1
|
Chen Z, Vallega KA, Boda VK, Quan Z, Wang D, Fan S, Wang Q, Ramalingam SS, Li W, Sun S. Targeting Transient Receptor Potential Melastatin-2 (TRPM2) Enhances Therapeutic Efficacy of Third Generation EGFR Inhibitors against EGFR Mutant Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310126. [PMID: 39044361 PMCID: PMC11425210 DOI: 10.1002/advs.202310126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/30/2024] [Indexed: 07/25/2024]
Abstract
There is an urgent need to fully understand the biology of third generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs), particularly osimertinib, and to develop mechanism-driven strategies to manage their acquired resistance. Transient receptor potential melastatin-2 (TRPM2) functions as an important regulator of Ca2+ influx, but its role in mediating therapeutic efficacies of EGFR-TKIs and acquired resistance to EGFR-TKIs has been rarely studied. This study has demonstrated a previously undiscovered role of suppression of TRPM2 and subsequent inhibition of Ca2+ influx and induction of ROS and DNA damage in mediating apoptosis induction and the therapeutic efficacy of osimertinib against EGFR mutant NSCLC. The rebound elevation represents a key mechanism accounting for the emergence of acquired resistance to osimertinib and other third generation EGFR-TKIs. Accordingly, targeting TRPM2 is a potentially promising strategy for overcoming and preventing acquired resistance to osimertinib, warranting further study in this direction including the development of cancer therapy-optimized TRPM2 inhibitors.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Hematology and Medical OncologyEmory University School of Medicine and Winship Cancer InstituteAtlantaGA30047USA
| | - Karin A. Vallega
- Department of Hematology and Medical OncologyEmory University School of Medicine and Winship Cancer InstituteAtlantaGA30047USA
| | - Vijay K. Boda
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Tennessee Health Science CenterMemphisTN38163USA
| | - Zihan Quan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011P. R. China
| | - Dongsheng Wang
- Department of Hematology and Medical OncologyEmory University School of Medicine and Winship Cancer InstituteAtlantaGA30047USA
| | - Songqing Fan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011P. R. China
| | - Qiming Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhou450008P. R. China
| | - Suresh S. Ramalingam
- Department of Hematology and Medical OncologyEmory University School of Medicine and Winship Cancer InstituteAtlantaGA30047USA
| | - Wei Li
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Tennessee Health Science CenterMemphisTN38163USA
| | - Shi‐Yong Sun
- Department of Hematology and Medical OncologyEmory University School of Medicine and Winship Cancer InstituteAtlantaGA30047USA
| |
Collapse
|
2
|
Mol BA, Wasinda JJ, Xu YF, Gentle NL, Meyer V. 1,25-dihydroxyvitamin D 3 augments low-dose PMA-based monocyte-to-macrophage differentiation in THP-1 cells. J Immunol Methods 2024; 532:113716. [PMID: 38960065 DOI: 10.1016/j.jim.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The human monocytic THP-1 cell line is the most routinely employed in vitro model for studying monocyte-to-macrophage differentiation. Despite the wide use of this model, differentiation protocols using phorbol 12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D3 (1,25D3) vary drastically between studies. Given that differences in differentiation protocols have the potential to impact the characteristics of the macrophages produced, we aimed to assess the efficacy of three different THP-1 differentiation protocols by assessing changes in morphology and gene- and cell surface macrophage marker expression. THP-1 cells were differentiated with either 5 nM PMA, 10 nM 1,25D3, or a combination thereof, followed by a rest period. The results indicated that all three protocols significantly increased the expression of the macrophage markers, CD11b (p < 0.001) and CD14 (p < 0.010). Despite this, THP-1 cells exposed to 1,25D3 alone did not adopt the morphological and expression characteristics associated with macrophages. PMA was required to produce these characteristics, which were found to be more pronounced in the presence of 1,25D3. Both PMA- and PMA with 1,25D3-differentiated THP-1 cells were capable of M1 and M2 macrophage polarization, though the gene expression of polarization-associated markers was most pronounced in PMA with 1,25D3-differentiated THP-1 cells. Moreover, the combination of PMA with 1,25D3 appeared to support the process of commitment to a particular polarization state.
Collapse
Affiliation(s)
- Bronwyn A Mol
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Janet J Wasinda
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Yi F Xu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Nikki L Gentle
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa.
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. FABP4 Is an Indispensable Factor for Regulating Cellular Metabolic Functions of the Human Retinal Choroid. Bioengineering (Basel) 2024; 11:584. [PMID: 38927820 PMCID: PMC11200562 DOI: 10.3390/bioengineering11060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cells, the intraocular origins of FABP4 were determined by qPCR analysis, and the intracellular functions of FABP4 were investigated by seahorse cellular metabolic measurements and RNA sequencing analysis using a specific inhibitor for FABP4, BMS309403. Among these four different cell types, FABP4 was exclusively expressed in HOCF cells. In HOCF cells, both mitochondrial and glycolytic functions were significantly decreased to trace levels by BMS309403 in a dose-dependent manner. In the RNA sequencing analysis, 67 substantially up-regulated and 94 significantly down-regulated differentially expressed genes (DEGs) were identified in HOCF cells treated with BMS309403 and those not treated with BMS309403. The results of Gene Ontology enrichment analysis and ingenuity pathway analysis (IPA) revealed that the DEGs were most likely involved in G-alpha (i) signaling, cAMP-response element-binding protein (CREB) signaling in neurons, the S100 family signaling pathway, visual phototransduction and adrenergic receptor signaling. Furthermore, upstream analysis using IPA suggested that NKX2-1 (thyroid transcription factor1), HOXA10 (homeobox A10), GATA2 (gata2 protein), and CCAAT enhancer-binding protein A (CEBPA) were upstream regulators and that NKX homeobox-1 (NKX2-1), SFRP1 (Secreted frizzled-related protein 1) and TREM2 (triggering receptor expressed on myeloid cells 2) were causal network master regulators. The findings in this study suggest that intraocularly present FABP4 originates from the ocular choroid and may be a critical regulator for the cellular homeostasis of non-adipocyte HOCF cells.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.O.); (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.O.); (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.O.); (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.O.); (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.O.); (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.O.); (M.F.)
| |
Collapse
|
4
|
Giampazolias E, da Costa MP, Lam KC, Lim KHJ, Cardoso A, Piot C, Chakravarty P, Blasche S, Patel S, Biram A, Castro-Dopico T, Buck MD, Rodrigues RR, Poulsen GJ, Palma-Duran SA, Rogers NC, Koufaki MA, Minutti CM, Wang P, Vdovin A, Frederico B, Childs E, Lee S, Simpson B, Iseppon A, Omenetti S, Kelly G, Goldstone R, Nye E, Suárez-Bonnet A, Priestnall SL, MacRae JI, Zelenay S, Patil KR, Litchfield K, Lee JC, Jess T, Goldszmid RS, Sousa CRE. Vitamin D regulates microbiome-dependent cancer immunity. Science 2024; 384:428-437. [PMID: 38662827 PMCID: PMC7615937 DOI: 10.1126/science.adh7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Kok Haw Jonathan Lim
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College, London, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonja Blasche
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Swara Patel
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Adi Biram
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tomas Castro-Dopico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D. Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard R. Rodrigues
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Microbiome and Genetics Core, LICI, CCR, NCI, 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Gry Juul Poulsen
- National Center of Excellence for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Faculty of Medicine, Aalborg University, Department of Gastroenterology and Hepatology, Aalborg University Hospital, A.C. Meyers Vænge 15, A DK-2450 Copenhagen, Denmark
| | | | - Neil C. Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria A. Koufaki
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Carlos M. Minutti
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pengbo Wang
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alexander Vdovin
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleanor Childs
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ben Simpson
- Tumor ImmunoGenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, 72 Huntley St, London WC1E 6DD, UK
| | - Andrea Iseppon
- AhRimmunity Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sara Omenetti
- AhRimmunity Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Suárez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Simon L. Priestnall
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - James I. MacRae
- Metabolomics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Kiran Raosaheb Patil
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kevin Litchfield
- Tumor ImmunoGenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, 72 Huntley St, London WC1E 6DD, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Division of Medicine, Royal Free Hospital, University College London, London, NW3 2QG, UK
| | - Tine Jess
- National Center of Excellence for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Faculty of Medicine, Aalborg University, Department of Gastroenterology and Hepatology, Aalborg University Hospital, A.C. Meyers Vænge 15, A DK-2450 Copenhagen, Denmark
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
5
|
Fan L, Jiang W, Chen C, Gao H, Shi J, Wang D. CEBPA facilitates LOXL2 and LOXL3 transcription to promote BCL-2 stability and thus enhances the growth and metastasis of lung carcinoma cells in vitro. Exp Cell Res 2024; 435:113937. [PMID: 38242344 DOI: 10.1016/j.yexcr.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Lung carcinoma (LC) is a complicated and highly heterogeneous disease with high morbidity and mortality. Both lysyl oxidase-like (LOXL) 2 and 3 act in cancer progression. This work endeavors to illustrate the influence of LOXL2/LOXL3 on LC progression and the underlying mechanisms. LOXL family genes and CCAAT enhancer binding protein A (CEBPA) were analyzed in the TCGA database for their expression patterns in LC patients and their correlations with the patient's prognosis. CEBPA, LOXL2, and LOXL3 expression levels were determined in LC cells. Gain- and loss-of-function assays were conducted, followed by assays for cell proliferation, epithelial-mesenchymal transition (EMT), apoptosis, invasion, and migration. The binding of CEBPA or B cell lymphoma protein (BCL)-2 to LOXL2/LOXL3 was verified. The ubiquitination level of BCL-2 and histone acetylation level of LOXL2/LOXL3 in LC cells were analyzed. Database analyses revealed that LC patients had high CEBPA, LOXL2, and LOXL3 expression, which were related to poor prognosis. LC cells also exhibited high CEBPA, LOXL2, and LOXL3 levels. LOXL2/LOXL3 knockdown subdued EMT, proliferation, migration, and invasion while enhancing the apoptosis of LC cells. LOXL2/LOXL3 could bind to CEBPA and BCL-2. LOXL2/LOXL3 knockdown upregulated BCL-2 ubiquitination level and diminished BCL-2 expression in LC cells. CEBPA recruited Tip60 to enhance histone acetylation and transcription of LOXL2/LOXL3 in LC cells. BCL-2 overexpression abolished the impacts of LOXL2/LOXL3 knockdown on LC cells. In conclusion, CEBPA boosts LOXL2 and LOXL3 transcription to facilitate BCL-2 stability by recruiting Tip60 and thus contributes to LC cell growth and metastasis.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Weijuan Jiang
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Canjuan Chen
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Hong Gao
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Jiangwei Shi
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Dewen Wang
- Radiotherapy Department, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China.
