1
|
Omar I, Crotti M, Li C, Pisak K, Czemerys B, Ferla S, van Noord A, Paul CE, Karu K, Ozbalci C, Eggert U, Lloyd R, Barry SM, Castagnolo D. Insights into E. coli Cyclopropane Fatty Acid Synthase (CFAS) Towards Enantioselective Carbene Free Biocatalytic Cyclopropanation. Angew Chem Int Ed Engl 2024; 63:e202403493. [PMID: 38662909 DOI: 10.1002/anie.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 06/16/2024]
Abstract
Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E. coli CFAS (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids. ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 with up to 58 % conversion and 73 % ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining recombinant ecCFAS with the SAM regenerating AtHMT enzyme in the presence of CH3I and CD3I respectively.
Collapse
Affiliation(s)
- Iman Omar
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Michele Crotti
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Chuhan Li
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Krisztina Pisak
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Blazej Czemerys
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Salvatore Ferla
- Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP
| | - Aster van Noord
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Cagakan Ozbalci
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Ulrike Eggert
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Richard Lloyd
- DSD Chemistry, GSK Medicines Research Centre, Gunnels, Wood Road, Stevenage, SG1 2NY
| | - Sarah M Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| |
Collapse
|
2
|
Mann J, Reznik E, Santer M, Fongheiser MA, Smith N, Hirschhorn T, Zandkarimi F, Soni RK, Dafré AL, Miranda-Vizuete A, Farina M, Stockwell BR. Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chem Biol 2024; 31:249-264.e7. [PMID: 37944523 PMCID: PMC10922137 DOI: 10.1016/j.chembiol.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.
Collapse
Affiliation(s)
- Josiane Mann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melania Santer
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Mark A Fongheiser
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Rajesh Kumar Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Alcir Luiz Dafré
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York. NY 10032, USA.
| |
Collapse
|
3
|
Mora I, Pérez-Santamaria A, Tortajada-Pérez J, Vázquez-Manrique RP, Arola L, Puiggròs F. Structured Docosahexaenoic Acid (DHA) Enhances Motility and Promotes the Antioxidant Capacity of Aged C. elegans. Cells 2023; 12:1932. [PMID: 37566010 PMCID: PMC10417004 DOI: 10.3390/cells12151932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The human lifespan has increased over the past century; however, healthspans have not kept up with this trend, especially cognitive health. Among nutrients for brain function maintenance, long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFA): DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) must be highlighted, particularly structured forms of EPA and DHA which were developed to improve bioavailability and bioactivity in comparison with conventional ω-3 supplements. This study aims to elucidate the effect of a structured triglyceride form of DHA (DHA-TG) on the healthspan of aged C. elegans. Using a thrashing assay, the nematodes were monitored at 4, 8, and 12 days of adulthood, and DHA-TG improved its motility at every age without affecting lifespan. In addition, the treatment promoted antioxidant capacity by enhancing the activity and expression of SOD (superoxide dismutase) in the nematodes. Lastly, as the effect of DHA-TG was lost in the DAF-16 mutant strain, it might be hypothesized that the effects of DHA need DAF-16/FOXO as an intermediary. In brief, DHA-TG exerted a healthspan-promoting effect resulting in both enhanced physical fitness and increased antioxidant defense in aged C. elegans. For the first time, an improvement in locomotive function in aged wild-type nematodes is described following DHA-TG treatment.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | | | - Julia Tortajada-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Tarragona, Spain
| |
Collapse
|
4
|
