1
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Alassaf M, Madan A, Ranganathan S, Marschall S, Wong JJ, Goldberg ZH, Brent AE, Rajan A. Adipocyte metabolic state regulates glial phagocytic function. Cell Rep 2025; 44:115704. [PMID: 40372917 DOI: 10.1016/j.celrep.2025.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/17/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
Excess dietary sugar profoundly impacts organismal metabolism and health, yet it remains unclear how metabolic adaptations in adipose tissue influence other organs, including the brain. Here, we show that a high-sugar diet (HSD) in Drosophila reduces adipocyte glycolysis and mitochondrial pyruvate uptake, shifting metabolism toward fatty acid oxidation and ketogenesis. These metabolic changes trigger mitochondrial oxidation and elevate antioxidant responses. Adipocyte-specific manipulations of glycolysis, lipid metabolism, or mitochondrial dynamics non-autonomously modulate Draper expression in brain ensheathing glia, key cells responsible for neuronal debris clearance. Adipocyte-derived ApoB-containing lipoproteins maintain basal Draper levels in glia via LpR1, critical for effective glial phagocytic activity. Accordingly, reducing ApoB or LpR1 impairs glial clearance of degenerating neuronal debris after injury. Collectively, our findings demonstrate that dietary sugar-induced shifts in adipocyte metabolism substantially influence brain health by modulating glial phagocytosis, identifying adipocyte-derived ApoB lipoproteins as essential systemic mediators linking metabolic state with neuroprotective functions.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aditi Madan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sunidhi Ranganathan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shannon Marschall
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jordan J Wong
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary H Goldberg
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ava E Brent
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Sekikawa A, Higashiyama A, Lopresti BJ, Ihara M, Cui C, Li J, Watanabe M, Li M, Goon S, Aizenstein HJ, Chang Y, Kakuta C, Yu Z, Mathis CA, Kokubo Y, Royse S, Fukuda T, Snitz B, Lopez OL, Miyamoto Y. An inverse association of cerebral amyloid-β deposition and serum docosahexaenoic acid levels in cognitively normal older adults in Japan. J Alzheimers Dis 2025:13872877251340688. [PMID: 40336297 DOI: 10.1177/13872877251340688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BackgroundAlzheimer's disease (AD) is driven by amyloid-β (Aβ) plaque accumulation, but the mechanisms behind this process remain unclear. Omega-3 fatty acids, particularly docosahexaenoic acid (DHA), may offer protective effects, though their relationship with Aβ accumulation is not fully understood.ObjectiveThis study investigated whether serum DHA and eicosapentaenoic acid (EPA) levels, measured 6-9 years before imaging, were inversely associated with cerebral Aβ deposition in cognitively normal older adults in Japan, a population known for high omega-3 intake. We focused on individuals identified as Aβ-positive based on positron emission tomography (PET) scans, as they are at higher risk for AD progression, to assess DHA's potential in mitigating early amyloid pathology.MethodsAn analytical sample of 97 older adults (75-89 years) from the Suita Study was analyzed. Serum DHA and EPA levels were assessed between 2008 and 2012, and amyloid PET was performed between 2016 and 2019. Multiple regression analyses were conducted, adjusting for age, sex, APOE4 status, and cardiometabolic disease.ResultsAmong 97 participants (49% males, 8.2% APOE4 carriers), 37.1% (n = 36) had cardiometabolic disease, and 29.8% (n = 29) were Aβ positive. In Aβ-positive individuals, higher serum DHA levels were significantly associated with lower Aβ deposition independent of age, sex and APOE4 status (standardized β = -0.423, p = 0.030). This became non-significant after additionally adjusting for cardiometabolic disease (β = -0.382, p = 0.059). No significant association was found between EPA and Aβ deposition.ConclusionsHigher long-term DHA levels may help reduce Aβ accumulation in those at risk for AD, supporting its potential role in early prevention.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aya Higashiyama
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Hygiene, Wakayama Medical University, Wakayama, Japan
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Chendi Cui
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiatong Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Makoto Watanabe
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mengyi Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shatabdi Goon
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yuefang Chang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chikage Kakuta
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Zheming Yu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Sarah Royse
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Beth Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
- Open Innovation Center, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
4
|
Hansen CE, Konings J, Toth G, Chornyi S, Karsten M, van Het Hof B, van der Pol SMA, Beekhuis-Hoekstra SD, Kok N, Fung WK, Dijksman NS, Baron W, Witte ME, Lanekoff I, de Vries HE, Kooij G. Spatial mapping of the AA-PGE 2-EP axis in multiple sclerosis lesions. Acta Neuropathol 2025; 149:39. [PMID: 40299057 PMCID: PMC12041062 DOI: 10.1007/s00401-025-02878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Bioactive lipid mediators (LMs) derived from polyunsaturated fatty acids (PUFAs) are key molecules in both the initiation and resolution of inflammatory responses. Previous findings suggest that a dysregulated LM balance, especially within the arachidonic acid (AA) pathway, may contribute to an impaired resolution response and subsequent chronic neuroinflammation in multiple sclerosis (MS). However, to date, the local biosynthesis and signaling of LMs within the brain of people with MS (PwMS) remains unexplored. In this study, we, therefore, mapped the distribution of AA and its key downstream LM prostaglandin E2 (PGE2) in white matter MS brain tissue and of non-neurological controls (NNCs) for the first time using mass spectrometry imaging. We found that AA levels are lower in MS cases compared to NNCs and reduced in MS lesions compared to peri-lesional tissue. Furthermore, the PGE2/AA ratio, indicating the PGE2 synthesis from the AA substrate, was increased in lesion areas compared to fully myelinated regions in MS. In line with that, the expression of prostaglandin synthesizing enzymes as measured by RT-qPCR was partially increased in MS tissue compared to NNCs. In addition, the expression of prostaglandin E2 receptor 4 (EP4) decreased, while prostaglandin E2 receptor 2 (EP2) showed increased expression levels in MS lesions compared to NNCs and localized specifically to microglia. We also found that PGE2 addition to pro-inflammatory human-induced pluripotent stem cell (iPSC)-derived microglia resulted in enhanced cytokine signaling pathways, but also the upregulation of its synthase PTGES and homeostatic/resolving signaling, the latter of which might mainly occur through EP2 signaling. Collectively, our results provide detailed information about the region-specific levels of AA and PGE2 in MS lesions and we propose enhanced PGE2-EP2 signaling in inflamed microglia in MS.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Julia Konings
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Gabor Toth
- Department of Chemistry, BMC, Uppsala University, 75237, Uppsala, Sweden
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Uppsala, Sweden
| | - Serhii Chornyi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Manon Karsten
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Stephanie D Beekhuis-Hoekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nine Kok
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Naomi S Dijksman
- Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, UMCG, MS Center Noord Nederland, A. Deusinglaan 1, Groningen, The Netherlands
| | - Wia Baron
- Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, UMCG, MS Center Noord Nederland, A. Deusinglaan 1, Groningen, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ingela Lanekoff
- Department of Chemistry, BMC, Uppsala University, 75237, Uppsala, Sweden
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Uppsala, Sweden
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, UMC Location VU Medical Center, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ogawa S, Hori H, Niwa M, Itoh M, Lin M, Yoshida F, Ino K, Kawanishi H, Narita M, Nakano W, Imai R, Matsui M, Kamo T, Kunugi H, Hattori K, Kim Y. Serum lipid and plasma fatty acid profiles in PTSD patients and healthy individuals: Associations with symptoms, cognitive function, and inflammatory markers. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111298. [PMID: 39988258 DOI: 10.1016/j.pnpbp.2025.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Increasing evidence suggests that posttraumatic stress disorder (PTSD), a serious mental health condition, is associated with physical health problems. Lipid-related molecules are crucial for central nervous system functions associated with PTSD symptoms; however, case-control studies exploring the relationship between PTSD and lipid-related molecules are scarce. We examined 68 civilian PTSD patients and 97 healthy controls, evaluating PTSD symptoms, childhood maltreatment history, suicidality, and cognitive functions. Cholesterol, triglycerides, and inflammation-related marker levels were analyzed in serum, while fatty acid levels were measured in plasma. Compared to controls, patients exhibited significantly lower high-density lipoprotein cholesterol and n-6 linoleic acid levels, alongside higher saturated palmitic acid levels and the triene-to-tetraene (T/T) ratio. PTSD symptoms, particularly hyperarousal, were significantly positively correlated with n-6 γ-linolenic, n-6 dihomo-γ-linolenic, and n-9 mead acid levels, and the T/T ratio. Cognitive functions were significantly positively correlated with n-3 docosahexaenoic acid and total n-3 fatty acid levels, and negatively correlated with saturated lauric, palmitic, and total saturated fatty acid levels. Suicidality was significantly positively correlated with dihomo-γ-linolenic acid, mead acid levels, and the T/T ratio, and negatively correlated with polyunsaturated fatty acid (PUFA) levels. Inflammation-related marker levels were significantly correlated with higher palmitic, n-9 oleic, and total n-9 fatty acid levels, and lower linoleic acid and PUFA levels. Latent profile analysis (LPA) revealed distinct subgroups associated with unique fatty acid profiles. These lipid-related alterations may improve the understanding of PTSD pathophysiology. Distinct fatty acid profiles identified by LPA may help subtype PTSD patients and guide nutrition-based personalized treatment strategies.