| |
Collapse
|
6
|
Hasan M, Reyer H, Oster M, Trakooljul N, Ponsuksilli S, Magowan E, Fischer DC, Wimmers K. Exposure to artificial ultraviolet-B light mediates alterations on the hepatic transcriptome and vitamin D metabolism in pigs. J Steroid Biochem Mol Biol 2024; 236:106428. [PMID: 37984748 DOI: 10.1016/j.jsbmb.2023.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
In the currently prevailing pig husbandry systems, the vitamin D status is almost exclusively dependent on dietary supply. Additional endogenous vitamin D production after exposure to ultraviolet-B (UVB) light might allow the animals to utilize minerals in a more efficient manner, as well as enable the production of functional vitamin D-enriched meat for human consumption. In this study, growing pigs (n = 16) were subjected to a control group or to a daily narrowband UVB exposure of 1 standard erythema dose (SED) for a period of 9 weeks until slaughter at a body weight of 105 kg. Transcriptomic profiling of liver with emphasis on the associated effects on vitamin D metabolism due to UVB exposure were evaluated via RNA sequencing. Serum was analyzed for vitamin D status and health parameters such as minerals and biochemical markers. The serum concentration of calcidiol, but not calcitriol, was significantly elevated in response to UVB exposure after 17 days on trial. No effects of UVB exposure were observed on growth performance and blood test results. At slaughter, the RNA sequencing analyses following daily UVB exposure revealed 703 differentially expressed genes (DEGs) in liver tissue (adjusted p-value < 0.01). Results showed that molecular pathways for vitamin D synthesis (CYP2R1) rather than cholesterol synthesis (DHCR7) were preferentially initiated in liver. Gene enrichment (p < 0.05) was observed for reduced cholesterol/steroid biosynthesis, SNARE interactions in vesicular transport, and CDC42 signaling. Taken together, dietary vitamin D supply can be complemented via endogenous production after UVB exposure in pig husbandry, which could be considered in the development of functional foods.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Elizabeth Magowan
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, Co Down, BT26 6DR, United Kingdom
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany.
| |
Collapse
|
7
|
Yogendran V, Mele L, Prysyazhna O, Budhram-Mahadeo VS. Vascular dysfunction caused by loss of Brn-3b/POU4F2 transcription factor in aortic vascular smooth muscle cells is linked to deregulation of calcium signalling pathways. Cell Death Dis 2023; 14:770. [PMID: 38007517 PMCID: PMC10676411 DOI: 10.1038/s41419-023-06306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Phenotypic and functional changes in vascular smooth muscle cells (VSMCs) contribute significantly to cardiovascular diseases (CVD) but factors driving early adverse vascular changes are poorly understood. We report on novel and important roles for the Brn-3b/POU4F2 (Brn-3b) transcription factor (TF) in controlling VSMC integrity and function. Brn-3b protein is expressed in mouse aorta with localisation to VSMCs. Male Brn-3b knock-out (KO) aortas displayed extensive remodelling with increased extracellular matrix (ECM) deposition, elastin fibre disruption and small but consistent narrowing/coarctation in the descending aortas. RNA sequencing analysis showed that these effects were linked to deregulation of genes required for calcium (Ca2+) signalling, vascular contractility, sarco-endoplasmic reticulum (S/ER) stress responses and immune function in Brn-3b KO aortas and validation studies confirmed changes in Ca2+ signalling genes linked to increased intracellular Ca2+ and S/ER Ca2+ depletion [e.g. increased, Cacna1d Ca2+ channels; ryanodine receptor 2, (RyR2) and phospholamban (PLN) but reduced ATP2a1, encoding SERCA1 pump] and chaperone proteins, Hspb1, HspA8, DnaJa1 linked to increased S/ER stress, which also contributes to contractile dysfunction. Accordingly, vascular rings from Brn-3b KO aortas displayed attenuated contractility in response to KCl or phenylephrine (PE) while Brn-3b KO-derived VSMC displayed abnormal Ca2+ signalling following ATP stimulation. This data suggests that Brn-3b target genes are necessary to maintain vascular integrity /contractile function and deregulation upon loss of Brn-3b will contribute to contractile dysfunction linked to CVD.
Collapse
Affiliation(s)
- Vaishaali Yogendran
- Molecular Biology Development and Disease, UCL Institute of Cardiovascular Science, London, UK
| | - Laura Mele
- Molecular Biology Development and Disease, UCL Institute of Cardiovascular Science, London, UK
| | - Oleksandra Prysyazhna
- Clinical Pharmacology Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
8
|
Bullock TA, Mack JA, Negrey J, Kaw U, Hu B, Anand S, Hasan T, Warren CB, Maytin EV. Significant Association of Poly-A and Fok1 Polymorphic Alleles of the Vitamin D Receptor with Vitamin D Serum Levels and Incidence of Squamous Cutaneous Neoplasia. J Invest Dermatol 2023; 143:1538-1547. [PMID: 36813159 PMCID: PMC10439970 DOI: 10.1016/j.jid.2023.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Vitamin D3, a prohormone, is converted to circulating calcidiol and then to calcitriol, the hormone that binds to the vitamin D receptor (VDR) (a nuclear transcription factor). Polymorphic genetic sequence variants of the VDR are associated with an increased risk of breast cancer and melanoma. However, the relationship between VDR allelic variants and the risk of squamous cell carcinoma and actinic keratosis remains unclear. We examined the associations between two VDR polymorphic sites, Fok1 and Poly-A, and serum calcidiol levels, actinic keratosis lesion incidence, and the history of cutaneous squamous cell carcinoma in 137 serially enrolled patients. By evaluating the Fok1 (F) and (f) alleles and the Poly-A long (L) and short (S) alleles together, a strong association between genotypes FFSS or FfSS and high calcidiol serum levels (50.0 ng/ml) was found; conversely, ffLL patients showed very low calcidiol levels (29.1 ng/ml). Interestingly, the FFSS and FfSS genotypes were also associated with reduced actinic keratosis incidence. For Poly-A, additive modeling showed that Poly-A (L) is a risk allele for squamous cell carcinoma, with an OR of 1.55 per copy of the L allele. We conclude that actinic keratosis and squamous cell carcinoma should be added to the list of squamous neoplasias that are differentially regulated by the VDR Poly-A allele.
Collapse
Affiliation(s)
- Taylor A Bullock
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Judith A Mack
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey Negrey
- Clinical Research Unit, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Urvashi Kaw
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Sanjay Anand
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Christine B Warren
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio; Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Edward V Maytin
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
9
|
Bastyte D, Tamasauskiene L, Golubickaite I, Ugenskiene R, Sitkauskiene B. Vitamin D receptor and vitamin D binding protein gene polymorphisms in patients with asthma: a pilot study. BMC Pulm Med 2023; 23:245. [PMID: 37407930 PMCID: PMC10324267 DOI: 10.1186/s12890-023-02531-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The effects of vitamin D are exerted by interaction with the vitamin D receptor (VDR) and vitamin D binding protein (VDBP). Polymorphisms in VDR or VDBP genes may affect vitamin D levels, influencing the pathogenesis of asthma and atopy. The aim of this study was to investigate the possible association of VDR and VDBP gene single-nucleotide polymorphisms (SNP), 25-hydroxyvitamin D (25(OH)D), blood eosinophils and total IgE level in subjects with asthma in comparison with healthy individuals. METHODS This case-control study enrolled 63 subjects with asthma (45 allergic and 18 non-allergic) and 32 healthy subjects were involved in the study. Sensitization of subjects to inhaled allergens was determined by a skin prick test, lung function was evaluated by spirometry. Blood eosinophil count was determined by standard methods. Serum 25(OH)D and total IgE levels were evaluated by ELISA. Polymorphisms in the VDR and VDBP genes on the 12q13.11 and 4q13.3 chromosomal region were analyzed using TaqMan SNP Genotyping Assay probes. RESULTS In asthma patients with vitamin D deficiency (< 20 ng/ml) the allele G of rs11168293 of VDR was more common than in those having insufficiency (20-30 ng/ml) of vitamin D (63% and 31%, p < 0.05). Moreover, asthmatic subject with rs11168293 G allele has significant higher blood eosinophil count compared to asthmatic without the rs11168293 G allele (8.5 ± 12.3% vs. 5.1 ± 1.5%, p < 0.05). Significantly higher IgE level was found in subjects with allergic asthma with the allele A of rs7041 on VDBP gene than in those without this allele (540 ± 110 and 240 ± 80 IU/ml, p < 0.05). CONCLUSIONS The association of polymorphisms in VDBP and VDR gene, the rs11168293 G allele and the rs7041 A allele, with 25(OH)D, blood eosinophil and total IgE level in asthma, let us suggest that vitamin D, VDR and VDBP gene polymorphisms are important in pathogenesis of asthma despite its form in relation to atopy.
Collapse
Affiliation(s)
- Daina Bastyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
- Lab of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Lab of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
10
|
Sangha A, Quon M, Pfeffer G, Orton SM. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 2023; 15:2978. [PMID: 37447304 DOI: 10.3390/nu15132978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological condition that involves both inflammatory demyelinating and neurodegenerative components. MS research and treatments have traditionally focused on immunomodulation, with less investigation of neuroprotection, and this holds true for the role of vitamin D in MS. Researchers have already established that vitamin D plays an anti-inflammatory role in modulating the immune system in MS. More recently, researchers have begun investigating the potential neuroprotective role of vitamin D in MS. The active form of vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in remyelination and/or the prevention of demyelination. The most notable finding relevant to MS is that 1,25(OH)2D3 promotes stem cell proliferation and drives the differentiation of neural stem cells into oligodendrocytes, which carry out remyelination. In addition, 1,25(OH)2D3 counteracts neurodegeneration and oxidative stress by suppressing the activation of reactive astrocytes and M1 microglia. 1,25(OH)2D3 also promotes the expression of various neuroprotective factors, including neurotrophins and antioxidant enzymes. 1,25(OH)2D3 decreases blood-brain barrier permeability, reducing leukocyte recruitment into the central nervous system. These neuroprotective effects, stimulated by 1,25(OH)2D3, all enhance neuronal survival. This review summarizes and connects the current evidence supporting the vitamin D-mediated mechanisms of action for neuroprotection in MS.