Wu F, Wei H, Chen X, Du Z, Huang Y, Shi H, Yang Y, Du A, Ma G. Fatty acid- and retinol-binding protein 6 does not control worm fatty acid content in Caenorhabditis elegans but might play a role in Haemonchus contortus parasitism. Parasit Vectors 2023; 16:230. [PMID: 37430357 DOI: 10.1186/s13071-023-05836-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Nematodes have lost the ability to synthesise necessary lipids de novo and have complementally evolved the capacity to acquire fatty acids and their derivatives from a diet or host animal. Nematode-specific fatty acid- and retinol-binding protein (FAR) family is one approach that facilitates lipid acquisition, representing an Achilles heel and potential target against roundworms of socioeconomic significance. However, little is known about their detailed functional roles in either free-living or parasitic nematodes. METHODS A genome-wide identification and curation were performed to screen the FAR family members of Haemonchus contortus. Their transcription patterns in worms were also analysed to identify the targets. Ligand binding assay and molecular docking were conducted to verify the fatty acid binding activities of FAR proteins of interest. RNA interference (RNAi) and heterologous expression (rescuing) experiments were designed to explore the potential roles of the selected FAR protein in nematodes. Localisation of the protein was shown in sections of paraffin-embedded worms after an immunohistochemistry (IHC) assay. RESULTS Here, an orthologue of far-6 in the model organism Caenorhabditis elegans (Ce-far-6) was functionally characterised in a parasitic nematode, H. contortus (Hc-far-6). It is demonstrated that knockdown of Ce-far-6 gene did not affect worm fat content, reproduction, or lifespan, but decreased worm body length at an early life stage of C. elegans. In particular, the Ce-far-6 mutant associated phenotype was completely rescued by Hc-far-6, suggesting a conserved functional role. Surprisingly, there were distinct tissue expression patterns of FAR-6 in the free-living C. elegans and parasitic H. contortus. High transcriptional level of Hc-far-6 and dominant expression of FAR-6 in the intestine of the parasitic stage of H. contortus link this gene/protein to nematode parasitism. CONCLUSIONS These findings substantially enhance our understanding of far genes and the associated lipid biology of this important parasitic nematode at a molecular level, and the approaches established are readily applicable to the studies of far genes in a broad range of parasites.
Collapse
Affiliation(s)
- Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haidian Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530004, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hengzhi Shi
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
6
|
Pasteurized Akkermansia muciniphila Reduces Fat Accumulation via nhr-49-Mediated Nuclear Hormone Signaling Pathway in Caenorhabditis elegans. Molecules 2022; 27:molecules27196159. [PMID: 36234692 PMCID: PMC9572206 DOI: 10.3390/molecules27196159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid β-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid β-oxidation and synthesis.
Collapse
|
7
|
Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology 2022; 23:541-557. [PMID: 36048312 DOI: 10.1007/s10522-022-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.
Collapse
|
8
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
9
|
Neuroprotective Profile of Edible Flowers of Borage (Borago officinalis L.) in Two Different Models: Caenorhabditis elegans and Neuro-2a Cells. Antioxidants (Basel) 2022; 11:antiox11071244. [PMID: 35883735 PMCID: PMC9312273 DOI: 10.3390/antiox11071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The flowers of Borago officinalis L. (Boraginaceae), commonly known as borage, are widely used as a culinary ingredient. The aim of this study was to assess the potential benefits of fresh borage flower extract related to antioxidant, neuroprotective and anti-aging properties. The extract was obtained by Soxhlet extraction with ethanol as a solvent, and fatty acids were detected by GC-FID. The antioxidant activity was evaluated in vitro through the DPPH, FRAP and ORAC assays. Regarding the fatty acid (FA) composition, the extract showed high amounts of polyunsaturated FA. The Neuro-2a cell line was used to determine the cytoprotective capacity of the extract subjected to oxidative stress (H2O2). Moreover, the model organism Caenorhabditis elegans was used to assess antioxidant activity, delayed ageing as well as cytoprotection and reduced β-amyloid toxicity. Cells treated with the extract and H2O2 showed a better response to oxidative stress than the control group, particularly in terms of mitochondrial activity (MTT assay), redox state (ROS formation) and the activity of antioxidant enzymes (catalase and superoxide dismutase). B. officinalis flower extract showed promising antioxidant activity in the selected models, without causing toxicity. Hence, the results obtained support the antioxidant properties of borage flowers in different bioassays using living organisms.