Collapse
Affiliation(s)
- Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hitomi Kawanishi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Wakako Nakano
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Risa Imai
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan; Risa Irinaka Mental Clinic, Nagoya, Aichi, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Toshiko Kamo
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Wakamatsu-cho Mental and Skin Clinic, Shinjuku, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
6
|
Giblin A, Cammack AJ, Blomberg N, Anoar S, Mikheenko A, Carcolé M, Atilano ML, Hull A, Shen D, Wei X, Coneys R, Zhou L, Mohammed Y, Olivier-Jimenez D, Wang LY, Kinghorn KJ, Niccoli T, Coyne AN, van der Kant R, Lashley T, Giera M, Partridge L, Isaacs AM. Neuronal polyunsaturated fatty acids are protective in ALS/FTD. Nat Neurosci 2025; 28:737-747. [PMID: 40000803 PMCID: PMC11976277 DOI: 10.1038/s41593-025-01889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Here we report a conserved transcriptomic signature of reduced fatty acid and lipid metabolism gene expression in a Drosophila model of C9orf72 repeat expansion, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), and in human postmortem ALS spinal cord. We performed lipidomics on C9 ALS/FTD Drosophila, induced pluripotent stem (iPS) cell neurons and postmortem FTD brain tissue. This revealed a common and specific reduction in phospholipid species containing polyunsaturated fatty acids (PUFAs). Feeding C9 ALS/FTD flies PUFAs yielded a modest increase in survival. However, increasing PUFA levels specifically in neurons of C9 ALS/FTD flies, by overexpressing fatty acid desaturase enzymes, led to a substantial extension of lifespan. Neuronal overexpression of fatty acid desaturases also suppressed stressor-induced neuronal death in iPS cell neurons of patients with both C9 and TDP-43 ALS/FTD. These data implicate neuronal fatty acid saturation in the pathogenesis of ALS/FTD and suggest that interventions to increase neuronal PUFA levels may be beneficial.
Collapse
Affiliation(s)
- Ashling Giblin
- UK Dementia Research Institute, UCL, London, UK
- Institute of Healthy Ageing, UCL, London, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexander J Cammack
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Niek Blomberg
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Alla Mikheenko
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mireia Carcolé
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Alex Hull
- Institute of Healthy Ageing, UCL, London, UK
| | - Dunxin Shen
- Institute of Healthy Ageing, UCL, London, UK
| | - Xiaoya Wei
- Institute of Healthy Ageing, UCL, London, UK
| | - Rachel Coneys
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lele Zhou
- UK Dementia Research Institute, UCL, London, UK
- Institute of Healthy Ageing, UCL, London, UK
| | - Yassene Mohammed
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Damien Olivier-Jimenez
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lian Y Wang
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, MA, USA
- Brain Science Institute, Johns Hopkins University, Baltimore, MA, USA
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martin Giera
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Adrian M Isaacs
- UK Dementia Research Institute, UCL, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
7
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2025; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mild traumatic brain injury (mTBI) research has had limited success translating treatments from preclinical models to clinical application for concussion. One major factor that has been overlooked is the near 24-hour availability of food, both for experimental nocturnal rodents and patients suffering from mTBI. Here, we characterised the impact of food restriction limited to either the inactive (day) or the active phase (night), on repetitive mTBI (RmTBI) - induced outcomes in male and female rats. We found that active phase fed rats consumed more food, had increased body weight, and reduced brain weights. Behaviourally, active phase feeding increased motor coordination deficits and caused changes to thermal nociceptive processing following RmTBI. Hypothalamic transcriptomic analysis revealed minor changes in response to RmTBI, and genes associated with oxytocin-vasopressin regulation in response to inactive phase, but not active phase feeding. These transcript changes were absent in females, where the overall effect of RmTBI was minor. Prefrontal cortex lipidomics revealed an increase in sphingomyelin synthesis following injury and marked sex differences in response to feeding. Of the lipids that changed and overlapped between the prefrontal cortex and serum, dihydroceramides, sphingomyelins, and hexosylceramides, were higher in the serum but lower in the prefrontal cortex. Together, these results demonstrate that feeding time alters outcomes to RmTBI, independent of the hypothalamic transcriptome, and injury-specific lipids may serve as useful biomarkers in RmTBI diagnosis.
Collapse
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Nessel I, Whiley L, Dyall SC, Michael-Titus AT. A plasma lipid signature in acute human traumatic brain injury: Link with neuronal injury and inflammation markers. J Cereb Blood Flow Metab 2025; 45:443-458. [PMID: 39188133 PMCID: PMC11572080 DOI: 10.1177/0271678x241276951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Traumatic brain injury (TBI) leads to major membrane lipid breakdown. We investigated plasma lipids over 3 days post-TBI, to identify a signature of acute human TBI and assess its correlation with neuronal injury and inflammation. Plasma from patients with TBI (Abbreviated Injury Scale (AIS)3 - serious injury, n = 5; AIS4 - severe injury, n = 8), and controls (n = 13) was analysed for lipidomic profile, neurofilament light (NFL) and cytokines, and the omega-3 index was measured in red blood cells. A lipid signature separated TBI from controls, at 24 and 72 h. Major species driving the separation were: lysophosphatidylcholine (LPC), phosphatidylcholine (PC) and hexosylceramide (HexCer). Docosahexaenoic acid (DHA, 22:6) and LPC (0:0/22:6) decreased post-injury. NFL levels were increased at 24 and 72 h post-injury in AIS4 TBI vs. controls. Interleukin (IL-)6, IL-2 and IL-13 were elevated at 24 h in AIS4 patients vs. controls. NFL and IL-6 were negatively correlated with several lipids. The omega-3 index at admission was low in all patients (controls: 4.3 ± 1.1% and TBI: 4.0 ± 1.1%) and did not change significantly over 3 days post-injury. We have identified specific lipid changes, correlated with markers of injury and inflammation in acute TBI. These observations could inform future lipid-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Whiley
- Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
11
|
Rana AK, Bhatt B, Gusain C, Biswal SN, Das D, Kumar M. Neuroimmunometabolism: how metabolism orchestrates immune response in healthy and diseased brain. Am J Physiol Endocrinol Metab 2025; 328:E217-E229. [PMID: 39787332 DOI: 10.1152/ajpendo.00331.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the central nervous system (CNS). Emerging evidence indicates that neurons also orchestrate the microglia-mediated immune response through neuro-immune cross talk, perhaps through metabolic signaling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains. This review addresses the balance of immunometabolic substrates in healthy and diseased brains, their metabolism by brain-resident microglia, and the potential impact of metabolic dysregulation of these substrates on the neuroimmune response and pathophysiology of psychiatric disorders. This review also suggests metabolic reprogramming of microglia as a preventive strategy for the management of neuroinflammation-related brain disorders, including psychiatric diseases.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
| | - Babita Bhatt
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
| | - Chitralekha Gusain
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
| | - Surya Narayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Debashree Das
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States
| | - Mohit Kumar
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana, India
| |
Collapse
|
12
|
Neth BJ, Huynh K, Giles C, Wang T, Mellett NA, Duong T, Blach C, Schimmel L, Register TC, Blennow K, Zetterberg H, Batra R, Schweickart A, Dilmore AH, Martino C, Arnold M, Krumsiek J, Han X, Dorrestein PC, Knight R, Meikle PJ, Craft S, Kaddurah-Daouk R. Consuming a modified Mediterranean ketogenic diet reverses the peripheral lipid signature of Alzheimer's disease in humans. COMMUNICATIONS MEDICINE 2025; 5:11. [PMID: 39779882 PMCID: PMC11711287 DOI: 10.1038/s43856-024-00682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear. METHOD In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform. RESULTS Here we identified substantial changes in response to MMKD intervention, aside from metabolic changes associated with a ketogenic diet, we identified a a global elevation across all plasmanyl and plasmenyl ether lipid species, with many changes linked to clinical and biochemical markers of AD. We further validated our findings by leveraging our prior clinical studies into lipid related changeswith AD (n = 1912), and found that the lipidomic signature with MMKD was inversely associated with the lipidomic signature of prevalent and incident AD. CONCLUSIONS Intervention with a MMKD was able to alter the plasma lipidome in ways that contrast with AD-associated patterns. Given its low risk and cost, MMKD could be a promising approach for prevention or early symptomatic treatment of AD.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Thy Duong
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas C Register
- Department of Pathology - Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Yilmaz A, Akyol S, Ashrafi N, Saiyed N, Turkoglu O, Graham SF. Lipidomics of Huntington's Disease: A Comprehensive Review of Current Status and Future Directions. Metabolites 2025; 15:10. [PMID: 39852353 PMCID: PMC11766911 DOI: 10.3390/metabo15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage. Lipidomics, a comprehensive analytical approach, has emerged as an indispensable tool for systematically characterizing lipid profiles and elucidating their role in disease pathology. METHOD A MedLine search was performed to identify studies that use lipidomics for the characterization of HD. Search terms included "Huntington disease"; "lipidomics"; "biomarker discovery"; "NMR"; and "Mass spectrometry". RESULTS This review highlights the significance of lipidomics in HD diagnosis and treatment, exploring changes in brain lipids and their functions. Recent breakthroughs in analytical techniques, particularly mass spectrometry and NMR spectroscopy, have revolutionized brain lipidomics research, enabling researchers to gain deeper insights into the complex lipidome of the brain. CONCLUSIONS A comprehensive understanding of the broad spectrum of lipidomics alterations in HD is vital for precise diagnostic evaluation and effective disease management. The integration of lipidomics with artificial intelligence and interdisciplinary collaboration holds promise for addressing the clinical variability of HD.
