1
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Saglia C, Arruga F, Scolari C, Kalantari S, Albanese S, Bracciamà V, Corso Faini A, Brach Del Prever G, Luca M, Romeo C, Mioli F, Migliorero M, Tessaris D, Carli D, Amoroso A, Vaisitti T, De Sanctis L, Deaglio S. Functional evaluation of a novel nonsense variant of the calcium-sensing receptor gene leading to hypocalcemia. Eur J Endocrinol 2024; 190:296-306. [PMID: 38561929 DOI: 10.1093/ejendo/lvae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE The calcium-sensing receptor (CASR) gene encodes a G protein-coupled receptor crucial for calcium homeostasis. Gain-of-function CASR variants result in hypocalcemia, while loss-of-function variants lead to hypercalcemia. This study aims to assess the functional consequences of the novel nonsense CASR variant [c.2897_2898insCTGA, p.(Gln967*) (Q967*)] identified in adolescent patient with chronic hypocalcemia, a phenotype expected for a gain-of-function variants. DESIGN AND METHODS To functionally characterize the Q967* mutant receptor, both wild-type (WT) and mutant CASR were transiently transfected into HEK293T cells and calcium-sensing receptor (CaSR) protein expression and functions were comparatively evaluated using multiple read-outs. RESULTS Western blot analysis revealed that the CaSR mutant protein displayed a lower molecular weight compared with the WT, consistent with the loss of the last 122 amino acids in the intracellular domain. Mitogen-activated protein kinase activation and serum responsive element luciferase assays demonstrated that the mutant receptor had higher baseline activity than the WT. Extracellular-signal-regulated kinase/c-Jun N-terminal kinase phosphorylation, however, remained consistently high in the mutant, without significant modulations following exposure to increasing extracellular calcium (Ca2+o) levels, suggesting that the mutant receptor is more sensitive to Ca2+o compared with the WT. CONCLUSIONS This study provides functional validation of the pathogenicity of a novel nonsense CASR variant, resulting in an abnormally hyperfunctioning protein consistent with the patient's phenotype. Functional analyses indicate that mutant receptor is constitutively active and poorly sensitive to increasing concentrations of extracellular calcium, suggesting that the cytoplasmic tail may contain elements regulating signal transduction.
Collapse
Affiliation(s)
- Claudia Saglia
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Caterina Scolari
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Silvia Kalantari
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Serena Albanese
- Department of Public Health and Pediatric Sciences, University of Torino, Torino 10126, Italy
- Pediatric Endocrinology, Regina Margherita Childrens' Hospital, Torino 10126, Italy
| | - Valeria Bracciamà
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Angelo Corso Faini
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Giulia Brach Del Prever
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Maria Luca
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Carmelo Romeo
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Fiorenza Mioli
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | | | - Daniele Tessaris
- Department of Public Health and Pediatric Sciences, University of Torino, Torino 10126, Italy
- Pediatric Endocrinology, Regina Margherita Childrens' Hospital, Torino 10126, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| | - Luisa De Sanctis
- Department of Public Health and Pediatric Sciences, University of Torino, Torino 10126, Italy
- Pediatric Endocrinology, Regina Margherita Childrens' Hospital, Torino 10126, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza Hospital, Turin 10126, Italy
| |
Collapse
|
3
|
Cao Y, Xiong Y, Sun H, Wang Z. Neurorescuing effect of Cinacalcet against hypercalcemia-induced nerve injury in chronic kidney disease via TRAF2/cIAP1/KLF2/SERPINA3 signal axis. Cell Biol Toxicol 2023; 39:1-17. [PMID: 35635602 DOI: 10.1007/s10565-022-09717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Hypercalcemia is a common complication in chronic kidney disease (CKD) and unfortunately contributes to nerve injury. This study aims to investigate the potential role and underlying mechanisms of Cinacalcet (CIN) in hypercalcemia-driven nerve injury in CKD. A CKD mouse model was first established by adenine feeding to identify the therapeutic effects of CIN. Molecules related to CIN and CKD were predicted by bioinformatics analysis and their expression in the kidney tissues of CKD mice was measured by immunochemistry. Gain- and loss-of-functions assays were performed both in vitro and in vivo to evaluate their effects on nerve injury in CKD, as reflected by Scr and BUN, and brain calcium content as well as behavior tests. CIN ameliorated hypercalcemia-driven nerve injury in CKD mice. Interactions among TRAF2, an E3-ubiquitin ligase, KLF2, and SERPINA3 were bioinformatically predicted on CIN effect. CIN restricted the ubiquitin-mediated degradation of KLF2 by downregulating TRAF2. KLF2 targeted and inversely regulated SERPINA3 to repress hypercalcemia-driven nerve injury in CKD. CIN was substantiated in vivo to ameliorate hypercalcemia-driven nerve injury in CKD mice through the TRAF2/KLF2/SERPINA3 regulatory axis. Together, CIN suppresses SERPINA3 expression via TRAF2-mediated inhibition of the ubiquitin-dependent degradation of KLF2, thus repressing hypercalcemia-induced nerve injury in CKD mice.
Collapse
Affiliation(s)
- Yaochen Cao
- The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, People's Republic of China
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Hongming Sun
- Department of Neurology, the Fourth Hospital of Daqing, Daqing, 163712, People's Republic of China.
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Ziqiang Wang
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
4
|
Meng KL, Jiao MZ, Shi XG, Xu R, Cheng PX, Lv HT, Zheng XH, Xiao CN. A rapid approach to capture the potential bioactive compounds from Rhizoma Drynariae, utilizing disease-associated mutation in calcium sensing receptor to alter the binding affinity for agonists. J Pharm Biomed Anal 2023; 226:115253. [PMID: 36657349 DOI: 10.1016/j.jpba.2023.115253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Rhizoma Drynariae (RD) was used clinically to treat osteoporosis in China due to stimulating bone formation and inhibiting bone resorption, however, the bioactive constituents with the dual effect on bone are still unknown exactly. Disease-causing mutations in calcium sensing receptor (CaSR) can alter parathyroid hormone secretion and affect Ca2+ release from bone and Ca2+ reabsorption from kidney, which gives an indication that CaSR is a potential target for developing therapeutics to manage osteoporosis. Herein, a chromatographic approach was established, by immobilizing the mutant CaSR onto the surface of silica gels as stationary phase in a one-step procedure and then adding the different amino acids into mobile phase as competitors, for exploring the binding features of the known agonists and further screening ligands from RD. The mutant CaSR-coated column was prepared rapidly without the complicated purification and separation of the receptor, which had the large capacity of 13.1 mg CaSR /g silica gels and kept a good stability and specificity for at least 35 days. The CaSR mutation can weaken the binding affinities for three agonists, and the largest decreases occurred on the mutational site Thr151Met for neomycin, on the two sites of Asn118Lys and Glu191Lys for gentamicin-C, and on the site Phe612Ser for kanamycin, which gained new insights into their structure-function relationship. The potential bioactive compounds from RD were screened using the mutant CaSR-coated column and were recognized as coumaric acid 4-O-β-D-glucopyranoside, caffeic acid, and naringin using UPLC-MS. Among them, naringin targeting CaSR gives a possible explanation that RD could manage osteoporosis. These results indicated that, such a rapid and simple method, utilizing disease-associated mutation in CaSR to alter the binding affinity for agonists, can be applied in capturing the potential bioactive compounds efficiently from complex matrices like herb medicines.