Collapse
|
10
|
Mudd N, Liceaga AM. Caenorhabditis elegans as an in vivo model for food bioactives: A review. Curr Res Food Sci 2022; 5:845-856. [PMID: 35619588 PMCID: PMC9126841 DOI: 10.1016/j.crfs.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 12/01/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is being widely explored as an in vivo model to study the effects of food bioactives. These nematodes are largely advantageous over other in vivo models as they are relatively inexpensive, have a short generation time, and have a completely sequenced genome, among other advantages. C. elegans is a commonly used model to study diseases such as Alzheimer's and Parkinson's disease; however, researchers are finding they can also give insight into the health promoting effect of food-derived bioactive compounds. As consumers become more aware of the health benefits of the foods that they consume, the study of bioactive properties of foods and food constituents is becoming an important source of information. This review focuses on the advantages of using C. elegans as a model such as their short lifespans, high level of gene conservation relative to humans, and large number of progenies per reproductive cycle. They are also easily manipulated in order to perform controlled experiments on synchronous populations. Through review of recent literature, it is clear that C. elegans can be used to study a range of food derived compounds such as bioactive peptides, phenolic compounds, carbohydrates, and lipids. This review also provides information on potential challenges associated with working with this nematode. These challenges include the need for a sterile environment, potential inaccuracy when determining if the nematodes are dead, and the simplicity of the organism making it not suitable for all studies.
Collapse
Affiliation(s)
- Natalie Mudd
- Protein Chemistry and Bioactive Peptide Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptide Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Mora I, Arola L, Caimari A, Escoté X, Puiggròs F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int J Mol Sci 2022; 23:3472. [PMID: 35408832 PMCID: PMC8998232 DOI: 10.3390/ijms23073472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Although the human lifespan has increased in the past century owing to advances in medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain aging. Consequently, the role of preventive health interventions has become a crucial strategy, in particular, the identification of nutritional compounds that could alleviate the deleterious effects of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have emerged as very promising ones. Due to their neuroinflammatory resolving effects, an increased status of DHA and EPA in the elderly has been linked to better cognitive function and a lower risk of dementia. However, the results from clinical studies do not show consistent evidence and intake recommendations for old adults are lacking. Recently, supplementation with structured forms of EPA and DHA, which can be derived natural forms or targeted structures, have proven enhanced bioavailability and powerful benefits. This review summarizes present and future perspectives of new structures of ω-3 LCPUFAs and the role of "omic" technologies combined with the use of high-throughput in vivo models to shed light on the relationships and underlying mechanisms between ω-3 LCPUFAs and healthy aging.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
12
|
Kim CY, Johnson H, Peltier S, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Stone EF, Gordy DE, Fu X, Zimring JC, Amireault P, Buehler PW, Wilson RB, D'Alessandro A, Shchepinov MS, Thomas T. Deuterated Linoleic Acid Attenuates the RBC Storage Lesion in a Mouse Model of Poor RBC Storage. Front Physiol 2022; 13:868578. [PMID: 35557972 PMCID: PMC9086239 DOI: 10.3389/fphys.2022.868578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.