Collapse
Affiliation(s)
- Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Rd, Louisville, KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
| | - Nazia Saiyed
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| |
Collapse
|
14
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Mongan D, Perry BI, Healy C, Susai SR, Zammit S, Cannon M, Cotter DR. Longitudinal Trajectories of Plasma Polyunsaturated Fatty Acids and Associations With Psychosis Spectrum Outcomes in Early Adulthood. Biol Psychiatry 2024; 96:772-781. [PMID: 38631425 DOI: 10.1016/j.biopsych.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Evidence supports associations between polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and psychosis. However, polyunsaturated fatty acid trajectories in the general population have not been characterized, and associations with psychosis spectrum outcomes in early adulthood are unknown. METHODS Plasma omega-6 to omega-3 ratio and DHA (expressed as percentage of total fatty acids) were measured by nuclear magnetic spectroscopy at 7, 15, 17, and 24 years of age in participants of ALSPAC (Avon Longitudinal Study of Parents and Children). Curvilinear growth mixture modeling evaluated body mass index-adjusted trajectories of both measures. Outcomes were assessed at 24 years. Psychotic experiences (PEs), at-risk mental state status, psychotic disorder, and number of PEs were assessed using the Psychosis-Like Symptoms interview (n = 3635; 2247 [61.8%] female). Negative symptoms score was measured using the Community Assessment of Psychic Experiences (n = 3484; 2161 [62.0%] female). Associations were adjusted for sex, ethnicity, parental social class, and cumulative smoking and alcohol use. RESULTS Relative to stable average, the persistently high omega-6 to omega-3 ratio trajectory was associated with increased odds of PEs and psychotic disorder, but attenuated on adjustment for covariates (PEs adjusted odds ratio [aOR] = 1.63, 95% CI = 0.92-2.89; psychotic disorder aOR = 1.69, 95% CI = 0.71-4.07). This was also the case for persistently low DHA (PEs aOR = 1.42, 95% CI = 0.84-2.37; psychotic disorder aOR = 1.14, 95% CI = 0.49-2.67). Following adjustment, persistently high omega-6 to omega-3 ratio was associated with increased number of PEs (β = 0.41, 95% CI = 0.05-0.78) and negative symptoms score (β = 0.43, 95% CI = 0.14-0.72), as was persistently low DHA (number of PEs β = 0.45, 95% CI = 0.14-0.76; negative symptoms β = 0.35, 95% CI = 0.12-0.58). CONCLUSIONS Optimization of polyunsaturated fatty acid status during development warrants further investigation in relation to psychotic symptoms in early adulthood.
Collapse
Affiliation(s)
- David Mongan
- Centre for Public Health, Queen's University Belfast, Northern Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland.
| | - Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
16
|
Prabhu GS, Concessao PL. Triglycerides and metabolic syndrome: from basic to mechanism - A narrative review. Arch Physiol Biochem 2024:1-9. [PMID: 39540905 DOI: 10.1080/13813455.2024.2426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
CONTENT The impact of triglyceride levels is important to understand the changes in metabolism and structure. With an increase in obesity and hyperlipidemia due to diet; cardiovascular and neuronal structural changes have been shown to be more distinct. OBJECTIVE This review aims to discuss the pathophysiology and mechanisms involved in increased levels of triglycerides leading to vascular impairment, metabolic syndrome and cognitive decline. METHODS The literature search was performed using the PubMed, Google scholar and Scopus databases, among which 180 articles were shortlisted based on key words, abstract, materials and methods and results. Among these 74 articles have been cited for the review. RESULTS AND DISCUSSION The review discusses the impact of hypertriglyceridemia on metabolism, triglyceride storage, and neurovascular integrity, highlighting mechanisms contributing to vascular dysfunction, metabolic syndrome, and cognitive deterioration. CONCLUSION Elevated triglyceride levels are a key factor in altering metabolic pathways and structural integrity in cardiovascular and neuronal systems. This review provides insights into the mechanisms underlying metabolic disorders caused by elevated triglyceride levels, It highlights the need for further studies to provide more supportive evidence and address existing limitations in understanding these changes.
Collapse
Affiliation(s)
- Gayathri S Prabhu
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Lavina Concessao
- Division of Physiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Toft-Bertelsen TL, Andreassen SN, Norager NH, Simonsen AH, Hasselbalch SG, Juhler M, MacAulay N. Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid. Biomolecules 2024; 14:1431. [PMID: 39595607 PMCID: PMC11591603 DOI: 10.3390/biom14111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The molecular composition of cerebrospinal fluid (CSF) is often used as a key indicator of biochemical alterations within distinct brain and spinal cord fluid compartments. The CSF protein content in lumbar CSF samples is widely employed as a biomarker matrix for diagnosing brain-related pathological conditions. CSF lipid profiles may serve as promising complementary diagnostics, but it remains unresolved if the lipid distribution is consistent along the neuroaxis. METHODS The lipid composition was determined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in cisternal CSF obtained from healthy subjects undergoing preventive surgery of an unruptured aneurism (n = 11) and lumbar CSF obtained from individuals referred for the clinical evaluation of cognitive dysfunction but subsequently cleared and deemed healthy (n = 19). RESULTS We reveal discernible variations in lipid composition along the neuroaxis, with a higher overall lipid concentration in cisternal CSF, although with different relative distributions of the various lipid classes in the two compartments. The cisternal CSF contained elevated levels of most lipid classes, e.g., sphingomyelins, lysophosphatidylcholines, plasmenylphosphatidylcholines, phosphatidic acids, and triacylglycerols, whereas a few select lipids from the classes of fatty acids, phosphatidylcholines, amides and plasmenylphosphatidylethanolamines were, oppositely, elevated in the lumbar CSF pool. CONCLUSIONS The distinct lipid distribution along the neuroaxis illustrates that the molecular constituents in these two CSF compartments are not uniform. These findings emphasize the necessity of establishing a lumbar lipid index for the accurate interpretation of the cranial CSF lipid profile.