Collapse
Affiliation(s)
- Kai-Li Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Mei-Zhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xian-Gang Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Ru Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Pei-Xuan Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hui-Ting Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Chao-Ni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
5
|
Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. Front Physiol 2023; 13:1078569. [PMID: 36685206 PMCID: PMC9854345 DOI: 10.3389/fphys.2022.1078569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in many cell types - including immune cells and in particular circulating monocytes. Here, the receptor plays an important physiological role as a regulator of constitutive macropinocytosis. This review article provides an overview of the literature on the role of the calcium sensing receptor in the context of inflammatory processes. Special emphasis is laid upon the importance for monocytes in the context of rheumatoid arthritis. We have shown previously, that stimulation of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-inflammatory response due to NLRP3 inflammasome assembly and interleukin (IL)-1β release. The underlying mechanism includes macropinocytosis of calciprotein particles (CPPs), which are taken up in a [Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1β release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1β release is significantly increased due to increased expression of the receptor. Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1β release is associated with more active disease, while CaSR overexpression has been reported to be associated with cardiovascular complications of RA. Most importantly, however, in animal experiments with arthritic mice, increased local calcium concentrations are present, which in combination with release of fetuin-A from eroded bone could contribute to formation of CPPs. We propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a vicious cycle of inflammation and bone destruction which in turn offers new potential therapeutic approaches.
Collapse
|
6
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Shrivastava A, Mathur K, Verma RK, Jayadev Magani SK, Vyas DK, Singh A. Molecular dynamics study of tropical calcific pancreatitis (TCP) associated calcium-sensing receptor single nucleotide variation. Front Mol Biosci 2022; 9:982831. [PMID: 36275616 PMCID: PMC9581290 DOI: 10.3389/fmolb.2022.982831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
Tropical Calcific Pancreatitis (TCP) is a chronic non-alcoholic pancreatitis characterised by extensive calcification. The disease usually appears at a younger age and is more common in tropical regions. This disease’s progression can lead to pancreatic diabetes, which can subsequently lead to pancreatic cancer. The CASR gene encodes a calcium-sensing receptor (CaSR), which is a GPCR protein of class C. It is expressed in the islets of Langerhans, the parathyroid gland, and other tissues. It primarily detects small gradients in circulating calcium concentrations and couples this information to intracellular signalling, which helps to regulate PTH (parathyroid hormone) secretion and mineral ion homeostasis. From co-leading insulin release, CaSR modulates ductal HCO3− secretion, Ca2+ concentration, cell-cell communication, β-cell proliferation, and intracellular Ca2+ release. In pancreatic cancer, the CaSR limits cell proliferation. TCP-related four novel missense mutations P163R, I427S, D433H and V477A, found in CaSR extracellular domain (ECD) protein, which were reported in the mutTCPdb Database (https://lms.snu.edu.in/mutTCPDB/index.php). P163R mutation occurs in ligand-binding domain 1 (LBD-1) of the CaSR ECD. To investigate the influence of these variations on protein function and structural activity multiple in-silico prediction techniques such as SIFT, PolyPhen, CADD scores, and other methods have been utilized. A 500 ns molecular dynamic simulation was performed on the CaSR ECD crystal structure and the corresponding mutated models. Furthermore, Principal Component Analysis (PCA) and Essential Dynamics analysis were used to forecast collective motions, thermodynamic stabilities, and the critical subspace crucial to CaSR functions. The results of molecular dynamic simulations showed that the mutations P163R, I427S, D433H, and V477A caused conformational changes and decreased the stability of protein structures. This study also demonstrates the significance of TCP associated mutations. As a result of our findings, we hypothesised that the investigated mutations may have an effect on the protein’s structure and ability to interact with other molecules, which may be related to the protein’s functional impairment.
Collapse
Affiliation(s)
- Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Kartavya Mathur
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Rohit Kumar Verma
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Sri Krishna Jayadev Magani
- Cancer Biology Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- *Correspondence: Sri Krishna Jayadev Magani, ; Ashutosh Singh,
| | - Deepak Krishna Vyas
- Department of Biotechnology, Lachoo Memorial College of Science and Technology, Jodhpur, RJ, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- *Correspondence: Sri Krishna Jayadev Magani, ; Ashutosh Singh,
| |
Collapse
|
8
|
Hui Q, Zhao X, O K, Yang C. Effects of l-Tryptophan and 1,25-Dihydroxycholecalciferol on Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells Isolated from the Compact Bones of Broilers and Layers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10476-10489. [PMID: 35993842 DOI: 10.1021/acs.jafc.2c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poultry is vulnerable to bone problems throughout their lives or production period due to rapid growth in broilers and the active laying cycle in layers. The calcium-sensing receptor (CaSR) is important in calcium and bone metabolism. The objective of this study was to investigate the effect of the CaSR ligand (l-Trp) and 1,25-dihydroxycholecalciferol (1,25OHD3) on the regulation of proliferation and osteogenic differentiation of chicken mesenchymal stem cells (MSCs) isolated from the compact bones of 14-day-old Ross 308 chickens and Dekalb pullets, which can provide cell-based evidence for the prevention or alleviation of skeletal disorders in the poultry industry. First, the dose- (0, 0.5, 1, 2, 5, 10, and 15 mM) and time-effects (0, 7, and 14 days) of l-Trp on the proliferation and osteogenic differentiation in chicken MSCs were investigated. The 5 mM l-Trp had a balanced effect between proliferation and osteogenic differentiation in broiler and layer MSCs when differentiated for 7 days. The broiler and layer MSCs were then treated with (1) osteogenic medium, osteogenic medium supplemented with (2) 1 nM 1,25OHD3, (3) 2.5 mM Ca2+, (4) 2.5 mM Ca2+ + 5 mM l-Trp and (5) 2.5 mM Ca2+ + 5 mM l-Trp + 1 μM NPS-2143, separately for 7 days. Results showed that the 5 mM l-Trp significantly inhibited the proliferation of broiler and layer MSCs on day 7 (P < 0.05), but 1 nM 1,25OHD3 significantly promoted the proliferation of layer MSCs (P < 0.05). Only the 2.5 mM Ca2+ + 5 mM l-Trp group significantly increased the mineralization process during osteogenic differentiation (P < 0.05), and this treatment also significantly upregulated the mRNA expression of the vitamin D receptor (VDR), β-catenin, and osteogenesis genes in broiler MSCs (P < 0.05). The osteogenic differentiation process in layer MSCs was faster than that in broiler MSCs. In layer MSCs, Ca2+ alone significantly facilitated mineralization and ALP activity after 7-day osteogenic differentiation (P < 0.05). However, the 5 mM l-Trp significantly inhibited the differentiation and mineralization process by downregulating the mRNA expression of CaSR, VDR, β-catenin, and osteogenic genes (P < 0.05) in layer MSCs. Taken together, l-Trp and 1,25OHD3 can regulate proliferation and osteogenic differentiation in both broiler and layer MSCs depending on the dose, treatment time, and cell proliferation and differentiation stages.
