1
|
Hwang DJ, Yang HJ. Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters. Int J Mol Sci 2024; 26:240. [PMID: 39796095 PMCID: PMC11720227 DOI: 10.3390/ijms26010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable. In this comprehensive review, we explored how weightlifters can optimize their performance through targeted nutritional strategies, including carbohydrate intake for glycogen replenishment and proteins for muscle growth and recovery. Additionally, the roles of key supplements, such as creatine, beta-alanine, and branch-chained amino acids in enhancing strength, delaying fatigue, and supporting muscle repair were discussed. A comprehensive literature review was conducted using PubMed, Google Scholar, and Web of Science to gather studies on nutritional strategies for weightlifting performance and training adaptation. The review focused on English-language articles relevant to weightlifters, including studies on powerlifting, while excluding those involving non-human subjects. Weightlifting requires explosive power, and proper nutrition is vital for performance and recovery, emphasizing the role of carbohydrate, protein, and fat intake. Nutrient timing and personalized strategies, informed by genetic and metabolomic analyses, enhance recovery and performance, while supplements like creatine, caffeine, and beta-alanine can significantly improve results when used correctly. Sustainable nutritional strategies are essential for enhancing weightlifter performance, emphasizing a balanced approach over extreme diets or excessive supplements. Further research is needed to refine these strategies based on individual athlete characteristics, ensuring consistent top-level performance throughout competitive seasons.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Sport Science Institute, Korea National Sport University, Seoul 05541, Republic of Korea;
| | - Hong-Jun Yang
- Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Karačić A, Zonjić J, Stefanov E, Radolović K, Starčević A, Renko I, Krznarić Ž, Ivančić M, Šatalić Z, Liberati Pršo AM. Short-Term Supplementation of Sauerkraut Induces Favorable Changes in the Gut Microbiota of Active Athletes: A Proof-of-Concept Study. Nutrients 2024; 16:4421. [PMID: 39771042 PMCID: PMC11677004 DOI: 10.3390/nu16244421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition. METHODS To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted. The microbiota composition of organic pasteurized sauerkraut was analyzed, and then healthy active athletes were provided with the same sauerkraut for 10 days as an intervention. The effects of sauerkraut on the athlete's gut microbiota, laboratory parameters, and bowel function were assessed. RESULTS Significant changes in the gut microbiota composition were seen on taxonomic and functional levels, independent of baseline microbiota composition, even after short-term supplementation. Most notably, there was an increase in several health-promoting genera of the family Lachnospiraceae, as well as significant alterations in metabolic pathways regarding cell wall synthesis and the metabolism of nucleotide bases. An increase in the proportion of lymphocytes and a decrease in B12 vitamin levels was observed, as well as a risk of indigestion in certain athletes, which significantly resolved after seven days of supplementation in all athletes. It is unclear whether the observed effects are attributable to the sauerkraut's own microbiome or its pre- and postbiotics since it is a whole food. CONCLUSIONS Our study has demonstrated that the concept of whole fermented foods, such as sauerkraut, could potentially be feasible and effective in sports nutrition for gut microbiota optimization.
Collapse
Affiliation(s)
- Andrija Karačić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- The Gut Microbiome Center (CCM), Jablanska 82, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Jadran Zonjić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ena Stefanov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Katja Radolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ira Renko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Željko Krznarić
- Department of Internal Medicine, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Matija Ivančić
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Zvonimir Šatalić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ana-Marija Liberati Pršo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Chen YC, Wang HY, Ogita F, Hung CH, Kuo CH, Wang JP, Wang CM, Hou CW, Wang TY. Effects of probiotic supplementation with high-intensity interval training on cardiorespiratory endurance and metabolism in Middle-Aged Obese Women. J Int Soc Sports Nutr 2024; 21:2425609. [PMID: 39618097 PMCID: PMC11613408 DOI: 10.1080/15502783.2024.2425609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/18/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION High-intensity interval training (HIIT) has been shown to improve chronic diseases. Probiotics have been found to have similar effects. However, the additive effects of HIIT in combination with probiotics supplementation are unclear. The aim of current study was to investigate whether there were additive effects when implementing both HIIT and probiotics simultaneously. METHODS Forty-seven obese middle-aged women (Age: 44.5 ± 5.94 years, body fat percentage: 40.0 ± 4.1%) were recruited and assigned into four groups: control group (C, n = 12), probiotics group (P, n = 12), HIIT group (H, n = 11), and HIIT with probiotics group (HP, n = 12). All the participants consumed probiotics (Lactiplantibacillus plantarum TWK10, 6 × 1010 CFU/day) or placebo supplements daily. Exercise intervention groups conducted HIIT training (85-90% vVO2max for 2 min, followed by a 1-min inactive rest interval, repeated for 7 cycles) 3 sessions per week for 8 weeks. Anthropometry, cardiorespiratory endurance, blood glucose, and lipid profile were measured at baseline and after the 8-week intervention. RESULTS After the intervention, there were significant changes between groups in the variations and rates of change in waist circumference, hip circumference, and TTE. The waist circumference in group H significantly increased compared to groups C and P, while group HP did not show significant difference compared to group C. On the other hand, the hip circumference decreased significantly in group HP compared to group C, and the decreased rate in group HP was significantly greater than in groups C and P. Furthermore, the increase rates in TTE were higher in group H and HP compared to group C. CONCLUSION HIIT improves TTE but negatively affects waist circumference compared to the control group. However, when combined with probiotics, the probiotics not only help enhance TTE but also counteract the negative impact on waist circumference and further reduce hip circumference, resulting in a synergistic effect. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT06285578.
Collapse
Affiliation(s)
- Yi-Chen Chen
- University of Taipei, Laboratory of Exercise Biochemistry, Institute of Sports Sciences, Taipei, Taiwan
- National Institute of Fitness and Sports in Kanoya, Department of Sports and Life Sciences, Kanoya, Japan
| | - Hsuan-Yun Wang
- Shih Hsin University, Office of Physical Education, Taipei, Taiwan
| | - Futoshi Ogita
- National Institute of Fitness and Sports in Kanoya, Department of Sports and Life Sciences, Kanoya, Japan
| | - Chi-Hsiang Hung
- University of Taipei, Department of Ball Sports, Taipei, Taiwan
| | - Chia-Hua Kuo
- University of Taipei, Laboratory of Exercise Biochemistry, Institute of Sports Sciences, Taipei, Taiwan
| | - Jie-Ping Wang
- Hubei University, School of Physical Education, Wuhan, China
| | - Chia-Min Wang
- Soochow University, Office of Physical Education, Taipei, Taiwan
| | - Chien-Wen Hou
- University of Taipei, Laboratory of Exercise Biochemistry, Institute of Sports Sciences, Taipei, Taiwan
| | - Ting-Yao Wang
- Center of Physical Education, Tzu Chi University,Hualien, Taiwan
| |
Collapse
|
4
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
5
|
Saponaro F, Bertolini A, Baragatti R, Galfo L, Chiellini G, Saba A, D'Urso G. Myokines and Microbiota: New Perspectives in the Endocrine Muscle-Gut Axis. Nutrients 2024; 16:4032. [PMID: 39683426 DOI: 10.3390/nu16234032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores the dual role of skeletal muscle as both a mechanical and endocrine organ, highlighting its contributions to overall health and its adaptability to various inputs such as nutrition, hormones, exercise, and injuries. In addition to its role in metabolism and energy conversion, skeletal muscle secretes signalling molecules called myokines (at rest) and exerkines (during/after physical exercise), which communicate with other organs like the brain, the cardiovascular system, and the immune system. Key molecules such as interleukins, irisin, and myostatin are discussed for their roles in mediating muscle health and inter-organ communication. This work also focuses on the muscle-gut axis, emphasising the bidirectional interaction between skeletal muscle and the gut microbiota, a complex ecosystem influencing immune defence, digestion, and metabolism. Muscle activity, particularly exercise, alters the gut microbial composition, promoting beneficial species, while gut-derived metabolites like short-chain fatty acids (SCFAs) impact muscle metabolism, mitochondrial function, and insulin sensitivity. Dysbiosis, or an imbalanced microbiota, can lead to muscle atrophy, inflammation, and metabolic dysfunction. This evidence highlights emerging research into myokines and exerkines as potential therapeutic targets for managing conditions like muscle decline, ageing, and metabolic diseases through muscle-gut interactions.
