1
|
Singh H, Kamal YT, Pandohee J, Mishra AK, Biswas A, Mohanto S, Kumar A, Nag S, Mishra A, Singh M, Gupta H, Chopra H. Dietary phytochemicals alleviate the premature skin aging: A comprehensive review. Exp Gerontol 2024; 199:112660. [PMID: 39694450 DOI: 10.1016/j.exger.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Skin aging, often called as premature skin aging, is the hastened deterioration of the skin resulting from multiple factors, including UV radiation, environmental contaminants, inadequate nutrition, stress, etc. Dietary phytochemicals, present in fruits, vegetables, and other plant-derived meals, have gained interest due to their efficiency to eradicate free radicals and lowering the release of inflammatory mediators which accounts for premature skin aging. Several dietary phytochemicals, i.e., carotenoids, polyphenols, flavonoids, terpenes, alkaloids, phytosterols, etc., exhibited potential anti-oxidant, anti-inflammatory, suppression of UV damage, and promote collagen synthesis. In addition, dietary phytochemicals include sulfur, present in various foods safeguard the skin against oxidative stress and inflammation. Thus, this article delves into the comprehension of various dietary phytochemicals investigated to alleviate the premature skin aging. The article further highlights specific phytochemicals and their sources, bioavailability, mechanisms, etc., in the context of safeguarding the skin against oxidative stress and inflammation. The present manuscript is a systematic comprehension of the available literature on dietary phytochemicals and skin aging in various database, i.e., PubMed, ScienceDirect, Google Scholar using the keywords, i.e., "dietary phytochemicals", "nutraceuticals", "skin aging" etc., via Boolean operator, i.e., "AND". The dietary guidelines presented in the manuscript is a unique summarization for a broad reader to understand the inclusion of various functional foods, nutrients, supplements, etc., to prevent premature skin aging. Thus, the utilization of dietary phytochemicals has shown a promising avenue in preventing skin aging, however, the future perspectives and challenges of such phytochemicals should be comprehended via clinical investigations.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Y T Kamal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia
| | - Jessica Pandohee
- Sydney Mass Spectrometry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal 700118, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
2
|
Broome SC, Whitfield J, Karagounis LG, Hawley JA. Mitochondria as Nutritional Targets to Maintain Muscle Health and Physical Function During Ageing. Sports Med 2024; 54:2291-2309. [PMID: 39060742 PMCID: PMC11393155 DOI: 10.1007/s40279-024-02072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The age-related loss of skeletal muscle mass and physical function leads to a loss of independence and an increased reliance on health-care. Mitochondria are crucial in the aetiology of sarcopenia and have been identified as key targets for interventions that can attenuate declines in physical capacity. Exercise training is a primary intervention that reduces many of the deleterious effects of ageing in skeletal muscle quality and function. However, habitual levels of physical activity decline with age, making it necessary to implement adjunct treatments to maintain skeletal muscle mitochondrial health and physical function. This review provides an overview of the effects of ageing and exercise training on human skeletal muscle mitochondria and considers several supplements that have plausible mechanistic underpinning to improve physical function in ageing through their interactions with mitochondria. Several supplements, including MitoQ, urolithin A, omega-3 polyunsaturated fatty acids (n3-PUFAs), and a combination of glycine and N-acetylcysteine (GlyNAC) can improve physical function in older individuals through a variety of inter-dependent mechanisms including increases in mitochondrial biogenesis and energetics, decreases in mitochondrial reactive oxygen species emission and oxidative damage, and improvements in mitochondrial quality control. While there is evidence that some nicotinamide adenine dinucleotide precursors can improve physical function in older individuals, such an outcome seems unrelated to and independent of changes in skeletal muscle mitochondrial function. Future research should investigate the safety and efficacy of compounds that can improve skeletal muscle health in preclinical models through mechanisms involving mitochondria, such as mitochondrial-derived peptides and mitochondrial uncouplers, with a view to extending the human health-span.
Collapse
Affiliation(s)
- Sophie C Broome
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Leonidas G Karagounis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
3
|
Jiao S, Li N, Cao T, Wang L, Chen H, Lin C, Cai H. Differential impact of intermittent versus continuous treatment with clozapine on fatty acid metabolism in the brain of an MK-801-induced mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111011. [PMID: 38642730 DOI: 10.1016/j.pnpbp.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Continuous antipsychotic treatment is often recommended to prevent relapse in schizophrenia. However, the efficacy of antipsychotic treatment appears to diminish in patients with relapsed schizophrenia and the underlying mechanisms are still unknown. Moreover, though the findings are inconclusive, several recent studies suggest that intermittent versus continuous treatment may not significantly differ in recurrence risk and therapeutic efficacy but potentially reduce the drug dose and side effects. Notably, disturbances in fatty acid (FA) metabolism are linked to the onset/relapse of schizophrenia, and patients with multi-episode schizophrenia have been reported to have reduced FA biosynthesis. We thus utilized an MK-801-induced animal model of schizophrenia to evaluate whether two treatment strategies of clozapine would affect drug response and FA metabolism differently in the brain. Schizophrenia-related behaviors were assessed through open field test (OFT) and prepulse inhibition (PPI) test, and FA profiles of prefrontal cortex (PFC) and hippocampus were analyzed by gas chromatography-mass spectrometry. Additionally, we measured gene expression levels of enzymes involved in FA synthesis. Both intermittent and continuous clozapine treatment reversed hypermotion and deficits in PPI in mice. Continuous treatment decreased total polyunsaturated fatty acids (PUFAs), saturated fatty acids (SFAs) and FAs in the PFC, whereas the intermittent administration increased n-6 PUFAs, SFAs and FAs compared to continuous administration. Meanwhile, continuous treatment reduced the expression of Fads1 and Elovl2, while intermittent treatment significantly upregulated them. This study discloses the novel findings that there was no significant difference in clozapine efficacy between continuous and intermittent administration, but intermittent treatment showed certain protective effects on phospholipid metabolism in the PFC.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Nana Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
4
|
Azzolino D, Bertoni C, De Cosmi V, Spolidoro GCI, Agostoni C, Lucchi T, Mazzocchi A. Omega-3 polyunsatured fatty acids and physical performance across the lifespan: a narrative review. Front Nutr 2024; 11:1414132. [PMID: 38966419 PMCID: PMC11223594 DOI: 10.3389/fnut.2024.1414132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims Physical performance is a major contributor of mobility and independence during older life. Despite a progressive decline in musculoskeletal function starts from middle age, several factors acting during the life-course can negatively influence musculoskeletal functional capacities. Lifestyle interventions incorporating nutrition and physical exercise can help maximizing the muscle functional capacities in early life as well as preserving them later in life. Among various dietary compounds, omega-3 polyunsaturated fatty acids (PUFAs) are gaining growing attention for their potential effects on muscle membrane composition and muscle function. Indeed, several pathways are enhanced, such as an attenuation of pro-inflammatory oxidative stress, mitochondrial function, activation of the mammalian target of rapamycin (mTOR) signaling and reduction of insulin resistance. Methods We performed a narrative review to explore the existing literature on the relationship between omega-3 PUFAs and physical performance across the life-course. Results Growing evidence from randomized controlled trials (RCTs) suggests beneficial effects of omega-3 PUFAs on muscle function, including physical performance parameters in mid to later life. On the other hand, despite a direct association in early life is not available in literature, some mechanisms by which omega-3 PUFAs may contribute to improved adult physical performance could be hypothesized. Conclusion Omega-3 PUFAs are gaining growing attention for their positive effect on muscle function parameters. The integration of physical function measures in future studies would be of great interest to explore whether omega-3 PUFAs could contribute to improved muscle function, starting from early life and extending throughout the lifespan. However, larger and high-quality RCTs are needed to fully elucidate the beneficial effects of omega-3 PUFAs supplementation on muscle mass and function.
