1
|
Gong G, Shen S, Shen S, Wang R, Zheng T, Xu W, Wu J. YAP/TAZ-mediated nuclear membrane rupture in promoting senescence of skeletal muscle associated with COPD. Respir Res 2025; 26:98. [PMID: 40075503 PMCID: PMC11905641 DOI: 10.1186/s12931-025-03170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) often develop complications associated with sarcopenia; however, the underlying mechanisms remain unclear. Through a combination of in vitro and in vivo experiments, as well as bioinformatics analysis, our study identified YAP/TAZ as a key regulator of the aging phenotype in the skeletal muscle of COPD patients. In skeletal muscle affected by cigarette smoke-induced COPD, we observed significant reductions in YAP/TAZ levels, alongside markers indicative of skeletal muscle aging and dysfunction. Notably, overexpression of YAP/TAZ significantly improved these conditions. Our results suggest a novel mechanism whereby the maintenance of YAP/TAZ activity interacts with ACTR2 to preserve nuclear membrane integrity and reduce cytoplasmic dsDNA levels, thereby attenuating STING activation and cellular senescence. Additionally, we found that YAP is involved in the transcriptional regulation of the ACTR2 promoter region. Overall, preserving YAP/TAZ activity may help prevent skeletal muscle aging associated with COPD, representing a new strategy for intervening in COPD-related sarcopenia.
Collapse
Affiliation(s)
- Ge Gong
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuping Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ran Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tianping Zheng
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Xu Q, Qiu X, Di H, Li Z, Liu Z, Liu K. Liraglutide improves senescence and ameliorating diabetic sarcopenia via the YAP-TAZ pathway. J Diabetes Complications 2025; 39:108975. [PMID: 39987624 DOI: 10.1016/j.jdiacomp.2025.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVE Beyond its established glucose-lowering and weight-reducing benefits, glucagon-like peptide-1 receptor agonists (GLP-1RAs) such as liraglutide may also mitigate sarcopenia. This study investigates the effects of liraglutide on diabetic sarcopenia and its underlying mechanisms. METHODS A type 2 diabetic SD rat model was induced using a high-fat, high-sugar diet supplemented with a low dose of streptozotocin. Comparisons were made among control (Con), diabetic (DM), and liraglutide-treated (Li) groups for gastrocnemius muscle wet weight and length, histology (HE staining), immunofluorescence for muscle fiber typing, and Western blotting for aging-related proteins and YAP/TAZ pathway components. Concurrently, C2C12 myoblasts were differentiated into myotubes, treated with 60 mM glucose to model diabetic conditions, and assessed for morphological changes, senescence (SA-β-gal staining), and protein expression dynamics. RESULTS Diabetic rats displayed significant reductions in muscle mass, length, and cross-sectional area, along with disorganized fiber architecture, all of which were improved by liraglutide. In vitro, C2C12 myotubes showed accelerated aging and atrophy under high-glucose conditions, which were significantly reduced by liraglutide. Analysis revealed increased expression of aging markers P53 and P21 and decreased YAP/TAZ/TEAD and Cyclin D1 levels in diabetic conditions, which were reversed following liraglutide treatment. The inhibition of YAP significantly negated the protective effects of liraglutide. CONCLUSION High glucose promotes muscle cell aging and sarcopenia, processes that liraglutide can attenuate by modulating the YAP/TAZ signaling pathway. This study underscores liraglutide's potential to alleviate muscle degeneration in diabetic sarcopenia through its regulatory impact on critical aging pathways.
Collapse
Affiliation(s)
- Qian Xu
- Department of Emergency, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Xuan Qiu
- Department of Endocrine and Metabolism, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Hailing Di
- Department of Clinical Nutrition, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zanchao Liu
- Key Laboratory, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Kuanzhi Liu
- Department of Endocrine and Metabolism, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Diskul-Na-Ayudthaya P, Bae SJ, Bae YU, Van NT, Kim W, Ryu S. ANKRD1 Promotes Breast Cancer Metastasis by Activating NF- κB-MAGE-A6 Pathway. Cancers (Basel) 2024; 16:3306. [PMID: 39409926 PMCID: PMC11476229 DOI: 10.3390/cancers16193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Early detection and surgical excision of tumors have helped improve the survival rate of patients with breast cancer. However, patients with metastatic cancer typically have a poor prognosis. In this study, we propose that ANKRD1 promotes metastasis of breast cancer. ANKRD1 was found to be highly expressed in the MDA-MB-231 and MDA-LM-2 highly metastatic breast cancer cell lines compared to the non-metastatic breast cancer cell lines (MCF-7, ZR-75-30, T47D) and normal breast cancer cells (MCF-10A). Furthermore, high-grade tumors showed increased levels of ANKRD1 compared to low-grade tumors. Both in vitro and in vivo functional studies demonstrated the essential role of ANKRD1 in cancer cell migration and invasion. The previous studies have suggested a significant role of NF-κB and MAGE-A6 in breast cancer metastasis, but the upstream regulators of this axis are not well characterized. Our study suggests that ANKRD1 promotes metastasis of breast cancer by activating NF-κB as well as MAGE-A6 signaling. Our findings show that ANKRD1 is a potential therapeutic target and a diagnostic marker for breast cancer metastasis.