Collapse
Affiliation(s)
- Federica Saponaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Riccardo Baragatti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Leonardo Galfo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Giuseppina D'Urso
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| |
Collapse
|
6
|
Bertomeu JB, Fioravanço LP, Ramis TR, Godinho DB, Nascimento AS, Lima GC, Furian AF, Oliveira MS, Fighera MR, Royes LFF. The Role of Ion-Transporting Proteins on Crosstalk Between the Skeletal Muscle and Central Nervous Systems Elicited by Physical Exercise. Mol Neurobiol 2024:10.1007/s12035-024-04613-7. [PMID: 39578339 DOI: 10.1007/s12035-024-04613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
A paradigm shift in the understanding of bidirectional interactions between peripheral and central nervous systems is essential for development of rehabilitation and preventive interventions based on physical exercise. Although a causal relationship has not been completely established, modulation of voltage-dependent ion channels (Ca2+, Cl-, K+, Na+, lactate-, H+) in skeletal and neuronal cells provides opportunities to maintain force production during exercise and reduce the risk of disease. However, there are caveats to consider when interpreting the effects of physical exercise on this bidirectional axis, since exercise protocol details (e.g., duration and intensity) have variable effects on this crosstalk. Therefore, an integrative perspective of the skeletal muscle and brain's communication pathway is discussed, and the role of physical exercise on such communication highway is explained in this review.
Collapse
Affiliation(s)
- Judit Borràs Bertomeu
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Paiva Fioravanço
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Rozales Ramis
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Douglas Buchmann Godinho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexandre Seixas Nascimento
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Corrêa Lima
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Laboratory of Experimental and Clinical Neuropsychiatry, Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Sports Methods and Techniques, Center of Physical Education and , Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
7
|
Russo C, Surdo S, Valle MS, Malaguarnera L. The Gut Microbiota Involvement in the Panorama of Muscular Dystrophy Pathogenesis. Int J Mol Sci 2024; 25:11310. [PMID: 39457092 PMCID: PMC11508360 DOI: 10.3390/ijms252011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Muscular dystrophies (MDs) are genetically heterogeneous diseases characterized by primary skeletal muscle atrophy. The collapse of muscle structure and irreversible degeneration of tissues promote the occurrence of comorbidities, including cardiomyopathy and respiratory failure. Mitochondrial dysfunction leads to inflammation, fibrosis, and adipogenic cellular infiltrates that exacerbate the symptomatology of MD patients. Gastrointestinal disorders and metabolic anomalies are common in MD patients and may be determined by the interaction between the intestine and its microbiota. Therefore, the gut-muscle axis is one of the actors involved in the spread of inflammatory signals to all muscles. In this review, we aim to examine in depth how intestinal dysbiosis can modulate the metabolic state, the immune response, and mitochondrial biogenesis in the course and progression of the most investigated MDs such as Duchenne Muscular Dystrophy (DMD) and Myotonic Dystrophy (MD1), to better identify gut microbiota metabolites working as therapeutic adjuvants to improve symptoms of MD.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Patel BK, Patel KH, Lee CN, Moochhala S. Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. Int J Mol Sci 2024; 25:10076. [PMID: 39337561 PMCID: PMC11432184 DOI: 10.3390/ijms251810076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recent years have witnessed an uptick in research highlighting the gut microbiota's role as a primary determinant of athletes' health, which has piqued interest in the hypothesis that it correlates with athletes' physical performance. Athletes' physical performances could be impacted by the metabolic activity of the assortment of microbes found in their gut. Intestinal microbiota impacts multiple facets of an athlete's physiology, including immune response, gut membrane integrity, macro- and micronutrient absorption, muscle endurance, and the gut-brain axis. Several physiological variables govern the gut microbiota; hence, an intricately tailored and complex framework must be implemented to comprehend the performance-microbiota interaction. Emerging evidence underscores the intricate relationship between the gut microbiome and physical fitness, revealing that athletes who engage in regular physical activity exhibit a richer diversity of gut microbes, particularly within the Firmicutes phylum, e.g., Ruminococcaceae genera, compared to their sedentary counterparts. In elite sport, it is challenging to implement an unconventional strategy whilst simultaneously aiding an athlete to accomplish feasible, balanced development. This review compiles the research on the effects of gut microbiota modulation on performance in sports and illustrates how different supplementation strategies for gut microbiota have the ability to improve athletic performance by enhancing physical capacities. In addition to promoting athletes' overall health, this study evaluates the existing literature in an effort to shed light on how interventions involving the gut microbiota can dramatically improve performance on the field. The findings should inform both theoretical and practical developments in the fields of sports nutrition and training.
Collapse
Affiliation(s)
- Bharati Kadamb Patel
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Kadamb Haribhai Patel
- Temasek Polytechnic, School of Applied Sciences, 21 Tampines Ave 1, Singapore 529757, Singapore;
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Shabbir Moochhala
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD3, 16 Medical Drive, Singapore 117600, Singapore
| |
Collapse
|
9
|
Urban S, Chmura O, Wątor J, Panek P, Zapała B. The intensive physical activity causes changes in the composition of gut and oral microbiota. Sci Rep 2024; 14:20858. [PMID: 39242653 PMCID: PMC11379964 DOI: 10.1038/s41598-024-71684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
This study aimed to compare the gut and oral microbiota composition of professional male football players and amateurs. Environmental and behavioral factors are well known to modulate intestinal microbiota composition. Active lifestyle behaviors are involved in the improvement of metabolic and inflammatory parameters. Exercise promotes adaptational changes in human metabolic capacities affecting microbial homeostasis. Twenty professional football players and twelve amateurs were invited to the study groups. Fecal and oral microbiota were analyzed using next-generation sequencing of the 16S rRNA gene. Diversity in the oral microbiota composition was similar in amateurs and professionals, while the increase in training intensity reduced the number of bacterial species. In contrast, the analysis of the intestinal microbiota showed the greatest differentiation between professional football players and amateurs, especially during intensive training. Firmicutes were characterized by the largest population in all the studied groups. Intensive physical activity increases the abundance of butyrate and succinate-producing bacteria affecting host metabolic homeostasis, suggesting a very beneficial role for the host immune system's microbiome homeostasis and providing a proper function of the host immune system.