Collapse
Affiliation(s)
- Christopher Y Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Hannah Johnson
- Bloodworks Research Institute, Seattle, WA, United States
| | - Sandy Peltier
- Institut National de la Transfusion Sanguine, Paris, France
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Elizabeth F Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Dominique E Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, United States
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pascal Amireault
- Institut National de la Transfusion Sanguine, Paris, France.,X U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Paul W Buehler
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
13
|
Kravtsov A, Kozin S, Basov A, Butina E, Baryshev M, Malyshko V, Moiseev A, Elkina A, Dzhimak S. Reduction of Deuterium Level Supports Resistance of Neurons to Glucose Deprivation and Hypoxia: Study in Cultures of Neurons and on Animals. Molecules 2021; 27:243. [PMID: 35011474 PMCID: PMC8746303 DOI: 10.3390/molecules27010243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of a reduced deuterium (D) content in the incubation medium on the survival of cultured neurons in vitro and under glucose deprivation was studied. In addition, we studied the effect of a decrease in the deuterium content in the rat brain on oxidative processes in the nervous tissue, its antioxidant protection, and training of rats in the T-shaped maze test under hypoxic conditions. For experiments with cultures of neurons, 7-8-day cultures of cerebellar neurons were used. Determination of the rate of neuronal death in cultures was carried out using propidium iodide. Acute hypoxia with hypercapnia was simulated in rats by placing them in sealed vessels with a capacity of 1 L. The effect on oxidative processes in brain tissues was assessed by changes in the level of free radical oxidation and malondialdehyde. The effect on the antioxidant system of the brain was assessed by the activity of catalase. The study in the T-maze was carried out in accordance with the generally accepted methodology, the skill of alternating right-sided and left-sided loops on positive reinforcement was developed. This work has shown that a decrease in the deuterium content in the incubation medium to a level of -357‱ has a neuroprotective effect, increasing the survival rate of cultured neurons under glucose deprivation. When exposed to hypoxia, a preliminary decrease in the deuterium content in the rat brain to -261‱ prevents the development of oxidative stress in their nervous tissue and preserves the learning ability of animals in the T-shaped maze test at the level of the control group. A similar protective effect during the modification of the 2H/1H internal environment of the body by the consumption of DDW can potentially be used for the prevention of pathological conditions associated with the development of oxidative stress with damage to the central nervous system.
Collapse
Affiliation(s)
- Alexandr Kravtsov
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, 350040 Krasnodar, Russia; (A.K.); (S.K.); (A.B.); (M.B.); (A.E.)
- South Scientific Center of the Russian Academy of Sciences, Laboratory of Problems of Stable Isotope Spreading in Living Systems, 344006 Rostov-on-Don, Russia;
| | - Stanislav Kozin
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, 350040 Krasnodar, Russia; (A.K.); (S.K.); (A.B.); (M.B.); (A.E.)
- South Scientific Center of the Russian Academy of Sciences, Laboratory of Problems of Stable Isotope Spreading in Living Systems, 344006 Rostov-on-Don, Russia;
| | - Alexandr Basov
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, 350040 Krasnodar, Russia; (A.K.); (S.K.); (A.B.); (M.B.); (A.E.)
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, 350063 Krasnodar, Russia
| | - Elena Butina
- Department of Technology of Fats, Cosmetics, Commodity Science, Processes and Devices, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Mikhail Baryshev
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, 350040 Krasnodar, Russia; (A.K.); (S.K.); (A.B.); (M.B.); (A.E.)
- South Scientific Center of the Russian Academy of Sciences, Laboratory of Problems of Stable Isotope Spreading in Living Systems, 344006 Rostov-on-Don, Russia;
- Department of Technology of Fats, Cosmetics, Commodity Science, Processes and Devices, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Vadim Malyshko
- South Scientific Center of the Russian Academy of Sciences, Laboratory of Problems of Stable Isotope Spreading in Living Systems, 344006 Rostov-on-Don, Russia;
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, 350063 Krasnodar, Russia
| | - Arkady Moiseev
- Department of Organization and Support of Scientific Activities, Kuban State Agrarian University, 350044 Krasnodar, Russia;
| | - Anna Elkina
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, 350040 Krasnodar, Russia; (A.K.); (S.K.); (A.B.); (M.B.); (A.E.)
- South Scientific Center of the Russian Academy of Sciences, Laboratory of Problems of Stable Isotope Spreading in Living Systems, 344006 Rostov-on-Don, Russia;
- Department of Physics, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia
| | - Stepan Dzhimak
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, 350040 Krasnodar, Russia; (A.K.); (S.K.); (A.B.); (M.B.); (A.E.)