Collapse
Affiliation(s)
- Amarpreet Sangha
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Michaela Quon
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah-Michelle Orton
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| |
Collapse
|
11
|
Tourkochristou E, Mouzaki A, Triantos C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int J Mol Sci 2023; 24:ijms24098288. [PMID: 37175993 PMCID: PMC10179740 DOI: 10.3390/ijms24098288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with increasing prevalence worldwide. The genetic and molecular background of NAFLD pathogenesis is not yet clear. The vitamin D/vitamin D receptor (VDR) axis is significantly associated with the development and progression of NAFLD. Gene polymorphisms may influence the regulation of the VDR gene, although their biological significance remains to be elucidated. VDR gene polymorphisms are associated with the presence and severity of NAFLD, as they may influence the regulation of adipose tissue activity, fibrosis, and hepatocellular carcinoma (HCC) development. Vitamin D binds to the hepatic VDR to exert its biological functions, either by activating VDR transcriptional activity to regulate gene expression associated with inflammation and fibrosis or by inducing intracellular signal transduction through VDR-mediated activation of Ca2+ channels. VDR activity has protective and detrimental effects on hepatic steatosis, a characteristic feature of NAFLD. Vitamin D-VDR signaling may control the progression of NAFLD by regulating immune responses, lipotoxicity, and fibrogenesis. Elucidation of the genetic and molecular background of VDR in the pathophysiology of NAFLD will provide new therapeutic targets for this disease through the development of VDR agonists, which already showed promising results in vivo.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
12
|
Sanseverino I, Rinaldi AO, Purificato C, Cortese A, Millefiorini E, Gauzzi MC. 1,25(OH) 2D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients. Int J Mol Sci 2023; 24:ijms24076717. [PMID: 37047690 PMCID: PMC10094841 DOI: 10.3390/ijms24076717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis.
Collapse
Affiliation(s)
- Isabella Sanseverino
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, Sapienza University of Rome, 00161 Rome, Italy
| | | | | |
Collapse
|
13
|
Nemeth Z, Patonai A, Simon-Szabó L, Takács I. Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism-Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. Int J Mol Sci 2023; 24:ijms24076154. [PMID: 37047134 PMCID: PMC10094444 DOI: 10.3390/ijms24076154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1β, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Ulloi u. 78, 1082 Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| |
Collapse
|
14
|
Flores-Villalva S, Remot A, Carreras F, Winter N, Gordon SV, Meade KG. Vitamin D induced microbicidal activity against Mycobacterium bovis BCG is dependent on the synergistic activity of bovine peripheral blood cell populations. Vet Immunol Immunopathol 2023; 256:110536. [PMID: 36586390 DOI: 10.1016/j.vetimm.2022.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A growing appreciation is emerging of the beneficial role of vitamin D for health and resistance against infectious diseases, including tuberculosis. However, research has predominantly focused on murine and human species and functional data in bovines is limited. Therefore, the objective of this study was to assess the microbicidal activity and immunoregulatory effect of the vitamin D metabolite 1,25(OH)2D3 on bovine peripheral blood leukocytes (PBL) in response to Mycobacterium bovis BCG (BCG) infection using a combination of functional assays and gene expression profiling. Blood from Holstein-Friesian bull calves with low circulating levels of 25(OH)D was stimulated with 1,25(OH)2D3 for 2 h, and then infected with M. bovis BCG. Results showed that 1,25(OH)2D3 supplementation significantly increased BCG killing by on average 16 %, although responses varied between 1 % and 38 % killing. Serial cell subset depletion was then performed on PBL prior to 1,25(OH)2D3 incubation and BCG infected as before to analyse the contribution of major cell types to mycobacterial growth control. Specific antibodies and either magnetic cell separation or density gradient centrifugation of monocytes, granulocytes, CD3+, CD4+, and CD8+ T lymphocytes were used to capture each cell subset. Results showed that depletion of granulocytes had the greatest impact on BCG growth, leading to a significant enhancement of bacterial colonies. In contrast, depletion of CD4+ or CD8+ T cells individually, or in combination (CD3+), had no impact on mycobacterial growth control. In agreement with our previous data, 1,25(OH)2D3 significantly increased bacterial killing in PBL, in monocyte depleted samples, and a similar trend was observed in the granulocyte depleted subset. In addition, specific analysis of sorted neutrophils treated with 1,25(OH)2D3 showed an enhanced microbicidal activity against both BCG and a virulent strain of M. bovis. Lastly, data showed that 1,25(OH)2D3 stimulation increased reactive oxygen species (ROS) production and the expression of genes encoding host defence peptides (HDP) and pathogen recognition receptors (PRRs), factors that play an important role in the microbicidal activity against mycobacteria. In conclusion, the vitamin D metabolite 1,25(OH)2D3 improves antimycobacterial killing in bovine PBLs via the synergistic activity of monocytes and granulocytes and enhanced activation of innate immunity.
Collapse
Affiliation(s)
- Susana Flores-Villalva
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; CENID Fisiología, INIFAP, Querétaro, Mexico
| | - Aude Remot
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| | | | | | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Characterization of methylation patterns associated with lifestyle factors and vitamin D supplementation in a healthy elderly cohort from Southwest Sweden. Sci Rep 2022; 12:12670. [PMID: 35879377 PMCID: PMC9310683 DOI: 10.1038/s41598-022-15924-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have shown that lifestyle factors, such as regular physical activity and vitamin D intake, may remarkably improve overall health and mental wellbeing. This is especially important in older adults whose vitamin D deficiency occurs with a high prevalence. This study aimed to examine the influence of lifestyle and vitamin D on global DNA methylation patterns in an elderly cohort in Southwest of Sweden. We also sought to examine the methylation levels of specific genes involved in vitamin D's molecular and metabolic activated pathways. We performed a genome wide methylation analysis, using Illumina Infinium DNA Methylation EPIC 850kBeadChip array, on 277 healthy individuals from Southwest Sweden at the age of 70–95. The study participants also answered queries on lifestyle, vitamin intake, heart medication, and estimated health. Vitamin D intake did not in general affect methylation patterns, which is in concert with other studies. However, when comparing the group of individuals taking vitamin supplements, including vitamin D, with those not taking supplements, a difference in methylation in the solute carrier family 25 (SCL25A24) gene was found. This confirms a previous finding, where changes in expression of SLC25A24 were associated with vitamin D treatment in human monocytes. The combination of vitamin D intake and high physical activity increased methylation of genes linked to regulation of vitamin D receptor pathway, the Wnt pathway and general cancer processes. To our knowledge, this is the first study detecting epigenetic markers associated with the combined effects of vitamin D supplementation and high physical activity. These results deserve to be further investigated in an extended, interventional study cohort, where also the levels of 25(OH)D3 can be monitored.
Collapse
|
16
|
Hanel A, Veldhuizen C, Carlberg C. Gene-Regulatory Potential of 25-Hydroxyvitamin D3 and D2. Front Nutr 2022; 9:910601. [PMID: 35911100 PMCID: PMC9330572 DOI: 10.3389/fnut.2022.910601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) represent a highly responsive primary tissue that is composed of innate and adaptive immune cells. In this study, we compared modulation of the transcriptome of PBMCs by the vitamin D metabolites 25-hydroxyvitamin D3 (25(OH)D3), 25(OH)D2 and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Saturating concentrations of 1,25(OH)2D3, 25(OH)D3 and 25(OH)D2 resulted after 24 h stimulation in a comparable number and identity of target genes, but below 250 nM 25(OH)D3 and 25(OH)D2 were largely insufficient to affect the transcriptome. The average EC50 values of 206 common target genes were 322 nM for 25(OH)D3 and 295 nM for 25(OH)D2 being some 600-fold higher than 0.48 nM for 1,25(OH)2D3. The type of target gene, such as primary/secondary, direct/indirect or up-/down-regulated, had no significant effect on vitamin D metabolite sensitivity, but individual genes could be classified into high, mid and lower responders. Since the 1α-hydroxylase CYP27B1 is very low expressed in PBMCs and early (4 and 8 h) transcriptome responses to 25(OH)D3 and 25(OH)D2 were as prominent as to 1,25(OH)2D3, both vitamin D metabolites may directly control gene expression. In conclusion, at supra-physiological concentrations 25(OH)D3 and 25(OH)D2 are equally potent in modulating the transcriptome of PBMCs possibly by directly activating the vitamin D receptor.
Collapse
Affiliation(s)
- Andrea Hanel
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- *Correspondence: Carsten Carlberg
| |
Collapse
|
17
|
Abascal-Ponciano GA, Leiva SF, Flees JJ, Avila LP, Starkey JD, Starkey CW. Dietary 25-Hydroxyvitamin D3 Supplementation Modulates Intestinal Cytokines in Young Broiler Chickens. Front Vet Sci 2022; 9:947276. [PMID: 35898543 PMCID: PMC9309538 DOI: 10.3389/fvets.2022.947276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Vitamin D signaling is important for intestinal homeostasis. An increase in vitamin D receptors in immune cells can modulate cell phenotype and cytokine secretion. Cytokines regulate both pro- (interleukin 17; IL-17) and anti-inflammatory (IL-10) responses triggered by external stimuli. Inflammation in intestinal tissues can disrupt the structure and the remodeling of epithelial tight junction complexes, thus, compromising the protective barrier. The objective of the study was to determine the impact of dietary supplementation with 25-hydroxycholecalciferol (25OHD3), a hydroxylated metabolite of vitamin D, on intestinal cytokine abundance and epithelial barrier integrity over time in broilers. A randomized complete block design experiment was conducted to evaluate the effect of dietary 25OHD3 inclusion on relative protein expression of the cytokines, IL-17 and IL-10, and tight junction proteins, Zona Occludens 1 (ZO-1), and Claudin-1 (CLD-1), in broiler chicken duodenum and ileum from 3 to 21 days post-hatch. On day 0, male chicks (n = 168) were randomly assigned to raised floor pens. Experimental corn–soybean meal-based treatments were as follows: (1) a common starter diet containing 5,000 IU of D3 per kg of feed (VITD3) and (2) a common starter diet containing 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (25OHD3) fed from days 0 to 21. On days 3, 6, 9, 12, 15, 18, and 21, 12 birds per treatment were euthanized to collect tissue samples for quantitative, multiplex, and fluorescent Western blot analysis. Target proteins were quantified using Image Quant TL 8.1 and expressed relative to total protein. Feeding 25OHD3 post-hatch decreased ileal IL-10 (anti-inflammatory) protein expression in 21-day-old broilers compared with VITD3 only (P = 0.0190). Broilers fed only VITD3 post-hatch had greater IL-17 (pro-inflammatory) protein expression in the ileum at 18 and 21 days-of-age (P = 0.0412) than those that fed 25OHD3. Dietary inclusion of 25OHD3 lowered the abundance of key inflammatory cytokines in the ileum of young broilers.