Collapse
Affiliation(s)
- Szymon Urban
- Trauma and Orthopaedics Department, University Hospital in Krakow, Kraków, Poland
| | - Olaf Chmura
- Student Society of Nutrigenomics, Department of Clinical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Julia Wątor
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Piotr Panek
- Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Zapała
- Centre for Innovative Medical Education, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
10
|
Li T, Yin D, Shi R. Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr 2024; 11:1418778. [PMID: 39221163 PMCID: PMC11362084 DOI: 10.3389/fnut.2024.1418778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcopenia refers to an age-related systemic skeletal muscle disorder, which is characterized by loss of muscle mass and weakening of muscle strength. Gut microbiota can affect skeletal muscle through a variety of mechanisms. Gut microbiota present distinct features among elderly people and sarcopenia patients, including a decrease in microbial diversity, which might be associated with the quality and function of the skeletal muscle. There might be a gut-muscle axis; where gut microbiota and skeletal muscle may affect each other bi-directionally. Skeletal muscle can affect the biodiversity of the gut microbiota, and the latter can, in turn, affect the anabolism of skeletal muscle. This review examines recent studies exploring the relationship between gut microbiota and skeletal muscle, summarizes the effects of exercise on gut microbiota, and discusses the possible mechanisms of the gut-muscle axis.
Collapse
Affiliation(s)
| | | | - Rengfei Shi
- School of Health and Exercise, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Guevara-Cruz M, Hernández-Gómez KG, Condado-Huerta C, González-Salazar LE, Peña-Flores AK, Pichardo-Ontiveros E, Serralde-Zúñiga AE, Sánchez-Tapia M, Maya O, Medina-Vera I, Noriega LG, López-Barradas A, Rodríguez-Lima O, Mata I, Olin-Sandoval V, Torres N, Tovar AR, Velázquez-Villegas LA. Intermittent fasting, calorie restriction, and a ketogenic diet improve mitochondrial function by reducing lipopolysaccharide signaling in monocytes during obesity: A randomized clinical trial. Clin Nutr 2024; 43:1914-1928. [PMID: 39003957 DOI: 10.1016/j.clnu.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota. METHODS AND FINDINGS A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n2p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study. CONCLUSIONS We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov (NCT05200468).
Collapse
Affiliation(s)
- Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Karla G Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Citlally Condado-Huerta
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Luis E González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Ana Karen Peña-Flores
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Aurora E Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Otoniel Maya
- Chalmers e-Commons. Chalmers University of Technology, Gotemburg, Vastra Gotaland, Sweden
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Irma Mata
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Viridiana Olin-Sandoval
- Laboratorio 43. Departamento de Biotecnología y Bioingeniería, Cinvestav-Zacatenco, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Xie X, Huang C. Role of the gut-muscle axis in mitochondrial function of ageing muscle under different exercise modes. Ageing Res Rev 2024; 98:102316. [PMID: 38703951 DOI: 10.1016/j.arr.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The fundamental role of the gut microbiota through the gut-muscle axis in skeletal muscle ageing is increasingly recognised. Metabolites derived from the intestinal microbiota are essential in maintaining skeletal muscle function and metabolism. The energy produced by mitochondria and moderate levels of reactive oxygen species can contribute to this process. Metabolites can effectively target the mitochondria, slowing the progression of muscle ageing and potentially representing a marker of ageing-related skeletal muscle loss. Moreover, mitochondria can contribute to the immune response, gut microbiota biodiversity, and maintenance of the intestinal barrier function. However, the causal relationship between mitochondrial function and gut microbiota crosstalk remains poorly understood. In addition to elucidating the regulatory pathways of the gut-muscle axis during the ageing process, we focused on the potential role of the "exercise-gut-muscle axis", which represents a pathway under stimulation from different exercise modes to induce mitochondrial adaptations, skeletal muscle metabolism and maintain intestinal barrier function and biodiversity stability. Meanwhile, different exercise modes can induce mitochondrial adaptations and skeletal muscle metabolism and maintain intestinal barrier function and biodiversity. Resistance exercise may promote mitochondrial adaptation, increase the cross-sectional area of skeletal muscle and muscle hypertrophy, and promote muscle fibre and motor unit recruitment. Whereas endurance exercise promotes mitochondrial biogenesis, aerobic capacity, and energy utilisation, activating oxidative metabolism-related pathways to improve skeletal muscle metabolism and function. This review describes the effects of different exercise modes through the gut-muscle axis and how they act through mitochondria in ageing to define the current state of the field and issues requiring resolution.
Collapse
Affiliation(s)
- Xiaoting Xie
- Department of Sports Science, Zhejiang University, Hangzhou, China; Laboratory for Digital Sports and Health, College of Education, Zhejiang University, Hangzhou, China
| | - Cong Huang
- Department of Sports Science, Zhejiang University, Hangzhou, China; Laboratory for Digital Sports and Health, College of Education, Zhejiang University, Hangzhou, China; Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
13
|
Vigano M, Kubal S, Lu Y, Habib S, Samarani S, Cama G, Viau C, Farzin H, Koudieh N, Xia J, Ahmad A, Vigano A, Costiniuk CT. Impact of Cannabidiol and Exercise on Clinical Outcomes and Gut Microbiota for Chemotherapy-Induced Peripheral Neuropathy in Cancer Survivors: A Case Report. Pharmaceuticals (Basel) 2024; 17:834. [PMID: 39065685 PMCID: PMC11279394 DOI: 10.3390/ph17070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) remains a clinical challenge for up to 80% of breast cancer survivors. In an open-label study, participants underwent three interventions: standard care (duloxetine) for 1 month (Phase 1), oral cannabidiol (CBD) for 2 months (Phase 2), and CBD plus multi-modal exercise (MME) for another 2 months (Phase 3). Clinical outcomes and gut microbiota composition were assessed at baseline and after each phase. We present the case of a 52-year-old female with a history of triple-negative breast cancer in remission for over five years presenting with CIPN. She showed decreased monocyte counts, c-reactive protein, and systemic inflammatory index after each phase. Duloxetine provided moderate benefits and intolerable side effects (hyperhidrosis). She experienced the best improvement and least side effects with the combined (CBD plus MME) phase. Noteworthy were clinically meaningful improvements in CIPN symptoms, quality of life (QoL), and perceived physical function, as well as improvements in pain, mobility, hand/finger dexterity, and upper and lower body strength. CBD and MME altered gut microbiota, showing enrichment of genera that produce short-chain fatty acids. CBD and MME may improve CIPN symptoms, QoL, and physical function through anti-inflammatory and neuroprotective effects in cancer survivors suffering from long-standing CIPN.