Collapse
Affiliation(s)
- Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Seon Joo Bae
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Yun-Ui Bae
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Konkuk University, Seoul 05030, Republic of Korea;
| | - Ngu Trinh Van
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Wootae Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Department of Pathology, College of Medicine, Soonchunhyang University, Asan-si 311151, Republic of Korea
| |
Collapse
|
4
|
Fernandez‐Sanjurjo M, Pinto‐Hernandez P, Dávalos A, Díaz‐Martínez ÁE, Martín‐Hernández R, Castilla‐Silgado J, Toyos‐Rodríguez C, Whitham M, Amado‐Rodríguez L, Muñiz‐Albaiceta G, Terrados N, Fernández‐García B, Iglesias‐Gutiérrez E. Next-generation sequencing reveals that miR-16-5p, miR-19a-3p, miR-451a, and miR-25-3p cargo in plasma extracellular vesicles differentiates sedentary young males from athletes. Eur J Sport Sci 2024; 24:766-776. [PMID: 38874986 PMCID: PMC11235846 DOI: 10.1002/ejsc.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 06/15/2024]
Abstract
A sedentary lifestyle and Olympic participation are contrary risk factors for global mortality and incidence of cancer and cardiovascular disease. Extracellular vesicle miRNAs have been described to respond to exercise. No molecular characterization of young male sedentary people versus athletes is available; so, our aim was to identify the extracellular vesicle miRNA profile of chronically trained young endurance and resistance male athletes compared to their sedentary counterparts. A descriptive case-control design was used with 16 sedentary young men, 16 Olympic male endurance athletes, and 16 Olympic male resistance athletes. Next-generation sequencing and RT-qPCR and external and internal validation were performed in order to analyze extracellular vesicle miRNA profiles. Endurance and resistance athletes had significant lower levels of miR-16-5p, miR-19a-3p, and miR-451a compared to sedentary people. Taking all together, exercise-trained miRNA profile in extracellular vesicles provides a differential signature of athletes irrespective of the type of exercise compared to sedentary people. Besides, miR-25-3p levels were specifically lower in endurance athletes which defines its role as a specific responder in this type of athletes. In silico analysis of this profile suggests a role in adaptive energy metabolism in this context that needs to be experimentally validated. Therefore, this study provides for the first time basal levels of circulating miRNA in extracellular vesicles emerge as relevant players in intertissue communication in response to chronic exercise exposure in young elite male athletes.
Collapse
Affiliation(s)
- Manuel Fernandez‐Sanjurjo
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | | | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid MetabolismIMDEA Food InstituteCEI UAM + CSICMadridSpain
| | - Ángel Enrique Díaz‐Martínez
- Clinical LaboratorySports Medicine CenterSpanish Sports Health Protection AgencySpanish GovernmentMadridSpain
| | | | - Juan Castilla‐Silgado
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Celia Toyos‐Rodríguez
- NanoBioAnalysis GroupDepartment of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Laura Amado‐Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Unidad de Cuidados Intensivos CardiológicosHospital Universitario Central de AsturiasOviedoSpain
- Centro de Investigación Biomédica en Red (CIBER)‐Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Department of MedicineUniversity of OviedoOviedoSpain
| | - Guillermo Muñiz‐Albaiceta
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Unidad de Cuidados Intensivos CardiológicosHospital Universitario Central de AsturiasOviedoSpain
- Centro de Investigación Biomédica en Red (CIBER)‐Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Nicolás Terrados
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Unidad Regional de Medicina DeportivaAvilésSpain
| | - Benjamín Fernández‐García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Department of Morphology and Cell Biology (Anatomy)University of OviedoOviedoSpain
| | - Eduardo Iglesias‐Gutiérrez
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| |
Collapse
|
5
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
6
|
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H, Shen M. Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle 2023; 14:2851-2865. [PMID: 37919243 PMCID: PMC10751423 DOI: 10.1002/jcsm.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Lactate, a glycolytic metabolite mainly produced in muscles, has been suggested to regulate myoblast differentiation, although the underlying mechanism remains elusive. Recently, lactate-mediated histone lactylation is identified as a novel epigenetic modification that promotes gene transcription. METHODS We used mouse C2C12 cell line and 2-month-old male mice as in vitro and in vivo models, respectively. These models were treated with lactate to explore the biological function and latent mechanism of lactate-derived histone lactylation on myogenic differentiation by quantitative real-time PCR, western blotting, immunofluorescence staining, chromatin immunoprecipitation, cleavage under targets and tagmentation assay and RNA sequencing. RESULTS Using immunofluorescence staining and western blotting, we proposed that lactylation might occur in the histones. Inhibition of lactate production or intake both impaired myoblast differentiation, accompanied by diminished lactylation in the histones. Using lactylation site-specific antibodies, we demonstrated that lactate preferentially increased H3K9 lactylation (H3K9la) during myoblast differentiation (CT VS 5, 10, 15, 20, 25 mM lactate treatment, P = 0.0012, P = 0.0007, and the rest of all P < 0.0001). Notably, inhibiting H3K9la using P300 antagonist could block lactate-induced myogenesis. Through combined omics analysis using cleavage under targets and tagmentation assay and RNA sequencing, we further identified Neu2 as a potential target gene of H3K9la. IGV software analysis (P = 0.0013) and chromatin immunoprecipitation-qPCR assay (H3K9la %Input, LA group = 9.0076, control group = 2.7184, IgG = 0.3209) confirmed that H3K9la is enriched in the promoter region of Neu2. Moreover, siRNAs or inhibitors against Neu2 both abrogated myoblast differentiation despite lactate treatment, suggesting that Neu2 is required for lactate-mediated myoblast differentiation. CONCLUSIONS Our findings provide novel understanding of histone lysine lactylation, suggesting its role in myogenesis, and as potential therapeutic targets for muscle diseases.