Collapse
Affiliation(s)
- Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
9
|
Xu R, Cheng P, Meng K, Li L, Jiao M, Zhao X, Jia P, Zheng X, Xiao C. Extracellular domain of human calcium sensing receptor immobilized to silica beads as biomaterial: a rapid chromatographic method for recognizing ligands from complex matrix ‘Shuangdan’. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123409. [DOI: 10.1016/j.jchromb.2022.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
10
|
Schamber MR, Vafabakhsh R. Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning. Nat Commun 2022; 13:2194. [PMID: 35459864 PMCID: PMC9033857 DOI: 10.1038/s41467-022-29897-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Transfer of information across membranes is fundamental to the function of all organisms and is primarily initiated by transmembrane receptors. For many receptors, how ligand sensitivity is fine-tuned and how disease associated mutations modulate receptor conformation to allosterically affect receptor sensitivity are unknown. Here we map the activation of the calcium-sensing receptor (CaSR) - a dimeric class C G protein-coupled receptor (GPCR) and responsible for maintaining extracellular calcium in vertebrates. We show that CaSR undergoes unique conformational rearrangements compared to other class C GPCRs owing to specific structural features. Moreover, by analyzing disease associated mutations, we uncover a large permissiveness in the architecture of the extracellular domain of CaSR, with dynamics- and not specific receptor topology- determining the effect of a mutation. We show a structural hub at the dimer interface allosterically controls CaSR activation via focused electrostatic repulsion. Changes in the surface charge distribution of this hub, which is highly variable between organisms, finely tune CaSR sensitivity. This is potentially a general tuning mechanism for other dimeric receptors.
Collapse
Affiliation(s)
- Michael R Schamber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Goralski T, Ram JL. Extracellular Calcium Receptor as a Target for Glutathione and Its Derivatives. Int J Mol Sci 2022; 23:ijms23020717. [PMID: 35054903 PMCID: PMC8776003 DOI: 10.3390/ijms23020717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular glutathione (GSH) and oxidized glutathione (GSSG) can modulate the function of the extracellular calcium sensing receptor (CaSR). The CaSR has a binding pocket in the extracellular domain of CaSR large enough to bind either GSH or GSSG, as well as the naturally occurring oxidized derivative L-cysteine glutathione disulfide (CySSG) and the compound cysteinyl glutathione (CysGSH). Modeling the binding energies (ΔG) of CySSG and CysGSH to CaSR reveals that both cysteine derivatives may have greater affinities for CaSR than either GSH or GSSG. GSH, CySSG, and GSSG are found in circulation in mammals and, among the three, CySSG is more affected by HIV/AIDs and aging than either GSH or GSSG. The beta-carbon linkage of cysteine in CysGSH may model a new class of calcimimetics, exemplified by etelcalcetide. Circulating glutathionergic compounds, particularly CySSG, may mediate calcium-regulatory responses via receptor-binding to CaSR in a variety of organs, including parathyroids, kidneys, and bones. Receptor-mediated actions of glutathionergics may thus complement their roles in redox regulation and detoxification. The glutathionergic binding site(s) on CaSR are suggested to be a target for development of drugs that can be used in treating kidney and other diseases whose mechanisms involve CaSR dysregulation.
Collapse
Affiliation(s)
- Thomas Goralski
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA;
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jeffrey L. Ram
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA;
- Correspondence: ; Tel.: +1-248-200-9431
| |
Collapse
|
12
|
Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca 2+ ions and L-tryptophan. Cell Res 2021; 31:383-394. [PMID: 33603117 PMCID: PMC8115157 DOI: 10.1038/s41422-021-00474-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The human calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) responsible for maintaining Ca2+ homeostasis in the blood. The general consensus is that extracellular Ca2+ is the principal agonist of CaSR. Aliphatic and aromatic L-amino acids, such as L-Phe and L-Trp, increase the sensitivity of CaSR towards Ca2+ and are considered allosteric activators. Crystal structures of the extracellular domain (ECD) of CaSR dimer have demonstrated Ca2+ and L-Trp binding sites and conformational changes of the ECD upon Ca2+/L-Trp binding. However, it remains to be understood at the structural level how Ca2+/L-Trp binding to the ECD leads to conformational changes in transmembrane domains (TMDs) and consequent CaSR activation. Here, we determined the structures of full-length human CaSR in the inactive state, Ca2+- or L-Trp-bound states, and Ca2+/L-Trp-bound active state using single-particle cryo-electron microscopy. Structural studies demonstrate that L-Trp binding induces the closure of the Venus flytrap (VFT) domain of CaSR, bringing the receptor into an intermediate active state. Ca2+ binding relays the conformational changes from the VFT domains to the TMDs, consequently inducing close contact between the two TMDs of dimeric CaSR, activating the receptor. Importantly, our structural and functional studies reveal that Ca2+ ions and L-Trp activate CaSR cooperatively. Amino acids are not able to activate CaSR alone, but can promote the receptor activation in the presence of Ca2+. Our data provide complementary insights into the activation of class C GPCRs and may aid in the development of novel drugs targeting CaSR.
Collapse
|
13
|
Abstract
Regulation of the serum calcium level in humans is achieved by the endocrine action of parathyroid glands working in concert with vitamin D and a set of critical target cells and tissues including osteoblasts, osteoclasts, the renal tubules, and the small intestine. The parathyroid glands, small highly vascularized endocrine organs located behind the thyroid gland, secrete parathyroid hormone (PTH) into the systemic circulation as is needed to keep the serum free calcium concentration within a tight physiologic range. Primary hyperparathyroidism (HPT), a disorder of mineral metabolism usually associated with abnormally elevated serum calcium, results from the uncontrolled release of PTH from one or several abnormal parathyroid glands. Although in the vast majority of cases HPT is a sporadic disease, it can also present as a manifestation of a familial syndrome. Many benign and malignant sporadic parathyroid neoplasms are caused by loss-of-function mutations in tumor suppressor genes that were initially identified by the study of genomic DNA from patients who developed HPT as a manifestation of an inherited syndrome. Somatic and inherited mutations in certain proto-oncogenes can also result in the development of parathyroid tumors. The clinical and genetic investigation of familial HPT in kindreds found to lack germline variants in the already known HPT-predisposition genes represents a promising future direction for the discovery of novel genes relevant to parathyroid tumor development.