Collapse
Affiliation(s)
- MariaLuisa Vigano
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Sarah Kubal
- Division of Supportive and Palliative Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Yao Lu
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Sarah Habib
- Division of Supportive and Palliative Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Georgina Cama
- Division of Supportive and Palliative Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Charles Viau
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Houman Farzin
- Division of Palliative Care, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Nebras Koudieh
- Division of Palliative Care, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jianguo Xia
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Ali Ahmad
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Antonio Vigano
- Division of Supportive and Palliative Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Cecilia T. Costiniuk
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, Royal Victoria Hospital—Glen Site, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
14
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
15
|
Abdel Haleem MI, Khater HF, Edris SN, Taie HAA, Abdel Gawad SM, Hassan NA, El-Far AH, Magdy Y, Elbasuni SS. Bioefficacy of dietary inclusion of Nannochloropsis oculata on Eimeria spp. challenged chicks: clinical approaches, meat quality, and molecular docking. Avian Pathol 2024; 53:199-217. [PMID: 38285881 DOI: 10.1080/03079457.2024.2312133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although anticoccidial drugs have been used to treat avian coccidiosis for nearly a century, resistance, bird harm, and food residues have caused health concerns. Thus, Nannochloropsis oculata was investigated as a possible coccidiosis treatment for broilers. A total of 150 1-day-old male Cobb broiler chicks were treated as follows: G1-Ng: fed a basal diet; G2-Ps: challenged with Eimeria spp. oocysts and fed basal diet; G3-Clo: challenged and fed basal diet with clopidol; G4-NOa: challenged and fed 0.1% N. oculata in diet, and G5-NOb: challenged and fed 0.2% N. oculata. Compared to G2-Ps, N. oculata in the diet significantly (P < 0.05) decreased dropping scores, lesion scores, and oocyst shedding. Without affecting breast meat colour metrics, N. oculata improved meat quality characters. At 28 days of age, birds received 0.2% N. oculata had significantly (P < 0.05) higher serum levels of MDA, T-SOD, HDL, and LDL cholesterol compared to G2-Ps. Serum AST, ALT, and urea levels were all decreased when N. oculata (0.2%) was used as opposed to G2-Ps. Histopathological alterations and the number of developmental and degenerative stages of Eimeria spp. in the intestinal epithelium were dramatically reduced by 0.2% N. oculata compared to G2-Ps. Molecular docking revealed a higher binding affinity of N. oculata for E. tenella aldolase, EtAMA1, and EtMIC3, which hindered glucose metabolism, host cell adhesion, and invasion of Eimeria. Finally, N. oculata (0.2%) can be used in broiler diets to mitigate the deleterious effects of coccidiosis.
Collapse
Affiliation(s)
- Marwa I Abdel Haleem
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Shimaa N Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Samah M Abdel Gawad
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Nibal A Hassan
- Department of Biology, Animal Reproduction Research Institute, Pathology Department, Giza, Egypt
- College of Science, Taif University, Taif, Saudi Arabia
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasmeen Magdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
16
|
Zhang L, Li H, Song Z, Liu Y, Zhang X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods 2024; 13:1680. [PMID: 38890909 PMCID: PMC11171530 DOI: 10.3390/foods13111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Numerous research studies have shown that moderate physical exercise exerts positive effects on gastrointestinal tract health and increases the variety and relative number of beneficial microorganisms in the intestinal microbiota. Increasingly, studies have shown that the gut microbiota is critical for energy metabolism, immunological response, oxidative stress, skeletal muscle metabolism, and the regulation of the neuroendocrine system, which are significant for the physiological function of exercise. Dietary modulation targeting the gut microbiota is an effective prescription for improving exercise performance and alleviating exercise fatigue. This article discusses the connection between exercise and the makeup of the gut microbiota, as well as the detrimental effects of excessive exercise on gut health. Herein, we elaborate on the possible mechanism of the gut microbiota in improving exercise performance, which involves enhancing skeletal muscle function, reducing oxidative stress, and regulating the neuroendocrine system. The effects of dietary nutrition strategies and probiotic supplementation on exercise from the perspective of the gut microbiota are also discussed in this paper. A deeper understanding of the potential mechanism by which the gut microbiota exerts positive effects on exercise and dietary nutrition recommendations targeting the gut microbiota is significant for improving exercise performance. However, further investigation is required to fully comprehend the intricate mechanisms at work.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Haoyu Li
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| |
Collapse
|
17
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Alaba TE, Holman JM, Ishaq SL, Li Y. Current Knowledge on the Preparation and Benefits of Cruciferous Vegetables as Relates to In Vitro, In Vivo, and Clinical Models of Inflammatory Bowel Disease. Curr Dev Nutr 2024; 8:102160. [PMID: 38779039 PMCID: PMC11108850 DOI: 10.1016/j.cdnut.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.
Collapse
Affiliation(s)
- Tolu E Alaba
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Johanna M Holman
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, NY, United States
| |
Collapse
|
19
|
Mohabbat M, Arazi H. Effect of resistance training plus enriched probiotic supplement on sestrin2, oxidative stress, and mitophagy markers in elderly male Wistar rats. Sci Rep 2024; 14:7744. [PMID: 38565633 PMCID: PMC10987664 DOI: 10.1038/s41598-024-58462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to determine the effects of resistance training combined with a probiotic supplement enriched with vitamin D and leucine on sestrin2, oxidative stress, antioxidant defense, and mitophagy markers in aged Wistar rats. Thirty-five male rats were randomly assigned to two age groups (old with 18-24 months of age and young with 8-12 weeks of age) and then divided into five groups, including (1) old control (OC: n = 5 + 2 for reserve in all groups), (2) young control (YC: n = 5), (3) old resistance training (OR: n = 5), (4) old resistance training plus supplement (ORS: n = 5), and old supplement group (OS: n = 5). Training groups performed ladder climbing resistance training 3 times per week for 8 weeks. Training intensity was inserted progressively, with values equal to 65, 75, and 85, determining rats' maximal carrying load capacity. Each animal made 5 to 8 climbs in each training session, and the time of each climb was between 12 and 15 s, although the time was not the subject of the evaluation, and the climbing pattern was different in the animals. Old resistance plus supplement and old supplement groups received 1 ml of supplement 5 times per week by oral gavage in addition to standard feeding, 1 to 2 h post training sessions. Forty-eight hours after the end of the training program, 3 ml of blood samples were taken, and all rats were then sacrificed to achieve muscle samples. After 8 weeks of training, total antioxidant capacity and superoxide dismutase activity levels increased in both interventions. A synergistic effect of supplement with resistance training was observed for total antioxidant capacity, superoxide dismutase, and PTEN-induced kinase 1. Sestrin 2 decreased in intervention groups. These results suggest that resistance training plus supplement can boost antioxidant defense and mitophagy while potentially decreasing muscle strength loss.
Collapse
Affiliation(s)
- Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran.
| |
Collapse
|
20
|
You Y, Chen Y, Wei M, Tang M, Lu Y, Zhang Q, Cao Q. Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study. Nutrients 2024; 16:777. [PMID: 38542688 PMCID: PMC10974920 DOI: 10.3390/nu16060777] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 12/31/2024] Open
Abstract
The main topic of this research is the relationship between dietary intake of live microbe-containing (LMC) foods, recreational physical activity (RPA), and the systemic immune-inflammation index (SII). This study presented a cohort of 26,254 individuals in the National Health and Nutrition Examination Survey (NHANES), representing an estimated weighted population of 193,637,615 in the United States. Weighted multivariable linear regression models were used in consideration of the multi-stage sampling design. Results: The study found that medium-LMC foods were negatively associated with the SII [β (95% CI): -4.807 (-7.752, -1.862), p = 0.002], indicating that their intake was correlated with lower levels of the SII. However, no significant associations were found with low- or high-LMC foods. The study also explored the relationship between RPA and the SII, finding that more time spent in RPA was negatively associated with the SII [β (95% CI): -0.022 (-0.034, -0.011), p < 0.001]. A mediation analysis was conducted to investigate the role of RPA in the relationship between medium-LMC food intake and the SII. The analysis revealed that RPA had a notable indirect effect, contributing to 6.7% of the overall change in the SII. Overall, this study suggests that medium-LMC food intake and RPA may have beneficial effects on systemic immune inflammation.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; (Y.Y.); (M.W.)