Collapse
Affiliation(s)
- Weilong Dai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Gang Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ke Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Qianqian Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
7
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Ferreira RP, Duarte JA. Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle. Int J Sports Med 2023; 44:763-777. [PMID: 36854391 DOI: 10.1055/a-2044-8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Skeletal muscle is a highly plastic tissue, able to change its mass and functional properties in response to several stimuli. Skeletal muscle mass is influenced by the balance between protein synthesis and breakdown, which is regulated by several signaling pathways. The relative contribution of Akt/mTOR signaling, ubiquitin-proteasome pathway, autophagy among other signaling pathways to protein turnover and, therefore, to skeletal muscle mass, differs depending on the wasting or loading condition and muscle type. By modulating mitochondria biogenesis, PGC-1α has a major role in the cell's bioenergetic status and, thus, on protein turnover. In fact, rates of protein turnover regulate differently the levels of distinct protein classes in response to atrophic or hypertrophic stimuli. Mitochondrial protein turnover rates may be enhanced in wasting conditions, whereas the increased turnover of myofibrillar proteins triggers muscle mass gain. The present review aims to update the knowledge on the molecular pathways implicated in the regulation of protein turnover in skeletal muscle, focusing on how distinct muscle proteins may be modulated by lifestyle interventions with emphasis on exercise training. The comprehensive analysis of the anabolic effects of exercise programs will pave the way to the tailored management of muscle wasting conditions.
Collapse
Affiliation(s)
- Rita Pinho Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jose Alberto Duarte
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
9
|
Welch N, Singh SS, Musich R, Mansuri MS, Bellar A, Mishra S, Chelluboyina AK, Sekar J, Attaway AH, Li L, Willard B, Hornberger TA, Dasarathy S. Shared and unique phosphoproteomics responses in skeletal muscle from exercise models and in hyperammonemic myotubes. iScience 2022; 25:105325. [PMID: 36345342 PMCID: PMC9636548 DOI: 10.1016/j.isci.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan Musich
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - M. Shahid Mansuri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Wu X, Chu M, Ma X, Pei J, Xiong L, Guo X, Liang C, Yan P. Genome-Wide Identification of RNA Editing Sites Affecting Muscle Development in Yak. Front Vet Sci 2022; 9:871814. [PMID: 35836505 PMCID: PMC9274240 DOI: 10.3389/fvets.2022.871814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle growth and development is a complicated process that is regulated at multiple steps and by numerous myogenesis genes. RNA editing represents one of the events at the post-transcriptional level, which contributes to the diversity of transcriptome and proteome by altering the nucleotides of RNAs. However, RNA editing events in the skeletal muscle of yaks are still not well defined. This study conducted whole-genome RNA-editing identification in skeletal muscle of yaks at embryonic stage (ES) and adult stage (AS). We found a total of 11,168 unique RNA editing sites, most of which were detected in the intergenic region. After annotation, we totally identified 2,718 editing sites within coding regions, among which 858 were missense changes. Moreover, totally 322 editing sites in the 3′ untranslated regions (UTR) were also predicted to alter the set of miRNA target sites, indicating that RNA editing may be involved in translational repression or mRNA degradation. We found 838 RNA editing sites (involving 244 common genes) that are edited differentially in ES as compared to AS. According to the KEGG enrichment analysis, these differentially edited genes were mainly involved in pathways highly related to skeletal muscle development and myogenesis, including MAPK, AMPK, Wnt, and PI3K-Akt signaling pathways. Altogether, our work presents the first characterization of RNA editing sites within yak skeletal muscles on a genome-wide scale and enhances our understanding of the mechanism of skeletal muscle development and myogenesis.