Collapse
Affiliation(s)
- Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Camilla Bertoni
- Department of Veterinary Sciences for Health, Animal Production and Food Safety, University of Milan, Milan, Italy
| | - Valentina De Cosmi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—Italian National Institute of Health, Rome, Italy
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| | | | - Carlo Agostoni
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziano Lucchi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Malan L, Zandberg L, Pienaar C, Nienaber A, Havemann-Nel L. Regular moderate physical activity potentially accelerates and strengthens both the pro-inflammatory and pro-resolving lipid mediator response after acute exercise stress. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102642. [PMID: 39216411 DOI: 10.1016/j.plefa.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The PUFA-derived lipid mediator response shifts from pro-inflammatory to inflammation resolution over time and may be modified by regular moderate exercise. This pre-post-test study aimed to compare the expression of PTGES2 (COX2) and ALOX15 in leucocytes and the plasma 5- and 15-HETE, 18-HEPE and 17-HDHA responses after unaccustomed resistance exercise between 18-35-year-old male recreational runners (n = 18) and less-active controls (n = 15). One repetition maximum (1RM) was determined for squats, 45° leg presses and leg extensions. Subsequently three sets of 8-10 repetitions were performed at 80 % 1RM and blood collected over 72 hours. PTGES2 and ALOX15 expression changed over time in runners (P = 0.016, P = 0.007) but not controls (P = 0.631, P = 0.539). 5- and 15-HETE changed over time in runners (P < 0.001, P = 0.022), but not controls (P = 0.457, P = 0.985). 18-HEPE changed in runners and controls (P < 0.001, P = 0.024), 17-HDHA changed borderline in runners (P = 0.076). In conclusion, pro-inflammatory and inflammation-resolving lipid mediators may respond sooner and more robust in recreational runners than less-active controls after strenuous resistance exercise.
Collapse
Affiliation(s)
- Linda Malan
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| | - Lizelle Zandberg
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cindy Pienaar
- Physical Activity, Sport and Recreation Research Focus Area (PhASRec), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; Department of Sport Studies, Faculty of Applied Sciences, Durban University of Technology, South Africa
| | - Arista Nienaber
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lize Havemann-Nel
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Jin T, Wang M, Zeng Z, He W, Zhang L, Mai Y, Cen H. Causal associations of plasma omega-3 polyunsaturated fatty acids with sarcopenia-related traits: a two-sample Mendelian randomization study. Eur J Clin Nutr 2024; 78:19-26. [PMID: 37653236 DOI: 10.1038/s41430-023-01339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To evaluate the causal effect of plasma omega-3 polyunsaturated fatty acids (PUFAs) on sarcopenia-related traits (lean mass, grip strength and walking pace) utilizing two-sample Mendelian randomization (MR) approach. METHODS Based on genome-wide association study (GWAS) summary statistics, we performed two-sample MR applying the inverse variance weighted (IVW) as the primary method, supplemented with four additional sensitivity analyses. Furthermore, multivariable MR (MVMR) was applied to assess these associations independent of alcohol drinking, type 2 diabetes (T2D), triglycerides (TG), estimated glomerular filtration rate (eGFR) and C-reactive protein (CRP). RESULTS In univariable MR, the IVW analysis suggested no significant causal effect of genetically determined plasma omega-3 PUFAs on fat-free mass (right leg: β = 0.01, 95% CI = -0.02 to 0.05, P = 0.375; left leg: β = 0.01, 95% CI = -0.02 to 0.04, P = 0.446; right arm: β = 0.01, 95% CI = -0.02 to 0.05, P = 0.376; left arm: β = 0.01, 95% CI = -0.02 to 0.04, P = 0.384; trunk:β = 0.02, 95% CI = -0.02 to 0.06, P = 0.283; whole: β = 0.01, 95% CI = -0.03 to 0.04, P = 0.631), grip strength (right hand: β = -0.01, 95% CI = -0.03 to 0.01, P = 0.387; left hand: β = -0.01, 95% CI = -0.02 to 0.01, P = 0.553) and walking pace (β = 0.00, 95% CI = -0.01 to 0.02, P = 0.575), and sensitive analysis generated similar non-significant results. Furthermore, the MVMR revealed no independent causal association. CONCLUSIONS Genetically determined plasma omega-3 PUFAs have no causal effect on sarcopenia-related traits.
Collapse
Affiliation(s)
- Ting Jin
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Mengqiao Wang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Zeng
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Wenming He
- Institute of Geriatrics, The First Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Lina Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| | - Yifeng Mai
- Institute of Geriatrics, The First Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China.
| | - Han Cen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Witard OC, Banic M, Rodriguez-Sanchez N, van Dijk M, Galloway SDR. Long-chain n-3 PUFA ingestion for the stimulation of muscle protein synthesis in healthy older adults. Proc Nutr Soc 2023:1-11. [PMID: 37987178 DOI: 10.1017/s0029665123004834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This review aims to critically evaluate the efficacy of long-chain ո-3 PUFA ingestion in modulating muscle protein synthesis (MPS), with application to maintaining skeletal muscle mass, strength and function into later life. Ageing is associated with a gradual decline in muscle mass, specifically atrophy of type II fibres, that is exacerbated by periods of (in)voluntary muscle disuse. At the metabolic level, in otherwise healthy older adults, muscle atrophy is underpinned by anabolic resistance which describes the impaired MPS response to non-pharmacological anabolic stimuli, namely, physical activity/exercise and amino acid provision. Accumulating evidence implicates a mechanistic role for n-3 PUFA in upregulating MPS under stimulated conditions (post-prandial state or following exercise) via incorporation of EPA and DHA into the skeletal muscle phospholipid membrane. In some instances, these changes in MPS with chronic ո-3 PUFA ingestion have translated into clinically relevant improvements in muscle mass, strength and function; an observation evidently more prevalent in healthy older women than men. This apparent sexual dimorphism in the adaptive response of skeletal muscle metabolism to EPA and DHA ingestion may be related to a greater propensity for females to incorporate ո-3 PUFA into human tissue and/or the larger dose of ingested ո-3 PUFA when expressed relative to body mass or lean body mass. Future experimental studies are warranted to characterise the optimal dosing and duration of ո-3 PUFA ingestion to prescribe tailored recommendations regarding n-3 PUFA nutrition for healthy musculoskeletal ageing into later life.