Collapse
Affiliation(s)
| | | | - Nicolas H. Norager
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Section 6911, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Section 6911, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
18
|
Han H, Lin X, Wu Y, Li H, Jia Q, Hu C, Lin Y, Liao G, Qian Y, Qiu J. Lipid fingerprinting and geographical origin identification of large yellow croaker (Larimichthys crocea) using UHPLC-QTOF-MS. Food Res Int 2024; 196:115048. [PMID: 39614487 DOI: 10.1016/j.foodres.2024.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 12/01/2024]
Abstract
The Large Yellow Croaker (LYC) with rich lipids offers numerous health benefits, yet its lipid profile remains underexplored. Therefore, the lipids of LYC were comprehensively profiled and compared based lipidomics. Higher nutritional value of LYC was identified based on lipid and fatty acid assessment, particularly ovary and brain. A total of 963 lipid species belonging to 47 lipid subclasses were identified, exhibiting higher levels of glycerophospholipids (GPs) and sphingolipids (SPs) in the brain, as well as high levels of glycolipids (GLs) in the muscle. Furthermore, unique lipid subclasses were detected in the brain (Acylcarnitine (CAR), Alpha-hydroxy-N-stearoyl phytosphingosine (Cer-AP)) and ovary (N-arachidonoyl glycine (NAGly)). Notably, 8 lipid subclasses were selected as potential contributors for four tissues differentiation. Additionally, identification of LYC from various origins was achieved through lipidomics for the first time. LYC from Zhejiang and Fujian provinces could be distinguished by 100 lipid biomarkers. Most different lipids significantly negatively correlated with seawater pH and dissolved oxygen, but positively correlated with netting density, depth, environmental temperature and salinity. This comprehensive analysis provided valuable insights into LYC's nutritional values and origin identified.
Collapse
Affiliation(s)
- Haolei Han
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China
| | - Xiangxin Lin
- Institute of Quality Standard and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350000, China
| | - Yuxuan Wu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China; Chengdu University College of Food and Biological Engineering, Chengdu 610000, China
| | - Houru Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China; Chengdu University College of Food and Biological Engineering, Chengdu 610000, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China
| | - Changmin Hu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China; Chengdu University College of Food and Biological Engineering, Chengdu 610000, China
| | - Yixuan Lin
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China; Chengdu University College of Food and Biological Engineering, Chengdu 610000, China
| | - Guangqin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 10081, China.
| |
Collapse
|
19
|
Urbano T, Maramotti R, Tondelli M, Gallingani C, Carbone C, Iacovino N, Vinceti G, Zamboni G, Chiari A, Bedin R. Comparison of Serum and Cerebrospinal Fluid Neurofilament Light Chain Concentrations Measured by Ella™ and Lumipulse™ in Patients with Cognitive Impairment. Diagnostics (Basel) 2024; 14:2408. [PMID: 39518375 PMCID: PMC11544876 DOI: 10.3390/diagnostics14212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Neurofilament light chain proteins (NfLs) are considered a promising biomarker of neuroaxonal damage in several neurological diseases. Their measurement in the serum and cerebrospinal fluid (CSF) of patients with dementia may be especially useful. Our aim was to compare the NfL measurement performance of two advanced technologies, specifically the Ella™ microfluidic platform and the Lumipulse™ fully automated system, in patients with cognitive disorders. METHODS Thirty subjects with neurodegenerative cognitive disorders (10 with Alzheimer's Disease, 10 with Frontotemporal Dementia, and 10 with non-progressive Mild Cognitive Impairment) seen at the Cognitive Neurology Clinic of Modena University Hospital (Italy) underwent CSF and serum NfL measurement with both the Ella™ microfluidic platform (Bio-Techne, Minneapolis, MN, USA)) and the Lumipulse™ fully automated system for the CLEIA (Fujirebio Inc., Ghent, Belgium). Correlation and regression analyses were applied to assess the association between NfL concentrations obtained with the two assays in CSF and serum. The Passing-Bablok regression method was employed to evaluate the agreement between the assays. RESULTS There were high correlations between the two assays (r = 0.976, 95% CI. 0.950-0.989 for CSF vs. r = 0.923, 95% CI 0.842-0.964 for serum). A Passing-Bablok regression model was estimated to explain the relationship between the two assays, allowing us to switch from one to the other when only one assay was available. CONCLUSIONS We found a good degree of correlation between the two methods in patients with neurocognitive disorders. We also established a method that will allow comparisons between results obtained with either technique, allowing for meta-analyses and larger sample sizes.
Collapse
Affiliation(s)
- Teresa Urbano
- Neuroimmunology Laboratory, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Baggiovara Hospital, 41126 Modena, Italy; (T.U.); (R.B.)
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Maramotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Mathematics and Computer Science, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Chiara Gallingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Najara Iacovino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giulia Vinceti
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Annalisa Chiari
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Roberta Bedin
- Neuroimmunology Laboratory, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Baggiovara Hospital, 41126 Modena, Italy; (T.U.); (R.B.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.M.); (C.G.); (C.C.); (N.I.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| |
Collapse
|
20
|
Varandas PAMM, Belinha R, Cobb AJA, Prates Ramalho JP, Segundo MA, Loura LMS, Silva EMP. Flow-based bioconjugation of coumarin phosphatidylethanolamine probes: Optimised synthesis and membrane molecular dynamics studies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184335. [PMID: 38763271 DOI: 10.1016/j.bbamem.2024.184335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
A series of phosphatidylethanolamine fluorescent probes head-labelled with 3-carboxycoumarin was prepared by an improved bioconjugation approach through continuous flow synthesis. The established procedure, supported by a design of experiment (DoE) set-up, resulted in a significant reduction in the reaction time compared to the conventional batch method, in addition to a minor yield increase. The characterization of these probes was enhanced by an in-depth molecular dynamics (MD) study of the behaviour of a representative probe of this family, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine labelled with 3-carboxycoumarin (POPE-COUM), in bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (SLPC) 2:1, mimicking the composition of the egg yolk lecithin membranes recently used experimentally by our group to study POPE-COUM as a biomarker of the oxidation state and integrity of large unilamellar vesicles (LUVs). The MD simulations revealed that the coumarin group is oriented towards the bilayer interior, leading to a relatively internal location, in agreement with what is observed in the nitrobenzoxadiazole fluorophore of commercial head-labelled NBD-PE probes. This behaviour is consistent with the previously stated hypothesis that POPE-COUM is entirely located within the LUVs structure. Hence, the delay on the oxidation of the probe in the oxygen radical absorbance capacity (ORAC) assays performed is related with the inaccessibility of the probe until alteration of the LUV structure occurs. Furthermore, our simulations show that POPE-COUM exerts very little global and local perturbation on the host bilayer, as evaluated by key properties of the unlabelled lipids. Together, our findings establish PE-COUM as suitable fluorescent lipid analogue probes.
Collapse
Affiliation(s)
- Pedro A M M Varandas
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Belinha
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Alexander J A Cobb
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - João P Prates Ramalho
- Department of Chemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; LAQV, REQUIMTE, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Hercules Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Luís M S Loura
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Eduarda M P Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
21
|
Chmielarz M, Bromke MA, Olbromski M, Środa-Pomianek K, Frej-Mądrzak M, Dzięgiel P, Sobieszczańska B. Lipidomics Analysis of Human HMC3 Microglial Cells in an In Vitro Model of Metabolic Syndrome. Biomolecules 2024; 14:1238. [PMID: 39456170 PMCID: PMC11506612 DOI: 10.3390/biom14101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic endotoxemia (ME) is associated with bacterial lipopolysaccharide (LPS, endotoxin) and increased levels of saturated fatty acids (SFAs) in the bloodstream, causing systemic inflammation. ME usually accompanies obesity and a diet rich in fats, especially SFAs. Numerous studies confirm the effect of ME-related endotoxin on microglial activation. Our study aimed to assess lipid metabolism and immune response in microglia pre-stimulated with TNFα (Tumor Necrosis Factor α) and then with endotoxin and palmitic acid (PA). Using ELISA, we determined cytokines IL-1β, IL-10, IL-13 (interleukin-1β, -10, -13, and TGFβ (Transforming Growth Factor β) in the culture medium from microglial cells stimulated for 24 h with TNFα and then treated with LPS (10 ng/mL) and PA (200 µM) for 24 h. HMC3 (Human Microglial Cells clone 3) cells produced negligible amounts of IL-1β, IL-10, and IL-13 after stimulation but secreted moderate levels of TGFβ. Changes in lipid metabolism accompanied changes in TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) expression. HMC3 stimulation with endotoxin increased TREM2 expression, while PA treatment decreased it. Endotoxin increased ceramide levels, while PA increased triglyceride levels. These results indicated that pre-stimulation of microglia with TNFα significantly affects its interactions with LPS and PA and modulates lipid metabolism, which may lead to microglial activation silencing and neurodegeneration.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Mariusz Aleksander Bromke
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland;
| | - Mateusz Olbromski
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 3a, 50-368 Wroclaw, Poland;
| | - Magdalena Frej-Mądrzak
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Beata Sobieszczańska
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| |
Collapse
|
22
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Guo D, Sheng W, Cai Y, Shu J, Cai C. Genetic Association of Lipids and Lipid-Lowering Drug Target Genes With Attention Deficit Hyperactivity Disorder. J Atten Disord 2024; 28:1425-1436. [PMID: 38166458 DOI: 10.1177/10870547231222219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
BACKGROUND Lipid metabolism plays an essential role in nervous system development. Cholesterol deficiency leads to a variety of neurodevelopmental disorders, such as autism spectrum disorder and fragile X syndrome. There have been a lot of efforts to search for biological markers associated with and causal to ADHD, among which lipid is one possible etiological factor that is quite widely studied. We aimed to evaluate the causal relationship between lipids traits, lipid-lowering drugs, and attention deficit hyperactivity disorder (ADHD) outcomes using Mendelian randomization (MR) studies. METHODS We used summary data from genome-wide association studies to explore the causal relationships between circulating lipid-related traits and ADHD. Then, quantitative trait loci for the expression of lipid-lowering drug target genes and genetic variants associated with lipid traits were extracted. Summary-data-based MR and inverse-variance-weighted MR (IVW-MR) were used to investigate the correlation between the expression of these drug-target genes and ADHD. RESULTS After rigorous screening, 939 instrumental variables were finally included for univariable mendelian randomization analysis. However, there is no correlation between lipid profile and ADHD risk. Drug target analysis by IVW-MR method observed that APOB-mediated low-density lipoprotein cholesterol was associated with lower ADHD risk (odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.84, 0.97]; p = .007), whereas LPL-mediated triglycerides levels were associated with a higher risk of ADHD (OR = 1.13, 95% CI [1.06, 1.21]; p < .001). CONCLUSION Our results suggest that APOB gene and LPL gene may be candidate drug target genes for the treatment of ADHD.