Collapse
|
18
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
19
|
Palanca A, Ampudia-Blasco FJ, Real JT. The Controversial Role of Vitamin D in Thyroid Cancer Prevention. Nutrients 2022; 14:nu14132593. [PMID: 35807774 PMCID: PMC9268358 DOI: 10.3390/nu14132593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy and exhibits rising incidence. Annual incidence varies by sex, age, and geographical location. It has been reported that impairment of vitamin D signalling promotes thyroid cancer progression. Recent studies have shown that vitamin D, a fat-soluble vitamin that acts as both a nutrient and a hormone, may have utility in the prevention of autoimmune thyroid-related diseases. However, the precise role of vitamin D in the pathobiology of thyroid cancer is controversial. Previous studies have suggested that elevated serum vitamin D levels have a protective role in thyroid cancer. However, there is also evidence demonstrating no inverse relationship between vitamin D levels and the occurrence of thyroid cancer. Furthermore, recent data provide evidence that circulating vitamin D concentration is inversely correlated with disease aggressiveness and poor prognosis, while evidence of an association with tumour initiation remains weak. Nevertheless, a variety of data support an anti-tumorigenic role of vitamin D and its potential utility as a secondary chemopreventive agent. In this review, we highlighted recent findings regarding the association of vitamin D status with the risk of thyroid cancer, prognosis, potential mechanisms, and possible utility as a chemopreventive agent.
Collapse
Affiliation(s)
- Ana Palanca
- Endocrinology and Nutrition Department, Valencia University Clinic Hospital, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERDEM, CIBER Diabetes and Associated Metabolic Diseases, 28029 Madrid, Spain
- Correspondence: (A.P.); (F.J.A.-B.); Tel.: +34-96-197-35-00 (A.P. & F.J.A.-B.)
| | - Francisco Javier Ampudia-Blasco
- Endocrinology and Nutrition Department, Valencia University Clinic Hospital, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERDEM, CIBER Diabetes and Associated Metabolic Diseases, 28029 Madrid, Spain
- Department of Medicine, Medicine Faculty, University of Valencia (UV), 46010 Valencia, Spain
- Correspondence: (A.P.); (F.J.A.-B.); Tel.: +34-96-197-35-00 (A.P. & F.J.A.-B.)
| | - José T. Real
- Endocrinology and Nutrition Department, Valencia University Clinic Hospital, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERDEM, CIBER Diabetes and Associated Metabolic Diseases, 28029 Madrid, Spain
- Department of Medicine, Medicine Faculty, University of Valencia (UV), 46010 Valencia, Spain
| |
Collapse
|
20
|
Nguyen NN, Raju MNP, da Graca B, Wang D, Mohamed NA, Mutnal MB, Rao A, Bennett M, Gokingco M, Pham H, Mohammad AA. 25-hydroxyvitamin D is a predictor of COVID-19 severity of hospitalized patients. PLoS One 2022; 17:e0268038. [PMID: 35503795 PMCID: PMC9064100 DOI: 10.1371/journal.pone.0268038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/16/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives Studies investigating the association between vitamin D and severity of COVID-19 have mixed results perhaps due to immunoassay assessment of total 25-hydroxyvitamin D (tD) (the sum of 25-hydroxyvitamin-D2 [25-OH-D2] and 25-hydroxyvitamin-D3 [25-OH-D3]). Liquid chromatography tandem mass spectrometry (LC-MS/MS) has high analytical specificity and sensitivity for 25-OH-D2 and 25-OH-D3, and thus enables a more accurate assessment of impact on COVID-19 outcomes. Methods We established reference intervals for 25-OH-D3 and tD using LC-MS/MS. 25-OH-D2, 25-OH-D3 and tD were quantitated for 88 COVID-19 positive and 122 COVID-19 negative specimens. Chi-square or Fisher’s exact tests were used to test associations in binary variables. T-Tests or Wilcoxon rank sum tests were used for continuous variables. Cox proportional hazards were used to test associations between 25-OH-D3 or tD levels and length of stay (LOS). For mortality and ventilation, logistic regression models were used. Results COVID-19 patients with deficient (<20 ng/mL) levels of 25-OH-D3 had significantly longer LOS by 15.3 days. COVID-19 P patients with deficient (<20 ng/mL) and insufficient (<30 ng/mL) of tD had significantly longer LOS by 12.1 and 8.2 days, respectively. Patients with insufficient levels of tD had significantly longer LOS by 13.7 days. COVID-19 patients with deficient serum 25-OH-D3 levels had significantly increased risk-adjusted odds of in-hospital mortality (OR [95% CI]: 5.29 [1.53–18.24]); those with insufficient 25-OH-D3 had significantly increased risk for requiring ventilation during hospitalization was found at LCMS insufficient cutoff (OR [95% CI]: 2.75 [1.10–6.90]). Conclusions There is an inverse relationship of 25-hydroxyvitamin D levels and hospital LOS for COVID-19 patients. Vitamin D status is a predictor for severity of outcomes. LCMS results are useful for assessing the odds of mortality and the need for ventilation during hospitalization.
Collapse
Affiliation(s)
- Nguyen N. Nguyen
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
- * E-mail:
| | - Muppala N. P. Raju
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Briget da Graca
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Dapeng Wang
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Nada A. Mohamed
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Manohar B. Mutnal
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Arundhati Rao
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Monica Bennett
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Matthew Gokingco
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Huy Pham
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| | - Amin A. Mohammad
- Department of Pathology, Baylor Scott & White Central Texas, Temple, Texas, United States of America
| |
Collapse
|
21
|
Wu Z, Liu D, Deng F. The Role of Vitamin D in Immune System and Inflammatory Bowel Disease. J Inflamm Res 2022; 15:3167-3185. [PMID: 35662873 PMCID: PMC9160606 DOI: 10.2147/jir.s363840] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease that includes ulcerative colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is not fully understood but is most reported associated with immune dysregulation, dysbacteriosis, genetic susceptibility, and environmental risk factors. Vitamin D is an essential nutrient for the human body, and it not only regulates bone metabolism but also the immune system, the intestinal microbiota and barrier. Vitamin D insufficiency is common in IBD patients, and the abnormal low levels of vitamin D are highly correlated with disease activity, treatment response, and risk of relapse of IBD. Accumulating evidence supports the protective role of vitamin D in IBD through regulating the adaptive and innate immunity, maintaining the intestinal barrier and balancing the gut microbiota. This report aims to provide a broad overview of the role vitamin D in the immune system, especially in the pathogenesis and treatment of IBD, and its possible role in predicting relapse.
Collapse
Affiliation(s)
- Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Feihong Deng, Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Research Center of Digestive Disease, Central South University, Changsha, Hunan410011, People’s Republic of China, Email
| |
Collapse
|
22
|
Albracht SP. Hypothesis: mutual dependency of ascorbate and calcidiol for optimal performance of the immune system. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Vitamin D and Its Target Genes. Nutrients 2022; 14:nu14071354. [PMID: 35405966 PMCID: PMC9003440 DOI: 10.3390/nu14071354] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The vitamin D metabolite 1α,25-dihydroxyvitamin D3 is the natural, high-affinity ligand of the transcription factor vitamin D receptor (VDR). In many tissues and cell types, VDR binds in a ligand-dependent fashion to thousands of genomic loci and modulates, via local chromatin changes, the expression of hundreds of primary target genes. Thus, the epigenome and transcriptome of VDR-expressing cells is directly affected by vitamin D. Vitamin D target genes encode for proteins with a large variety of physiological functions, ranging from the control of calcium homeostasis, innate and adaptive immunity, to cellular differentiation. This review will discuss VDR’s binding to genomic DNA, as well as its genome-wide locations and interaction with partner proteins, in the context of chromatin. This information will be integrated into a model of vitamin D signaling, explaining the regulation of vitamin D target genes.
Collapse
|
24
|
Therapeutic Vitamin D Supplementation Following COVID-19 Diagnosis: Where Do We Stand?—A Systematic Review. J Pers Med 2022; 12:jpm12030419. [PMID: 35330419 PMCID: PMC8950116 DOI: 10.3390/jpm12030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Vitamin D has known immunomodulatory activity and multiple indications exist supporting its potential use against SARS-CoV-2 infection in the setting of the current pandemic. The purpose of this systematic review is to examine the efficacy of vitamin D administered to adult patients following COVID-19 diagnosis in terms of length of hospital stay, intubation, ICU admission and mortality rates. Therefore, PubMed and Scopus databases were searched for original articles referring to the aforementioned parameters. Of the 1376 identified studies, eleven were finally included. Vitamin D supplements, and especially calcifediol, were shown to be useful in significantly reducing ICU admissions and/or mortality in four of the studies, but not in diminishing the duration of hospitalization of COVID-19 patients. Due to the large variation in vitamin D supplementation schemes no absolute conclusions can be drawn until larger randomized controlled trials are completed. However, calcifediol administered to COVID-19 patients upon diagnosis represents by far the most promising agent and should be the focus of upcoming research efforts.
Collapse
|
25
|
Cathelicidin hCAP18/LL-37 promotes cell proliferation and suppresses antitumor activity of 1,25(OH) 2D 3 in hepatocellular carcinoma. Cell Death Dis 2022; 8:27. [PMID: 35039485 PMCID: PMC8763942 DOI: 10.1038/s41420-022-00816-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023]
Abstract
Cathelicidin hCAP18/LL-37 can resist infection from various pathogens and is an essential component of the human immune system. Accumulating evidence has indicated that hCAP18/LL-37 plays a tissue-specific role in human cancer. However, its function in hepatocellular carcinoma (HCC) is poorly understood. The present study investigated the effects of hCAP18/LL-37 on HCC in vitro and in vivo. Results showed that hCAP18/LL-37 overexpression significantly promoted the proliferation of cultured HCC cells and the growth of PLC/PRF-5 xenograft tumor. Transcriptome sequencing analyses revealed that the PI3K/Akt pathway was the most significant upregulated pathway induced by LL-37 overexpression. Further analysis demonstrated that hCAP18/LL-37 stimulated the phosphorylation of EGFR/HER2 and activated the PI3K/Akt pathway in HCC cells. Furthermore, stronger EGFR/HER2/Akt signals were observed in the PLC/PRF-5LL-37 xenograft tumor. Interestingly, even though the expression of hCAP18/LL-37 was significantly downregulated in HCC cells and tumors, 1,25(OH)2D3 treatment significantly upregulated the hCAP18/LL-37 level both in HCC cells and xenograft tumors. Moreover, 1,25(OH)2D3 together with si-LL-37 significantly enhanced the antitumor activity of 1,25(OH)2D3 in the PLC/PRF-5 xenograft tumor. Collectively, these data suggest that hCAP18/LL-37 promotes HCC cells proliferation through stimulation of the EGFR/HER2/Akt signals and appears to suppress the antitumor activity of 1,25(OH)2D3 in HCC xenograft tumor. This implies that hCAP18/LL-37 may be an important target when aiming to improve the antitumor activity of 1,25(OH)2D3 supplementation therapy in HCC.