Collapse
Affiliation(s)
- Oliver C Witard
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Milena Banic
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| | - Nidia Rodriguez-Sanchez
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| | | | - Stuart D R Galloway
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
8
|
Therdyothin A, Phiphopthatsanee N, Isanejad M. The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Mar Drugs 2023; 21:399. [PMID: 37504930 PMCID: PMC10381755 DOI: 10.3390/md21070399] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Sarcopenia, a progressive disease characterized by a decline in muscle strength, quality, and mass, affects aging population worldwide, leading to increased morbidity and mortality. Besides resistance exercise, various nutritional strategies, including omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation, have been sought to prevent this condition. This narrative review summarizes the current evidence on the effect and mechanism of n-3 PUFA on musculoskeletal health. Despite conflicting evidence, n-3 PUFA is suggested to benefit muscle mass and volume, with more evident effects with higher supplementation dose (>2 g/day). n-3 PUFA supplementation likely improves handgrip and quadriceps strength in the elderly. Improved muscle functions, measured by walking speed and time-up-to-go test, are also observed, especially with longer duration of supplementation (>6 months), although the changes are small and unlikely to be clinically meaningful. Lastly, n-3 PUFA supplementation may positively affect muscle protein synthesis response to anabolic stimuli, alleviating age-related anabolic resistance. Proposed mechanisms by which n-3 PUFA supplementation improves muscle health include 1. anti-inflammatory properties, 2. augmented expression of mechanistic target of rapamycin complex 1 (mTORC1) pathway, 3. decreased intracellular protein breakdown, 4. improved mitochondrial biogenesis and function, 5. enhanced amino acid transport, and 6. modulation of neuromuscular junction activity. In conclusion, n-3 PUFAs likely improve musculoskeletal health related to sarcopenia, with suggestive effect on muscle mass, strength, physical performance, and muscle protein synthesis. However, the interpretation of the findings is limited by the small number of participants, heterogeneity of supplementation regimens, and different measuring protocols.
Collapse
Affiliation(s)
- Atiporn Therdyothin
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Department of Orthopedics, Police General Hospital, Bangkok 10330, Thailand
| | | | - Masoud Isanejad
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
9
|
Dupont J, Wauters E, Dedeyne L, Vercauteren L, Amini N, Lapauw L, Matthys C, Verschueren S, Tournoy J, Koppo K, Gielen E. Are dietary intake and nutritional status of specific polyunsaturated fatty acids correlated with sarcopenia outcomes in community-dwelling older adults with sarcopenia? - Exploratory results from ENHANce. BMC Geriatr 2023; 23:272. [PMID: 37147574 PMCID: PMC10161444 DOI: 10.1186/s12877-023-04007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
AIMS To explore the relationship between dietary polyunsaturated fatty acids (PUFAs) intake, nutritional PUFAs status and sarcopenia outcomes in sarcopenic older adults. METHODS The Exercise and Nutrition for Healthy AgeiNg (ENHANce) is an ongoing 5-armed triple blinded randomized controlled trial, in sarcopenic older adults (> 65y) aiming to assess the effect of combined anabolic interventions (protein, omega-3 supplement and exercise) on physical performance in these adults, compared to single/placebo interventions. Baseline data were used for a secondary, exploratory, cross-sectional analysis. Dietary PUFAs intake was assessed with 4-day food records, status with RBC membrane fatty acids profiles. Spearman's rho(ρ) correlation coefficients were calculated to explore associations of PUFAs intake and status with sarcopenia-defining parameters (muscle strength, mass and physical performance), physical activity (step count) and quality of life (SF-36, SarQoL). RESULTS In total, 29 subjects (9♂/20♀, mean age 76.3 ± 5.4y) were included. Total omega-3 intake of participants (1.99 ± 0.99 g/d) was below the recommended intake (♂:2.8-5.6 g/d; ♀:2.2-4.4 g/d). Intake and status of PUFAs were not correlated. Regarding correlations with outcomes, α-linolenic acid status was inversely associated with appendicular lean mass (aLM) (ρ:-0.439; p = 0.017), whereas docosahexaenoic acid status was positively associated with aLM (ρ:0.388; p = 0.038). Some omega-3 PUFAs intake and status markers were positively associated with step count, SF-36 and SarQoL scores, whereas gamma-linolenic acid status was inversely associated with SF-36 physical component summary score (ρ = -0.426; p = 0.024). CONCLUSIONS Although intake of omega-3 and omega-6 was low, the present exploratory study generated new hypotheses for potential correlations of PUFAs intake and status with sarcopenia outcomes in older adults with sarcopenia.
Collapse
Affiliation(s)
- Jolan Dupont
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
- Department of Geriatric Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Eva Wauters
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lenore Dedeyne
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Laura Vercauteren
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Nadjia Amini
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Laurence Lapauw
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabillitation Sciences, KU Leuven, Leuven, Belgium
| | - Jos Tournoy
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Department of Geriatric Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Evelien Gielen
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Department of Geriatric Medicine, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| |
Collapse
|
10
|
Zhang LM, Feng NN, Du HB, Zhang H, Guo R, Zhai JY, Zhang YP, Zhao ZG. Omega-3 polyunsaturated fatty acids alleviates lung injury mediated by post-hemorrhagic shock mesenteric lymph. Respir Physiol Neurobiol 2023; 310:104003. [PMID: 36566003 DOI: 10.1016/j.resp.2022.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Severe hemorrhage-induced acute lung injury (ALI) remains the major contributor to critical patient mortality and is associated with posthemorrhagic shock mesenteric lymph (PHSML) return. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) play overall protection on acute hemorrhage, but a reliable mechanism needs to be identified. The aims of this study were to investigate the role of ω-3 PUFAs in alleviating ALI and whether is related to the endotoxin contained in PHSML. Mesenteric lymph was harvested from rats subjected to hemorrhagic shock (hemorrhage-induced hypotension of 40 ± 2 mmHg for 90 min plus by resuscitation) or sham shock. The effect of ω-3 PUFAs on pulmonary function, water content, morphology, and LBP, CD14, TNF-α, and IL-6 levels were observed in rats subjected to hemorrhagic shock, while the effect of PHSML intravenous infusion on the beneficial effect of ω-3 PUFAs also was investigated. In addition, the effect of ω-3 PUFAs on the endotoxin contents in mesenteric lymph were detected. Hemorrhagic shock-induced ALI was characterized by increased functional residual capacity (FRC), lung resistance (RI), inspiratory capacity (IC), respiratory frequency, water contents and structural damage, along with increases in LBP, IL-6, and TNF-α. ω-3 PUFAs treatment reduced FRC, RI, IC, frequency, water contents, LBP, IL-6, TNF-α, and alleviated morphological damage. In contrast, PHSML infusion abolished the advantageous effects of ω-3 PUFAs on the above indices and CD14. Furthermore, the endotoxin level of PHSML was significantly enhanced, but declined following ω-3 PUFAs administration. These findings together suggested that treatment with ω-3 PUFAs ameliorates hemorrhagic shock-induced ALI, which is associated with reduced endotoxin contained in PHSML.