Collapse
Affiliation(s)
- Detong Guo
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Medical University, China
| | - Wenchao Sheng
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Medical University, China
| | | | - Jianbo Shu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, China
| |
Collapse
|
24
|
Schepers J, Löser T, Behl C. Lipids and α-Synuclein: adding further variables to the equation. Front Mol Biosci 2024; 11:1455817. [PMID: 39188788 PMCID: PMC11345258 DOI: 10.3389/fmolb.2024.1455817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Aggregation of alpha-Synuclein (αSyn) has been connected to several neurodegenerative diseases, such as Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), that are collected under the umbrella term synucleinopathies. The membrane binding abilities of αSyn to negatively charged phospholipids have been well described and are connected to putative physiological functions of αSyn. Consequently, αSyn-related neurodegeneration has been increasingly connected to changes in lipid metabolism and membrane lipid composition. Indeed, αSyn aggregation has been shown to be triggered by the presence of membranes in vitro, and some genetic risk factors for PD and DLB are associated with genes coding for proteins directly involved in lipid metabolism. At the same time, αSyn aggregation itself can cause alterations of cellular lipid composition and brain samples of patients also show altered lipid compositions. Thus, it is likely that there is a reciprocal influence between cellular lipid composition and αSyn aggregation, which can be further affected by environmental or genetic factors and ageing. Little is known about lipid changes during physiological ageing and regional differences of the lipid composition of the aged brain. In this review, we aim to summarise our current understanding of lipid changes in connection to αSyn and discuss open questions that need to be answered to further our knowledge of αSyn related neurodegeneration.
Collapse
Affiliation(s)
| | | | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
25
|
Grijaldo-Alvarez SJB, Alvarez MRS, Schindler RL, Oloumi A, Hernandez N, Seales T, Angeles JGC, Nacario RC, Completo GC, Zivkovic AM, Bruce German J, Lebrilla CB. N-Glycan profile of the cell membrane as a probe for lipopolysaccharide-induced microglial neuroinflammation uncovers the effects of common fatty acid supplementation. Food Funct 2024; 15:8258-8273. [PMID: 39011570 PMCID: PMC11668514 DOI: 10.1039/d4fo01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.
Collapse
Affiliation(s)
- Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 95616, USA.
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | | | | | - Armin Oloumi
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Noah Hernandez
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Tristan Seales
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Jorge Gil C Angeles
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries and Forestry, University of the Philippines Los Baños, Philippines, 4031.
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Gladys C Completo
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, 95616, USA.
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, 95616, USA.
| | | |
Collapse
|
26
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
27
|
Delvenne A, Vandendriessche C, Gobom J, Burgelman M, Dujardin P, De Nolf C, Tijms BM, Teunissen CE, Schindler SE, Verhey F, Ramakers I, Martinez-Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, De Roeck E, Popp J, Peyratout G, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vandenbroucke RE, Vos SJB. Involvement of the choroid plexus in Alzheimer's disease pathophysiology: findings from mouse and human proteomic studies. Fluids Barriers CNS 2024; 21:58. [PMID: 39020361 PMCID: PMC11256635 DOI: 10.1186/s12987-024-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, USA
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zürich, Zurich, Switzerland
| | | | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, UK
- Johnson and Johnson Medical Ltd., Wokingham, UK
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- H. Lundbeck A/S, Valby, Denmark
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
28
|
Signorini C, Pannuzzo G, Graziano ACE, Moretti E, Collodel G, Cardile V. Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Delays the Phenotypic Manifestation of Krabbe Disease and Partially Restores Lipid Mediator Production in the Brain-Study in a Mouse Model of the Disease. Int J Mol Sci 2024; 25:7149. [PMID: 39000257 PMCID: PMC11241235 DOI: 10.3390/ijms25137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = -0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = -0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.P.); (V.C.)
| | | | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.P.); (V.C.)
| |
Collapse
|
29
|
Ikiz ED, Hascup ER, Bae C, Hascup KN. Microglial Piezo1 mechanosensitive channel as a therapeutic target in Alzheimer's disease. Front Cell Neurosci 2024; 18:1423410. [PMID: 38957539 PMCID: PMC11217546 DOI: 10.3389/fncel.2024.1423410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) that control brain development, maintain neural environments, respond to injuries, and regulate neuroinflammation. Despite their significant impact on various physiological and pathological processes across mammalian biology, there remains a notable gap in our understanding of how microglia perceive and transmit mechanical signals in both normal and diseased states. Recent studies have revealed that microglia possess the ability to detect changes in the mechanical properties of their environment, such as alterations in stiffness or pressure. These changes may occur during development, aging, or in pathological conditions such as trauma or neurodegenerative diseases. This review will discuss microglial Piezo1 mechanosensitive channels as potential therapeutic targets for Alzheimer's disease (AD). The structure, function, and modulation of Piezo1 will be discussed, as well as its role in facilitating microglial clearance of misfolded amyloid-β (Aβ) proteins implicated in the pathology of AD.
Collapse
Affiliation(s)
- Erol D. Ikiz
- Department of Chemistry, School of Integrated Sciences, Sustainability, and Public Health, College of Health, Science, and Technology, University of Illinois at Springfield, Springfield, IL, United States
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chilman Bae
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University at Carbondale, Carbondale, IL, United States
| | - Kevin N. Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
30
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
31
|
Liang Y, Yoon JY. Sensors for blood brain barrier on a chip. VITAMINS AND HORMONES 2024; 126:219-240. [PMID: 39029974 DOI: 10.1016/bs.vh.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective membrane that regulates the passage of substances between the bloodstream and the brain, thus safeguarding the central nervous system. This chapter provides an overview of current experimental models and detection methods utilized to study the BBB, along with the implementation of sensors and biosensors in BBB research. We discuss static and dynamic BBB models, highlighting their respective advantages and limitations. Additionally, we examine various detection methods employed in BBB research, including those specific to static and dynamic models. Furthermore, we explore the applications of physical sensors and biosensors in BBB models, focusing on their roles in monitoring barrier integrity and function. We also discuss recent advancements in sensor integration, such as robotic interrogators and integrated electrochemical and optical biosensors. Finally, we present a brief conclusion and future outlook, emphasizing the importance of continued innovation in BBB research to advance our understanding of neurological disorders and drug development.
Collapse
Affiliation(s)
- Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States
| | - Jeong-Yeol Yoon
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
32
|
Martinez TE, Mayilsamy K, Mohapatra SS, Mohapatra S. Modulation of Paracellular Permeability in SARS-CoV-2 Blood-to-Brain Transcytosis. Viruses 2024; 16:785. [PMID: 38793666 PMCID: PMC11126142 DOI: 10.3390/v16050785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.