Collapse
|
11
|
Shen J, Hao Z, Luo Y, Zhen H, Liu Y, Wang J, Hu J, Liu X, Li S, Zhao Z, Liu Y, Yang S, Wang L. Deep Small RNA Sequencing Reveals Important miRNAs Related to Muscle Development and Intramuscular Fat Deposition in Longissimus dorsi Muscle From Different Goat Breeds. Front Vet Sci 2022; 9:911166. [PMID: 35769318 PMCID: PMC9234576 DOI: 10.3389/fvets.2022.911166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been shown to play important post-transcriptional regulatory roles in the growth and development of skeletal muscle tissues. However, limited research into the effect of miRNAs on muscle development in goats has been reported. In this study, Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with significant phenotype difference in meat production performance were selected and the difference in Longissimus dorsi muscle tissue expression profile of miRNAs between the two goat breeds was then compared using small RNA sequencing. A total of 1,623 miRNAs were identified in Longissimus dorsi muscle tissues of the two goat breeds, including 410 known caprine miRNAs, 928 known species-conserved miRNAs and 285 novel miRNAs. Of these, 1,142 were co-expressed in both breeds, while 230 and 251 miRNAs were only expressed in LC and ZB goats, respectively. Compared with ZB goats, 24 up-regulated miRNAs and 135 miRNAs down-regulated were screened in LC goats. A miRNA-mRNA interaction network showed that the differentially expressed miRNAs would target important functional genes associated with muscle development and intramuscular fat deposition. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in Ras, Rap 1, FoxO, and Hippo signaling pathways. This study suggested that these differentially expressed miRNAs may be responsible for the phenotype differences in meat production performance between the two goat breeds, thereby providing an improved understanding of the roles of miRNAs in muscle tissue of goats.
Collapse
|
12
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
13
|
Gomes G, Bagri KM, de Andrade Rosa I, Jurberg AD, Mermelstein C, Costa ML. Activation of YAP regulates muscle fiber size in a PKC-dependent mechanism during chick in vitro myogenesis. J Muscle Res Cell Motil 2021; 43:73-86. [PMID: 34410584 DOI: 10.1007/s10974-021-09608-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
The formation of skeletal muscle fibers is an intricate process controlled by a multitude of signaling pathways, including Wnt, Shh, and FGF. However, the role of the Hippo pathway during vertebrate myofiber formation has conflicting reports, which we decided to address in chick muscle cultures. We found that the transcriptional regulator Yes-associated protein (YAP) was highly concentrated within the nuclei of myoblasts. As cells differentiate into myotubes, YAP localization shifted to the cell cytoplasm in more mature myotubes. Treatment of cultures with XMU-MP-1 (XMU), a MST1/2 inhibitor, stimulated the nuclear localization of YAP in myoblasts and in myotubes, upregulated myogenin, and promoted myoblast fusion, ultimately resulting in the formation of large and fully striated multinucleated myotubes. The XMU-induced phenotype was blocked by the protein kinase C (PKC) inhibitor calphostin, which raises the possibility that the Hippo pathway controls the growth of skeletal muscle fibers through a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kayo Moreira Bagri
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivone de Andrade Rosa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arnon Dias Jurberg
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Faculdade de Medicina - Presidente Vargas, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Cai X, Wang KC, Meng Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Front Cell Dev Biol 2021; 9:673599. [PMID: 34109179 PMCID: PMC8182050 DOI: 10.3389/fcell.2021.673599] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Biophysical cues, such as mechanical properties, play a critical role in tissue growth and homeostasis. During organ development and tissue injury repair, compressive and tensional forces generated by cell-extracellular matrix or cell-cell interaction are key factors for cell fate determination. In the vascular system, hemodynamic forces, shear stress, and cyclic stretch modulate vascular cell phenotypes and susceptibility to atherosclerosis. Despite that emerging efforts have been made to investigate how mechanotransduction is involved in tuning cell and tissue functions in various contexts, the regulatory mechanisms remain largely unknown. One of the challenges is to understand the signaling cascades that transmit mechanical cues from the plasma membrane to the cytoplasm and then to the nuclei to generate mechanoresponsive transcriptomes. YAP and its homolog TAZ, the Hippo pathway effectors, have been identified as key mechanotransducers that sense mechanical stimuli and relay the signals to control transcriptional programs for cell proliferation, differentiation, and transformation. However, the upstream mechanosensors for YAP/TAZ signaling and downstream transcriptome responses following YAP/TAZ activation or repression have not been well characterized. Moreover, the mechanoregulation of YAP/TAZ in literature is highly context-dependent. In this review, we summarize the biomechanical cues in the tissue microenvironment and provide an update on the roles of YAP/TAZ in mechanotransduction in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
Hormonal and Inflammatory Responses to Hypertrophy-Oriented Resistance Training at Acute Moderate Altitude. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084233. [PMID: 33923577 PMCID: PMC8072638 DOI: 10.3390/ijerph18084233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
This study investigated the effect of a traditional hypertrophy-oriented resistance training (RT) session at acute terrestrial hypoxia on inflammatory, hormonal, and the expression of miR-378 responses associated with muscular gains. In a counterbalanced fashion, 13 resistance trained males completed a hypertrophic RT session at both moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Venous blood samples were taken before and throughout the 30 min post-exercise period for determination of cytokines (IL6, IL10, TNFα), hormones (growth hormone [GH], cortisol [C], testosterone), and miR-378. Both exercise conditions stimulated GH and C release, while miR-378, testosterone, and inflammatory responses remained near basal conditions. At H, the RT session produced a moderate to large but nonsignificant increase in the absolute peak values of the studied cytokines. miR-378 revealed a moderate association with GH (r = 0.65; p = 0.026 and r = −0.59; p = 0.051 in N and H, respectively) and C (r = 0.61; p = 0.035 and r = 0.75; p = 0.005 in N and H, respectively). The results suggest that a RT session at H does not differentially affect the hormonal, inflammatory, and miR-378 responses compared to N. However, the standardized mean difference detected values in the cytokines suggest an intensification of the inflammatory response in H that should be further investigated.