Collapse
Affiliation(s)
- Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China
| | - Niu-Niu Feng
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China
| | - Rui Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China
| | - Yu-Ping Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, PR China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei, PR China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, PR China.
| |
Collapse
|
11
|
Budd JM, Hucik B, Wang C, King AN, Sarr O, Nakamura MT, Harasim-Symbor E, Chabowski A, Dyck DJ, Mutch DM. A reduction of skeletal muscle DHA content does not result in impaired whole body glucose tolerance or skeletal muscle basal insulin signaling in otherwise healthy mice. Am J Physiol Endocrinol Metab 2023; 324:E241-E250. [PMID: 36696599 DOI: 10.1152/ajpendo.00308.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Delta-6 desaturase (D6D), encoded by the Fads2 gene, catalyzes the first step in the conversion of α-linolenic acid to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ablation of D6D in whole body Fads2-/- knockout (KO) mice results in an inability to endogenously produce EPA and DHA. Evidence supports a beneficial role for EPA and DHA on insulin-stimulated glucose disposal in skeletal muscle in the context of a metabolic challenge; however, it is unknown how low EPA and DHA levels impact skeletal muscle fatty acid composition and insulin signaling in a healthy context. The objective of this study was to examine the impact of ablating the endogenous production of EPA and DHA on skeletal muscle fatty acid composition, whole body glucose and insulin tolerance, and a key marker of skeletal muscle insulin signaling (pAkt). Male C57BL/6J wild-type (WT), Fads2+/- heterozygous, and Fads2-/- KO mice were fed a low-fat diet (16% kcal from fat) modified to contain either 7% w/w lard or 7% w/w flaxseed for 21 wk. No differences in total phospholipid (PL), triacylglycerol, or reactive lipid content were observed between genotypes. As expected, KO mice on both diets had significantly less DHA content in skeletal muscle PL. Despite this, KO mice did not have significantly different glucose or insulin tolerance compared with WT mice on either diet. Basal pAktSer473 was not significantly different between the genotypes within each diet. Ultimately, this study shows for the first time, to our knowledge, that the reduction of DHA in skeletal muscle is not necessarily detrimental to glucose homeostasis in otherwise healthy animals.NEW & NOTEWORTHY Skeletal muscle is the primary location of insulin-stimulated glucose uptake. EPA and DHA supplementation has been observed to improve skeletal muscle insulin-stimulated glucose uptake in models of metabolic dysfunction. Fads2-/- knockout mice cannot endogenously produce long-chain n-3 polyunsaturated fatty acids. Our results show that the absence of DHA in skeletal muscle is not detrimental to whole body glucose homeostasis in healthy mice.
Collapse
Affiliation(s)
- Joshua M Budd
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Barbora Hucik
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chenxuan Wang
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alexa N King
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ousseynou Sarr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Jannas-Vela S, Espinosa A, Candia AA, Flores-Opazo M, Peñailillo L, Valenzuela R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023; 15:nu15040871. [PMID: 36839229 PMCID: PMC9965797 DOI: 10.3390/nu15040871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Skeletal muscle is the largest tissue in the human body, comprising approximately 40% of body mass. After damage or injury, a healthy skeletal muscle is often fully regenerated; however, with aging and chronic diseases, the regeneration process is usually incomplete, resulting in the formation of fibrotic tissue, infiltration of intermuscular adipose tissue, and loss of muscle mass and strength, leading to a reduction in functional performance and quality of life. Accumulating evidence has shown that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their lipid mediators (i.e., oxylipins and endocannabinoids) have the potential to enhance muscle regeneration by positively modulating the local and systemic inflammatory response to muscle injury. This review explores the process of muscle regeneration and how it is affected by acute and chronic inflammatory conditions, focusing on the potential role of n-3 PUFAs and their derivatives as positive modulators of skeletal muscle healing and regeneration.
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2170000, Chile
| | - Alejandro A. Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Marcelo Flores-Opazo
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Las Condes, Santiago 7591538, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
13
|
Lampova B, Doskocil I, Kourimska L, Kopec A. N-3 polyunsaturated fatty acids may affect the course of COVID-19. Front Immunol 2022; 13:957518. [PMID: 36238306 PMCID: PMC9551352 DOI: 10.3389/fimmu.2022.957518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The highly infectious coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new coronavirus that has been spreading since late 2019 and has caused millions of deaths worldwide. COVID-19 continues to spread rapidly worldwide despite high vaccination coverage; therefore, it is crucial to focus on prevention. Most patients experience only mild symptoms of COVID-19. However, in some cases, serious complications can develop mainly due to an exaggerated immune response; that is, a so-called cytokine storm, which can lead to acute respiratory distress syndrome, organ failure, or, in the worst cases, death. N-3 polyunsaturated fatty acids and their metabolites can modulate inflammatory responses, thus reducing the over-release of cytokines. It has been hypothesized that supplementation of n-3 polyunsaturated fatty acids could improve clinical outcomes in critically ill COVID-19 patients. Some clinical trials have shown that administering n-3 polyunsaturated fatty acids to critically ill patients can improve their health and shorten the duration of their stay in intensive care. However, previous clinical studies have some limitations; therefore, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Barbora Lampova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Ivo Doskocil,
| | - Lenka Kourimska
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Kopec
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, The University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
14
|
Engelen MPKJ, Jonker R, Sulaiman H, Fisk HL, Calder PC, Deutz NEP. ω-3 polyunsaturated fatty acid supplementation improves postabsorptive and prandial protein metabolism in patients with chronic obstructive pulmonary disease: a randomized clinical trial. Am J Clin Nutr 2022; 116:686-698. [PMID: 35849009 PMCID: PMC9437982 DOI: 10.1093/ajcn/nqac138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Disturbances in protein metabolism and impaired muscle health have been observed in chronic obstructive pulmonary disease (COPD). The ω-3 (n-3) PUFAs EPA and DHA are known for their anti-inflammatory and muscle health-enhancing properties. OBJECTIVES We examined whether daily EPA + DHA supplementation can improve daily protein homeostasis in patients with COPD by reducing postabsorptive whole-body protein breakdown (PB) and enhancing the anabolic response to feeding in a dose-dependent way. METHODS Normal-weight participants with moderate to severe COPD (n = 32) received daily for 4 wk, according to a randomized double-blind placebo controlled 3-group design, a high dose (3.5 g, n = 10) of EPA + DHA, a low dose (2.0 g, n = 10) of EPA + DHA, or placebo (olive oil, n = 12) via gel capsules. At pre- and postintervention, stable isotope tracers were infused to assess postabsorptive netPB [postabsorptive PB - protein synthesis (PS)] and the anabolic response (prandial netPS = prandial PS-PB) to a protein meal. In addition, muscle mass and function were measured. RESULTS Plasma phosphatidylcholine EPA and DHA concentrations were higher after 4 wk of supplementation in both EPA + DHA groups (P < 0.004), and there was a trend toward higher values for plasma EPA after the high compared with the low dose of EPA + DHA (P = 0.065). Postabsorptive PB was lower after 4 wk of the high dose of EPA + DHA, whereas netPB was lower independent of the dose of EPA + DHA (low dose, P = 0.037; high dose, P = 0.026). Prandial netPS was increased only after the high dose of EPA + DHA (P = 0.03). Extremity lean mass but not muscle function was increased, independent of the EPA + DHA dose (P < 0.05). CONCLUSIONS Daily n-3 PUFA supplementation for 4 wk induces a shift toward a positive daily protein homeostasis in patients with COPD in part in a dose-dependent way. Daily doses up to 3.5 g EPA and DHA are still well tolerated and lead to protein gain in these patients. This trial was registered at clinicaltrials.gov as NCT01624792.
