral elevation of the anti-inflammatory cytokine IL-10, was solely modulated by CTK 01512-2, dosed intrathecally. The intravenous (i.v.) administration of CTK 01512-2 also reduced the EAE-elicited MS-like symptoms, similarly to that seen in animals that received fingolimod orally. Ziconotide lacked any significant effect when dosed by i.v. route. Our results indicate that CTK 01512-2 greatly improved the neuroinflammatory responses in a mouse model of MS, with a higher efficacy when compared to ziconotide, pointing out this molecule as a promising adjuvant for MS management.
Collapse
Affiliation(s)
- Rodrigo B M Silva
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.,Escola de Ciências da Saúde, Centro de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.,Escola de Ciências da Saúde, Curso de Graduação em Biomedicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
| | - Gianina T Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - Jaderson C da Costa
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - Marcus V Gomez
- Núcleo de Pós-Graduação, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, 30150-240, Brazil
| | - Maria M Campos
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil. .,Escola de Ciências da Saúde, Centro de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil. .,Escola de Ciências da Saúde, Curso de Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil. .,Escola de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| |
Collapse
|
29
|
Julliard AK, Al Koborssy D, Fadool DA, Palouzier-Paulignan B. Nutrient Sensing: Another Chemosensitivity of the Olfactory System. Front Physiol 2017; 8:468. [PMID: 28747887 PMCID: PMC5506222 DOI: 10.3389/fphys.2017.00468] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders.
Collapse
Affiliation(s)
- A-Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/Centre National de la Recherche Scientifique UMR5292 Team Olfaction: From Coding to MemoryLyon, France
| | - Dolly Al Koborssy
- Department of Biological Science, Florida State UniversityTallahassee, FL, United States.,Program in Neuroscience, Florida State UniversityTallahassee, FL, United States
| | - Debra A Fadool
- Department of Biological Science, Florida State UniversityTallahassee, FL, United States.,Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, United States
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/Centre National de la Recherche Scientifique UMR5292 Team Olfaction: From Coding to MemoryLyon, France
| |
Collapse
|
30
|
Lin JJ, Lin Y, Zhao TZ, Zhang CK, Zhang T, Chen XL, Ding JQ, Chang T, Zhang Z, Sun C, Zhao DD, Zhu JL, Li ZY, Li JL. Melatonin Suppresses Neuropathic Pain via MT2-Dependent and -Independent Pathways in Dorsal Root Ganglia Neurons of Mice. Am J Cancer Res 2017; 7:2015-2032. [PMID: 28656058 PMCID: PMC5485420 DOI: 10.7150/thno.19500] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin (Mel) and its receptors (MT1 and MT2) have a well-documented efficacy in treating different pain conditions. However, the anti-nociceptive effects of Mel and Mel receptors in neuropathic pain (NP) are poorly understood. To elucidate this process, pain behaviors were measured in a dorsal root ganglia (DRG)-friendly sciatic nerve cuffing model. We detected up-regulation of MT2 expression in the DRGs of cuff-implanted mice and its activation by the agonist 8-M-PDOT (8MP). Also, Mel attenuated the mechanical and thermal allodynia induced by cuff implantation. Immunohistochemical analysis demonstrated the expression of MT2 in the DRG neurons, while MT1 was expressed in the satellite cells. In cultured primary neurons, microarray analysis and gene knockdown experiments demonstrated that MT2 activation by 8MP or Mel suppressed calcium signaling pathways via MAPK1, which were blocked by RAR-related orphan receptor alpha (RORα) activation with a high dose of Mel. Furthermore, expression of nitric oxide synthase 1 (NOS1) was down-regulated upon Mel treatment regardless of MT2 or RORα. Application of Mel or 8MP in cuff-implanted models inhibited the activation of peptidergic neurons and neuro-inflammation in the DRGs by down-regulating c-fos, calcitonin gene-related peptide [CGRP], and tumor necrosis factor-1α [TNF-1α] and interleukin-1β [IL-1β]. Addition of the MT2 antagonist luzindole blocked the effects of 8MP but not those of Mel. In conclusion, only MT2 was expressed in the DRG neurons and up-regulated upon cuff implantation. The analgesic effects of Mel in cuff-implanted mice were closely associated with both MT2-dependent (MAPK-calcium channels) and MT2-independent (NOS1) pathways in the DRG.
Collapse
|
31
|
Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca 2. Int J Mol Sci 2017; 18:ijms18030672. [PMID: 28335551 PMCID: PMC5372683 DOI: 10.3390/ijms18030672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/24/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs.
Collapse
|
32
|
Sun JF, Yang HL, Huang YH, Chen Q, Cao XB, Li DP, Shu HM, Jiang RY. CaSR and calpain contribute to the ischemia reperfusion injury of spinal cord. Neurosci Lett 2017; 646:49-55. [PMID: 28284837 DOI: 10.1016/j.neulet.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
Spinal cord ischemia reperfusion injury (SCIRI) can cause spinal cord dysfunction and even devastating paraplegia. Calcium-sensing receptor (CaSR) and calpain are two calcium related molecules which have been reported to be involved in the ischemia reperfusion injury of cardiomyocytes and the subsequent apoptosis. Here, we studied the expression of CaSR and calpain in spinal cord neurons and tissues, followed by the further investigation of the role of CaSR/calpain axis in the cellular apoptosis process during SCIRI. The results of in vitro and in vivo studies showed that the expression of CaSR and calpain in spinal cord neurons increased during SCIRI. Moreover, the CaSR agonist GdCl3 and antagonist NPS-2390 enhanced or decreased the expression of CaSR and calpain respectively. The expressions of CaSR and calpain were also consistent with the cellular apoptosis in spinal cord. Taken together, CaSR-calpain contributes to the SCIRI apoptosis, and CaSR antagonist might be a helpful drug for alleviating SCIRI.
Collapse
Affiliation(s)
- Ji-Fu Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Hui-Lin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu, China.
| | - Yong-Hui Huang
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Qian Chen
- Department of Histology and Embryology, Medical School of Jiangsu University, Jiangsu, China
| | - Xing-Bing Cao
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Da-Peng Li
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Hao-Ming Shu
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Run-Yu Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Jiangsu University, Jiangsu, China
| |
Collapse
|
33
|
Hendy GN, Canaff L. Calcium-Sensing Receptor Gene: Regulation of Expression. Front Physiol 2016; 7:394. [PMID: 27679579 PMCID: PMC5020072 DOI: 10.3389/fphys.2016.00394] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.
Collapse
Affiliation(s)
- Geoffrey N Hendy
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| | - Lucie Canaff
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| |
Collapse
|
34
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
35
|
Voltage Dependence of a Neuromodulator-Activated Ionic Current. eNeuro 2016; 3:eN-NWR-0038-16. [PMID: 27257619 PMCID: PMC4874538 DOI: 10.1523/eneuro.0038-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca(2+), but that, in conditions of low Ca(2+), calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca(2+)/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR.
Collapse
|