Collapse
|
16
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
17
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
18
|
Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. J Physiol Biochem 2021; 77:63-73. [PMID: 33495890 DOI: 10.1007/s13105-021-00787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in human oncogenesis and the pathway's influence on myogenesis and satellite cell functions, on supporting cells such as fibroblasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles. Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results. Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer potential new strategies for the prevention or treatment of ageing.
Collapse
|
19
|
Shen J, Hao Z, Wang J, Hu J, Liu X, Li S, Ke N, Song Y, Lu Y, Hu L, Qiao L, Wu X, Luo Y. Comparative Transcriptome Profile Analysis of Longissimus dorsi Muscle Tissues From Two Goat Breeds With Different Meat Production Performance Using RNA-Seq. Front Genet 2021; 11:619399. [PMID: 33519920 PMCID: PMC7838615 DOI: 10.3389/fgene.2020.619399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Carcass weight, meat quality and muscle components are important traits economically and they underpin most of the commercial return to goat producers. In this study, the Longissimus dorsi muscle tissues were collected from five Liaoning cashmere (LC) goats and five Ziwuling black (ZB) goats with phenotypic difference in carcass weight, some meat quality traits and muscle components. The histological quantitative of collagen fibers and the transcriptome profiles in the Longissimus dorsi muscle tissues were investigated using Masson-trichrome staining and RNA-Seq, respectively. The percentage of total collagen fibers in the Longissimus dorsi muscle tissues from ZB goats was less than those from LC goats, suggesting that these ZB goats had more tender meat. An average of 15,919 and 15,582 genes were found to be expressed in Longissimus dorsi muscle tissues from LC and ZB goats, respectively. Compared to LC goats, the expression levels of 78 genes were up-regulated in ZB goats, while 133 genes were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in GO terms related to the muscle growth and development and the deposition of intramuscular fat and lipid metabolism, hippo signaling pathway and Jak-STAT signaling pathway. The results provide an improved understanding of the genetic mechanisms regulating meat production performance in goats, and will help us improve the accuracy of selection for meat traits in goats using marker-assisted selection based on these differentially expressed genes obtained.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yujie Lu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liyan Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
20
|
Fernández-Sanjurjo M, Díaz-Martínez ÁE, Díez-Robles S, González-González F, de Gonzalo-Calvo D, Rabadán M, Dávalos A, Fernández-García B, Iglesias-Gutiérrez E. Circulating MicroRNA Profiling Reveals Specific Subsignatures in Response to a Maximal Incremental Exercise Test. J Strength Cond Res 2020; 35:287-291. [DOI: 10.1519/jsc.0000000000003930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Marx-Stoelting P, Solano MDLM, Aoyama H, Adams RH, Bal-Price A, Buschmann J, Chahoud I, Clark R, Fang T, Fujiwara M, Gelinsky M, Grote K, Horimoto M, Bennekou SH, Kellner R, Kuwagata M, Leist M, Lang A, Li W, Mantovani A, Makris SL, Paumgartten F, Perron M, Sachana M, Schmitt A, Schneider S, Schönfelder G, Schulze F, Shiota K, Solecki R. 25th anniversary of the Berlin workshop on developmental toxicology: DevTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reprod Toxicol 2020; 100:155-162. [PMID: 33278556 DOI: 10.1016/j.reprotox.2020.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
25 years after the first Berlin Workshop on Developmental Toxicity this 10th Berlin Workshop aimed to bring together international experts from authorities, academia and industry to consider scientific, methodologic and regulatory aspects in risk assessment of developmental toxicity and to debate alternative strategies in testing developmental effects in the future. Proposals for improvement of the categorization of developmental effects were discussed as well as the update of the DevTox database as valuable tool for harmonization. The development of adverse outcome pathways relevant to developmental neurotoxicity (DNT) was debated as a fundamental improvement to guide the screening and testing for DNT using alternatives to animal methods. A further focus was the implementation of an in vitro mechanism-based battery, which can support various regulatory applications associated with the assessment of chemicals and mixtures. More interdisciplinary and translation research should be initiated to accelerate the development of new technologies to test developmental toxicity. Technologies in the pipeline are (i) high throughput imaging techniques, (ii) models for DNT screening tests, (iii) use of computer tomography for assessment of thoracolumbar supernumerary ribs in animal models, and (iv) 3D biofabrication of bone development and regeneration tissue models. In addition, increased collaboration with the medical community was suggested to improve the relevance of test results to humans and identify more clinically relevant endpoints. Finally, the participants agreed that this conference facilitated better understanding innovative approaches that can be useful for the identification of developmental health risks due to exposure to chemical substances.