Collapse
Affiliation(s)
| | - Renate Jonker
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Hooriya Sulaiman
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Bae YJ, Cui XS, Shin SH. Increased Omega-3 Fatty Acid Intake Is Associated with Low Grip Strength in Elderly Korean Females. Nutrients 2022; 14:nu14122374. [PMID: 35745106 PMCID: PMC9231389 DOI: 10.3390/nu14122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have anti-inflammatory properties and have recently been considered essential factors for maintaining muscle health. This study aimed to investigate the relationship between omega-3 fatty acid intakes and sarcopenia by assessing grip strength in elderly Koreans who are at risk of sarcopenia. This study was conducted on 5529 individuals (2449 males and 3080 females) aged ≥65 years from the raw data of the Korea National Health and Nutrition Examination Survey 2015−2019. In this study, we analyzed the association between EPA and DHA intake, calculated from a 24-h recall method data, and grip strength, a diagnostic criterion for sarcopenia. The cut-off values for low grip strength were <26 kg for males and <18 kg for females, which were set for the Asian population. The results indicated that elderly females consuming EPA and DHA below the adequate intake (AI) had significantly lower grip strength (p < 0.0001) and, had a higher percentage contribution from carbohydrates, but a significantly lower percentage contribution from protein (p < 0.0001), compared to elderly females consuming EPA and DHA at or above the AI. In addition, after adjusting for confounding factors, the odds of low grip strength were 0.777 times lower among elderly females consuming EPA and DHA at or above the AI than those consuming EPA and DHA below the AI (95% confidence interval: 0.616−0.979, p = 0.0322). These results suggest that sufficient intake of EPA and DHA is pivotal to mitigate a reduction in grip strength and to improve the quality of nutrient intake among elderly females.
Collapse
Affiliation(s)
- Yun-Jung Bae
- Major in Food and Nutrition, Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
- Correspondence:
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea;
| | | |
Collapse
|
16
|
Moosavi D, Vuckovic I, Kunz HE, Lanza IR. A Randomized Trial of ω-3 Fatty Acid Supplementation and Circulating Lipoprotein Subclasses in Healthy Older Adults. J Nutr 2022; 152:1675-1689. [PMID: 35389487 PMCID: PMC9258601 DOI: 10.1093/jn/nxac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Omega-3 (n-3) PUFAs are recognized for triglyceride-lowering effects in people with dyslipidemia, but it remains unclear if n-3-PUFA intake influences lipoprotein profiles in older adults without hypertriglyceridemia. OBJECTIVES The objective was to determine the effect of n-3-PUFA supplementation on plasma lipoprotein subfractions in healthy older men and women in the absence of cardiovascular disease (CVD) or hypertriglyceridemia. This was a secondary analysis and considered exploratory. METHODS Thirty young (20-35 y old) and 54 older (65-85 y old) men and women were enrolled in the study. Fasting plasma samples were collected. After baseline sample collection, 44 older adults were randomly assigned to receive either n-3-PUFA ethyl esters (3.9 g/d) or placebo (corn oil) for 6 mo. Pre- and postintervention plasma samples were used for quantitative lipoprotein subclass analysis using high-resolution proton NMR spectroscopy. RESULTS The number of large, least-dense LDL particles decreased 17%-18% with n-3 PUFAs compared with placebo (<1% change; P < 0.01). The number of small, dense LDL particles increased 26%-44% with n-3 PUFAs compared with placebo (∼11% decrease; P < 0.01). The cholesterol content of large HDL particles increased by 32% with n-3 PUFAs and by 2% in placebo (P < 0.01). The cholesterol content of small HDL particles decreased by 23% with n-3 PUFAs and by 2% in placebo (P < 0.01). CONCLUSIONS Despite increasing abundance of small, dense LDL particles that are associated with CVD risk, n-3 PUFAs reduced total triglycerides, maintained HDL, reduced systolic blood pressure, and shifted the HDL particle distribution toward a favorable cardioprotective profile in healthy older adults without dyslipidemia. This study suggests potential benefits of n-3-PUFA supplementation to lipoprotein profiles in healthy older adults without dyslipidemia, which should be considered when weighing the potential health benefits against the cost and ecological impact of widespread use of n-3-PUFA supplements.This trial was registered at clinicaltrials.gov as NCT03350906.
