1
|
Ljungqvist O, Weimann A, Sandini M, Baldini G, Gianotti L. Contemporary Perioperative Nutritional Care. Annu Rev Nutr 2024; 44:231-255. [PMID: 39207877 DOI: 10.1146/annurev-nutr-062222-021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Over the last decades, surgical complication rates have fallen drastically. With the introduction of new surgical techniques coupled with specific evidence-based perioperative care protocols, patients today run half the risk of complications compared with traditional care. Many patients who in previous years needed weeks of hospital care now recover and can leave in days. These remarkable improvements are achieved by using nutritional stress-reducing care elements for the surgical patient that reduce metabolic stress and allow for the return of gut function. This new approach to nutritional care and how it is delivered as an integral part of enhancing recovery after surgery are outlined in this review. We also summarize the new and increased understanding of the effects of the routes of delivering nutrition and the role of the gut, as well as the current recommendations for artificial nutritional support.
Collapse
Affiliation(s)
- Olle Ljungqvist
- Department of Surgery, School of Medical Sciences, Orebro University Hospital and Orebro University, Orebro, Sweden;
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Arved Weimann
- Department of General, Visceral, and Oncologic Surgery, Saint George Hospital, Leipzig, Germany
| | - Marta Sandini
- Department of Medicine, Surgery, and Neuroscience and Unit of General and Oncologic Surgery, University of Siena, Siena, Italy
| | - Gabriele Baldini
- Section of Anesthesia and Critical Care, Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Luca Gianotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- HPB Surgery, Foundation IRCCS San Gerardo Hospital, Monza, Italy
| |
Collapse
|
2
|
Verduci E, Tosi M, Montanari C, Gambino M, Eletti F, Bosetti A, Di Costanzo M, Carbone MT, Biasucci G, Fiori L, Zuccotti G. Are Phe-Free Protein Substitutes Available in Italy for Infants with PKU All the Same? Nutrients 2023; 16:30. [PMID: 38201860 PMCID: PMC10780432 DOI: 10.3390/nu16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Breastfeeding or standard infant formulas, alongside phenylalanine (Phe)-free protein substitutes, constitute the dietary management for infants with PKU to guarantee protein requirements are met in compliance with metabolic tolerance. This work aims to analyse the nutritional composition of Phe-free infant protein substitutes, in terms of macronutrients, micronutrients and functional components, available for PKU dietary management in Italy. A total of seven infant Phe-free protein substitutes were included in this review, six powder and one liquid. A second analysis was conducted to compare them to the composition of formulas intended for healthy infants, taking into consideration the Commission Delegated Regulation (EU) 2016/127 and Commission Delegated Regulation (EU) 2016/128 for micronutrients. The analysis revealed heterogeneity among protein substitutes suitable for infants with PKU. The energy and protein equivalents (P.Eq.) content are different; all of the substitutes contain docosahexaenoic acid (DHA) and arachidonic acid (ARA), while eicosapentaenoic acid (EPA), fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), human milk oligosaccharides (HMOs) and nucleotides are not present in all the substitutes. More attention should be paid to these infant products to ensure metabolic control of PKU, and also promote proper growth, cognitive neurodevelopment, favourable gut microbiota composition, and immune system health, while reducing the risk for non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Elvira Verduci
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Martina Tosi
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Mirko Gambino
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Francesca Eletti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Margherita Di Costanzo
- U.O.C. Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.D.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Giacomo Biasucci
- U.O.C. Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.D.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
3
|
Tosi M, Montanari C, Bona F, Tricella C, Agostinelli M, Dolor J, Chillemi C, Di Profio E, Tagi VM, Vizzuso S, Fiore G, Zuccotti G, Verduci E. Dietary Inflammatory Potential in Pediatric Diseases: A Narrative Review. Nutrients 2023; 15:5095. [PMID: 38140353 PMCID: PMC10745369 DOI: 10.3390/nu15245095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory status is one of the main drivers in the development of non-communicable diseases (NCDs). Specific unhealthy dietary patterns and the growing consumption of ultra-processed foods (UPFs) may influence the inflammation process, which negatively modulates the gut microbiota and increases the risk of NCDs. Moreover, several chronic health conditions require special long-term dietary treatment, characterized by altered ratios of the intake of nutrients or by the consumption of disease-specific foods. In this narrative review, we aimed to collect the latest evidence on the pro-inflammatory potential of dietary patterns, foods, and nutrients in children affected by multifactorial diseases but also on the dietetic approaches used as treatment for specific diseases. Considering multifactorial diet-related diseases, the triggering effect of pro-inflammatory diets has been addressed for metabolic syndrome and inflammatory bowel diseases, and the latter for adults only. Future research is required on multiple sclerosis, type 1 diabetes, and pediatric cancer, in which the role of inflammation is emerging. For diseases requiring special diets, the role of single or multiple foods, possibly associated with inflammation, was assessed, but more studies are needed. The evidence collected highlighted the need for health professionals to consider the entire dietary pattern, providing balanced and healthy diets not only to permit the metabolic control of the disease itself, but also to prevent the development of NCDs in adolescence and adulthood. Personalized nutritional approaches, in close collaboration between the hospital, country, and families, must always be promoted together with the development of new methods for the assessment of pro-inflammatory dietary habits in pediatric age and the implementation of telemedicine.