Collapse
Affiliation(s)
| | | | | | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Ibrahim Chahoud
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Ruth Clark
- Ruth Clark Associates Ltd., United Kingdom
| | - Tian Fang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | | | | | - Konstanze Grote
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | | | | | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Annemarie Lang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Weihua Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | | | - Susan L Makris
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, D.C., USA
| | | | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticides Programs, Washington, D.C, USA
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, Paris, France
| | - Anne Schmitt
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Frank Schulze
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Roland Solecki
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
22
|
Cell geometry and the cytoskeleton impact the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase. Sci Rep 2020; 10:20598. [PMID: 33244033 PMCID: PMC7691988 DOI: 10.1038/s41598-020-75833-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm. A mechanosensitive epigenetic machinery could potentially affect differentiation programs and cellular memory.
Collapse
|
23
|
Gholipour M, Tabrizi A. The role of Hippo signaling pathway in physiological cardiac hypertrophy. ACTA ACUST UNITED AC 2019; 10:251-257. [PMID: 32983941 PMCID: PMC7502907 DOI: 10.34172/bi.2020.32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
Introduction: The role of Hippo signaling pathway, which was identified by genetic studies as a key regulator for tissue growth and organ size, in promoting physiological cardiac hypertrophy has not been investigated. Methods: Fourteen male Wistar rats were randomly assigned to the exercise and control groups. The exercise group ran 1 hour per day, 5 days/week, at about 65%-75% VO2max on the motor-driven treadmill with 15º slope, and the control group ran 15 min/d, 2 days/week at 9 m/min (0º inclination), throughout the eight-week experimental period. Forty-eight hours after the last session, hearts were dissected and left ventricles were weighed and stored for subsequent RT-PCR analysis. Results: Despite a significant increase in the MAP4k1 expression levels in the exercise group (P = 0.001), the Mst1 expression was inhibited compared to the control group (P < 0.001) which was followed by suppression of Lats1 expression (P = 0.001). Compared with the control group, significant increases were observed in heart weight/body weight (P = 0.024) and left ventricular weight/body weight (P = 0.034) ratios in the exercise group. The H&E staining confirmed the cardiac hypertrophy that may be partly due to a significant increase in Yap1 expression level compared with the control group (P <0.001), which was confirmed by Western blot analysis. Conclusion: Increased MAP4K1 expression did not influence Lats1 activation. The exercise training protocol suppressed Mst1 and Lats1 (Hippo pathway) and caused an increase in Yap1 expression level, which led to physiological cardiac hypertrophy in healthy rats. Further studies are suggested to apply this exercise protocol for the prevention and/or rehabilitation of cardiovascular disease and health promotion.
Collapse
Affiliation(s)
- Majid Gholipour
- Faculty Member of Physical Education Department, Sharif University of Technology, Tehran, Islamic Republic of Iran
| | - Arezoo Tabrizi
- Faculty Member of Physical Education Department, Sharif University of Technology, Tehran, Islamic Republic of Iran
| |
Collapse
|
24
|
Britto FA, Gnimassou O, De Groote E, Balan E, Warnier G, Everard A, Cani PD, Deldicque L. Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB J 2019; 34:1885-1900. [PMID: 31914659 DOI: 10.1096/fj.201902244r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Acute environmental hypoxia may potentiate muscle hypertrophy in response to resistance training but the mechanisms are still unknown. To this end, twenty subjects performed a 1-leg knee extension session (8 sets of 8 repetitions at 80% 1 repetition maximum, 2-min rest between sets) in normoxic or normobaric hypoxic conditions (FiO2 14%). Muscle biopsies were taken 15 min and 4 hours after exercise in the vastus lateralis of the exercised and the non-exercised legs. Blood samples were taken immediately, 2h and 4h after exercise. In vivo, hypoxic exercise fostered acute inflammation mediated by the TNFα/NF-κB/IL-6/STAT3 (+333%, +194%, + 163% and +50% respectively) pathway, which has been shown to contribute to satellite cells myogenesis. Inflammation activation was followed by skeletal muscle invasion by CD68 (+63%) and CD197 (+152%) positive immune cells, both known to regulate muscle regeneration. The role of hypoxia-induced activation of inflammation in myogenesis was confirmed in vitro. Acute hypoxia promoted myogenesis through increased Myf5 (+300%), MyoD (+88%), myogenin (+1816%) and MRF4 (+489%) mRNA levels in primary myotubes and this response was blunted by siRNA targeting STAT3. In conclusion, our results suggest that hypoxia could improve muscle hypertrophic response following resistance exercise through IL-6/STAT3-dependent myogenesis and immune cells-dependent muscle regeneration.
Collapse
Affiliation(s)
- Florian A Britto
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Olouyoumi Gnimassou
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Estelle De Groote
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Estelle Balan
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Geoffrey Warnier
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO - Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain la Neuve, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO - Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain la Neuve, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| |
Collapse
|
25
|
Sun JX, Yang ZY, Xie LM, Wang B, Bai N, Cai AL. TAZ and myostatin involved in muscle atrophy of congenital neurogenic clubfoot. World J Clin Cases 2019; 7:2238-2246. [PMID: 31531318 PMCID: PMC6718803 DOI: 10.12998/wjcc.v7.i16.2238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/23/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Muscular atrophy is the basic defect of neurogenic clubfoot. Muscle atrophy of clubfoot needs more scientific and reasonable imaging measurement parameters to evaluate. The Hippo pathway and myostatin pathway may be directly correlated in myogenesis. In this study, we will use congenital neurogenic clubfoot muscle atrophy model to verify in vivo. Further, the antagonistic mechanism of TAZ on myostatin was studied in the C2C12 cell differentiation model.