Collapse
Affiliation(s)
- Darya Moosavi
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Ivan Vuckovic
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
17
|
Li N, Yang P, Tang M, Liu Y, Guo W, Lang B, Wang J, Wu H, Tang H, Yu Y, Wu X, Zeng C, Cao T, Cai H. Reduced erythrocyte membrane polyunsaturated fatty acid levels indicate diminished treatment response in patients with multi- versus first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:7. [PMID: 35217671 PMCID: PMC8881498 DOI: 10.1038/s41537-022-00214-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
Abstract
Antipsychotic effects seem to decrease in relapsed schizophrenia patients and the underlying mechanisms remain to be elucidated. Based on the essential role of polyunsaturated fatty acids in brain function and the treatment of schizophrenia, we hypothesize that disordered fatty acid metabolism may contribute to treatment resistance in multi-episode patients. We analyzed the erythrocyte membrane fatty acids in 327 schizophrenia patients under various episodes (numbers of patients: first-episode drug naïve 89; 2–3 episodes 110; 4–6 episodes 80; over 6 episodes 48) and 159 age- and gender-matched healthy controls. Membrane fatty acid levels and PANSS scales were assessed at baseline of antipsychotic-free period and one-month of follow-up after treatment. Totally, both saturated and unsaturated fatty acids were reduced at baseline when compared to healthy controls. Subgroup analyses among different episodes indicated that in response to atypical antipsychotic treatment, the membrane fatty acids were only increased in patients within 3 episodes, and this therapeutic effects on omega-3 index were merely present in the first episode. Results of fatty acid ratios suggested that dysregulations of enzymes such as D6 desaturase, D5 desaturase, and elongases for polyunsaturated fatty acids in patients with multi-episode schizophrenia could account for the differences. Additionally, certain fatty acid level/ratio changes were positively correlated with symptom improvement. The alterations of C22:5n3 and omega-3 index, gender, and the number of episodes were significant risk factors correlated with treatment responsiveness. Using targeted metabolomic approach, we revealed the potential mechanisms underlying abnormal fatty acid metabolism responsible for reduced treatment response in patients with multi-episode schizophrenia.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, the Second People's Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Hospital Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan Province, China
| | - Yan Yu
- Department of Psychiatry, Changsha Psychiatric Hospital, Changsha, Hunan Province, China
| | - Xiangxin Wu
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Cuirong Zeng
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China
| | - Hualin Cai
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China. .,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
18
|
Paula Farias Waltrick A, Henrique Bernardo de Lima Silva A, Cristina de Carvalho M, Aparecida Comotti de Oliveira B, Naliwaiko K, Maria da Cunha J, Menezes Zanoveli J. Preventive treatment with fish oil facilitates the antidepressant-like effect of antidepressant drugs in type-1 diabetes mellitus rats: implication of serotonergic system. Neurosci Lett 2022; 772:136477. [DOI: 10.1016/j.neulet.2022.136477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
19
|
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 32:50-64. [PMID: 34876760 PMCID: PMC8638948 DOI: 10.1007/s43450-021-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure. Graphic Abstract
Collapse
|
20
|
Desale SE, Chinnathambi S. α- Linolenic acid modulates phagocytosis and endosomal pathways of extracellular Tau in microglia. Cell Adh Migr 2021; 15:84-100. [PMID: 33724164 PMCID: PMC7971307 DOI: 10.1080/19336918.2021.1898727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia, the resident immune cells, were found to be activated to inflammatory phenotype in Alzheimer's disease (AD). The extracellular burden of amyloid-β plaques and Tau seed fabricate the activation of microglia. The seeding effect of extracellular Tau species is an emerging aspect to study about Tauopathies in AD. Tau seeds enhance the propagation of disease along with its contribution to microglia-mediated inflammation. The excessive neuroinflammation cumulatively hampers phagocytic function of microglia reducing the clearance of extracellular protein aggregates. Omega-3 fatty acids, especially docosahexaenoic acid and eicosapentaenoic acid, are recognized to induce anti-inflammatory phenotype of microglia. In addition to increased cytokine production, omega-3 fatty acids enhance phagocytic receptors expression in microglia. In this study, we have observed the phagocytosis of extracellular Tau in the presence of α-linolenic acid (ALA). The increased phagocytosis of extracellular Tau monomer and aggregates have been observed upon ALA exposure to microglia cells. After internalization, the degradation status of Tau has been studied with early and late endosomal markers Rab5 and Rab7. Further, the lysosome-mediated degradation of internalized Tau was studied with LAMP-2A, a lysosome marker. The enhanced migratory ability in the presence of ALA could be beneficial for microglia to access the target and clear it. The increased migration of microglia was found to induce the microtubule-organizing center repolarization. The data indicate that the dietary fatty acids ALA could significantly enhance phagocytosis and intracellular degradation of internalized Tau. Our results suggest that microglia could be influenced to reduce extracellular Tau seed with dietary fatty acids.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
21
|
Murphy CH, McGlory C. Fish Oil for Healthy Aging: Potential Application to Master Athletes. Sports Med 2021; 51:31-41. [PMID: 34515971 PMCID: PMC8566636 DOI: 10.1007/s40279-021-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Master athletes perform high volumes of exercise training yet display lower levels of physical functioning and exercise performance when compared with younger athletes. Several reports in the clinical literature show that long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA) ingestion promotes skeletal muscle anabolism and strength in untrained older persons. There is also evidence that LC n-3 PUFA ingestion improves indices of muscle recovery following damaging exercise in younger persons. These findings suggest that LC n-3 PUFA intake could have an ergogenic effect in master athletes. However, the beneficial effect of LC n-3 PUFA intake on skeletal muscle in response to exercise training in both older and younger persons is inconsistent and, in some cases, generated from low-quality studies or those with a high risk of bias. Other factors such as the choice of placebo and health status of participants also confound interpretation of existing reports. As such, when considered on balance, the available evidence does not indicate that ingestion of LC n-3 PUFAs above current population recommendations (250–500 mg/day; 2 portions of oily fish per week) enhances exercise performance or recovery from exercise training in master athletes. Further work is now needed related to how the dose, duration, and co-ingestion of LC n-3 PUFAs with other nutrients such as amino acids impact the adaptive response to exercise training. This work should also consider how LC n-3 PUFA supplementation may differentially alter the lipid profile of cellular membranes of key regulatory sites such as the sarcolemma, mitochondria, and sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Caoileann H Murphy
- Department of Agrifood Business & Spatial Analysis, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, 28 Division St, Kingston, ON, Canada.
| |
Collapse
|
22
|
Devi PA, Pandiyan V, Kumar TMAS, Kumar GVPPSR, Padmanath K. Dietary supplementation of mustard oil reduces blood glucose levels by triggering insulin receptor signaling pathway. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Abstract
PURPOSE OF REVIEW To examine recent findings related to the influence of omega-3 (ω-3) fatty acid supplementation on skeletal muscle anabolism with a particular focus on situations of skeletal muscle disuse. RECENT FINDINGS Skeletal muscle disuse results in a reduction in fed and fasted rates of skeletal muscle protein synthesis leading to the loss of skeletal muscle mass. Recent evidence has suggested that supplementation with ω-3 fatty acids during a period of skeletal muscle disuse increases the ω-3 fatty acid composition of skeletal muscle membranes, heightens rates of skeletal muscle protein synthesis, and protects against skeletal muscle loss. The protective effects of ω-3 fatty acids towards skeletal muscle during disuse appear to be related to changes in mitochondrial bioenergetics suggesting crosstalk between mitochondria and the regulation of skeletal muscle protein synthesis. SUMMARY ω-3 fatty acid ingestion is a potential preventive therapy to combat skeletal muscle-disuse atrophy but additional, appropriately powered randomized controlled trials are now needed in a range of populations before firm conclusions can be made.