- School of Social Sciences, Tsinghua University, Beijing 100084, China;
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
| | - Mengxian Wei
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; (Y.Y.); (M.W.)
- School of Social Sciences, Tsinghua University, Beijing 100084, China;
| | - Meihua Tang
- Shanghai Fire Research Institute of Mem, Shanghai 200030, China;
| | - Yuqing Lu
- School of Social Sciences, Tsinghua University, Beijing 100084, China;
- Department of Psychology, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian 250111, China;
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming 650093, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
21
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Sausa M, Fucarino A, Paladino L, Zummo FP, Fabbrizio A, Di Felice V, Rappa F, Barone R, Marino Gammazza A, Macaluso F. Probiotics as Potential Therapeutic Agents: Safeguarding Skeletal Muscle against Alcohol-Induced Damage through the Gut-Liver-Muscle Axis. Biomedicines 2024; 12:382. [PMID: 38397983 PMCID: PMC10886686 DOI: 10.3390/biomedicines12020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics have shown the potential to counteract the loss of muscle mass, reduce physical fatigue, and mitigate inflammatory response following intense exercise, although the mechanisms by which they work are not very clear. The objective of this review is to describe the main harmful effects of alcohol on skeletal muscle and to provide important strategies based on the use of probiotics. The excessive consumption of alcohol is a worldwide problem and has been shown to be crucial in the progression of alcoholic liver disease (ALD), for which, to date, the only therapy available is lifestyle modification, including cessation of drinking. In ALD, alcohol contributes significantly to the loss of skeletal muscle, and also to changes in the intestinal microbiota, which are the basis for a series of problems related to the onset of sarcopenia. Some of the main effects of alcohol on the skeletal muscle are described in this review, with particular emphasis on the "gut-liver-muscle axis", which seems to be the primary cause of a series of muscle dysfunctions related to the onset of ALD. The modulation of the intestinal microbiota through probiotics utilization has appeared to be crucial in mitigating the muscle damage induced by the high amounts of alcohol consumed.
Collapse
Affiliation(s)
- Martina Sausa
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy; (M.S.); (A.F.); (A.F.)
| | - Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy; (M.S.); (A.F.); (A.F.)
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
| | - Antonio Fabbrizio
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy; (M.S.); (A.F.); (A.F.)
| | - Valentina Di Felice
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
| | - Filippo Macaluso
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy; (M.S.); (A.F.); (A.F.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.P.); (F.P.Z.); (V.D.F.); (F.R.); (R.B.); (A.M.G.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
23
|
Xiong L, Yao X, Pei J, Wang X, Guo S, Cao M, Bao P, Wang H, Yan P, Guo X. Do microbial-gut-muscle mediated by SCFAs, microbial-gut-brain axis mediated by insulin simultaneously regulate yak IMF deposition? Int J Biol Macromol 2024; 257:128632. [PMID: 38061511 DOI: 10.1016/j.ijbiomac.2023.128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Ruminant rumen plays an important role in the digestibility of cellulose, hemicellulose, starch and fat. In this study, the yaks under graze and stall feeding were chosen as the models of different rumen bacteria and intramuscular fat (IMF). The characteristics of IMF deposition, serum indexes in yaks were detected; the bacteria, metabolites in rumen was explored by 16S rRNA sequencing technology, untargeted metabolomics based on liquid chromatography-mass spectrometer and gas chromatography, respectively; the transcriptome of longissimus thoracis was identified by RNA-Sequencing analysis. Based on above results, a hypothesis that yak IMF deposition is regulated by the combined action of microbiome-gut-brain and muscle axis was proposed. The short-chain fatty acids (SCFAs) and neurotransmitters precursors like acetylcholine produced in yak rumen promoted insulin secretion via central nervous system. These insulin resulted in the high expression of SREBF1 gene by gut-brain axis; SCFAs can directly arrive to muscular tissue via blood circulation system, then activated the expression of PPARγ gene by gut-muscle axis. The expression of lipogenesis gene SCD, FABP3, CPT1, FASN and ACC2 was accordingly up-regulated. This study firstly introduce the theory of microbiome-gut-brain/muscle axis into the study of ruminant, and comprehensively expounded the regulatory mechanism of yak IMF deposition.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xixi Yao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China.
| |
Collapse
|
24
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
25
|
Lambrinoudaki I, Armeni E. Understanding of and clinical approach to cardiometabolic transition at the menopause. Climacteric 2024; 27:68-74. [PMID: 37224871 DOI: 10.1080/13697137.2023.2202809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Cardiovascular disease (CVD) represents the leading cause of death and accounts for almost 50% of all deaths in women worldwide. The menopausal transition is associated with central body fat accumulation, a decrease in energy expenditure, weight gain, insulin resistance and a pro-atherogenic lipid profile. Moreover, menopause is independently associated with an adverse effect on functional and structural indices of subclinical atherosclerosis. Women with premature ovarian insufficiency have heightened CVD risk compared to women of natural age at menopause. Furthermore, women with severe menopausal symptoms may have a more adverse cardiometabolic profile than those without symptoms. We reviewed the latest evidence on the cardiovascular management of perimenopausal or postmenopausal women. Clinicians should aim for cardiovascular risk stratification, followed by dietary and lifestyle advice as required based on individual needs. The medical management of cardiometabolic risk factors at midlife should always be individualized, focusing on hypertension, diabetes and dyslipidemia. Menopausal hormone therapy, when prescribed for the management of bothersome menopausal symptoms or for the prevention of osteoporosis, has also a beneficial effect on cardiometabolic risk factors. This narrative review aims to summarize the cardiometabolic alternations occurring during the menopausal transition and to outline the appropriate prevention strategies to prevent future cardiovascular adverse outcomes.
Collapse
Affiliation(s)
- I Lambrinoudaki
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - E Armeni
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
- Royal Free Hospital NHS Foundation Trust, UCL Medical School, London, UK
| |
Collapse
|
26
|
Abdel-Maksoud FM, Ali S, Abd-Elhafeez HH, Abdalla KEH. Meckel's Diverticulum in Adult Geese (Alopochen egyptiacus): A Comprehensive Study of Structure Using Histological, Electron Microscopy, and Immunohistochemical Methods. Cells Tissues Organs 2024; 213:390-402. [PMID: 38237565 DOI: 10.1159/000536210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/08/2024] [Indexed: 10/03/2024] Open
Abstract
INTRODUCTION The intestine plays an important role in mediating between the bird and its nutritional environment. The yolk stalk, also known as Meckel's diverticulum, is a landmark between the jejunum and ileum. This work aimed to investigate the anatomical, histological, and electron microscopical features of cellular components of the Meckel's diverticulum (MD) in adult geese. METHODS The intestine was dissected from the bird's body cavity, and Meckel's diverticulum was exposed and prepared for light and electron microscopical examinations. RESULTS Our results revealed that the MD mucosa is thrown up into villi and crypts, and the mucosal epithelium is a columnar epithelium with goblet cells as well as intraepithelial lymphocytes. Lymphoid follicles and numerous immune cells were demonstrated within the lamina propria. The mucous glands were also observed within the lamina propria and among the lymphoid follicles. The lining epithelium of MD appeared with different staining affinities: dark cells (electron-dense) and light cells (electron-lucent) contained few mitochondria and more secretory vesicles, while dark cells contained more mitochondria and fewer secretory vesicles. Immunohistochemical analysis of MD revealed positive immunoreactivity for several markers, such as CD117, chromogranin, PLCβ, cytokeratin, MHC II, and S100. CONCLUSION Taken together, our findings suggest that MD is considered an immune organ in adult geese.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sphinx University, Assiut, Egypt
| | - Shimaa Ali
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Kamal E H Abdalla
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
27
|
Molinaro M, Torrente Y, Villa C, Farini A. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review. Int J Mol Sci 2024; 25:631. [PMID: 38203802 PMCID: PMC10778889 DOI: 10.3390/ijms25010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.