AIM To identify muscle atrophy in fetal neurogenic clubfoot by ultrasound imaging and detect the expression of TAZ and myostatin in gastrocnemius muscle. To elucidate the possible mechanisms by which TAZ antagonizes myostatin-induced atrophy in an in vitro cell model.
METHODS Muscle atrophy in eight cases of fetal unilateral clubfoot with nervous system abnormalities was identified by 2D and 3D ultrasound. Western blotting and immunostaining were performed to detect expression of myostatin and TAZ. TAZ overexpression in C2C12 myotubes and the expression of associated proteins were analyzed by western blotting.
RESULTS The maximum cross-sectional area of the fetal clubfoot on the varus side was reduced compared to the contralateral side. Myostatin was elevated in the atrophied gastrocnemius muscle, while TAZ expression was decreased. They were negatively correlated. TAZ overexpression reversed the diameter reduction of the myotube, downregulated phosphorylated Akt, and increased the expression of forkhead box O4 induced by myostatin.
CONCLUSION Ultrasound can detect muscle atrophy of fetal clubfoot. TAZ and myostatin are involved in the pathological process of neurogenic clubfoot muscle atrophy. TAZ antagonizes myostatin-induced myotube atrophy, potentially through regulation of the Akt/forkhead box O4 signaling pathway.
Collapse
Affiliation(s)
- Jia-Xing Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ze-Yu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Li-Mei Xie
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Bing Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang 110004, Liaoning Province, China
| | - Ai-Lu Cai
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
26
|
Usuki F, Fujimura M, Nakamura A, Nakano J, Okita M, Higuchi I. Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats. Front Physiol 2019; 10:759. [PMID: 31281262 PMCID: PMC6595229 DOI: 10.3389/fphys.2019.00759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023] Open
Abstract
Muscle atrophy can be caused by unloading stress such as microgravity environments or cast immobilization. Therapies for such disuse muscle atrophy and their underlying mechanisms are incompletely understood. Here, we investigated the therapeutic effects of local vibration stimulation on immobilization-induced skeletal muscle atrophy. A rat model was made by placing the left hindlimb in a cast for 1 week, leading to oxidative myofiber atrophy without myopathic changes in soleus skeletal muscle. Vibration stimulus (90 Hz, 15 min) to the plantar fascia of the atrophic hindlimb was performed once a day using a hand-held vibration massager after removal of a cast at the end of the immobilization period. After 2 weeks, rats were dissected, and quantitative analysis of the cross-sectional areas of soleus myofibers was performed. The results revealed that vibration induced significant recovery from disuse muscle atrophy, compared with untreated immobilized samples. Furthermore, vibration treatment suppressed the fiber transition from slow to fast fiber types compared with vibration-untreated immobilized samples. Western blotting analyses of mechanical stress-induced factors revealed that the expression of mechano-growth factor (MGF), systemic insulin-like growth factor I, and the mechanotransduction protein, Yes-associated protein 1 (YAP1), was decreased in untreated immobilized soleus muscle, whereas vibration stimulation restored their expression. No change in the level of phosphorylation of YAP1Ser127 was observed, leading to no change in p-YAP1/YAP1 ratio in vibration-treated immobilized soleus muscle. The results indicate that vibration stimulus is effective to restore immobilization-induced inactivation of YAP1 pathway. Phosphorylation of ERK 1/2, but not AKT, was enhanced in vibration-treated immobilized soleus muscle. Furthermore, vibration stimuli restored immobilization-induced downregulation of the paired box transcription factor, PAX7, a critical factor for regenerative myogenesis in muscle satellite cells. Our results indicate that cyclic vibration stimuli are effective in activating satellite cells and facilitate recovery from immobilization-induced oxidative myofiber atrophy through upregulation of MGF and YAP1.