Collapse
Affiliation(s)
- Taylor E. Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (T.E.M.); (K.M.)
- James A Haley VA Hospital, Tampa, FL 33612, USA;
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (T.E.M.); (K.M.)
- James A Haley VA Hospital, Tampa, FL 33612, USA;
| | - Shyam S. Mohapatra
- James A Haley VA Hospital, Tampa, FL 33612, USA;
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (T.E.M.); (K.M.)
- James A Haley VA Hospital, Tampa, FL 33612, USA;
| |
Collapse
|
33
|
Loukil I, Aguilera EC, Vachon A, Léveillé P, Plourde M. Sex, Body Mass Index, and APOE4 Increase Plasma Phospholipid-Eicosapentaenoic Acid Response During an ω-3 Fatty Acid Supplementation: A Secondary Analysis. J Nutr 2024; 154:1561-1570. [PMID: 38513888 PMCID: PMC11130699 DOI: 10.1016/j.tjnut.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The brain is concentrated with omega (ω)-3 (n-3) fatty acids (FAs), and these FAs must come from the plasma pool. The 2 main ω-3 FAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), must be in the form of nonesterified fatty acid (NEFA) or esterified within phospholipids (PLs) to reach the brain. We hypothesized that the plasma concentrations of these ω-3 FAs can be modulated by sex, body mass index (BMI, kg/m2), age, and the presence of the apolipoprotein (APO) E-ε4 allele in response to the supplementation. OBJECTIVES This secondary analysis aimed to determine the concentration of EPA and DHA within plasma PL and in the NEFA form after an ω-3 FA or a placebo supplementation and to investigate whether the factors change the response to the supplement. METHODS A randomized, double-blind, placebo-controlled trial was conducted. Participants were randomly assigned to either an ω-3 FA supplement (DHA 0.8 g and EPA 1.7 g daily) or to a placebo for 6 mo. FAs from fasting plasma samples were extracted and subsequently separated into PLs with esterified FAs and NEFAs using solid-phase extraction. DHA and EPA concentrations in plasma PLs and as NEFAs were quantified using gas chromatography. RESULTS EPA and DHA concentrations in the NEFA pool significantly increased by 31%-71% and 42%-82%, respectively, after 1 and 6 mo of ω-3 FA supplementation. No factors influenced plasma DHA and EPA responses in the NEFA pool. In the plasma PL pool, DHA increased by 83%-109% and EPA by 387%-463% after 1 and 6 mo of ω-3 FA supplementation. APOE4 carriers, females, and individuals with a BMI of ≤25 had higher EPA concentrations than noncarriers, males, and those with a BMI of >25, respectively. CONCLUSIONS The concentration of EPA in plasma PLs are modulated by APOE4, sex, and BMI. These factors should be considered when designing clinical trials involving ω-3 FA supplementation. This trial was registered at clinicaltrials.gov as NCT01625195.
Collapse
Affiliation(s)
- Insaf Loukil
- Département de médecine/service de gériatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de recherche sur le vieillissement, Sherbrooke, Quebec, Canada
| | - Ester Cisneros Aguilera
- Département de médecine/service de gériatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de recherche sur le vieillissement, Sherbrooke, Quebec, Canada
| | - Annick Vachon
- Département de médecine/service de gériatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de recherche sur le vieillissement, Sherbrooke, Quebec, Canada
| | - Pauline Léveillé
- Département de médecine/service de gériatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de recherche sur le vieillissement, Sherbrooke, Quebec, Canada
| | - Mélanie Plourde
- Département de médecine/service de gériatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de recherche sur le vieillissement, Sherbrooke, Quebec, Canada.
| |
Collapse
|
34
|
Tsap MI, Yatsenko AS, Hegermann J, Beckmann B, Tsikas D, Shcherbata HR. Unraveling the link between neuropathy target esterase NTE/SWS, lysosomal storage diseases, inflammation, abnormal fatty acid metabolism, and leaky brain barrier. eLife 2024; 13:e98020. [PMID: 38660940 PMCID: PMC11090517 DOI: 10.7554/elife.98020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
35
|
Malara M, Prestel M, Tahirovic S. Endo-lysosomal dysfunction and neuronal-glial crosstalk in Niemann-Pick type C disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220388. [PMID: 38368932 PMCID: PMC10874755 DOI: 10.1098/rstb.2022.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is a rare progressive lysosomal lipid storage disorder that manifests with a heterogeneous spectrum of clinical syndromes, including visceral, neurological and psychiatric symptoms. This monogenetic autosomal recessive disease is largely caused by mutations in the NPC1 gene, which controls intracellular lipid homeostasis. Vesicle-mediated endo-lysosomal lipid trafficking and non-vesicular lipid exchange via inter-organelle membrane contact sites are both regulated by the NPC1 protein. Loss of NPC1 function therefore triggers intracellular accumulation of diverse lipid species, including cholesterol, glycosphingolipids, sphingomyelin and sphingosine. The NPC1-mediated dysfunction of lipid transport has severe consequences for all brain cells, leading to neurodegeneration. Besides the cell-autonomous contribution of neuronal NPC1, aberrant NPC1 signalling in other brain cells is critical for the pathology. We discuss here the importance of endo-lysosomal dysfunction and a tight crosstalk between neurons, oligodendrocytes, astrocytes and microglia in NPC pathology. We strongly believe that a cell-specific rescue may not be sufficient to counteract the severity of the NPC pathology, but targeting common mechanisms, such as endo-lysosomal and lipid trafficking dysfunction, may ameliorate NPC pathology. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Mariagiovanna Malara
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| |
Collapse
|
36
|
Borrell-Pages M, Luquero A, Vilahur G, Padró T, Badimon L. Canonical Wnt pathway and the LDL receptor superfamily in neuronal cholesterol homeostasis and function. Cardiovasc Res 2024; 120:140-151. [PMID: 37882606 DOI: 10.1093/cvr/cvad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS There is little information on the regulation of cholesterol homeostasis in the brain. Whether cholesterol crosses the blood-brain barrier is under investigation, but the present understanding is that cholesterol metabolism in the brain is independent from that in peripheral tissues. Lipoprotein receptors from the LDL receptor family (LRPs) have key roles in lipid particle accumulation in cells involved in vascular and cardiac pathophysiology; however, their function on neural cells is unknown. METHODS AND RESULTS The expression of LRP5 and the components and targets of its downstream signalling pathway, the canonical Wnt pathway, including β-catenin, LEF1, VEGF, OPN, MMP7, and ADAM10, is analysed in the brains of Wt and Lrp5-/- mice and in a neuroblastoma cell line. LRP5 expression is increased in a time- and dose-dependent manner after lipid loading in neuronal cells; however, it does not participate in cholesterol homeostasis as shown by intracellular lipid accumulation analyses. Neurons challenged with staurosporin and H2O2 display an anti-apoptotic protective role for LRP5. CONCLUSIONS For the first time, it has been shown that neurons can accumulate intracellular lipids and lipid uptake is performed mainly by the LDLR, while CD36, LRP1, and LRP5 do not play a major role. In addition, it has been shown that LRP5 triggers the canonical Wnt pathway in neuronal cells to generate pro-survival signals. Finally, Lrp5-/- mice have maintained expression of LRP5 only in the brain supporting the biological plausible concept of the need of brain LRP5 to elicit pro-survival processes and embryonic viability.