- South Scientific Center of the Russian Academy of Sciences, Laboratory of Problems of Stable Isotope Spreading in Living Systems, 344006 Rostov-on-Don, Russia;
- The V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Experimental Clinic—Laboratory of Biologically Active Substances of Animal Origin, 109316 Moscow, Russia
| |
Collapse
|
14
|
Yuan D, Li S, Shang Z, Wan M, Lin Y, Zhang Y, Feng Y, Xu L, Xiao L. Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes. BMC Biol 2021; 19:178. [PMID: 34461887 PMCID: PMC8407040 DOI: 10.1186/s12915-021-01111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Nematodes are a widespread and diverse group comprising free-living and parasitic species, some of which have major detrimental effects on crops, animals, and human health. Genomic comparisons of nematodes may help reveal the genetic bases for the evolution of parasitic lifestyles. Fatty acid and retinol-binding proteins (FARs) are thought to be unique to nematodes and play essential roles in their development, reproduction, infection, and possibly parasitism through promoting the uptake, transport, and distribution of lipid and retinol. However, the evolution of FAR family proteins across the phylum Nematoda remains elusive. Results We report here the evolutionary relationship of the FAR gene family across nematodes. No FAR was found in Trichocephalida species and Romanomermis culicivorax from Clade I, and FAR could be found in species from Clades III, IV, and V. FAR proteins are conserved in Clade III species and separated into three clusters. Tandem duplications and high divergence events lead to variable richness and low homology of FARs in Steinernema of Clade IVa, Strongyloides of Clade IVb, and intestinal parasitic nematodes from Clades Vc and Ve. Moreover, different richness and sequence variations of FARs in pine wood, root-knot, stem, and cyst nematodes might be determined by reproduction mode or parasitism. However, murine lungworm Angiostrongylus and bovine lungworm Dictyocaulus viviparus from Clade Vd have only 3–4 orthologs of FAR. RNA-seq data showed that far genes, especially far-1 and far-2, were highly expressed in most nematodes. Angiostrongylus cantonensis FAR-1 and FAR-3 have low sequence homology and distinct ligand-binding properties, leading to differences in the cavity volume of proteins. These data indicate that FAR proteins diverged early and experienced low selective pressure to form genus-level diversity. The far genes are present in endophyte or root-colonized bacteria of Streptomyces, Kitasatospora sp., Bacillus subtilis, and Lysobacter, suggesting that bacterial far genes might be derived from plant-parasitic nematodes by horizontal gene transfer. Conclusions Data from these comparative analyses have provided insights into genus-level diversity of FAR proteins in the phylum Nematoda. FAR diversification provides a glimpse into the complicated evolution history across free-living and parasitic nematodes. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01111-3.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Song Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziyu Shang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Muchun Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yanhua Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Devkota R, Kaper D, Bodhicharla R, Henricsson M, Borén J, Pilon M. A genetic titration of membrane composition in Caenorhabditis elegans reveals its importance for multiple cellular and physiological traits. Genetics 2021; 219:iyab093. [PMID: 34125894 PMCID: PMC9335940 DOI: 10.1093/genetics/iyab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Communicating editor: B. Grant The composition and biophysical properties of cellular membranes must be tightly regulated to maintain the proper functions of myriad processes within cells. To better understand the importance of membrane homeostasis, we assembled a panel of five Caenorhabditis elegans strains that show a wide span of membrane composition and properties, ranging from excessively rich in saturated fatty acids (SFAs) and rigid to excessively rich in polyunsaturated fatty acids (PUFAs) and fluid. The genotypes of the five strain are, from most rigid to most fluid: paqr-1(tm3262); paqr-2(tm3410), paqr-2(tm3410), N2 (wild-type), mdt-15(et14); nhr-49(et8), and mdt-15(et14); nhr-49(et8); acs-13(et54). We confirmed the excess SFA/rigidity-to-excess PUFA/fluidity gradient using the methods of fluorescence recovery after photobleaching (FRAP) and lipidomics analysis. The five strains were then studied for a variety of cellular and physiological traits and found to exhibit defects in: permeability, lipid peroxidation, growth at different temperatures, tolerance to SFA-rich diets, lifespan, brood size, vitellogenin trafficking, oogenesis, and autophagy during starvation. The excessively rigid strains often exhibited defects in opposite directions compared to the excessively fluid strains. We conclude that deviation from wild-type membrane homeostasis is pleiotropically deleterious for numerous cellular/physiological traits. The strains introduced here should prove useful to further study the cellular and physiological consequences of impaired membrane homeostasis.