Collapse
|
26
|
Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G, Moretti R, Aleksova A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci 2022; 289:120193. [PMID: 34864062 DOI: 10.1016/j.lfs.2021.120193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D is a hormone with both genomic and non-genomic actions. It exerts its activity by binding vitamin D receptor (VDR), which belongs to the superfamily of nuclear receptors and ligand-activated transcription factors. Since VDR has been found in various tissues, it has been estimated that it regulates approximately 3% of the human genome. Several recent studies have shown pleiotropic effects of vitamin D in various processes such as cellular proliferation, differentiation, DNA repair and apoptosis and its involvement in different pathophysiological conditions as inflammation, diabetes mellitus, and anemia. It has been suggested that vitamin D could play an important role in neurodegenerative and cardiovascular disorders. Moderate to strong associations between lower serum vitamin D concentrations and stroke and cardiovascular events have been identified in different analytic approaches, even after controlling for traditional demographic and lifestyle covariates. The mechanisms behind the associations between vitamin D and cerebrovascular and cardiologic profiles have been widely examined both in animal and human studies. Optimization of vitamin D levels in human subjects may improve insulin sensitivity and beta-cell function and lower levels of inflammatory markers. Moreover, it has been demonstrated that altered gene expression of VDR and 1,25D3-membrane-associated rapid response steroid-binding (1,25D3-MARRS) receptor influences the role of vitamin D within neurons and allows them to be more prone to degeneration. This review summarizes the current understanding of the molecular mechanisms underlying vitamin D signaling and the consequences of vitamin D deficiency in neurodegenerative and cardiovascular disorders.
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria della Misericordia, 06156 Perugia, Italy
| | - Antonio Paolo Beltrami
- Clinical Pathology Department, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) and Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Internal Medicine and Neurology, Neurological Clinic, Complex Case Section, Trieste, Italy
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
27
|
Time-Resolved Gene Expression Analysis Monitors the Regulation of Inflammatory Mediators and Attenuation of Adaptive Immune Response by Vitamin D. Int J Mol Sci 2022; 23:ijms23020911. [PMID: 35055093 PMCID: PMC8776203 DOI: 10.3390/ijms23020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) belong to the innate and adaptive immune system and are highly sensitive and responsive to changes in their systemic environment. In this study, we focused on the time course of transcriptional changes in freshly isolated human PBMCs 4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Taking all four time points together, 662 target genes were identified and segregated either by time of differential gene expression into 179 primary and 483 secondary targets or by driver of expression change into 293 direct and 369 indirect targets. The latter classification revealed that more than 50% of target genes were primarily driven by the cells' response to ex vivo exposure than by the nuclear hormone and largely explained its down-regulatory effect. Functional analysis indicated vitamin D's role in the suppression of the inflammatory and adaptive immune response by down-regulating ten major histocompatibility complex class II genes, five alarmins of the S100 calcium binding protein A family and by affecting six chemokines of the C-X-C motif ligand family. Taken together, studying time-resolved responses allows to better contextualize the effects of vitamin D on the immune system.
Collapse
|
28
|
Sanlier N, Guney-Coskun M. Vitamin D, the immune system, and its relationship with diseases. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2022; 70:39. [PMCID: PMC9573796 DOI: 10.1186/s43054-022-00135-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Vitamin D is classified as an immunomodulatory hormone that is synthesized because of skin exposure to sunlight. It is known to come into play during the regulation of hormone secretion, immune functions, cell proliferation, and differentiation. Its deficiency can cause many diseases and their associated pleiotropic effects. In addition, in relation to its eminent function as regards adaptive immune response and innate immune response, vitamin D level is associated with immune tolerance. Methods Literature search prior to May 2021 was conducted through selected websites, including the MEDLINE, Embase, Web of Science, Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, Google Scholar, and EFSA. Results Vitamin D is found effective for the regulation of hormone secretion, immune functions, and cell proliferation along with differentiation. Its role as an immune modulator is based on the presence of receptors on many immune cells and the synthesis of its active metabolite from these cells. Vitamin D, an immune system modulator, inhibits cell proliferation and stimulates cell differentiation. A fair number of immune system diseases, encompassing autoimmune disorders alongside infectious diseases, can occur because of low serum vitamin D levels. Supplementation of vitamin D has positive effects in lessening the severity nature of disease activity; there exists no consensus on the dose to be used. Conclusion It is figured out that a higher number of randomized controlled trials are essential to evaluate efficacy pertaining to clinical cases, treatment duration, type, and dose of supplementation and pathophysiology of diseases, immune system functioning, and the effect of vitamin D to be administered.
Collapse
Affiliation(s)
- Nevin Sanlier
- Nutrition and Dietetics Department, Faculty of Health Science, Ankara Medipol University, Ankara, 06050 Turkey
| | - Merve Guney-Coskun
- grid.411781.a0000 0004 0471 9346Nutrition and Dietetics Department, Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
29
|
Malmberg HR, Hanel A, Taipale M, Heikkinen S, Carlberg C. Vitamin D Treatment Sequence Is Critical for Transcriptome Modulation of Immune Challenged Primary Human Cells. Front Immunol 2021; 12:754056. [PMID: 34956186 PMCID: PMC8702862 DOI: 10.3389/fimmu.2021.754056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Microbe-associated molecular patterns, such as lipopolysaccharide (LPS) and β-glucan (BG), are surrogates of immune challenges like bacterial and fungal infections, respectively. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), supports the immune system in its fight against infections. This study investigated significant and prominent changes of the transcriptome of human peripheral blood mononuclear cells that immediately after isolation are exposed to 1,25(OH)2D3-modulated immune challenges over a time frame of 24-48 h. In this in vitro study design, most LPS and BG responsive genes are downregulated and their counts are drastically reduced when cells are treated 24 h after, 24 h before or in parallel with 1,25(OH)2D3. Interestingly, only a 1,25(OH)2D3 pre-treatment of the LPS challenge results in a majority of upregulated genes. Based on transcriptome-wide data both immune challenges display characteristic differences in responsive genes and their associated pathways, to which the actions of 1,25(OH)2D3 often oppose. The joined BG/1,25(OH)2D3 response is less sensitive to treatment sequence than that of LPS/1,25(OH)2D3. In conclusion, the functional consequences of immune challenges are significantly modulated by 1,25(OH)2D3 but largely depend on treatment sequence. This may suggest that a sufficient vitamin D status before an infection is more important than vitamin D supplementation afterwards.
Collapse
Affiliation(s)
| | - Andrea Hanel
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Taipale
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Transcriptome-Wide Profile of 25-Hydroxyvitamin D 3 in Primary Immune Cells from Human Peripheral Blood. Nutrients 2021; 13:nu13114100. [PMID: 34836354 PMCID: PMC8624141 DOI: 10.3390/nu13114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin D3 is an essential micronutrient mediating pleiotropic effects in multiple tissues and cell types via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), which activates the transcription factor vitamin D receptor. In this study, we used peripheral blood mononuclear cells (PBMCs) obtained from five healthy adults and investigated transcriptome-wide, whether the precursor of 1,25(OH)2D3, 25-hydroxyvitamin D3 (25(OH)D3), has gene regulatory potential on its own. Applying thresholds of >2 in fold change of gene expression and <0.05 as a false discovery rate, in this ex vivo approach the maximal physiological concentration of 25(OH)D3 (250 nM (nmol/L)) none of the study participants had a significant effect on their PBMC transcriptome. In contrast, 1000 and 10,000 nM 25(OH)D3 regulated 398 and 477 genes, respectively, which is comparable to the 625 genes responding to 10 nM 1,25(OH)2D3. The majority of these genes displayed specificity to the tested individuals, but not to the vitamin D metabolite. Interestingly, the genes MYLIP (myosin regulatory light chain interacting protein) and ABCG1 (ATP binding cassette subfamily G member 1) showed to be specific targets of 10,000 nM 25(OH)D3. In conclusion, 100- and 1000-fold higher 25(OH)D3 concentrations than the reference 10 nM 1,25(OH)2D3 are able to affect the transcriptome of PBMCs with a profile comparable to that of 1,25(OH)2D3.
Collapse
|
31
|
Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E. The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Mol Allergy 2021; 19:21. [PMID: 34749737 PMCID: PMC8573303 DOI: 10.1186/s12948-021-00161-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hadis Karami
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Kaveh Goudarzi
- Nursing Department, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| |
Collapse
|
32
|
Shao T, Verma HK, Pande B, Costanzo V, Ye W, Cai Y, Bhaskar LVKS. Physical Activity and Nutritional Influence on Immune Function: An Important Strategy to Improve Immunity and Health Status. Front Physiol 2021; 12:751374. [PMID: 34690818 PMCID: PMC8531728 DOI: 10.3389/fphys.2021.751374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Physical activity (PA) and nutrition are the essential components of a healthy lifestyle, as they can influence energy balance, promote functional ability of various systems and improve immunity. Infections and their associated symptoms are the common and frequent challenges to human health that are causing severe economic and social consequences around the world. During aging, human immune system undergoes dramatic aging-related changes/dysfunctions known as immunosenescence. Clinically, immunosenescence refers to the gradual deterioration of immune system that increases exposure to infections, and reduces vaccine efficacy. Such phenomenon is linked to impaired immune responses that lead to dysfunction of multiple organs, while lack of physical activity, progressive loss of muscle mass, and concomitant decline in muscle strength facilitate immunosenescence and inflammation. In the present review, we have discussed the role of nutrition and PA, which can boost the immune system alone and synergistically. Evidence suggests that long-term PA is beneficial in improving immune system and preventing various infections. We have further discussed several nutritional strategies for improving the immune system. Unfortunately, the available evidence shows conflicting results. In terms of interaction with food intake, PA does not tend to increase energy intake during a short time course. However, overcoming nutritional deficiencies appears to be the most practical recommendation. Through the balanced nutritious diet intake one can fulfill the bodily requirement of optimal nutrition that significantly impacts the immune system. Supplementation of a single nutrient as food is generally not advisable. Rather incorporating various fruits and vegetables, whole grains, proteins and probiotics may ensure adequate nutrient intake. Therefore, multi-nutrient supplements may benefit people having deficiency in spite of sufficient diet. Along with PA, supplementation of probiotics, bovine colostrum, plant-derived products and functional foods may provide additional benefits in improving the immune system.