Collapse
Affiliation(s)
- Monica Molinaro
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| |
Collapse
|
28
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
29
|
Hirose M, Sekar P, Eladham MWA, Albataineh MT, Rahmani M, Ibrahim SM. Interaction between mitochondria and microbiota modulating cellular metabolism in inflammatory bowel disease. J Mol Med (Berl) 2023; 101:1513-1526. [PMID: 37819377 PMCID: PMC10698103 DOI: 10.1007/s00109-023-02381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Inflammatory bowel disease (IBD) is a prototypic complex disease in the gastrointestinal tract that has been increasing in incidence and prevalence in recent decades. Although the precise pathophysiology of IBD remains to be elucidated, a large body of evidence suggests the critical roles of mitochondria and intestinal microbiota in the pathogenesis of IBD. In addition to their contributions to the disease, both mitochondria and gut microbes may interact with each other and modulate disease-causing cell activities. Therefore, we hypothesize that dissecting this unique interaction may help to identify novel pathways involved in IBD, which will further contribute to discovering new therapeutic approaches to the disease. As poorly treated IBD significantly affects the quality of life of patients and is associated with risks and complications, successful treatment is crucial. In this review, we stratify previously reported experimental and clinical observations of the role of mitochondria and intestinal microbiota in IBD. Additionally, we review the intercommunication between mitochondria, and the intestinal microbiome in patients with IBD is reviewed along with the potential mediators for these interactions. We specifically focus on their roles in cellular metabolism in intestinal epithelial cells and immune cells. To this end, we propose a potential therapeutic intervention strategy for IBD.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Priyadharshini Sekar
- Sharjah Institute of Medical Research, RIMHS, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohammad T Albataineh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Mohamed Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
31
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
32
|
Shi M, Wei J, Yuan H, Li Y, Guo Z. The role of the gut microbiota and bile acids in heart failure: A review. Medicine (Baltimore) 2023; 102:e35795. [PMID: 37960774 PMCID: PMC10637566 DOI: 10.1097/md.0000000000035795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
Heart failure (HF) is the terminal manifestation of various cardiovascular diseases. Recently, accumulating evidence has demonstrated that gut microbiota are involved in the development of various cardiovascular diseases. Gut microbiota and their metabolites might play a pivotal role in the development of HF. However, previous studies have rarely described the complex role of gut microbiota and their metabolites in HF. In this review, we mainly discussed bile acids (BAs), the metabolites of gut microbiota. We explained the mechanisms by which BAs are involved in the pathogenesis of HF. We also discussed the use of gut microbiota and BAs for treating HF in Chinese medicine, highlighting the advantages of Chinese medicine in treating HF.
Collapse
Affiliation(s)
- Min Shi
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| | - Jiaming Wei
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| | - Hui Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Ya Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| |
Collapse
|
33
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
34
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
35
|
Peña-Cearra A, Song D, Castelo J, Palacios A, Lavín JL, Azkargorta M, Elortza F, Fuertes M, Pascual-Itoiz MA, Barriales D, Martín-Ruiz I, Fullaondo A, Aransay AM, Rodríguez H, Palm NW, Anguita J, Abecia L. Mitochondrial dysfunction promotes microbial composition that negatively impacts on ulcerative colitis development and progression. NPJ Biofilms Microbiomes 2023; 9:74. [PMID: 37805634 PMCID: PMC10560208 DOI: 10.1038/s41522-023-00443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023] Open
Abstract
Recent evidence demonstrates potential links between mitochondrial dysfunction and inflammatory bowel diseases (IBD). In addition, bidirectional interactions between the intestinal microbiota and host mitochondria may modulate intestinal inflammation. We observed previously that mice deficient in the mitochondrial protein MCJ (Methylation-controlled J protein) exhibit increased susceptibility to DSS colitis. However, it is unclear whether this phenotype is primarily driven by MCJ-/- associated gut microbiota dysbiosis or by direct effects of MCJ-deficiency. Here, we demonstrate that fecal microbiota transplantation (FMT) from MCJ-deficient into germ-free mice was sufficient to confer increased susceptibility to colitis. Therefore, an FMT experiment by cohousing was designed to alter MCJ-deficient microbiota. The phenotype resulting from complex I deficiency was reverted by FMT. In addition, we determined the protein expression pathways impacted by MCJ deficiency, providing insight into the pathophysiology of IBD. Further, we used magnetic activated cell sorting (MACS) and 16S rRNA gene sequencing to characterize taxa-specific coating of the intestinal microbiota with Immunoglobulin A (IgA-SEQ) in MCJ-deficient mice. We show that high IgA coating of fecal bacteria observed in MCJ-deficient mice play a potential role in disease progression. This study allowed us to identify potential microbial signatures in feces associated with complex I deficiency and disease progression. This research highlights the importance of finding microbial biomarkers, which might serve as predictors, permitting the stratification of ulcerative colitis (UC) patients into distinct clinical entities of the UC spectrum.
Collapse
Affiliation(s)
- Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519 CT, USA
| | - Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Jose Luis Lavín
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
- ProteoRed-ISCIII, 28029, Madrid, Spain
| | - Felix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
- ProteoRed-ISCIII, 28029, Madrid, Spain
| | - Miguel Fuertes
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Miguel Angel Pascual-Itoiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
| | - Hector Rodríguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519 CT, USA
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain.
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain.