Collapse
Affiliation(s)
- Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| | - Masatake Fujimura
- Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan
| | - Atsushi Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| | - Jiro Nakano
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Itsuro Higuchi
- Department of Physical Therapy, Faculty of Medicine, School of Health Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
27
|
Iyer SR, Shah SB, Ward CW, Stains JP, Spangenburg EE, Folker ES, Lovering RM. Differential YAP nuclear signaling in healthy and dystrophic skeletal muscle. Am J Physiol Cell Physiol 2019; 317:C48-C57. [PMID: 30995108 DOI: 10.1152/ajpcell.00432.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanical forces regulate muscle development, hypertrophy, and homeostasis. Force-transmitting structures allow mechanotransduction at the sarcolemma, cytoskeleton, and nuclear envelope. There is growing evidence that Yes-associated protein (YAP) serves as a nuclear relay of mechanical signals and can induce a range of downstream signaling cascades. Dystrophin is a sarcolemma-associated protein, and its absence underlies the pathology in Duchenne muscular dystrophy. We tested the hypothesis that the absence of dystrophin in muscle would result in reduced YAP signaling in response to loading. Following in vivo contractile loading in muscles of healthy (wild-type; WT) mice and mice lacking dystrophin (mdx), we performed Western blots of whole and fractionated muscle homogenates to examine the ratio of phospho (cytoplasmic) YAP to total YAP and nuclear YAP, respectively. We show that in vivo contractile loading induced a robust increase in YAP expression and its nuclear localization in WT muscles. Surprisingly, in mdx muscles, active YAP expression was constitutively elevated and unresponsive to load. Results from qRT-PCR analysis support the hyperactivation of YAP in vivo in mdx muscles, as evidenced by increased gene expression of YAP downstream targets. In vitro assays of isolated myofibers plated on substrates with high stiffness showed YAP nuclear labeling for both genotypes, indicating functional YAP signaling in mdx muscles. We conclude that while YAP signaling can occur in the absence of dystrophin, dystrophic muscles have altered mechanotransduction, whereby constitutively active YAP results in a failure to respond to load, which could be attributed to the increased state of "pre-stress" with increased cytoskeletal and extracellular matrix stiffness.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California.,Department of Bioengineering, University of California San Diego , La Jolla, California
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University , Greenville, North Carolina
| | - Eric S Folker
- Department of Biology, Boston College , Chestnut Hill, Massachusetts
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
28
|
The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells. Cells 2019; 8:cells8020191. [PMID: 30795621 PMCID: PMC6406719 DOI: 10.3390/cells8020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023] Open
Abstract
The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4+ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.
Collapse
|
29
|
CARM1 contributes to skeletal muscle wasting by mediating FoxO3 activity and promoting myofiber autophagy. Exp Cell Res 2018; 374:198-209. [PMID: 30500392 DOI: 10.1016/j.yexcr.2018.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is involved in a variety of biological processes in different cell types and disease conditions, including myogenesis. However, the specific function of CARM1 in skeletal muscle wasting under pathologic conditions remains unclear. Here, we identify CARM1 as a novel participant in muscular atrophy. Increases in CARM1 protein levels correlated positively with the loss of muscle mass upon denervation in mice. Notably, the knockdown of CARM1 represses the progression of muscle wasting and the expression of the atrophy-related genes Atrogin-1 and MuRF1 in vivo and in vitro. With respect to the underlying mechanism, we show that CARM1 interacts with and asymmetrically dimethylates FoxO3 (a specific transcription factor that controls atrophy-related gene expression). This methylation modification by CARM1 is required for FoxO3-dependent transcription. Accordingly, a CARM1 methyltransferase inhibitor also restrains the expression of Atrogin-1 and MuRF1 and myotube atrophy. Furthermore, CARM1 knockdown induces a remarkable myofiber autophagic deficit during the atrophy process. Altogether, our study identifies a crucial regulator of skeletal muscle atrophy and suggests that CARM1 is a potential target for the prevention of muscle atrophy.
Collapse
|
30
|
Ropka-Molik K, Pawlina-Tyszko K, Żukowski K, Piórkowska K, Żak G, Gurgul A, Derebecka N, Wesoły J. Examining the Genetic Background of Porcine Muscle Growth and Development Based on Transcriptome and miRNAome Data. Int J Mol Sci 2018; 19:ijms19041208. [PMID: 29659518 PMCID: PMC5979540 DOI: 10.3390/ijms19041208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Recently, selection in pigs has been focused on improving the lean meat content in carcasses; this focus has been most evident in breeds constituting a paternal component in breeding. Such sire-breeds are used to improve the meat quantity of cross-breed pig lines. However, even in one breed, a significant variation in the meatiness level can be observed. In the present study, the comprehensive analysis of genes and microRNA expression profiles in porcine muscle tissue was applied to identify the genetic background of meat content. The comparison was performed between whole gene expression and miRNA profiles of muscle tissue collected from two sire-line pig breeds (Pietrain, Hampshire). The RNA-seq approach allowed the identification of 627 and 416 differentially expressed genes (DEGs) between pig groups differing in terms of loin weight between Pietrain and Hampshire breeds, respectively. The comparison of miRNA profiles showed differential expression of 57 microRNAs for Hampshire and 34 miRNAs for Pietrain pigs. Next, 43 genes and 18 miRNAs were selected as differentially expressed in both breeds and potentially related to muscle development. According to Gene Ontology analysis, identified DEGs and microRNAs were involved in the regulation of the cell cycle, fatty acid biosynthesis and regulation of the actin cytoskeleton. The most deregulated pathways dependent on muscle mass were the Hippo signalling pathway connected with the TGF-β signalling pathway and controlling organ size via the regulation of ubiquitin-mediated proteolysis, cell proliferation and apoptosis. The identified target genes were also involved in pathways such as the FoxO signalling pathway, signalling pathways regulating pluripotency of stem cells and the PI3K-Akt signalling pathway. The obtained results indicate molecular mechanisms controlling porcine muscle growth and development. Identified genes (SOX2, SIRT1, KLF4, PAX6 and genes belonging to the transforming growth factor beta superfamily) could be considered candidate genes for determining muscle mass in pigs.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Grzegorz Żak
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Artur Gurgul
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|