Collapse
Affiliation(s)
- Emily J Ferguson
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
24
|
The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J Int Soc Sports Nutr 2021; 18:9. [PMID: 33441158 PMCID: PMC7807509 DOI: 10.1186/s12970-020-00405-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Exercise-induced muscle damage (EIMD) results in transient muscle inflammation, strength loss, muscle soreness and may cause subsequent exercise avoidance. Omega-3 (n-3) supplementation may minimise EIMD via its anti-inflammatory properties, however, its efficacy remains unclear. Methods Healthy males (n = 14, 25.07 ± 4.05 years) were randomised to 3 g/day n-3 supplementation (N-3, n = 7) or placebo (PLA, n = 7). Following 4 weeks supplementation, a downhill running protocol (60 min, 65% V̇O2max, − 10% gradient) was performed. Creatine kinase (CK), interleukin (IL)-6 and tumour necrosis factor (TNF)-α, perceived muscle soreness, maximal voluntary isometric contraction (MVIC) and peak power were quantified pre, post, and 24, 48 and 72 h post-EIMD. Results Muscle soreness was significantly lower in N-3 vs PLA group at 24 h post-EIMD (p = 0.034). IL-6 was increased in PLA (p = 0.009) but not in N-3 (p = 0.434) following EIMD, however, no significant differences were noted between groups. Peak power was significantly suppressed in PLA relative to pre-EIMD but not in N-3 group at 24 h post-EIMD. However, no significant difference in peak power output was observed between groups. MVIC, CK and TNF-α were altered by EIMD but did not differ between groups. Conclusion N-3 supplementation for 4 weeks may successfully attenuate minor aspects of EIMD. Whilst not improving performance, these findings may have relevance to soreness-associated exercise avoidance. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-020-00405-1.
Collapse
|
25
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
26
|
Kabel AM, Ashour AM, Omar MS, Estfanous RS. Effect of fish oil and telmisartan on dehydroepiandrosterone-induced polycystic ovarian syndrome in rats: The role of oxidative stress, transforming growth factor beta-1, and nuclear factor kappa B. Food Sci Nutr 2020; 8:5149-5159. [PMID: 32994975 PMCID: PMC7500795 DOI: 10.1002/fsn3.1819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Our aim was to explore the effect of telmisartan and/or fish oil on dehydroepiandrosterone (DHEA)-induced PCOS in rats. Sixty female rats were divided into six equal groups as follows: Control; DHEA-induced PCOS; DHEA + Telmisartan; DHEA + Fish oil; DHEA + Carboxymethyl cellulose; and DHEA + Telmisartan +Fish oil group. Plasma sex hormones, anthropometric measurements, and the glycemic indices were measured. Tissue oxidative stress parameters and the proinflammatory cytokines were assessed. The ovaries were subjected to histopathological and electron microscopic examination. Telmisartan and/or fish oil induced significant improvement of insulin resistance with amelioration of oxidative stress and inflammation compared to PCOS group. Also, telmisartan and/or fish oil restored the hormonal levels and the anthropometric measurements to the normal values. This was significant with telmisartan/fish oil combination compared to the use of each of these agents alone. In conclusion, this combination may represent a promising hope for amelioration of PCOS.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department Faculty of Medicine Tanta University Tanta Egypt
- Department of Clinical Pharmacy College of Pharmacy Taif University Taif Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology College of Pharmacy Umm Al Qura University Makkah Saudi Arabia
| | - Mohamed S Omar
- Chemistry Department Faculty of Science Benha University Benha Egypt
| | - Remon S Estfanous
- Anatomy and Embryology Department Faculty of Medicine Tanta University Tanta Egypt
| |
Collapse
|
27
|
Rogero MM, Leão MDC, Santana TM, Pimentel MVDMB, Carlini GCG, da Silveira TFF, Gonçalves RC, Castro IA. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med 2020; 156:190-199. [PMID: 32653511 PMCID: PMC7350587 DOI: 10.1016/j.freeradbiomed.2020.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
Studies have shown that infection, excessive coagulation, cytokine storm, leukopenia, lymphopenia, hypoxemia and oxidative stress have also been observed in critically ill Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients in addition to the onset symptoms. There are still no approved drugs or vaccines. Dietary supplements could possibly improve the patient's recovery. Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), present an anti-inflammatory effect that could ameliorate some patients need for intensive care unit (ICU) admission. EPA and DHA replace arachidonic acid (ARA) in the phospholipid membranes. When oxidized by enzymes, EPA and DHA contribute to the synthesis of less inflammatory eicosanoids and specialized pro-resolving lipid mediators (SPMs), such as resolvins, maresins and protectins. This reduces inflammation. In contrast, some studies have reported that EPA and DHA can make cell membranes more susceptible to non-enzymatic oxidation mediated by reactive oxygen species, leading to the formation of potentially toxic oxidation products and increasing the oxidative stress. Although the inflammatory resolution improved by EPA and DHA could contribute to the recovery of patients infected with SARS-CoV-2, Omega-3 fatty acids supplementation cannot be recommended before randomized and controlled trials are carried out.
Collapse
Affiliation(s)
- Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil
| | - Matheus de C Leão
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Tamires M Santana
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil; LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Mariana V de M B Pimentel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Giovanna C G Carlini
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Tayse F F da Silveira
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Renata C Gonçalves
- Department of Cell and Developmental Biology. Institute of Biomedical Sciences. University of São Paulo, São Paulo, Brazil
| | - Inar A Castro
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil; LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
28
|
McKendry J, Currier BS, Lim C, Mcleod JC, Thomas AC, Phillips SM. Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients 2020; 12:E2057. [PMID: 32664408 PMCID: PMC7399875 DOI: 10.3390/nu12072057] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle plays an indispensable role in metabolic health and physical function. A decrease in muscle mass and function with advancing age exacerbates the likelihood of mobility impairments, disease development, and early mortality. Therefore, the development of non-pharmacological interventions to counteract sarcopenia warrant significant attention. Currently, resistance training provides the most effective, low cost means by which to prevent sarcopenia progression and improve multiple aspects of overall health. Importantly, the impact of resistance training on skeletal muscle mass may be augmented by specific dietary components (i.e., protein), feeding strategies (i.e., timing, per-meal doses of specific macronutrients) and nutritional supplements (e.g., creatine, vitamin-D, omega-3 polyunsaturated fatty acids etc.). The purpose of this review is to provide an up-to-date, evidence-based account of nutritional strategies to enhance resistance training-induced adaptations in an attempt to combat age-related muscle mass loss. In addition, we provide insight on how to incorporate the aforementioned nutritional strategies that may support the growth or maintenance of skeletal muscle and subsequently extend the healthspan of older individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.M.); (B.S.C.); (C.L.); (J.C.M.); (A.C.Q.T.)