Collapse
Affiliation(s)
- Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg S-405 30, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-405 30, Sweden
| |
Collapse
|
16
|
Iankova V, Karin I, Klopstock T, Schneider SA. Emerging Disease-Modifying Therapies in Neurodegeneration With Brain Iron Accumulation (NBIA) Disorders. Front Neurol 2021; 12:629414. [PMID: 33935938 PMCID: PMC8082061 DOI: 10.3389/fneur.2021.629414] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegeneration with Brain Iron Accumulation (NBIA) is a heterogeneous group of progressive neurodegenerative diseases characterized by iron deposition in the globus pallidus and the substantia nigra. As of today, 15 distinct monogenetic disease entities have been identified. The four most common forms are pantothenate kinase-associated neurodegeneration (PKAN), phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN), beta-propeller protein-associated neurodegeneration (BPAN) and mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurodegeneration with Brain Iron Accumulation disorders present with a wide spectrum of clinical symptoms such as movement disorder signs (dystonia, parkinsonism, chorea), pyramidal involvement (e.g., spasticity), speech disorders, cognitive decline, psychomotor retardation, and ocular abnormalities. Treatment remains largely symptomatic but new drugs are in the pipeline. In this review, we discuss the rationale of new compounds, summarize results from clinical trials, provide an overview of important results in cell lines and animal models and discuss the future development of disease-modifying therapies for NBIA disorders. A general mechanistic approach for treatment of NBIA disorders is with iron chelators which bind and remove iron. Few studies investigated the effect of deferiprone in PKAN, including a recent placebo-controlled double-blind multicenter trial, demonstrating radiological improvement with reduction of iron load in the basal ganglia and a trend to slowing of disease progression. Disease-modifying strategies address the specific metabolic pathways of the affected enzyme. Such tailor-made approaches include provision of an alternative substrate (e.g., fosmetpantotenate or 4′-phosphopantetheine for PKAN) in order to bypass the defective enzyme. A recent randomized controlled trial of fosmetpantotenate, however, did not show any significant benefit of the drug as compared to placebo, leading to early termination of the trials' extension phase. 4′-phosphopantetheine showed promising results in animal models and a clinical study in patients is currently underway. Another approach is the activation of other enzyme isoforms using small molecules (e.g., PZ-2891 in PKAN). There are also compounds which counteract downstream cellular effects. For example, deuterated polyunsaturated fatty acids (D-PUFA) may reduce mitochondrial lipid peroxidation in PLAN. In infantile neuroaxonal dystrophy (a subtype of PLAN), desipramine may be repurposed as it blocks ceramide accumulation. Gene replacement therapy is still in a preclinical stage.