Collapse
Affiliation(s)
- Maria Borrell-Pages
- Cardiovascular Program ICCC, Sant Pau Institute for Biomedical Research (IIB-Sant Pau), C/Sant Antoni Maria Claret 167, Barcelona 08025, Spain
- CIBER-CV, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Aureli Luquero
- Cardiovascular Program ICCC, Sant Pau Institute for Biomedical Research (IIB-Sant Pau), C/Sant Antoni Maria Claret 167, Barcelona 08025, Spain
- CIBER-CV, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Sant Pau Institute for Biomedical Research (IIB-Sant Pau), C/Sant Antoni Maria Claret 167, Barcelona 08025, Spain
- CIBER-CV, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Sant Pau Institute for Biomedical Research (IIB-Sant Pau), C/Sant Antoni Maria Claret 167, Barcelona 08025, Spain
- CIBER-CV, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Sant Pau Institute for Biomedical Research (IIB-Sant Pau), C/Sant Antoni Maria Claret 167, Barcelona 08025, Spain
- CIBER-CV, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Alhattab M, Moorthy LS, Patel D, Franco CMM, Puri M. Oleaginous Microbial Lipids' Potential in the Prevention and Treatment of Neurological Disorders. Mar Drugs 2024; 22:80. [PMID: 38393051 PMCID: PMC10890163 DOI: 10.3390/md22020080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The products of oleaginous microbes, primarily lipids, have gained tremendous attention for their health benefits in food-based applications as supplements. However, this emerging biotechnology also offers a neuroprotective treatment/management potential for various diseases that are seldom discussed. Essential fatty acids, such as DHA, are known to make up the majority of brain phospholipid membranes and are integral to cognitive function, which forms an important defense against Alzheimer's disease. Omega-3 polyunsaturated fatty acids have also been shown to reduce recurrent epilepsy seizures and have been used in brain cancer therapies. The ratio of omega-3 to omega-6 PUFAs is essential in maintaining physiological function. Furthermore, lipids have also been employed as an effective vehicle to deliver drugs for the treatment of diseases. Lipid nanoparticle technology, used in pharmaceuticals and cosmeceuticals, has recently emerged as a biocompatible, biodegradable, low-toxicity, and high-stability means for drug delivery to address the drawbacks associated with traditional medicine delivery methods. This review aims to highlight the dual benefit that lipids offer in maintaining good health for disease prevention and in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mariam Alhattab
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Lakshana S Moorthy
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Durva Patel
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Christopher M M Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
38
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
39
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum. Antioxidants (Basel) 2024; 13:103. [PMID: 38247527 PMCID: PMC10812471 DOI: 10.3390/antiox13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
The regular intake of diets high in saturated fat and sugars increases oxidative stress and has been linked to cognitive decline and premature brain aging. The cerebellum is highly vulnerable to oxidative stress and thus, obesogenic diets might be particularly detrimental to this tissue. However, the precise molecular mechanisms behind obesity-related brain damage are still not clear. Since protein carbonylation, a biomarker of oxidative stress, influences protein functions and is involved in metabolic control, the current investigation addressed the effect of long-term high-fat and high-sucrose diet intake on the cerebellum of Sprague-Dawley rats by deciphering the changes caused in the carbonylated proteome. The antioxidant effects of fish oil supplementation on cerebellar carbonylated proteins were also investigated. Lipid peroxidation products and carbonylated proteins were identified and quantified using immunoassays and 2D-LC-MS/MS in the cerebellum. After 21 weeks of nutritional intervention, the obesogenic diet selectively increased carbonylation of the proteins that participate in ATP homeostasis and glutamate metabolism in the cerebellum. Moreover, the data demonstrated that fish oil supplementation restrained carbonylation of the main protein targets oxidatively damaged by the obesogenic diet, and additionally protected against carbonylation of several other proteins involved in amino acid biosynthesis and neurotransmission. Therefore, dietary interventions with fish oils could help the cerebellum to be more resilient to oxidative damage. The results could shed some light on the effect of high-fat and high-sucrose diets on redox homeostasis in the cerebellum and boost the development of antioxidant-based nutritional interventions to improve cerebellum health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
- Universidad de Vigo, Circunvalación ao Campus Universitario, E-36310 Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
| | - Ana Raner
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (M.R.)
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (M.R.)
| | - Sara Ramos-Romero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain;
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma de Gramenet, Spain;
- Instituto de Química Avanzada de Catalunya—Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma de Gramenet, Spain;
- Instituto de Química Avanzada de Catalunya—Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
| |
Collapse
|
40
|
Sato T, Okumura M, Takahashi J, Kokubu T, Tanabe M, Onda A, Komatsu T, Sakuta K, Sakai K, Umehara T, Mitsumura H, Matsushima M, Iguchi Y. Arachidonic acid level is related to early motor recovery following intracerebral hemorrhage with severe motor paralysis. Prostaglandins Leukot Essent Fatty Acids 2024; 200:102603. [PMID: 38147805 DOI: 10.1016/j.plefa.2023.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Low arachidonic acid (AA) levels are reportedly associated with unfavorable outcomes in intracerebral hemorrhage (ICH). OBJECTIVE We aimed to clarify whether serum AA levels might be associated with a good recovery from severe motor paralysis in the early stage of hospitalization. METHODS From among consecutive ICH patients between October 2012 and December 2021, patients with a sum of upper and lower extremity National Institutes of Health stroke scale (NIHSS) scores of 4-8 at admission (severe motor paralysis) were included. We defined good early recovery from severe motor paralysis as a sum of upper and lower extremity NIHSS scores of 0-3 on day 7 after admission, and that of individual upper and lower extremities as NIHSS scores of 0-1 on day 7 after admission. We aimed to assess whether serum AA levels might be associated with good early recovery from severe motor paralysis. RESULTS We screened 377 consecutive ICH patients, including 140 with severe motor paralysis (88 (63%) males, median age 64 years). Recovery from severe motor paralysis was seen in 48 (34%). Higher AA levels (PR 1.243, 95% CI 1.042 to 1.483, p = 0.016) were independently associated with good overall recovery, and good recovery of upper and lower extremities separately (upper extremity: PR 1.319, 95% CI 1.101 to 1.580, p = 0.003; lower extremity: PR 1.293, 95% CI 1.115 to 1.499, p = 0.001). CONCLUSIONS Higher AA levels may contribute to a good early motor recovery in patients with severe motor paralysis due to ICH.
Collapse
Affiliation(s)
- Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Motohiro Okumura
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Junichiro Takahashi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsushi Kokubu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Maki Tanabe
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Asako Onda
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Sakuta
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masato Matsushima
- Division of Clinical Epidemiology, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomed Pharmacother 2023; 168:115708. [PMID: 37857255 DOI: 10.1016/j.biopha.2023.115708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain; Universidad de Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain.
| | - Ana Raner
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Sara Ramos-Romero
- Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Av Diagonal 643, E-08028 Barcelona, Spain; Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| |
Collapse
|
42
|
Tsukahara T, Sasaki M, Haniu H, Matsuda Y. Lysophospholipids transport across blood-brain barrier in an in vitro reconstruction model. Biochem Biophys Res Commun 2023; 676:91-96. [PMID: 37499369 DOI: 10.1016/j.bbrc.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study builds on our previous study, which highlighted the need for further research on the potential use of lysophospholipid (LPL) supplementation to prevent chronic and age-related diseases. We aimed to evaluate the transmembrane transport of LPL across rat and monkey blood-brain barrier (BBB) models. An in vitro monkey BBB model is required to elucidate the differences between rat and primate BBB-related data and to measure the permeability of LPLs being researched in relation to the human BBB. Based on our previous experiment, porcine liver decomposition product-derived phospholipids (PEL) strongly inhibit α-synuclein (α-Syn) aggregation. We have identified several candidates potentially relevant for the inhibition of α-Syn aggregation, such as LPC18:1, LPE18:1, and LPI18:0; however, the BBB permeability of these LPLs remains unclear. In the present study, we assessed the ability of these LPLs to pass through the in vitro rat and monkey BBB models. LPC18:1 showed high BBB permeability, LPI18:0 showed medium permeability, and the BBB permeation of LPE18:1 was negligible. Our results suggest that LPC18:1 and LPI18:0 are functional food factors that can cross the BBB.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Masanori Sasaki
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yoshikazu Matsuda
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Ina, 362-0806, Japan
| |
Collapse
|
43
|
Chmielarz M, Sobieszczańska B, Teisseyre A, Wawrzyńska M, Bożemska E, Środa-Pomianek K. Palmitic Acid Modulates Microglial Cell Response to Metabolic Endotoxemia in an In Vitro Study. Nutrients 2023; 15:3463. [PMID: 37571401 PMCID: PMC10421407 DOI: 10.3390/nu15153463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic endotoxemia (ME) is characterized by a 2-3-fold increase in blood endotoxin levels and low-grade systemic inflammation without apparent infection. ME is usually accompanied by metabolic syndrome, characterized by central obesity and hyperlipidemia. According to numerous studies, ME may lead to functional brain disorders, including cognitive decline, depression, and dementia. In the current in vitro study, we aimed to determine the direct and indirect impact of endotoxin (LPS) and palmitic acid (PA), representing saturated fatty acids, on the inflammatory and oxidative stress response in the human microglial HMC3 cells unstimulated and stimulated with IFNγ. The study's results revealed that direct HMC3 cell exposition to endotoxin and PA increased inflammatory response measured as levels of IL-6 and MCP-1 released into the medium and PGE2 levels in cell lysates. Moreover, direct HMC3 cell treatment with PA and LPS induced oxidative stress, i.e., ROS and COX-2 production and lipid peroxidation. On the contrary, an indirect effect of LPS and PA on microglial cells, assessed as the impact of macrophage metabolites, was much lower regarding the inflammatory response, although still associated with oxidative stress. Interestingly, IFNγ had a protective effect on microglial cells, reducing the production of pro-inflammatory mediators and oxidative stress in HMC3 cells treated directly and indirectly with LPS and PA.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw Medical University, 50-365 Wroclaw, Poland; (M.C.); (E.B.)