| |
Collapse
|
29
|
Tachtsis B, Whitfield J, Hawley JA, Hoffman NJ. Omega-3 Polyunsaturated Fatty Acids Mitigate Palmitate-Induced Impairments in Skeletal Muscle Cell Viability and Differentiation. Front Physiol 2020; 11:563. [PMID: 32581844 PMCID: PMC7283920 DOI: 10.3389/fphys.2020.00563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulation of excess saturated free fatty acids such as palmitate (PAL) in skeletal muscle leads to reductions in mitochondrial integrity, cell viability and differentiation. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) counteract PAL-induced lipid accumulation. EPA and DHA, as well as the n-3 PUFA docosapentaenoic acid (DPA), may therefore mitigate PAL-induced lipotoxicity to promote skeletal muscle cell survival and differentiation. C2C12 myoblasts were treated with 50 μM EPA, DPA, or DHA in the absence or presence of 500 μM PAL for 16 h either prior to myoblast analysis or induction of differentiation. Myoblast viability and markers of apoptosis, endoplasmic reticulum (ER) stress and myotube differentiation capacity were investigated using fluorescence microscopy and immunoblotting. High-resolution respirometry was used to assess mitochondrial function and membrane integrity. PAL induced cell death via apoptosis and increased protein content of ER stress markers BiP and CHOP. EPA, DPA, and DHA co-treatment maintained cell viability, prevented PAL-induced apoptosis and attenuated PAL-induced increases in BiP, whereas only DPA prevented increases in CHOP. PAL subsequently reduced protein content of the differentiation marker myogenin and inhibited myotube formation, and all n-3 PUFAs promoted myotube formation in the presence of PAL. Furthermore, DPA prevented PAL-induced release of cytochrome c and maintained mitochondrial integrity. These findings demonstrate the n-3 PUFAs EPA, DPA and DHA elicit similar protective effects against PAL-induced impairments in muscle cell viability and differentiation. Mechanistically, the protective effects of DPA against PAL lipotoxicity are attributable in part to its ability to maintain mitochondrial respiratory capacity via mitigating PAL-induced loss of mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Bill Tachtsis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Marshall RN, Smeuninx B, Morgan PT, Breen L. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Nutrients 2020; 12:nu12051533. [PMID: 32466126 PMCID: PMC7284346 DOI: 10.3390/nu12051533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Preserving skeletal muscle mass and functional capacity is essential for healthy ageing. Transient periods of disuse and/or inactivity in combination with sub-optimal dietary intake have been shown to accelerate the age-related loss of muscle mass and strength, predisposing to disability and metabolic disease. Mechanisms underlying disuse and/or inactivity-related muscle deterioration in the older adults, whilst multifaceted, ultimately manifest in an imbalance between rates of muscle protein synthesis and breakdown, resulting in net muscle loss. To date, the most potent intervention to mitigate disuse-induced muscle deterioration is mechanical loading in the form of resistance exercise. However, the feasibility of older individuals performing resistance exercise during disuse and inactivity has been questioned, particularly as illness and injury may affect adherence and safety, as well as accessibility to appropriate equipment and physical therapists. Therefore, optimising nutritional intake during disuse events, through the introduction of protein-rich whole-foods, isolated proteins and nutrient compounds with purported pro-anabolic and anti-catabolic properties could offset impairments in muscle protein turnover and, ultimately, the degree of muscle atrophy and recovery upon re-ambulation. The current review therefore aims to provide an overview of nutritional countermeasures to disuse atrophy and anabolic resistance in older individuals.
Collapse
Affiliation(s)
- Ryan N. Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-414-4109
| |
Collapse
|
31
|
Jannas‐Vela S, Klingel SL, Cervone DT, Wickham KA, Heigenhauser GJF, Mutch DM, Holloway GP, Spriet LL. Resting metabolic rate and skeletal muscle SERCA and Na + /K + ATPase activities are not affected by fish oil supplementation in healthy older adults. Physiol Rep 2020; 8:e14408. [PMID: 32342642 PMCID: PMC7186565 DOI: 10.14814/phy2.14408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/25/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na+ /K+ ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) activity by inducing a Ca2+ leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals. Subjects (n = 16 females; n = 8 males; 65 ± 1 years) were randomly assigned into groups supplemented with either olive oil (OO) (5 g/day) or FO (5 g/day) containing 2 g/day eicosapentaenoic acid and 1 g/day docosahexaenoic acid for 12 weeks. Participants visited the laboratory for RMR and substrate oxidation measurements after an overnight fast at weeks 0 and 12. Skeletal muscle biopsies were taken during weeks 0 and 12 for analysis of NKA and SERCA function and protein content. There was a main effect of time with decrease in RMR (5%) and fat oxidation (18%) in both the supplementation groups. The kinetic parameters of SERCA and NKA maximal activity, as well as the expression of SR and NKA proteins, were not affected after OO and FO supplementation. In conclusion, these results suggest that FO supplementation is not effective in altering RMR, substrate oxidation, and skeletal muscle SERCA and NKA protein levels and activities, in healthy older men and women.
Collapse
Affiliation(s)
- Sebastian Jannas‐Vela
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
- Exercise Science LaboratorySchool of KinesiologyFaculty of MedicineUniversidad Finis TerraeSantiagoChile
| | - Shannon L. Klingel
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Daniel T. Cervone
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Kate A. Wickham
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | | | - David M. Mutch
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Graham P. Holloway
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| |
Collapse
|
32
|
Jannas-Vela S, Klingel SL, Mutch DM, Spriet LL. DHA supplementation decreases resting metabolic rate in healthy young females. Appl Physiol Nutr Metab 2020; 45:221-225. [DOI: 10.1139/apnm-2019-0581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the independent effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid supplementation on resting metabolic rate (RMR) and substrate oxidation in young healthy females and males. EPA or DHA supplementation had no effect on RMR and substrate oxidation in males, while DHA reduced RMR by ∼7% (p < 0.01) in females. In conclusion, these data establish potential sex differences on RMR in response to DHA supplements. Novelty Supplementing with DHA decreases resting energy expenditure in healthy young females but not males.
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Shannon L. Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
33
|
McGlory C, Calder PC, Nunes EA. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front Nutr 2019; 6:144. [PMID: 31555658 PMCID: PMC6742725 DOI: 10.3389/fnut.2019.00144] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Ingestion of omega-3 fatty acids is known to exert favorable health effects on a number of biological processes such as improved immune profile, enhanced cognition, and optimized neuromuscular function. Recently, data have emerged demonstrating a positive influence of omega-3 fatty acid intake on skeletal muscle. For instance, there are reports of clinically-relevant gains in muscle size and strength in healthy older persons with omega-3 fatty acid intake as well as evidence that omega-3 fatty acid ingestion alleviates the loss of muscle mass and prevents decrements in mitochondrial respiration during periods of muscle-disuse. Cancer cachexia that is characterized by a rapid involuntary loss of lean mass may also be attenuated by omega-3 fatty acid provision. The primary means by which omega-3 fatty acids positively impact skeletal muscle mass is via incorporation of eicosapentaenoic acid (EPA; 20:5n−3) and docosahexaenoic acid (DHA; 22:6n−3) into membrane phospholipids of the sarcolemma and intracellular organelles. Enrichment of EPA and DHA in these membrane phospholipids is linked to enhanced rates of muscle protein synthesis, decreased expression of factors that regulate muscle protein breakdown, and improved mitochondrial respiration kinetics. However, exactly how incorporation of EPA and DHA into phospholipid membranes alters these processes remains unknown. In this review, we discuss the interaction between omega-3 fatty acid ingestion and skeletal muscle protein turnover in response to nutrient provision in younger and older adults. Additionally, we examine the role of omega-3 fatty acid supplementation in protecting muscle loss during muscle-disuse and in cancer cachexia, and critically evaluate the molecular mechanisms that underpin the phenotypic changes observed in skeletal muscle with omega-3 fatty acid intake.
Collapse
Affiliation(s)
- Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Everson A Nunes
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|