Collapse
Affiliation(s)
- Vassilena Iankova
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ivan Karin
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Klopstock
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Susanne A Schneider
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
18
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6:49. [PMID: 33536413 PMCID: PMC7858612 DOI: 10.1038/s41392-020-00428-9] [Citation(s) in RCA: 608] [Impact Index Per Article: 202.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. The process of ferroptotic cell death is defined by the accumulation of lethal lipid species derived from the peroxidation of lipids, which can be prevented by iron chelators (e.g., deferiprone, deferoxamine) and small lipophilic antioxidants (e.g., ferrostatin, liproxstatin). This review summarizes current knowledge about the regulatory mechanism of ferroptosis and its association with several pathways, including iron, lipid, and cysteine metabolism. We have further discussed the contribution of ferroptosis to the pathogenesis of several diseases such as cancer, ischemia/reperfusion, and various neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease), and evaluated the therapeutic applications of ferroptosis inhibitors in clinics.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Shuo Xu
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Hua Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
19
|
The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
21
|
Chamoli M, Goyala A, Tabrez SS, Siddiqui AA, Singh A, Antebi A, Lithgow GJ, Watts JL, Mukhopadhyay A. Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during dietary restriction. Nat Commun 2020; 11:4865. [PMID: 32978396 PMCID: PMC7519657 DOI: 10.1038/s41467-020-18690-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolic state of an organism instructs gene expression modalities, leading to changes in complex life history traits, such as longevity. Dietary restriction (DR), which positively affects health and life span across species, leads to metabolic reprogramming that enhances utilisation of fatty acids for energy generation. One direct consequence of this metabolic shift is the upregulation of cytoprotective (CyTP) genes categorized in the Gene Ontology (GO) term of "Xenobiotic Detoxification Program" (XDP). How an organism senses metabolic changes during nutritional stress to alter gene expression programs is less known. Here, using a genetic model of DR, we show that the levels of polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA) and eicosapentaenoic acid (EPA), are increased following DR and these PUFAs are able to activate the CyTP genes. This activation of CyTP genes is mediated by the conserved p38 mitogen-activated protein kinase (p38-MAPK) pathway. Consequently, genes of the PUFA biosynthesis and p38-MAPK pathway are required for multiple paradigms of DR-mediated longevity, suggesting conservation of mechanism. Thus, our study shows that PUFAs and p38-MAPK pathway function downstream of DR to help communicate the metabolic state of an organism to regulate expression of CyTP genes, ensuring extended life span.
Collapse
Affiliation(s)
- Manish Chamoli
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Anita Goyala
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Syed Shamsh Tabrez
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Atif Ahmed Siddiqui
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anupama Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, 50931, Germany
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Jennifer L Watts
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
23
|
Rolt A, Cox LS. Structural basis of the anti-ageing effects of polyphenolics: mitigation of oxidative stress. BMC Chem 2020; 14:50. [PMID: 32793891 PMCID: PMC7417423 DOI: 10.1186/s13065-020-00696-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Ageing, and particularly the onset of age-related diseases, is associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Polyphenolic natural products such as stilbenoids, flavonoids and chalcones have been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis and cellular senescence, both in vitro and in vivo. Here we aim to identify the structural basis underlying the pharmacology of polyphenols towards ROS and related biochemical pathways involved in age-related disease. We compile and describe SAR trends across different polyphenol chemotypes including stilbenoids, flavonoids and chalcones, review their different molecular targets and indications, and identify common structural ground between chemotypes and mechanisms of action. In particular, we focus on the structural requirements for the direct scavenging of reactive oxygen/nitrogen species such as radicals as well as coordination of a broader antioxidant response. We further suggest that it is important to consider multiple (rather than single) biological activities when identifying and developing new medicinal chemistry entities with utility in modulating complex biological properties such as cell ageing.