Collapse
Affiliation(s)
- Jenny E. Blau
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: William F. Simonds,
| |
Collapse
|
14
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
15
|
Structural Basis for Activation of the Heterodimeric GABAB Receptor. J Mol Biol 2020; 432:5966-5984. [DOI: 10.1016/j.jmb.2020.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
16
|
|
17
|
Illuminating the allosteric modulation of the calcium-sensing receptor. Proc Natl Acad Sci U S A 2020; 117:21711-21722. [PMID: 32817431 DOI: 10.1073/pnas.1922231117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many membrane receptors are regulated by nutrients. However, how these nutrients control a single receptor remains unknown, even in the case of the well-studied calcium-sensing receptor CaSR, which is regulated by multiple factors, including ions and amino acids. Here, we developed an innovative cell-free Förster resonance energy transfer (FRET)-based conformational CaSR biosensor to clarify the main conformational changes associated with activation. By allowing a perfect control of ambient nutrients, this assay revealed that Ca2+ alone fully stabilizes the active conformation, while amino acids behave as pure positive allosteric modulators. Based on the identification of Ca2+ activation sites, we propose a molecular basis for how these different ligands cooperate to control CaSR activation. Our results provide important information on CaSR function and improve our understanding of the effects of genetic mutations responsible for human diseases. They also provide insights into how a receptor can integrate signals from various nutrients to better adapt to the cell response.
Collapse
|
18
|
The Effect of High-Fat Diet-Induced Obesity on the Expression of Nutrient Chemosensors in the Mouse Stomach and the Gastric Ghrelin Cell. Nutrients 2020; 12:nu12092493. [PMID: 32824949 PMCID: PMC7551456 DOI: 10.3390/nu12092493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022] Open
Abstract
The stomach is the primary source of the orexigenic and adiposity-promoting hormone, ghrelin. There is emerging evidence on the nutrient-mediated modulation of gastric ghrelin secretion. However, limited information is available on gastric nutrient-sensing mechanisms in high-fat diet (HFD)-induced obesity. This study investigated the impact of HFD-induced obesity on the expression of nutrient chemosensors in mouse stomach, particularly ghrelin cells. Male C57BL/6 mice were fed either a standard laboratory diet (SLD) or HFD for 12 weeks. The expression of ghrelin, enzymes involved in ghrelin production (PC1/3, GOAT) and nutrient chemosensors (CD36, FFAR2&4, GPR93, CaSR, mGluR4 and T1R3) was determined by quantitative RT-PCR in the mouse corpus and antrum. Immunohistochemistry assessed the protein expression of CaSR and ghrelin in the corpus and antrum. Antral mRNA levels of CaSR and PC1/3 were increased in HFD compared to SLD mice, while mRNA levels of all other nutrient chemosensors examined remained unchanged. CaSR immunolabelling was observed in the gastric antrum only. Nearly 80% of antral ghrelin cells expressed CaSR, with a similar cell density and co-expression in SLD and HFD mice. In conclusion, HFD-induced obesity increased CaSR mRNA expression in mouse antrum. However, the high antral co-expression of CaSR and ghrelin was unaltered in HFD compared to SLD mice.
Collapse
|
19
|
Abstract
Calcium homeostasis is maintained by the actions of the parathyroid glands, which release parathyroid hormone into the systemic circulation as necessary to maintain the serum calcium concentration within a tight physiologic range. Excessive secretion of parathyroid hormone from one or more neoplastic parathyroid glands, however, causes the metabolic disease primary hyperparathyroidism (HPT) typically associated with hypercalcemia. Although the majority of cases of HPT are sporadic, it can present in the context of a familial syndrome. Mutations in the tumor suppressor genes discovered by the study of such families are now recognized to be pathogenic for many sporadic parathyroid tumors. Inherited and somatic mutations of proto-oncogenes causing parathyroid neoplasia are also known. Future investigation of somatic changes in parathyroid tumor DNA and the study of kindreds with HPT yet lacking germline mutation in the set of genes known to predispose to HPT represent two avenues likely to unmask additional novel genes relevant to parathyroid neoplasia.
Collapse
Affiliation(s)
- William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Wilkens MR, Schnepel N, Muscher-Banse AS. Dietary protein and calcium modulate parathyroid vitamin D receptor expression in young ruminants. J Steroid Biochem Mol Biol 2020; 196:105503. [PMID: 31648052 DOI: 10.1016/j.jsbmb.2019.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
For economic reasons and in order to minimize nitrogen excretion and thus pollution, the crude protein content in the diet of livestock animals should be as low as possible without negatively affecting the animals´ health and performance. As ruminants can efficiently use dietary protein because of the ruminohepatic circulation of urea, they are considered to cope more easily with such a feeding regime than monogastric animals. However, despite unaltered daily weight gain, massive changes in mineral homeostasis and vitamin D metabolism were observed with dietary protein reduction (N-) in young, growing goats. Serum concentrations of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) were decreased with a low N intake, even if calcium (Ca) was also restricted (Ca-). Interestingly, concentrations of cyclic adenosine monophosphate (cAMP) measured as an indirect assessment for the parathyroid hormone (PTH) activity were not affected by low protein. Therefore, it was hypothesized that the sensitivity of the parathyroid gland is modulated during these dietary interventions. Four groups of male German colored goats received a control (N+/Ca+), a reduced protein (N-/Ca+), a reduced Ca (N+/Ca-) or a reduced protein and Ca (N-/Ca-) diet. After six weeks we determined the expression of PTH, PTH receptor, Ca sensing receptor (CASR), vitamin D receptor (VDR), retinoid X receptor (RXRα), Klotho, fibroblast growth factor receptor 1c-splicing form, and the sodium-dependent Pi transporter (PiT1) in the parathyroid glands. Concentrations of cAMP were not affected, while those of Ca and 1,25-(OH)2D3were diminished and that of 25-hydroxyvitamin D3 was increased with N- feeding. The expression patterns of the described target genes were not altered. In contrast, animals fed the Ca- rations showed enhanced serum 1,25-(OH)2D3 and cAMP levels with no changes in blood Ca concentrations demonstrating an efficient adaptation. The mRNA expression of expression of VDR and CASR in the parathyroid gland was significantly diminished and RXRα, PTHR and PiT1 expression was elevated. Instead of the assumed desensitization of the parathyroid gland with N-, our results indicate elevated responsiveness to decreased blood Ca with feeding Ca-.