Collapse
Affiliation(s)
- Tianyi Shao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich, Germany
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur, India
| | - Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Weibing Ye
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuyan Cai
- Department of Physical Education, Guangdong University of Technology, Guangzhou, China
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
33
|
Szarpak L, Filipiak KJ, Gasecka A, Gawel W, Koziel D, Jaguszewski MJ, Chmielewski J, Gozhenko A, Bielski K, Wroblewski P, Savytskyi I, Szarpak L, Rafique Z. Vitamin D supplementation to treat SARS-CoV-2 positive patients. Evidence from meta-analysis. Cardiol J 2021; 29:188-196. [PMID: 34642923 PMCID: PMC9007480 DOI: 10.5603/cj.a2021.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vitamin D is a likely candidate for treatment as its immune modulating characteristics have effects on coronavirus disease 2019 (COVID-19) patients. It was sought herein, to summarize the studies published to date regarding the vitamin D supplementation to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients. METHODS A systematic review and meta-analysis were performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The primary outcome were 14-day and in-hospital mortality reported as an odds ratio (OR) with the associated 95% confidence interval (CI). RESULTS Eight articles were included in the review with a combined total of 2,322 individual patients, 786 in the vitamin D supplementation group and 1,536 in the control group. The use of vitamin D compared to the group without vitamin D supplementation was associated with a lower 14-day mortality (18.8% vs. 31.3%, respectively; OR = 0.51; 95% CI: 0.12-2.19; p = 0.36), a lower in-hospital mortality (5.6% vs. 16.1%; OR = 0.56; 95% CI: 0.23-1.37; I2 = 74%; p = 0.20), the rarer intensive care unit admission (6.4% vs. 23.4%; OR = 0.19; 95% CI: 0.06-0.54; I2 = 77%; p = 0.002) as well as rarer mechanical ventilation (6.5% vs. 18.9%; OR = 0.36; 95% CI: 0.16-0.80; I2 = 0.48; p = 0.01). CONCLUSIONS Vitamin D supplementation in SARS-CoV-2 positive patients has the potential to positively impact patients with both mild and severe symptoms. As several high-quality randomized control studies have demonstrated a benefit in hospital mortality, vitamin D should be considered a supplemental therapy of strong interest. Should vitamin D prove to reduce hospitalization rates and symptoms outside of the hospital setting, the cost and benefit to global pandemic mitigation efforts would be substantial.
Collapse
Affiliation(s)
- Luiza Szarpak
- Institute of Outcomes Research, Polonia University, Czestochowa, Poland
- Outcomes Research Unit, Polish Society of Disaster Medicine, Warsaw, Poland
| | - Krzysztof J Filipiak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Aleksandra Gasecka
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Wladyslaw Gawel
- Outcomes Research Unit, Polish Society of Disaster Medicine, Warsaw, Poland
- Department of Surgery, The Silesian Hospital in Opava, Czech Republic
| | | | | | | | | | - Karol Bielski
- Outcomes Research Unit, Polish Society of Disaster Medicine, Warsaw, Poland
- Emergency Medical Service and Medical Transport Dispatcher, Warsaw, Poland
| | - Pawel Wroblewski
- Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Poland
| | | | - Lukasz Szarpak
- Outcomes Research Unit, Polish Society of Disaster Medicine, Warsaw, Poland.
- Maria Sklodowska-Curie Bialystok Oncology Center, Bialystok, Poland.
| | - Zubaid Rafique
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine Houston, TX, United States
| |
Collapse
|
34
|
Kalia V, Studzinski GP, Sarkar S. Role of vitamin D in regulating COVID-19 severity-An immunological perspective. J Leukoc Biol 2021; 110:809-819. [PMID: 33464639 PMCID: PMC8014852 DOI: 10.1002/jlb.4covr1020-698r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
Vitamin D, a key nutrient/prohormone classically associated with skeletal health, is also an important immunomodulator, with pleotropic effects on innate and adaptive immune cells. Outcomes of several chronic, autoimmune, and infectious diseases are linked to vitamin D. Emergent correlations of vitamin D insufficiency with coronavirus-induced disease 2019 (COVID-19) severity, alongside empirical and clinical evidence of immunoregulation by vitamin D in other pulmonary diseases, have prompted proposals of vitamin D supplementation to curb the COVID-19 public health toll. In this review paper, we engage an immunological lens to discuss potential mechanisms by which vitamin D signals might regulate respiratory disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infections, vis a vis other pulmonary infections. It is proposed that vitamin D signals temper lung inflammatory cascades during SARS-CoV2 infection, and insufficiency of vitamin D causes increased inflammatory cytokine storm, thus leading to exacerbated respiratory disease. Additionally, analogous to studies of reduced cancer incidence, the dosage of vitamin D compounds administered to patients near the upper limit of safety may serve to maximize immune health benefits and mitigate inflammation and disease severity in SARS-CoV2 infections. We further deliberate on the importance of statistically powered clinical correlative and interventional studies, and the need for in-depth basic research into vitamin D-dependent host determinants of respiratory disease severity.
Collapse
Affiliation(s)
- Vandana Kalia
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Surojit Sarkar
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
35
|
Goksøyr SØ, Goldstone J, Lille-Langøy R, Lock EJ, Olsvik PA, Goksøyr A, Karlsen OA. Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105914. [PMID: 34304057 DOI: 10.1016/j.aquatox.2021.105914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Vitamin D receptor (VDR) mediates the biological function of the steroid hormone calcitriol, which is the metabolically active version of vitamin D. Calcitriol is important for a wide array of physiological functions, including calcium and phosphate homeostasis. In contrast to mammals, which harbor one VDR encoding gene, teleosts possess two orthologous vdr genes encoding Vdr alpha (Vdra) and Vdr beta (Vdrb). Genome mining identified the vdra and vdrb paralogs in the Atlantic cod (Gadus morhua) genome, which were further characterized regarding their phylogeny, tissue-specific expression, and transactivational properties induced by calcitriol. In addition, a selected set of polycyclic aromatic hydrocarbons (PAHs), including naphthalene, phenanthrene, fluorene, pyrene, chrysene, benzo[a]pyrene (BaP), and 7-methylbenzo[a]pyrene, were assessed for their ability to modulate the transcriptional activity of gmVdra and gmVdrb in vitro. Both gmVdra and gmVdrb were activated by calcitriol with similar potencies, but gmVdra produced significantly higher maximal fold activation. Notably, none of the tested PAHs showed agonistic properties towards the Atlantic cod Vdrs. However, binary exposures of calcitriol together with phenanthrene, fluorene, or pyrene, antagonized the activation of gmVdra, while chrysene and BaP significantly potentiated the calcitriol-mediated activity of both receptors. Homology modeling, solvent mapping, and docking analyses complemented the experimental data, and revealed a putative secondary binding site in addition to the canonical ligand-binding pocket (LBP). Calcitriol was predicted to interact with both binding sites, whereas PAHs docked primarily to the LBP. Importantly, our in vitro data suggest that PAHs can interact with the paralogous gmVdrs and interfere with their transcriptional activities, and thus potentially modulate the vitamin D signaling pathway and contribute to adverse effects of crude oil and PAH exposures on cardiac development and bone deformities in fish.
Collapse
Affiliation(s)
| | - Jed Goldstone
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Erik-Jan Lock
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research, Bergen, Norway
| | - Pål A Olsvik
- Institute of Marine Research, Bergen, Norway; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway
| | | |
Collapse
|
36
|
Simakou T, Freeburn R, Henriquez FL. Gene expression during THP-1 differentiation is influenced by vitamin D3 and not vibrational mechanostimulation. PeerJ 2021; 9:e11773. [PMID: 34316406 PMCID: PMC8286059 DOI: 10.7717/peerj.11773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background In injury or infection, monocytes migrate into the affected tissues from circulation and differentiate into macrophages which are subsequently involved in the inflammatory responses. Macrophage differentiation and activation have been studied in response to multiple chemokines and cytokines. However, mechanical, and physical stimuli can also influence macrophage differentiation, activation, cytokine production, and phagocytic activity. Methods In this study the macrophage differentiation from THP-1 monocytes was assessed upon the stimulation with 1,25-dihydroxyvitamin D3 and 1,000 Hz vibrations, using qPCR for quantification of transcript expression. Vitamin D binds the vitamin D receptor (VDR) and subsequently modulates the expression of a variety of genes in monocytes. The effects of the 1,000 Hz vibrational stimulation, and the combined treatment of vitamin D3 and 1000 Hz vibrations were unknown. The differentiation of macrophages was assessed by looking at transcription of macrophage markers (e.g., CD14, CD36), antigen presenting molecules (e.g., HLA-DRA), transcription factors (e.g., LEF-1, TCF7L2), and mechanosensors (e.g., PIEZO1 and PKD2). Results The results showed that vitamin D3 induced THP-1 macrophage differentiation, which was characterized by upregulation of CD14 and CD36, downregulation of HLA-DRA, upregulation of the PKD2 (TRPP2), and an inverse relationship between TCF7L2 and LEF-1, which were upregulated and downregulated respectively. The 1,000 Hz vibrations were sensed from the cells which upregulated PIEZO1 and TCF3, but they did not induce expression of genes that would indicate macrophage differentiation. The mRNA transcription profile in the cells stimulated with the combined treatment was comparable to that of the cells stimulated by the vitamin only. The 1,000 Hz vibrations slightly weakened the effect of the vitamin for the regulation of CD36 and HLA-DMB in the suspension cells, but without causing changes in the regulation patterns. The only exception was the upregulation of TCF3 in the suspension cells, which was influenced by the vibrations. In the adherent cells, the vitamin D3 cancelled the upregulating effect of the 1,000 Hz vibrations and downregulated TCF3. The vitamin also cancelled the upregulation of PIEZO1 gene by the 1,000 Hz vibrations in the combined treatment. Conclusion The mechanical stimulation with 1,000 Hz vibrations resulted in upregulation of PIEZO1 in THP-1 cells, but it did not affect the differentiation process which was investigated in this study. Vitamin D3 induced THP-1 macrophage differentiation and could potentially influence M2 polarization as observed by upregulation of CD36 and downregulation of HLA-DRA. In addition, in THP-1 cells undergoing the combined stimulation, the gene expression patterns were influenced by vitamin D3, which also ablated the effect of the mechanical stimulus on PIEZO1 upregulation.