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw Medical University, 50-365 Wroclaw, Poland; (M.C.); (E.B.)
| | - Andrzej Teisseyre
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-365 Wroclaw, Poland; (A.T.); (K.Ś.-P.)
| | - Magdalena Wawrzyńska
- Department of Preclinical Studies, Faculty of Health Sciences, Wroclaw Medical University, 50-365 Wroclaw, Poland;
| | - Edyta Bożemska
- Department of Microbiology, Wroclaw Medical University, 50-365 Wroclaw, Poland; (M.C.); (E.B.)
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-365 Wroclaw, Poland; (A.T.); (K.Ś.-P.)
| |
Collapse
|
44
|
Yamamoto S, Masuda T. Lipid in microglial biology - from material to mediator. Inflamm Regen 2023; 43:38. [PMID: 37460930 PMCID: PMC10351166 DOI: 10.1186/s41232-023-00289-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Microglia are resident macrophages in the central nervous system (CNS) that play various roles during brain development and in the pathogenesis of CNS diseases. Recently, reprogramming of cellular energetic metabolism in microglia has drawn attention as a crucial mechanism for diversification of microglial functionality. Lipids are highly diverse materials and crucial components of cell membranes in every cell. Accumulating evidence has shown that lipid and its metabolism are tightly involved in microglial biology. In this review, we summarize the current knowledge about microglial lipid metabolism in health and disease.
Collapse
Affiliation(s)
- Shota Yamamoto
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
45
|
Sigler A, Wu J, Pfaff A, Adetunji O, Nam P, James D, Burton C, Shi H. Repeated Low-Level Blast Exposure Alters Urinary and Serum Metabolites. Metabolites 2023; 13:metabo13050638. [PMID: 37233679 DOI: 10.3390/metabo13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC-tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings.
Collapse
Affiliation(s)
- Austin Sigler
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Jiandong Wu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Olajide Adetunji
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Paul Nam
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Casey Burton
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
- Phelps Health, Rolla, MO 65401, USA
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
46
|
Gao YH, Li X. Cholesterol metabolism: Towards a therapeutic approach for multiple sclerosis. Neurochem Int 2023; 164:105501. [PMID: 36803679 DOI: 10.1016/j.neuint.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Growing evidence points to the importance of cholesterol in preserving brain homeostasis. Cholesterol makes up the main component of myelin in the brain, and myelin integrity is vital in demyelinating diseases such as multiple sclerosis. Because of the connection between myelin and cholesterol, the interest in cholesterol in the central nervous system increased during the last decade. In this review, we provide a detailed overview on brain cholesterol metabolism in multiple sclerosis and its role in promoting oligodendrocyte precursor cell differentiation and remyelination.
Collapse
Affiliation(s)
- Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
47
|
Unsaturated Fatty Acids and Their Immunomodulatory Properties. BIOLOGY 2023; 12:biology12020279. [PMID: 36829556 PMCID: PMC9953405 DOI: 10.3390/biology12020279] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Oils are an essential part of the human diet and are primarily derived from plant (or sometimes fish) sources. Several of them exhibit anti-inflammatory properties. Specific diets, such as Mediterranean diet, that are high in ω-3 polyunsaturated fatty acids (PUFAs) and ω-9 monounsaturated fatty acids (MUFAs) have even been shown to exert an overall positive impact on human health. One of the most widely used supplements in the developed world is fish oil, which contains high amounts of PUFAs docosahexaenoic and eicosapentaenoic acid. This review is focused on the natural sources of various polyunsaturated and monounsaturated fatty acids in the human diet, and their role as precursor molecules in immune signaling pathways. Consideration is also given to their role in CNS immunity. Recent findings from clinical trials utilizing various fatty acids or diets high in specific fatty acids are reviewed, along with the mechanisms through which fatty acids exert their anti-inflammatory properties. An overall understanding of diversity of polyunsaturated fatty acids and their role in several molecular signaling pathways is useful in formulating diets that reduce inflammation and increase longevity.
Collapse
|
48
|
Kim JS, Soto-Diaz K, Bingham TW, Steelman AJ, Das A. Role of omega-3 endocannabinoids in the modulation of T-cell activity in a multiple sclerosis experimental autoimmune encephalomyelitis (EAE) model. J Biol Chem 2023; 299:102886. [PMID: 36626985 PMCID: PMC9926309 DOI: 10.1016/j.jbc.2023.102886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies show that omega-3 fatty acid consumption is associated with improved conditions in neurodegenerative diseases such as multiple sclerosis (MS). However, the mechanism of this association is not well understood. Emerging evidence suggests that parent molecules such as docosahexaenoic acid are converted into downstream metabolites that are capable of directly modulating immune responses. In vitro, we found that docosahexaenoyl ethanolamide (DHEA), another dietary component and its epoxide metabolite, reduced the polarization of naïve T-cells toward proinflammatory Th1 and Th17 phenotypes. Furthermore, we identified that DHEA and related endocannabinoids are changing during the disease progression in mice undergoing relapse-remitting experimental autoimmune encephalomyelitis (RR-EAE). In addition, daily administration of DHEA to mice delayed the onset of disease, the rate of relapse, and the severity of clinical scores at relapse in RR-EAE, an animal model of MS. Collectively, these data indicate that DHEA and their downstream metabolites reduce the disease severity in the RR-EAE model of MS and can be potential dietary adjuvants to existing MS therapeutics.
Collapse
Affiliation(s)
- Justin S. Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner W. Bingham
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew J. Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,For correspondence: Aditi Das; Andrew J. Steelman
| | - Aditi Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
49
|
Deng Y, Yi X, Gong Y, Zhou L, Xie D, Wang J, Liu Z, Zhang Y, Wu W. Palmitic acid induces nDNA release to cytosol and promotes microglial M1 polarization via cGAS-STING signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119385. [PMID: 36302463 DOI: 10.1016/j.bbamcr.2022.119385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Palmitic acid (PA), the most common statured fatty acid in diets, is involved in peripheral as well as central inflammation. The M1 polarization of microglia plays an important role in PA-induced neuroinflammation. However, it is still unclear on the key factor and molecule mechanism of microglial polarization among it. Thus, we investigated whether the release of self-DNA into the cytoplasm of microglia was a consequence of PA treatment, as in aortic endothelial cells and adipocytes. RT-qPCR and immunofluorescence were performed to detect the status of cytosolic DNA and microglial polarization after PA treatment. We found that the content of cytosolic nDNA rather than mtDNA increased after PA treatment and the M1 polarization of microglia was associated with this. Moreover, the knockdown of cGAS in BV2 microglial cells demonstrated that the cGAS-STING pathway is involved in polarization process. Our results revealed that nDNA and cGAS-STING pathway are critically involved in PA-induced microglial M1 polarization. This mechanism may pose a new insight on targeting microglia may be a promising way to mitigate diet-induced early neuroinflammation.
Collapse
Affiliation(s)
- Yuping Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqing Yi
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxiang Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liyan Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dongxue Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jufen Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhilin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yinhao Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenhe Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
50
|
Human mini-blood-brain barrier models for biomedical neuroscience research: a review. Biomater Res 2022; 26:82. [PMID: 36527159 PMCID: PMC9756735 DOI: 10.1186/s40824-022-00332-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The human blood-brain barrier (BBB) is a unique multicellular structure that is in critical demand for fundamental neuroscience studies and therapeutic evaluation. Despite substantial achievements in creating in vitro human BBB platforms, challenges in generating specifics of physiopathological relevance are viewed as impediments to the establishment of in vitro models. In this review, we provide insight into the development and deployment of in vitro BBB models that allow investigation of the physiology and pathology of neurological therapeutic avenues. First, we highlight the critical components, including cell sources, biomaterial glue collections, and engineering techniques to reconstruct a miniaturized human BBB. Second, we describe recent breakthroughs in human mini-BBBs for investigating biological mechanisms in neurology. Finally, we discuss the application of human mini-BBBs to medical approaches. This review provides strategies for understanding neurological diseases, a validation model for drug discovery, and a potential approach for generating personalized medicine.
Collapse
|