Collapse
Affiliation(s)
- Mirja R Wilkens
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - Alexandra S Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany.
| |
Collapse
|
21
|
Nakhoul NL, Tu CL, Brown KL, Islam MT, Hodges AG, Abdulnour-Nakhoul SM. Calcium-sensing receptor deletion in the mouse esophagus alters barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 318:G144-G161. [PMID: 31709833 PMCID: PMC6985844 DOI: 10.1152/ajpgi.00021.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcium-sensing receptor (CaSR) is the molecular sensor by which cells respond to small changes in extracellular Ca2+ concentrations. CaSR has been reported to play a role in glandular and fluid secretion in the gastrointestinal tract and to regulate differentiation and proliferation of skin keratinocytes. CaSR is present in the esophageal epithelium, but its role in this tissue has not been defined. We deleted CaSR in the mouse esophagus by generating keratin 5 CreER;CaSRFlox+/+compound mutants, in which loxP sites flank exon 7 of CaSR gene. Recombination was initiated with multiple tamoxifen injections, and we demonstrated exon 7 deletion by PCR analysis of genomic DNA. Quantitative real-time PCR and Western blot analyses showed a significant reduction in CaSR mRNA and protein expression in the knockout mice (EsoCaSR-/-) as compared with control mice. Microscopic examination of EsoCaSR-/- esophageal tissues showed morphological changes including elongation of the rete pegs, abnormal keratinization and stratification, and bacterial buildup on the luminal epithelial surface. Western analysis revealed a significant reduction in levels of adherens junction proteins E-cadherin and β catenin and tight junction protein claudin-1, 4, and 5. Levels of small GTPase proteins Rac/Cdc42, involved in actin remodeling, were also reduced. Ussing chamber experiments showed a significantly lower transepithelial resistance in knockout (KO) tissues. In addition, luminal-to-serosal-fluorescein dextran (4 kDa) flux was higher in KO tissues. Our data indicate that CaSR plays a role in regulating keratinization and cell-cell junctional complexes and is therefore important for the maintenance of the barrier function of the esophagus.NEW & NOTEWORTHY The esophageal stratified squamous epithelium maintains its integrity by continuous proliferation and differentiation of the basal cells. Here, we demonstrate that deletion of the calcium-sensing receptor, a G protein-coupled receptor, from the basal cells disrupts the structure and barrier properties of the epithelium.
Collapse
Affiliation(s)
- Nazih L. Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chia-Ling Tu
- 3Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Karen L. Brown
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - M. Toriqul Islam
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anna G. Hodges
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange M. Abdulnour-Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana,4Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| |
Collapse
|
22
|
Elajnaf T, Iamartino L, Mesteri I, Müller C, Bassetto M, Manhardt T, Baumgartner-Parzer S, Kallay E, Schepelmann M. Nutritional and Pharmacological Targeting of the Calcium-Sensing Receptor Influences Chemically Induced Colitis in Mice. Nutrients 2019; 11:E3072. [PMID: 31888253 PMCID: PMC6950720 DOI: 10.3390/nu11123072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is the main regulator of extracellular Ca2+ homeostasis. It has diverse functions in different tissues, including the intestines. Intestine-specific knockout of the CaSR renders mice more susceptible to dextran sulphate sodium (DSS)-induced colitis. To test our hypothesis that the CaSR reduces intestinal inflammation, we assessed the effects of nutritional and pharmacological agonists of the CaSR in a colitis model. We treated female Balb/C mice with dietary calcium and protein (nutritional agonists of the CaSR) or pharmacological CaSR modulators (the agonists cinacalcet and GSK3004774, and the antagonist NPS-2143; 10 mg/kg), then induced colitis with DSS. The high-protein diet had a strong pro-inflammatory effect-it shortened the colons (5.3 ± 0.1 cm vs. 6.1 ± 0.2 cm normal diet, p < 0.05), lowered mucin expression and upregulated pro-inflammatory cytokines, such as interferon-γ, (4.2-fold, p < 0.05) compared with the normal diet. Cinacalcet reduced mucin expression, which coincided with an increase in tumor necrosis factor-α (4.4-fold, p < 0.05) and IL-6 (4.9-fold, p < 0.05) in the plasma, compared with vehicle. The CaSR antagonist, NPS-2143, significantly reduced the cumulative inflammation score compared with the vehicle control (35.3 ± 19.1 vs. 21.9 ± 14.3 area under the curve, p < 0.05) and reduced infiltration of inflammatory cells. While dietary modulation of the CaSR had no beneficial effects, pharmacological inhibition of the CaSR may have the potential of a novel add-on therapy in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Taha Elajnaf
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | - Luca Iamartino
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | | | - Christian Müller
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, CF10 3NB Cardiff, UK
- Department of Chemistry, College of Science, Swansea University, SA2 8PP Swansea, UK
| | - Teresa Manhardt
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | | | - Enikö Kallay
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | - Martin Schepelmann
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| |
Collapse
|
23
|
Sweet proteins lysozyme and thaumatin are protein-type agonists for the calcium-sensing receptor. Biochem Biophys Res Commun 2019; 521:227-231. [PMID: 31635806 DOI: 10.1016/j.bbrc.2019.10.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022]
Abstract
In addition to the maintenance of Ca2+ homeostasis, the calcium-sensing receptor (CaSR) is involved in many diverse physiological functions in the mammalian body. The receptor works as a kokumi taste receptor in taste buds and as a nutrient sensor in the gut, where it regulates the secretion of glycemic response and appetite-related hormones. To identify novel human CaSR (hCaSR) activators from food ingredients, we conducted a screening using a cell-based hCaSR assay. Hen egg-white lysozyme, which is a sweet protein, was found to be a novel orthosteric agonist of hCaSR with an EC50 value of 592 μM. Lysozyme hydrolysate was not able to activate hCaSR, thus suggesting that the protein structure of lysozyme is necessary for hCaSR activation. Thaumatin, which is another sweet protein, also activated hCaSR with an EC50 value of 71 μM. This is the first report that shows hCaSR activation by proteins with molecular weights exceeding 10,000 Da. These results provide a new avenue for the development of hCaSR activators, which could be applicable in food or drugs that modulate taste perception, appetite, or glucose tolerance, in addition to Ca2+ homeostasis.
Collapse
|
24
|
Lei Q, Lin D, Huang WX, Wu D, Chen J. [Effects of calcium ion on the migration and osteogenic differentiation of human osteoblasts]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 36:602-608. [PMID: 30593103 DOI: 10.7518/hxkq.2018.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of calcium ion (Ca²⁺) on the migration and osteogenic differentiation of human osteoblasts and explore the proper concentration and correlation mechanism. METHODS A series of Ca²⁺ solutions with different concentrations was prepared. Osteoblast migration was assessed by Transwell assay, and proliferation was studied via the CCK-8 colorimetric assay. The mRNA expression of osteogenic genes was examined via reverse transcription-polymerase chain reaction (RT-PCR), and the mineralized nodule was examined by alizarin red-S method. After calcium sensitive receptor (CaSR) antagonism, Ca²⁺-induced migration and osteogenic differentiation were analyzed. RESULTS In the migration experiment, 2, 4, and 6 mmol·L⁻¹ Ca²⁺ could promoted osteoblast migration at three timepoints (8, 16, and 24 h), whereas 10 mmol·L⁻¹ Ca²⁺ considerably inhibited migration at 8 h. The Ca²⁺ concentration range of 2-10 mmol·L⁻¹ could promote proliferation, osteogenic differentiation, and mineralization of human osteoblasts. Moreover, mineralization was predominantly induced by 8 and 10 mmol·L⁻¹ Ca²⁺. CaSR antagonism could reduce Ca²⁺-induced migration and osteogenic differentiation of human osteoblasts. CONCLUSIONS Low Ca²⁺ concentration favored osteoblast migration, whereas high Ca²⁺ concentration favored osteogenic differentiation. The Ca²⁺ concentrations of 4 and 6 mmol·L⁻¹ could substantially induce osteoblast migration and osteogenic differentiation, and the Ca²⁺-CaSR pathway participated in signal transduction.