Collapse
Affiliation(s)
- Theodoros Simakou
- School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robin Freeburn
- School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom
| |
Collapse
|
37
|
Biswas B, Goswami R. Differential gene expression analysis in 1,25(OH)2D3 treated human monocytes establishes link between AIDS progression, neurodegenerative disorders, and aging. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Garand M, Toufiq M, Singh P, Huang SSY, Tomei S, Mathew R, Mattei V, Al Wakeel M, Sharif E, Al Khodor S. Immunomodulatory Effects of Vitamin D Supplementation in a Deficient Population. Int J Mol Sci 2021; 22:5041. [PMID: 34068701 PMCID: PMC8126205 DOI: 10.3390/ijms22095041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
In addition to its canonical functions, vitamin D has been proposed to be an important mediator of the immune system. Despite ample sunshine, vitamin D deficiency is prevalent (>80%) in the Middle East, resulting in a high rate of supplementation. However, the underlying molecular mechanisms of the specific regimen prescribed and the potential factors affecting an individual's response to vitamin D supplementation are not well characterized. Our objective is to describe the changes in the blood transcriptome and explore the potential mechanisms associated with vitamin D3 supplementation in one hundred vitamin D-deficient women who were given a weekly oral dose (50,000 IU) of vitamin D3 for three months. A high-throughput targeted PCR, composed of 264 genes representing the important blood transcriptomic fingerprints of health and disease states, was performed on pre and post-supplementation blood samples to profile the molecular response to vitamin D3. We identified 54 differentially expressed genes that were strongly modulated by vitamin D3 supplementation. Network analyses showed significant changes in the immune-related pathways such as TLR4/CD14 and IFN receptors, and catabolic processes related to NF-kB, which were subsequently confirmed by gene ontology enrichment analyses. We proposed a model for vitamin D3 response based on the expression changes of molecules involved in the receptor-mediated intra-cellular signaling pathways and the ensuing predicted effects on cytokine production. Overall, vitamin D3 has a strong effect on the immune system, G-coupled protein receptor signaling, and the ubiquitin system. We highlighted the major molecular changes and biological processes induced by vitamin D3, which will help to further investigate the effectiveness of vitamin D3 supplementation among individuals in the Middle East as well as other regions.
Collapse
Affiliation(s)
- Mathieu Garand
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Mohammed Toufiq
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Parul Singh
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Susie Shih Yin Huang
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Sara Tomei
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Rebecca Mathew
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Valentina Mattei
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| | - Mariam Al Wakeel
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha 26999, Qatar;
| | - Elham Sharif
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha 26999, Qatar;
| | - Souhaila Al Khodor
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (P.S.); (S.S.Y.H.); (S.T.); (R.M.); (V.M.)
| |
Collapse
|
39
|
Cicchella A, Stefanelli C, Massaro M. Upper Respiratory Tract Infections in Sport and the Immune System Response. A Review. BIOLOGY 2021; 10:biology10050362. [PMID: 33922542 PMCID: PMC8146667 DOI: 10.3390/biology10050362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary This review aims at clarifying the relationships of heavy training with the upper respiratory tract infections (URTI), a topic which has reach the public awareness with the recent outbreaks of Covid 19. The URTIs are quite common in several sport activities among athletes who undergo heavy training. Causes of URTI are still poorly understood, because can be related with innate and genetic susceptibility and with several environmental factors connected with training load and nutrition. The time course of the inflammation process affecting URTI after training, has been also reviewed. After a survey of the possible physiological and psychological causes (stressors), including a survey of the main markers of inflammation currently found in scientific literature (mainly catecholamines), we provided evidence of the ingestion of carbohydrates, C, D, and E vitamins, probiotics and even certain fat, in reducing URTI in athletes. Possible countermeasures to URTI can be a correct nutrition, sleep hygiene, a proper organization of training loads, and the use of technique to reduce stress in professional athletes. There is a lack of studies investigating social factors (isolation) albeit with Covid 19 this gap has been partially fill. The results can be useful also for non-athletes. Abstract Immunity is the consequence of a complex interaction between organs and the environment. It is mediated the interaction of several genes, receptors, molecules, hormones, cytokines, antibodies, antigens, and inflammatory mediators which in turn relate and influence the psychological health. The immune system response of heavily trained athletes resembles an even more complex conditions being theorized to follow a J or S shape dynamics at times. High training loads modify the immune response elevating the biological markers of immunity and the body susceptibility to infections. Heavy training and/or training in a cold environment increase the athletes’ risk to develop Upper Respiratory Tract Infections (URTIs). Therefore, athletes, who are considered healthier than the normal population, are in fact more prone to infections of the respiratory tract, due to lowering of the immune system in the time frames subsequent heavy training sessions. In this revision we will review the behavioral intervention, including nutritional approaches, useful to minimize the “open window” effect on infection and how to cope with stressors and boost the immune system in athletes.
Collapse
Affiliation(s)
- Antonio Cicchella
- Department for Quality of Life Studies, University of Bologna, 40127 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2088772
| | - Claudio Stefanelli
- Department for Quality of Life Studies, University of Bologna, 40127 Bologna, Italy;
| | - Marika Massaro
- Institute of Clinical Physiology, National Research Council (CNR), 73047 Lecce, Italy;
| |
Collapse
|
40
|
George B, Amjesh R, Paul AM, Santhoshkumar TR, Pillai MR, Kumar R. Evidence of a dysregulated vitamin D endocrine system in SARS-CoV-2 infected patient's lung cells. Sci Rep 2021; 11:8570. [PMID: 33883570 PMCID: PMC8060306 DOI: 10.1038/s41598-021-87703-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Although a defective vitamin D endocrine system has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D endocrine system and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D endocrine system in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes, as potentially modulated by vitamin D endocrine system, were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D endocrine system in SARS-CoV-2-infected cells. Protein-protein interaction network of differentially expressed vitamin D-modulated genes were enriched in the immune system, NF-κB/cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results presented here povide computational evidence to implicate a dysregulated vitamin D endocrine system in the pathobiology of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Revikumar Amjesh
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA.
| |
Collapse
|
41
|
Awasthi N, Awasthi S, Pandey S, Gupta S. Association of vitamin D receptor gene polymorphisms in North Indian children with asthma: a case-control study. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:24-34. [PMID: 34093968 PMCID: PMC8166730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Asthma is a complex genetic disease. Vitamin D and vitamin D receptor (VDR) gene polymorphisms are involved in asthma pathogenesis. However, accurate inflammatory mechanisms and their role in VDR gene polymorphisms are unclear. The objective of this study was to investigate the association of VDR gene polymorphisms, ApaI, FokI, TaqI, and BsmI with asthma as compared to controls. Children (age 5-15 years) with a history of respiratory symptoms (wheeze, shortness of breath and chest tightness) were recruited as cases. Age matched children admitted with central nervous system disorders (encephalitis/seizures) without any respiratory complaints were recruited as controls after parental consent. Children with a clinical diagnosis of cystic fibrosis, congenital heart disease and whose parents did not consent for participation in the study were excluded. VDR gene polymorphisms were genotyped using PCR-RFLP method. One hundred and sixty asthmatics and one hundred controls were enrolled in this study. Mean age of the cases was 103.29±32.7 months and controls 94.24±30.52 months. Children with heterozygous (AC) genotype [OR=1.83, 95% CI=1.01-3.32, p=0.046] of ApaI polymorphism were found to be associated with the risk of asthma. Our findings suggest that ApaI polymorphism of VDR gene may contribute to asthma susceptibility among children.
Collapse
Affiliation(s)
- Nidhi Awasthi
- Department of Pediatrics, King George’s Medical UniversityLucknow, India
| | - Shally Awasthi
- Department of Pediatrics, King George’s Medical UniversityLucknow, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical UniversityLucknow, India
| | - Sarika Gupta
- Department of Pediatrics, King George’s Medical UniversityLucknow, India
| |
Collapse
|
42
|
A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes. Sci Rep 2021; 11:6518. [PMID: 33753848 PMCID: PMC7985518 DOI: 10.1038/s41598-021-86032-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 11/11/2022] Open
Abstract
The transcription factor vitamin D receptor (VDR) is the high affinity nuclear target of the biologically active form of vitamin D3 (1,25(OH)2D3). In order to identify pure genomic transcriptional effects of 1,25(OH)2D3, we used VDR cistrome, transcriptome and open chromatin data, obtained from the human monocytic cell line THP-1, for a novel hierarchical analysis applying three bioinformatics approaches. We predicted 75.6% of all early 1,25(OH)2D3-responding (2.5 or 4 h) and 57.4% of the late differentially expressed genes (24 h) to be primary VDR target genes. VDR knockout led to a complete loss of 1,25(OH)2D3–induced genome-wide gene regulation. Thus, there was no indication of any VDR-independent non-genomic actions of 1,25(OH)2D3 modulating its transcriptional response. Among the predicted primary VDR target genes, 47 were coding for transcription factors and thus may mediate secondary 1,25(OH)2D3 responses. CEBPA and ETS1 ChIP-seq data and RNA-seq following CEBPA knockdown were used to validate the predicted regulation of secondary vitamin D target genes by both transcription factors. In conclusion, a directional network containing 47 partly novel primary VDR target transcription factors describes secondary responses in a highly complex vitamin D signaling cascade. The central transcription factor VDR is indispensable for all transcriptome-wide effects of the nuclear hormone.
Collapse
|
43
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
44
|
Sheeley MP, Andolino C, Kiesel VA, Teegarden D. Vitamin D regulation of energy metabolism in cancer. Br J Pharmacol 2021; 179:2890-2905. [PMID: 33651382 DOI: 10.1111/bph.15424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D exerts anti-cancer effects in recent clinical trials and preclinical models. The actions of vitamin D are primarily mediated through its hormonal form, 1,25-dihydroxyvitamin D (1,25(OH)2 D). Previous literature describing in vitro studies has predominantly focused on the anti-tumourigenic effects of the hormone, such as proliferation and apoptosis. However, recent evidence has identified 1,25(OH)2 D as a regulator of energy metabolism in cancer cells, where requirements for specific energy sources at different stages of progression are dramatically altered. The literature suggests that 1,25(OH)2 D regulates energy metabolism, including glucose, glutamine and lipid metabolism during cancer progression, as well as oxidative stress protection, as it is closely associated with energy metabolism. Mechanisms involved in energy metabolism regulation are an emerging area in which vitamin D may inhibit multiple stages of cancer progression.