| |
Collapse
|
36
|
Wang Y, Lai H, Zhang T, Wu J, Tang H, Liang X, Ren D, Huang J, Li W. Mitochondria of intestinal epithelial cells in depression: Are they at a crossroads of gut-brain communication? Neurosci Biobehav Rev 2023; 153:105403. [PMID: 37742989 DOI: 10.1016/j.neubiorev.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The role of gut dysbiosis in depression is well established. However, recent studies have shown that gut microbiota is regulated by intestinal epithelial cell (IEC) mitochondria, which has yet to receive much attention. This review summarizes the recent developments about the critical role of IEC mitochondria in actively maintaining gut microbiota, intestinal metabolism, and immune homeostasis. We propose that IEC mitochondrial dysfunction alters gut microbiota composition, participates in cell fate, mediates oxidative stress, activates the peripheral immune system, causes peripheral inflammation, and transmits peripheral signals through the vagus and enteric nervous systems. These pathological alterations lead to brain inflammation, disruption of the blood-brain barrier, activation of the hypothalamic-pituitary-adrenal axis, activation of microglia and astrocytes, induction of neuronal loss, and ultimately depression. Furthermore, we highlight the prospect of treating depression through the mitochondria of IECs. These new findings suggest that the mitochondria of IECs may be a newly found important factor in the pathogenesis of depression and represent a potential new strategy for treating depression.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Huiling Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Xuanwei Liang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Dandan Ren
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
37
|
Semadhi MP, Mulyaty D, Halimah E, Levita J. Healthy mitochondrial DNA in balanced mitochondrial dynamics: A potential marker for neuro‑aging prediction (Review). Biomed Rep 2023; 19:64. [PMID: 37614983 PMCID: PMC10442761 DOI: 10.3892/br.2023.1646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2023] [Indexed: 08/25/2023] Open
Abstract
The mitochondrial genome or mitochondrial DNA (mtDNA) is released as a response to cellular stress. In mitochondrial biogenesis, active communication between the mitochondria genome and nucleus is associated with the mtDNA profile that affects the mitochondrial quality. The present review aimed to assess the molecular mechanism and potential roles of mitochondria in neuro-aging, including the importance of evaluating the health status of mtDNA via mitochondrial dynamics. The normal condition of mitochondria, defined as mitochondrial dynamics, includes persistent changes in morphology due to fission and fusion events and autophagy-mitophagy in the mitochondrial quality control process. The calculated copy number of mtDNA in the mitochondria genome represents cellular health, which can be affected by a long-term imbalance between the production and accumulation of reactive oxygen species in the neuroendocrine system, which leads to an abnormal function of mitochondria and mtDNA damage. Mitochondria health is a new approach to discovering a potential indicator for the health status of the nervous system and several types of neurodegenerative disorders. Mitochondrial dynamics is a key contributor to predicting neuro-aging development, which affects the self-renewal and differentiation of neurons in cell metabolism. Neuro-aging is associated with uncontrolled mitochondrial dynamics, which generates age-associated diseases via various mechanisms and signaling routes that lead to the mtDNA damage that has been associated with neurodegeneration. Future studies on the strategic positioning of mtDNA health profile are needed to detect early neurodegenerative disorders.
Collapse
Affiliation(s)
- Made Putra Semadhi
- Prodia National Reference Laboratory, Jakarta 10430, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dewi Mulyaty
- Prodia Widyahusada Co., Jakarta 10430, Indonesia
| | - Eli Halimah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
38
|
Marullo AL, O'Halloran KD. Microbes, metabolites and muscle: Is the gut-muscle axis a plausible therapeutic target in Duchenne muscular dystrophy? Exp Physiol 2023; 108:1132-1143. [PMID: 37269541 PMCID: PMC10988500 DOI: 10.1113/ep091063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
NEW FINDINGS What is the topic of this review? The contribution of gut microbial signalling to skeletal muscle maintenance and development and identification of potential therapeutic targets in progressive muscle degenerative diseases such as Duchenne muscular dystrophy. What advances does it highlight? Gut microbe-derived metabolites are multifaceted signalling molecules key to muscle function, modifying pathways contributing to skeletal muscle wasting, making them a plausible target for adjunctive therapy in muscular dystrophy. ABSTRACT Skeletal muscle is the largest metabolic organ making up ∼50% of body mass. Because skeletal muscle has both metabolic and endocrine properties, it can manipulate the microbial populations within the gut. In return, microbes exert considerable influence on skeletal muscle via numerous signalling pathways. Gut bacteria produce metabolites (i.e., short chain fatty acids, secondary bile acids and neurotransmitter substrates) that act as fuel sources and modulators of inflammation, influencing host muscle development, growth and maintenance. The reciprocal interactions between microbes, metabolites and muscle establish a bidirectional gut-muscle axis. The muscular dystrophies constitute a broad range of disorders with varying disabilities. In the profoundly debilitating monogenic disorder Duchenne muscular dystrophy (DMD), skeletal muscle undergoes a reduction in muscle regenerative capacity leading to progressive muscle wasting, resulting in fibrotic remodelling and adipose infiltration. The loss of respiratory muscle in DMD culminates in respiratory insufficiency and eventually premature death. The pathways contributing to aberrant muscle remodelling are potentially modulated by gut microbial metabolites, thus making them plausible targets for pre- and probiotic supplementation. Prednisone, the gold standard therapy for DMD, drives gut dysbiosis, inducing a pro-inflammatory phenotype and leaky gut barrier contributing to several of the well-known side effects associated with chronic glucocorticoid treatment. Several studies have observed that gut microbial supplementation or transplantation exerts positive effects on muscle, including mitigating the side effects of prednisone. There is growing evidence in support of the potential for an adjunctive microbiota-directed regimen designed to optimise gut-muscle axis signalling, which could alleviate muscle wasting in DMD.
Collapse
Affiliation(s)
- Anthony L. Marullo
- Department of Physiology, School of Medicine, College of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
39
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
40
|
Dowden RA, Wisniewski PJ, Longoria CR, Oydanich M, McNulty T, Rodriguez E, Zhang J, Cavallo M, Guers JJ, Vatner DE, Vatner SF, Campbell SC. Microbiota Mediate Enhanced Exercise Capacity Induced by Exercise Training. Med Sci Sports Exerc 2023; 55:1392-1400. [PMID: 36924325 PMCID: PMC10363229 DOI: 10.1249/mss.0000000000003170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE We investigated the effects of gut microbes, and the mechanisms mediating the enhanced exercise performance induced by exercise training, i.e., skeletal muscle blood flow, and mitochondrial biogenesis and oxidative function in male mice. METHODS All mice received a graded exercise test before (PRE) and after exercise training via forced treadmill running at 60% to 70% of maximal running capacity 5 d·wk -1 for 5 wk (POST). To examine the role of the gut microbes, the graded exercise was repeated after 7 d of access to antibiotic (ABX)-treated water, used to eliminate gut microbes. Peripheral blood flow, mitochondrial oxidative capacity, and markers of mitochondrial biogenesis were collected at each time point. RESULTS Exercise training led to increases of 60% ± 13% in maximal running distance and 63% ± 11% work to exhaustion ( P < 0.001). These increases were abolished after ABX ( P < 0.001). Exercise training increased hindlimb blood flow and markers of mitochondrial biogenesis and oxidative function, including AMP-activated protein kinase, sirtuin-1, PGC-1α citrate synthase, complex IV, and nitric oxide, all of which were also abolished by ABX treatment. CONCLUSIONS Our results support the concept that gut microbiota mediate enhanced exercise capacity after exercise training and the mechanisms responsible, i.e., hindlimb blood flow, mitochondrial biogenesis, and metabolic profile. Finally, results of this study emphasize the need to fully examine the impact of prescribing ABX to athletes during their training regimens and how this may affect their performance.
Collapse
Affiliation(s)
- Robert A. Dowden
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| | - Paul J. Wisniewski
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| | - Candace R. Longoria
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| | - Marko Oydanich
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tara McNulty
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Esther Rodriguez
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Jie Zhang
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Mark Cavallo
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - John J. Guers
- Department of Biology, Behavioral Neuroscience and Health Science, Rider University, Lawrenceville, NJ
| | - Dorothy E. Vatner
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Stephen F. Vatner
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Sara C. Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| |
Collapse
|
41
|
Huang SC, He YF, Chen P, Liu KL, Shaukat A. Gut microbiota as a target in the bone health of livestock and poultry: roles of short-chain fatty acids. ANIMAL DISEASES 2023; 3:23. [DOI: 10.1186/s44149-023-00089-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 01/03/2025] Open
Abstract
AbstractThe regulation and maintenance of bone metabolic homeostasis are crucial for animal skeletal health. It has been established that structural alterations in the gut microbiota and ecological dysbiosis are closely associated with bone metabolic homeostasis. The gut microbiota and its metabolites, especially short-chain fatty acids (SCFAs), affect almost all organs, including the bone. In this process, SCFAs positively affect bone healing by acting directly on cells involved in bone repair after or by shaping appropriate anti-inflammatory and immunomodulatory responses. Additionally, SCFAs have the potential to maintain bone health in livestock and poultry because of their various biological functions in regulating bone metabolism, including immune function, calcium absorption, osteogenesis and osteolysis. This review primarily focuses on the role of SCFAs in the regulation of bone metabolism by gut microbiota and provides insight into studies related to bone health in livestock and poultry.