Collapse
Affiliation(s)
- Qun Lei
- Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Dong Lin
- Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Wen-Xiu Huang
- Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Dong Wu
- Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jiang Chen
- Stomatological Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
25
|
Makita N, Ando T, Sato J, Manaka K, Mitani K, Kikuchi Y, Niwa T, Ootaki M, Takeba Y, Matsumoto N, Kawakami A, Ogawa T, Nangaku M, Iiri T. Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight 2019; 4:126449. [PMID: 30996138 DOI: 10.1172/jci.insight.126449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Biased agonism is a paradigm that may explain the selective activation of a signaling pathway via a GPCR that activates multiple signals. The autoantibody-induced inactivation of the calcium-sensing receptor (CaSR) causes acquired hypocalciuric hypercalcemia (AHH). Here, we describe an instructive case of AHH in which severe hypercalcemia was accompanied by an increased CaSR antibody titer. These autoantibodies operated as biased allosteric modulators of CaSR by targeting its Venus flytrap domain near the Ca2+-binding site. A positive allosteric modulator of CaSR, cinacalcet, which targets its transmembrane domain, overcame this autoantibody effect and successfully corrected the hypercalcemia in this patient. Hence, this is the first study to our knowledge that identifies the interaction site of a disease-causing GPCR autoantibody working as its biased allosteric modulator and demonstrates that cinacalcet can correct the AHH autoantibody effects both in vitro and in our AHH patient. Our observations provide potentially new insights into how biased agonism works and how to design a biased allosteric modulator of a GPCR. Our observations also indicate that the diagnosis of AHH is important because the severity of hypercalcemia may become fatal if the autoantibody titer increases. Calcimimetics may serve as good treatment options for some patients with severe AHH.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takao Ando
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Katsunori Manaka
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Koji Mitani
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Yasuko Kikuchi
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takayoshi Niwa
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Atsushi Kawakami
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Ogawa
- Breast Center, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Masaomi Nangaku
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Taroh Iiri
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan.,Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
26
|
Kienitz MC, Niemeyer A, König GM, Kostenis E, Pott L, Rinne A. Biased signaling of Ca 2+-sensing receptors in cardiac myocytes regulates GIRK channel activity. J Mol Cell Cardiol 2019; 130:107-121. [PMID: 30935998 DOI: 10.1016/j.yjmcc.2019.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Ca2+-sensing receptors (CaSRs) belong to the class C of G protein-coupled receptors and are activated by extracellular Ca2+. CaSRs display biased G protein signaling by coupling to different classes of heterotrimeric G proteins depending on agonist and cell type. In this study we used fluorescent biosensors to directly analyze G protein coupling to CaSRs and downstream signaling in living cells. In HEK 293 cells, CaSRs displayed biased signaling: elevation of extracellular Ca2+ or application of the alternative agonist spermine caused activation of Gi- and Gq-proteins. Adult cardiac myocytes express endogenous CaSRs, which have been implicated in regulating Ca2+ signaling and contractility. Biased signaling of CaSRs has not been investigated in these cells. To evaluate efficiencies of Gi- and Gq-signaling via CaSRs in rat atrial myocytes, we measured G protein-activated K+ (GIRK) channels. Activation of GIRK requires binding of Gβγ subunits released from Gi proteins, whereas Gq-signaling results in inhibition of GIRK channel activity. Stimulation of CaSRs by Ca2+ or spermine failed to directly activate Gi and GIRK channels. When GIRK channels were pre-activated via endogenous M2 receptors, stimulation of CaSRs caused pronounced inhibition of GIRK currents. This effect was specific to CaSR activation: GIRK current inhibition was sensitive to NPS-2143, a negative allosteric modulator of CaSRs, and abrogated by FR900359, a direct inhibitor of Gq. GIRK current inhibition was also sensitive to the PKC inhibitor chelerythrine, suggesting that following activation of CaSR and Gq, GIRK currents are modulated by PKC phosphorylation. We conclude from this data that cardiac CaSRs do not activate Gi and affect GIRK currents preferentially via the Gq/PKC pathway.
Collapse
Affiliation(s)
| | - Anne Niemeyer
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lutz Pott
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Rinne
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Abstract
Calcium is vital for life, and extracellular calcium concentrations must constantly be maintained within a precise concentration range. Low serum calcium (hypocalcemia) occurs in conjunction with multiple disorders and can be life-threatening if severe. Symptoms of acute hypocalcemia include neuromuscular irritability, tetany, and seizures, which are rapidly resolved with intravenous administration of calcium gluconate. However, disorders that lead to chronic hypocalcemia often have more subtle manifestations. Hypoparathyroidism, characterized by impaired secretion of parathyroid hormone (PTH), a key regulatory hormone for maintaining calcium homeostasis, is a classic cause of chronic hypocalcemia. Disorders that disrupt the metabolism of vitamin D can also lead to chronic hypocalcemia, as vitamin D is responsible for increasing the gut absorption of dietary calcium. Treatment and management options for chronic hypocalcemia vary depending on the underlying disorder. For example, in patients with hypoparathyroidism, calcium and vitamin D supplementation must be carefully titrated to avoid symptoms of hypocalcemia while keeping serum calcium in the low-normal range to minimize hypercalciuria, which can lead to renal dysfunction. Management of chronic hypocalcemia requires knowledge of the factors that influence the complex regulatory axes of calcium homeostasis in a given disorder. This chapter discusses common and rare disorders of hypocalcemia, symptoms and workup, and management options including replacement of PTH in hypoparathyroidism.