Collapse
Affiliation(s)
- Adam Rolt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
24
|
|
25
|
Coughlin DG, Litvan I. Progressive supranuclear palsy: Advances in diagnosis and management. Parkinsonism Relat Disord 2020; 73:105-116. [PMID: 32487421 PMCID: PMC7462164 DOI: 10.1016/j.parkreldis.2020.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Progressive supranuclear palsy (PSP) is a complex clinicopathologic disease with no current cure or disease modulating therapies that can only be definitively confirmed at autopsy. Growing understanding of the phenotypic diversity of PSP has led to expanded clinical criteria and new insights into etiopathogenesis that coupled with improved in vivo biomarkers makes increased access to current clinical trials possible. Current standard-of-care treatment of PSP is multidisciplinary, supportive and symptomatic, and several trials of potentially disease modulating agents have already been completed with disappointing results. Current ongoing clinical trials target the abnormal aggregation of tau through a variety of mechanisms including immunotherapy and gene therapy offer a more direct method of treatment. Here we review PSP clinicopathologic correlations, in vivo biomarkers including MRI, PET, and CSF biomarkers. We additionally review current pharmacologic and non-pharmacologic methods of treatment, prior and ongoing clinical trials in PSP. Newly expanded clinical criteria and improved specific biomarkers will aid in identifying patients with PSP earlier and more accurately and expand access to these potentially beneficial clinical trials.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
26
|
Walters JL, Gadella BM, Sutherland JM, Nixon B, Bromfield EG. Male Infertility: Shining a Light on Lipids and Lipid-Modulating Enzymes in the Male Germline. J Clin Med 2020; 9:E327. [PMID: 31979378 PMCID: PMC7073900 DOI: 10.3390/jcm9020327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the prevalence of male factor infertility, most cases are defined as idiopathic, thus limiting treatment options and driving increased rates of recourse to assisted reproductive technologies (ARTs). Regrettably, our current armory of ARTs does not constitute therapeutic treatments for male infertility, thus highlighting an urgent need for novel intervention strategies. In our attempts to fill this void, we have come to appreciate that the production of pathological levels of oxygen radicals within the male germline are a defining etiology of many idiopathic infertility cases. Indeed, an imbalance of reactive oxygen species can precipitate a cascade of deleterious sequelae, beginning with the peroxidation of membrane lipids and culminating in cellular dysfunction and death. Here, we shine light on the importance of lipid homeostasis, and the impact of lipid stress in the demise of the male germ cell. We also seek to highlight the utility of emerging lipidomic technologies to enhance our understanding of the diverse roles that lipids play in sperm function, and to identify biomarkers capable of tracking infertility in patient cohorts. Such information should improve our fundamental understanding of the mechanistic causes of male infertility and find application in the development of efficacious treatment options.
Collapse
Affiliation(s)
- Jessica L.H. Walters
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Bart M. Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jessie M. Sutherland
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
27
|
Basov A, Fedulova L, Vasilevskaya E, Dzhimak S. Possible Mechanisms of Biological Effects Observed in Living Systems during 2H/ 1H Isotope Fractionation and Deuterium Interactions with Other Biogenic Isotopes. Molecules 2019; 24:E4101. [PMID: 31766268 PMCID: PMC6891295 DOI: 10.3390/molecules24224101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
This article presents the original descriptions of some recent physics mechanisms (based on the thermodynamic, kinetic, and quantum tunnel effects) providing stable 2H/1H isotope fractionation, leading to the accumulation of particular isotopic forms in intra- or intercellular space, including the molecular effects of deuterium interaction with 18O/17O/16O, 15N/14N, 13C/12C, and other stable biogenic isotopes. These effects were observed mainly at the organelle (mitochondria) and cell levels. A new hypothesis for heavy nonradioactive isotope fractionation in living systems via neutron effect realization is discussed. The comparative analysis of some experimental studies results revealed the following observation: "Isotopic shock" is highly probable and is observed mostly when chemical bonds form between atoms with a summary odd number of neutrons (i.e., bonds with a non-compensated neutron, which correspond to the following equation: Nn - Np = 2k + 1, where k ϵ Z, k is the integer, Z is the set of non-negative integers, Nn is number of neutrons, and Np is number of protons of each individual atom, or in pair of isotopes with a chemical bond). Data on the efficacy and metabolic pathways of the therapy also considered 2H-modified drinking and diet for some diseases, such as Alzheimer's disease, Friedreich's ataxia, mitochondrial disorders, diabetes, cerebral hypoxia, Parkinson's disease, and brain cancer.
Collapse
Affiliation(s)
- Alexander Basov
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, Krasnodar 350063, Russia;
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia
| | - Liliya Fedulova
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109316, Russia; (L.F.); (E.V.)
| | - Ekaterina Vasilevskaya
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109316, Russia; (L.F.); (E.V.)
| | - Stepan Dzhimak
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109316, Russia; (L.F.); (E.V.)
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| |
Collapse
|