Collapse
|
42
|
Akazawa N, Nakamura M, Eda N, Murakami H, Nakagata T, Nanri H, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Miyachi M, Hoshikawa M. Gut microbiota alternation with training periodization and physical fitness in Japanese elite athletes. Front Sports Act Living 2023; 5:1219345. [PMID: 37521099 PMCID: PMC10382754 DOI: 10.3389/fspor.2023.1219345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The gut microbiome plays a fundamental role in host homeostasis through regulating immune functions, enzyme activity, and hormone secretion. Exercise is associated with changes in gut microbiome composition and function. However, few studies have investigated the gut microbiome during training periodization. The present study aimed to investigate the relationship between training periodization and the gut microbiome in elite athletes. Methods In total, 84 elite athletes participated in the cross-sectional study; and gut microbiome was determined during their transition or preparation season period. Further, 10 short-track speed skate athletes participated in the longitudinal study, which assessed the gut microbiome and physical fitness such as aerobic capacity and anaerobic power in the general and specific preparation phase of training periodization. The gut microbiome was analyzed using 16S rRNA sequencing. Results The cross-sectional study revealed significant differences in Prevotella, Bifidobacterium, Parabacteroides, and Alistipes genera and in enterotype distribution between transition and preparation season phase periodization. In the longitudinal study, training phase periodization altered the level of Bacteroides, Blautia, and Bifidobacterium in the microbiome. Such changes in the microbiome were significantly correlated with alternations in aerobic capacity and tended to correlate with the anaerobic power. Discussion These findings suggest that periodization alters the gut microbiome abundance related to energy metabolism and trainability of physical fitness. Athlete's condition may thus be mediated to some extent by the microbiota in the intestinal environment.
Collapse
Affiliation(s)
- Nobuhiko Akazawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Mariko Nakamura
- Department of Sports Sciences, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Nobuhiko Eda
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Department of Fundamental Education, Dokkyo Medical University, Tochigi, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Masako Hoshikawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
43
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
44
|
Ren J, Xiao H. Exercise for Mental Well-Being: Exploring Neurobiological Advances and Intervention Effects in Depression. Life (Basel) 2023; 13:1505. [PMID: 37511879 PMCID: PMC10381534 DOI: 10.3390/life13071505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Depression is a common mental disorder in which patients often experience feelings of sadness, fatigue, loss of interest, and pleasure. Exercise is a widely used intervention for managing depression, but the specific molecular mechanisms underlying its antidepressant effect are unclear. In this narrative review, we aim to synthesize current knowledge on the molecular, neural, and physiological mechanisms through which exercise exerts its antidepressant effect and discuss the various exercise interventions used for managing depression. We conducted a narrative review of the literature on the topic of exercise and depression. Our review suggests that exercise impacts peripheral tryptophan metabolism, central inflammation, and brain-derived neurotrophic factors through the peroxisome proliferator-activated receptor γ activating factor 1α (PGC-1α) in skeletal muscles. The uncarboxylated osteocalcin facilitates "bone-brain crosstalk", and exercise corrects atypical expression of brain-gut peptides, modulates cytokine production and neurotransmitter release, and regulates inflammatory pathways and microRNA expression. Aerobic exercise is recommended at frequencies of 3 to 5 times per week with medium to high intensity. Here we highlight the significant potential of exercise therapy in managing depression, supported by the molecular, neural, and physiological mechanisms underlying its antidepressant effect. Understanding the molecular pathways and neural mechanisms involved in exercise's antidepressant effect opens new avenues for developing novel therapies for managing depression.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, Zhanjiang 524037, China;
| | | |
Collapse
|
45
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
46
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
47
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
48
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
49
|
Deng R, Wang M, Song Y, Shi Y. A Bibliometric Analysis on the Research Trend of Exercise and the Gut Microbiome. Microorganisms 2023; 11:microorganisms11040903. [PMID: 37110325 PMCID: PMC10141121 DOI: 10.3390/microorganisms11040903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
This article aims to provide an overview of research hotspots and trends in exercise and the gut microbiome, a field which has recently gained increasing attention. The relevant publications on exercise and the gut microbiome were identified from the Web of Science Core Collection database. The publication types were limited to articles and reviews. VOSviewer 1.6.18 (Centre for Science and Technology Studies, Leiden University, Leiden, the Netherlands) and the R package "bibliometrix" (R Foundation: Vienna, Austria) were used to conduct a bibliometric analysis. A total of 327 eligible publications were eventually identified, including 245 original articles and 82 reviews. A time trend analysis showed that the number of publications rapidly increased after 2014. The leading countries/regions in this field were the USA, China, and Europe. Most of the active institutions were from Europe and the USA. Keyword analysis showed that the relationship between disease, the gut microbiome, and exercise occurs throughout the development of this field of research. The interactions between the gut microbiota, exercise, status of the host's internal environment, and probiotics, are important facets as well. The research topic evolution presents a trend of multidisciplinary and multi-perspective comprehensive analysis. Exercise might become an effective intervention for disease treatment by regulating the gut microbiome. The innovation of exercise-centered lifestyle intervention therapy may become a significant trend in the future.
Collapse
Affiliation(s)
- Ruiyi Deng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Mopei Wang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing 100191, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
50
|
Role of mitochondria in regulating immune response during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:159-200. [PMID: 36858655 DOI: 10.1016/bs.ircmb.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitochondria are dynamic organelles of eukaryotes involved in energy production and fatty acid oxidation. Besides maintaining ATP production, calcium signaling, cellular apoptosis, and fatty acid synthesis, mitochondria are also known as the central hub of the immune system as it regulates the innate immune pathway during infection. Mitochondria mediated immune functions mainly involve regulation of reactive oxygen species production, inflammasome activation, cytokine secretion, and apoptosis of infected cells. Recent findings indicate that cellular mitochondria undergo constant biogenesis, fission, fusion and degradation, and these dynamics regulate cellular immuno-metabolism. Several intracellular pathogens target and modulate these normal functions of mitochondria to facilitate their own survival and growth. De-regulation of mitochondrial functions and dynamics favors bacterial infection and pathogens are able to protect themselves from mitochondria mediated immune responses. Here, we will discuss how mitochondria mediated anti-bacterial immune pathways help the host to evade pathogenic insult. In addition, examples of bacterial pathogens modulating mitochondrial metabolism and dynamics will also be elaborated. Study of these interactions between the mitochondria and bacterial pathogens during infection will lead to a better understanding of the mitochondrial metabolism pathways and dynamics important for the establishment of bacterial diseases. In conclusion, detailed studies on how mitochondria regulate the immune response during bacterial infection can open up new avenues to develop mitochondria centric anti-bacterial therapeutics.
Collapse
|