Collapse
Affiliation(s)
- Erin Bove-Fenderson
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier 1101, 50 Blossom St, Boston, MA, 02114, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier 1101, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
28
|
Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018; 8:360-381. [PMID: 30483303 PMCID: PMC6244112 DOI: 10.1159/000492491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating data suggest a crucial role of the intestinal microbiota in the development and progression of neurodegenerative diseases. More recently, emerging reports have revealed an association between intestinal microbiota dysfunctions and dementia, a debilitating multifactorial disorder, characterized by progressive deterioration of cognition and behavior that interferes with the social and professional life of the sufferer. However, the mechanisms of this association are not fully understood. SUMMARY In this review, I discuss recent data that suggest mechanisms of cross-talk between intestinal microbiota dysfunction and the brain that underlie the development of dementia. Potential therapeutic options for dementia are also discussed. The pleiotropic signaling of the metabolic products of the intestinal microbiota together with their specific roles in the maintenance of both the intestinal and blood-brain barriers as well as regulation of local, distant, and circulating immunocytes, and enteric, visceral, and central neural functions are integral to a healthy gut and brain. KEY MESSAGES Research investigating the effect of intestinal microbiota dysfunctions on brain health should focus on multiple interrelated systems involving local and central neuroendocrine, immunocyte, and neural signaling of microbial products and transmitters and neurohumoral cells that not only maintain intestinal, but also blood brain-barrier integrity. The change in intestinal microbiome/dysbiome repertoire is crucial to the development of dementia.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
29
|
Dos Santos PMC, Amaral D, Tararthuch AL, Fernandez R. Calcium-sensing receptor (CaSR) modulates vacuolar H +-ATPase activity in a cell model of proximal tubule. Clin Exp Nephrol 2018; 22:1258-1265. [PMID: 29961155 DOI: 10.1007/s10157-018-1613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) is localized in the apical membrane of proximal tubules in close proximity to the transporters responsible for proton secretion. Therefore, the aim of the present study was to analyze the effects of CaSR stimulation on the biochemical activity of the vacuolar H+-ATPase in a cellular model of proximal tubule cells, OKP cells. METHODS Biochemical activity of H+-ATPase was performed using cell homogenates, and the inorganic phosphate released was determined by a colorimetric method. Changes in cytosolic ionized calcium [Ca2+]i were also determined using Fluo-4. RESULTS A significant increase of vacuolar H+-ATPase activity was observed when the CaSR was stimulated with agonists such as Gd3+ (300 µM) and neomycin (200 µM). This activity was also stimulated in a dose-dependent fashion by changes in extracellular Ca2+ (Ca2+o) between 10-4 and 2 mM. Gd3+ and neomycin produced a sustained rise of [Ca2+]i, an effect that disappears when extracellular calcium was removed in the presence of 0.1 µM thapsigargin. Inhibition of phospholipase C (PLC) activity with U73122 (5 × 10-8 M) reduced the increase in [Ca2+]i induced by neomycin. CONCLUSION CaSR stimulation induces an increase in the vacuolar H+-ATPase activity of OKP cells, an effect that involves an increase in [Ca2+]i and require phospholipase C activity. The consequent decrease in intratubular pH could lead to increase ionization of luminal calcium, potentially enhancing its reabsorption in distal tubule segments and reducing the formation of calcium phosphate stones.
Collapse
Affiliation(s)
- Priscilla Marys Costa Dos Santos
- Departamento de Fisiologia, Setor de Ciências Biológicas, UFPR, Centro Politécnico s/n., Jd. das Américas, Postal Box: 19031, Curitiba, PR, 81531-990, Brazil
| | - Deividi Amaral
- Departamento de Fisiologia, Setor de Ciências Biológicas, UFPR, Centro Politécnico s/n., Jd. das Américas, Postal Box: 19031, Curitiba, PR, 81531-990, Brazil
| | - Ana Lucia Tararthuch
- Departamento de Fisiologia, Setor de Ciências Biológicas, UFPR, Centro Politécnico s/n., Jd. das Américas, Postal Box: 19031, Curitiba, PR, 81531-990, Brazil
| | - Ricardo Fernandez
- Departamento de Fisiologia, Setor de Ciências Biológicas, UFPR, Centro Politécnico s/n., Jd. das Américas, Postal Box: 19031, Curitiba, PR, 81531-990, Brazil.
| |
Collapse
|
30
|
Goncu B, Yucesan E, Ozdemir B, Basoglu H, Kandas NO, Akbas F, Aysan E. A New Transport Solution for Parathyroid Allotransplantation: Effects on Cell Viability and Calcium-Sensing Receptors. Biopreserv Biobank 2018; 16:278-284. [PMID: 29963899 DOI: 10.1089/bio.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cold ischemia protects organs and tissues by slowing their metabolism, but it also causes ischemic injury. Minimizing cold ischemia has been an important goal in parathyroid auto- and allotransplantation, as well as the transplantation of other major organs. Parathyroid glands are responsible for calcium homeostasis by releasing parathormone (PTH) into the blood circulation. Functionality of a new parathyroid transport solution (NPTS) and effects on cell viability, PTH secretion, and calcium-sensing receptor (CaSR) levels during cold ischemia were evaluated. MATERIALS AND METHODS A NPTS was prepared, and the pH was adjusted to a range of 7.2-7.4 and kept at +4°C until use. Seven patients with parathyroid hyperplasia secondary to chronic renal failure who were scheduled to undergo subtotal parathyroidectomy were enrolled in the study. Glands were cold-preserved in NPTS with different time intervals (0, 6, 12, 18, and 24 hours), and then parathyroid cell viability before and after cryopreservation, PTH secretion, and CaSR levels were determined. RESULTS The mean cell viability before cryopreservation was 92.7% (range 89.2%-97.2%). There were no significant differences in cell viability rates before and after cryopreservation (p = 0.1168 and p = 0.4085, respectively), and CaSR levels (p = 0.5446) were not significant. CONCLUSIONS NPTS is a solution designed specifically for parathyroid tissue transplantation. This patent pending product can support cellular viability and PTH release, as well as protect CaSR functionality for up to 24 hours of cold ischemia.