Collapse
Affiliation(s)
- Madeline P Sheeley
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Violet A Kiesel
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
45
|
Vitamin D Modulation of the Innate Immune Response to Paediatric Respiratory Pathogens Associated with Acute Lower Respiratory Infections. Nutrients 2021; 13:nu13010276. [PMID: 33478006 PMCID: PMC7835957 DOI: 10.3390/nu13010276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is an essential component of immune function and childhood deficiency is associated with an increased risk of acute lower respiratory infections (ALRIs). Globally, the leading childhood respiratory pathogens are Streptococcus pneumoniae, respiratory syncytial virus and the influenza virus. There is a growing body of evidence describing the innate immunomodulatory properties of vitamin D during challenge with respiratory pathogens, but recent systematic and unbiased synthesis of data is lacking, and future research directions are unclear. We therefore conducted a systematic PubMed literature search using the terms “vitamin D” and “Streptococcus pneumoniae” or “Respiratory Syncytial Virus” or “Influenza”. A priori inclusion criteria restricted the review to in vitro studies investigating the effect of vitamin D metabolites on human innate immune cells (primary, differentiated or immortalised) in response to stimulation with the specified respiratory pathogens. Eleven studies met our criteria. Despite some heterogeneity across pathogens and innate cell types, vitamin D modulated pathogen recognition receptor (PRRs: Toll-like receptor 2 (TLR2), TLR4, TLR7 and nucleotide-binding oligomerisation domain-containing protein 2 (NOD2)) expression; increased antimicrobial peptide expression (LL-37, human neutrophil peptide (HNP) 1-3 and β-defensin); modulated autophagosome production reducing apoptosis; and modulated production of inflammatory cytokines (Interleukin (IL) -1β, tumour necrosis factor-α (TNF-α), interferon-ɣ (IFN-ɣ), IL-12p70, IFN-β, Regulated on Activation, Normal T cell Expressed (RANTES), IL-10) and chemokines (IL-8 and C-X-C motif chemokine ligand 10 (CXCL10)). Differential modulation of PRRs and IL-1β was reported across immune cell types; however, this may be due to the experimental design. None of the studies specifically focused on immune responses in cells derived from children. In summary, vitamin D promotes a balanced immune response, potentially enhancing pathogen sensing and clearance and restricting pathogen induced inflammatory dysregulation. This is likely to be important in controlling both ALRIs and the immunopathology associated with poorer outcomes and progression to chronic lung diseases. Many unknowns remain and further investigation is required to clarify the nuances in vitamin D mediated immune responses by pathogen and immune cell type and to determine whether these in vitro findings translate into enhanced immunity and reduced ALRI in the paediatric clinical setting.
Collapse
|
46
|
Kirk B, Prokopidis K, Duque G. Nutrients to mitigate osteosarcopenia: the role of protein, vitamin D and calcium. Curr Opin Clin Nutr Metab Care 2021; 24:25-32. [PMID: 33148944 DOI: 10.1097/mco.0000000000000711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Osteosarcopenia (the joint loss of bone density and muscle mass and function) is an emerging geriatric syndrome, which associates with poor health outcomes. Several nutrients including protein, vitamin D and calcium interact (directly or through absorption properties) to regulate muscle and bone metabolism. We provided an update on the efficacy of these nutrients on musculoskeletal outcomes in older adults with, or at risk of, osteosarcopenia. RECENT FINDINGS Randomized trials show that correcting vitamin D and calcium deficiencies to meet the recommended dietary allowance (RDA) increases bone density and reduces fracture (but not falls) risk. Supplementing above the RDA with protein supports gains in lean mass and lumbar-spine bone density; however, there is inconclusive evidence for muscle strength, physical function or other bone density sites. A likely explanation for this relates to the significant heterogeneity between trials regarding protein dose, type and timing, as well as baseline protein intake. Further high-quality trials are needed in older osteosarcopenic adults to investigate the effects of protein (while correcting vitamin D and calcium deficiencies) on clinically meaningful outcomes such as activities of daily living, falls and fractures. SUMMARY An adequate intake of protein (1.2-1.5 g/kg/day), vitamin D (800 IU/day) and calcium (1000-1200 mg/day), is well tolerated and effective at mitigating some aspects of osteosarcopenia such as lean mass, bone density and fracture risk.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St. Albans, Melbourne, Victoria, Australia
| | - Konstantinos Prokopidis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Gustavo Duque
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St. Albans, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: Vitamin D deficiency and COVID-19 severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med 2021; 289:97-115. [PMID: 32613681 PMCID: PMC7361294 DOI: 10.1111/joim.13149] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND SARS-CoV-2 coronavirus infection ranges from asymptomatic through to fatal COVID-19 characterized by a 'cytokine storm' and lung failure. Vitamin D deficiency has been postulated as a determinant of severity. OBJECTIVES To review the evidence relevant to vitamin D and COVID-19. METHODS Narrative review. RESULTS Regression modelling shows that more northerly countries in the Northern Hemisphere are currently (May 2020) showing relatively high COVID-19 mortality, with an estimated 4.4% increase in mortality for each 1 degree latitude north of 28 degrees North (P = 0.031) after adjustment for age of population. This supports a role for ultraviolet B acting via vitamin D synthesis. Factors associated with worse COVID-19 prognosis include old age, ethnicity, male sex, obesity, diabetes and hypertension and these also associate with deficiency of vitamin D or its response. Vitamin D deficiency is also linked to severity of childhood respiratory illness. Experimentally, vitamin D increases the ratio of angiotensin-converting enzyme 2 (ACE2) to ACE, thus increasing angiotensin II hydrolysis and reducing subsequent inflammatory cytokine response to pathogens and lung injury. CONCLUSIONS Substantial evidence supports a link between vitamin D deficiency and COVID-19 severity but it is all indirect. Community-based placebo-controlled trials of vitamin D supplementation may be difficult. Further evidence could come from study of COVID-19 outcomes in large cohorts with information on prescribing data for vitamin D supplementation or assay of serum unbound 25(OH) vitamin D levels. Meanwhile, vitamin D supplementation should be strongly advised for people likely to be deficient.
Collapse
Affiliation(s)
- J. M. Rhodes
- From theDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - S. Subramanian
- From theDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - E. Laird
- The Irish Longitudinal Study on AgeingSchool of MedicineTrinity College DublinDublinIreland
| | - G. Griffin
- Infectious Diseases and MedicineSt George’sUniversity of LondonLondonUK
| | - R. A. Kenny
- Department of Medical GerontologyMercers Institute for AgeingSt James HospitalDublin 8Ireland
| |
Collapse
|
48
|
Biesalski HK. Obesity, vitamin D deficiency and old age a serious combination with respect to coronavirus disease-2019 severity and outcome. Curr Opin Clin Nutr Metab Care 2021; 24:18-24. [PMID: 32941186 DOI: 10.1097/mco.0000000000000700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Old age, obesity and vitamin D deficiency are considered as independent risk factors for severe courses of COVID-19. The aim of the review is to discuss common features of these risk factors and the impact of vitamin D. RECENT FINDINGS The recently discovered relationship between vitamin D and the infection pathway of the virus via the renin--angiotensin system (RAS) and the adipokines leptin and adiponectin play an important role. The frequency of studies showing a relationship between a low vitamin D status in comorbidities and severe COVID-19 courses makes an impact of vitamin D effects likely. SUMMARY There is a direct relationship between vitamin D, body fat and age in COVID-19 courses. With age, the ability of the skin to synthesize vitamin D decreases, and leads to vitamin D-deficits. If the skin is insufficiently exposed to sunlight, severe deficits can develop. As vitamin D plays an important role not only in the immune system but also in the RAS, and thus at the point where the virus attacks, a good vitamin D supply is an important basis for reducing the risk of severe COVID-19 processes. Treatment with vitamin D supplements should be based on severity of the vitamin D deficiency.
Collapse
|
49
|
Common and personal target genes of the micronutrient vitamin D in primary immune cells from human peripheral blood. Sci Rep 2020; 10:21051. [PMID: 33273683 PMCID: PMC7713372 DOI: 10.1038/s41598-020-78288-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Vitamin D is essential for the function of the immune system. In this study, we treated peripheral blood mononuclear cells (PBMCs) of healthy adults with the biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) using two different approaches: single repeats with PBMCs obtained from a cohort of 12 individuals and personalized analysis based on triplicates of five study participants. This identified 877 (cohort approach) and 3951 (personalized approach) genes that significantly (p < 0.05) changed their expression 24 h after 1,25(OH)2D3 stimulation. From these, 333 and 1232 were classified as supertargets, a third of which were identified as novel. Individuals differed largely in their vitamin D response not only by the magnitude of expression change but also by their personal selection of (super)target genes. Functional analysis of the target genes suggested the overarching role of vitamin D in the regulation of metabolism, proliferation and differentiation, but in particular in the control of functions mediated by the innate and adaptive immune system, such as responses to infectious diseases and chronic inflammatory disorders. In conclusion, immune cells are an important target of vitamin D and common genes may serve as biomarkers for personal responses to the micronutrient.
Collapse
|
50
|
Voutsadakis IA. Vitamin D receptor (VDR) and metabolizing enzymes CYP27B1 and CYP24A1 in breast cancer. Mol Biol Rep 2020; 47:9821-9830. [PMID: 33259013 DOI: 10.1007/s11033-020-05780-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 01/05/2023]
Abstract
Vitamin D Receptor (VDR), a nuclear steroid receptor, is a transcription factor with a primary physiologic role in calcium metabolism. It has also a physiologic role in breast tissues during development of the gland and postpartum. In addition, it is commonly expressed in breast cancer and has tumor suppressive effects. Cytochrome enzymes CYP27B1 and CYP24A1 that perform the final conversion of the circulating form of vitamin D, 25-hydroxyvitamin D (25-OHD) to the active VDR ligand, 1a,25-dihydroxyvitamin D and the catabolism of it to inactive 24,25-dihydroxyvitamin D, respectively, are also expressed in breast cancer tissues. Defective regulation of the receptor and the metabolic enzymes of VDR ligand is prevalent in breast cancer and leads to decreased VDR signaling. The expression and molecular defects of VDR, CYP27B1 and CYP24A1 that perturb physiologic function, the implications for breast cancer progression and therapeutic opportunities are discussed in this paper.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|