Collapse
Affiliation(s)
- Beyza Goncu
- 1 Experimental Research Center, Bezmialem Vakif University , Istanbul, Turkey
| | - Emrah Yucesan
- 2 Institute of Life Sciences and Biotechnology, Bezmialem Vakif University , Istanbul, Turkey
| | - Burcu Ozdemir
- 1 Experimental Research Center, Bezmialem Vakif University , Istanbul, Turkey
| | - Harun Basoglu
- 3 Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University , Istanbul, Turkey
| | - Nur Ozten Kandas
- 4 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University , Istanbul, Turkey
| | - Fahri Akbas
- 5 Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul, Turkey
| | - Erhan Aysan
- 6 Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University , Istanbul, Turkey
| |
Collapse
|
31
|
Bazúa-Valenti S, Rojas-Vega L, Castañeda-Bueno M, Barrera-Chimal J, Bautista R, Cervantes-Pérez LG, Vázquez N, Plata C, Murillo-de-Ozores AR, González-Mariscal L, Ellison DH, Riccardi D, Bobadilla NA, Gamba G. The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J Am Soc Nephrol 2018; 29:1838-1848. [PMID: 29848507 DOI: 10.1681/asn.2017111155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adrián R Murillo-de-Ozores
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - David H Ellison
- Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Administration Portland Health Care System, Portland, Oregon
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; and
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; .,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| |
Collapse
|
32
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
33
|
Nemeth EF, Van Wagenen BC, Balandrin MF. Discovery and Development of Calcimimetic and Calcilytic Compounds. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:1-86. [PMID: 29680147 DOI: 10.1016/bs.pmch.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular calcium receptor (CaR) is a G protein-coupled receptor (GPCR) and the pivotal molecule regulating systemic Ca2+ homeostasis. The CaR was a challenging target for drug discovery because its physiological ligand is an inorganic ion (Ca2+) rather than a molecule so there was no structural template to guide medicinal chemistry. Nonetheless, small molecules targeting this receptor were discovered. Calcimimetics are agonists or positive allosteric modulators of the CaR, while calcilytics are antagonists and all to date are negative allosteric modulators. The calcimimetic cinacalcet was the first allosteric modulator of a GPCR to achieve regulatory approval and is a first-in-class treatment for secondary hyperparathyroidism in patients on dialysis, and for hypercalcemia in some forms of primary hyperparathyroidism. It is also useful in treating some rare genetic diseases that cause hypercalcemia. Two other calcimimetics are now on the market (etelcalcetide) or under regulatory review (evocalcet). Calcilytics stimulate the secretion of parathyroid hormone and were initially developed as treatments for osteoporosis. Three different calcilytics of two different chemotypes failed in clinical trials due to lack of efficacy. Calcilytics are now being repurposed and might be useful in treating hypoparathyroidism and several rare genetic diseases causing hypocalcemia. The challenges ahead for medicinal chemists are to design compounds that select conformations of the CaR that preferentially target a particular signalling pathway and/or that affect the CaR in a tissue-selective manner.
Collapse
|
34
|
Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9171905. [PMID: 29682569 PMCID: PMC5846438 DOI: 10.1155/2018/9171905] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
35
|
Mace ML, Gravesen E, Nordholm A, Olgaard K, Lewin E. Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia. Calcif Tissue Int 2018; 102:85-92. [PMID: 29063159 PMCID: PMC5760590 DOI: 10.1007/s00223-017-0333-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023]
Abstract
The calcium and phosphate homeostasis is regulated by a complex interplay between parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol. Experimental studies have demonstrated an inhibitory effect of FG23 on PTH production and secretion; the physiological role of this regulation is however not well understood. Surprisingly, in uremia, concomitantly elevated FGF23 and PTH levels are observed. The parathyroid gland rapidly loses its responsiveness to extracellular calcium in vitro and a functional parathyroid cell line has currently not been established. Therefore, the aim of the present investigation was to study the impact of FGF23 on the Ca2+/PTH relationship in vivo under conditions of normocalcemia and hypocalcemia. Wistar rats were allocated to treatment with intravenous recombinant FGF23 and inhibition of the FGF receptor in the setting of normocalcemia and acute hypocalcemia. We demonstrated that FGF23 rapidly inhibited PTH secretion and that this effect was completely blocked by inhibition of the FGF receptor. Furthermore, inhibition of the FGF receptor by itself significantly increased PTH levels, indicating that FGF23 has a suppressive tonus on the parathyroid gland's PTH secretion. In acute hypocalcemia, there was no effect of either recombinant FGF23 or FGF receptor inhibition on the physiological response to the low ionized calcium levels. In conclusion, FGF23 has an inhibitory tonus on PTH secretion in normocalcemia and signals through the FGF receptor. In acute hypocalcemia, when increased PTH secretion is needed to restore the calcium homeostasis, this inhibitory effect of FGF23 is abolished.
Collapse
Affiliation(s)
- Maria L Mace
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730, Copenhagen, Denmark
- Department of Nephrology, Rigshospitalet Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Eva Gravesen
- Department of Nephrology, Rigshospitalet Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nordholm
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730, Copenhagen, Denmark
- Department of Nephrology, Rigshospitalet Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Olgaard
- Department of Nephrology, Rigshospitalet Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Lewin
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730, Copenhagen, Denmark.
- Department of Nephrology, Rigshospitalet Copenhagen, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Vahe C, Benomar K, Espiard S, Coppin L, Jannin A, Odou MF, Vantyghem MC. Diseases associated with calcium-sensing receptor. Orphanet J Rare Dis 2017; 12:19. [PMID: 28122587 PMCID: PMC5264458 DOI: 10.1186/s13023-017-0570-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
The calcium-sensing receptor (CaSR) plays a pivotal role in systemic calcium metabolism by regulating parathyroid hormone secretion and urinary calcium excretion. The diseases caused by an abnormality of the CaSR are genetically determined or are more rarely acquired. The genetic diseases consist of hyper- or hypocalcemia disorders. Hypercalcaemia disorders are related to inactivating mutations of the CASR gene either heterozygous (autosomal dominant familial benign hypercalcaemia, still named hypocalciuric hypercalcaemia syndrome type 1) or homozygous (severe neonatal hyperparathyroidism). The A986S, R990G and Q1011E variants of the CASR gene are associated with higher serum calcium levels than in the general population, hypercalciuria being also associated with the R990G variant. The differential diagnosis consists in the hypocalciuric hypercalcaemia syndrome, types 2 (involving GNA11 gene) and 3 (involving AP2S1 gene); hyperparathyroidism; abnormalities of vitamin D metabolism, involving CYP24A1 and SLC34A1 genes; and reduced GFR. Hypocalcemia disorders, which are more rare, are related to heterozygous activating mutations of the CASR gene (type 1), consisting of autosomal dominant hypocalcemia disorders, sometimes with a presentation of pseudo-Bartter’s syndrome. The differential diagnosis consists of the hypercalciuric hypocalcaemia syndrome type 2, involving GNA11 gene and other hypoparathyroidism aetiologies. The acquired diseases are related to the presence of anti-CaSR antibodies, which can cause hyper- or especially hypocalcemia disorders (for instance in APECED syndromes), determined by their functionality. Finally, the role of CaSR in digestive, respiratory, cardiovascular and neoplastic diseases is gradually coming to light, providing new therapeutic possibilities. Two types of CaSR modulators are known: CaSR agonists (or activators, still named calcimimetics) and calcilytic antagonists (or inhibitors of the CasR). CaSR agonists, such as cinacalcet, are indicated in secondary and primary hyperparathyroidism. Calcilytics have no efficacy in osteoporosis, but could be useful in the treatment of hypercalciuric hypocalcaemia syndromes.
Collapse
Affiliation(s)
- C Vahe
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - K Benomar
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - S Espiard
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - L Coppin
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie-Pathologie, Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - A Jannin
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - M F Odou
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie-Pathologie, Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France
| | - M C Vantyghem
- Service d'Endocrinologie et Métabolisme, Hôpital C Huriez Centre Hospitalo-universitaire de Lille, 1 rue Polonovski, 59 037, Lille Cedex, France. .,Equipe INSERM 1190 Prise en charge translationnelle du diabète, Lille Cedex, France. .,Institut EGID (European Genomic Institute for Diabetes), Lille Cedex, France.
| |
Collapse
|