Collapse
Affiliation(s)
- Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Federica Bona
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Chiara Tricella
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Jonabell Dolor
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Claudia Chillemi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Sara Vizzuso
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| |
Collapse
|
4
|
Tummolo A, Carella R, De Giovanni D, Paterno G, Simonetti S, Tolomeo M, Leone P, Barile M. Micronutrient Deficiency in Inherited Metabolic Disorders Requiring Diet Regimen: A Brief Critical Review. Int J Mol Sci 2023; 24:17024. [PMID: 38069347 PMCID: PMC10707160 DOI: 10.3390/ijms242317024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Rosa Carella
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Donatella De Giovanni
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Simonetta Simonetti
- Regional Centre for Neonatal Screening, Department of Clinical Pathology and Neonatal Screening, Children’s Hospital “Giovanni XXIII”, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy;
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| |
Collapse
|
5
|
Parolisi S, Montanari C, Borghi E, Cazzorla C, Zuvadelli J, Tosi M, Barone R, Bensi G, Bonfanti C, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria. Pharmacol Res 2023; 197:106952. [PMID: 37804926 DOI: 10.1016/j.phrs.2023.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cognitive and psychiatric disorders are well documented across the lifetime of patients with inborn errors of metabolism (IEMs). Gut microbiota impacts behavior and cognitive functions through the gut-brain axis (GBA). According to recent research, a broad spectrum of GBA disorders may be influenced by a perturbed Tryptophan (Trp) metabolism and are associated with alterations in composition or function of the gut microbiota. Furthermore, early-life diets may influence children's neurodevelopment and cognitive deficits in adulthood. In Phenylketonuria (PKU), since the main therapeutic intervention is based on a life-long restrictive diet, important alterations of gut microbiota have been observed. Studies on PKU highlight the impact of alterations of gut microbiota on the central nervous system (CNS), also investigating the involvement of metabolic pathways, such as Trp and kynurenine (KYN) metabolisms, involved in numerous neurodegenerative disorders. An alteration of Trp metabolism with an imbalance of the KYN pathway towards the production of neurotoxic metabolites implicated in numerous neurodegenerative and inflammatory diseases has been observed in PKU patients supplemented with Phe-free amino acid medical foods (AA-MF). The present review investigates the possible link between gut microbiota and the brain in IEMs, focusing on Trp metabolism in PKU. Considering the evidence collected, cognitive and behavioral well-being should always be monitored in routine IEMs clinical management. Further studies are required to evaluate the possible impact of Trp metabolism, through gut microbiota, on cognitive and behavioral functions in IEMs, to identify innovative dietetic strategies and improve quality of life and mental health of these patients.
Collapse
Affiliation(s)
- Sara Parolisi
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Juri Zuvadelli
- Clinical Department of Pediatrics, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, AOU Policlinico "G.Rodolico-San Marco", University of Catania, Catania, Italy
| | - Giulia Bensi
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Cristina Bonfanti
- Rare metabolic disease unit, Pediatric Department, San Gerardo Hospital, Monza, Italy
| | | | - Giacomo Biasucci
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Maria T Carbone
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Lammi C, Bollati C, Fiori L, Li J, Fanzaga M, d'Adduzio L, Tosi M, Burlina A, Zuccotti G, Verduci E. Glycomacropeptide (GMP) rescued the oxidative and inflammatory activity of free L-AAs in human Caco-2 cells: New insights that support GMP as a valid and health-promoting product for the dietary management of phenylketonuria (PKU) patients. Food Res Int 2023; 173:113258. [PMID: 37803570 DOI: 10.1016/j.foodres.2023.113258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 10/08/2023]
Abstract
Phenylketonuria represents the most prevalent inborn error of amino acid metabolism. In early diagnosed patients adequate and continued dietary treatment results in a good neurologic outcome. However, due to the natural protein and phenylalanine-restricted diet, oxidative stress represents a concern in phenylketonuric patients. Clear evidences suggest that the pathophysiology of PKU is also dependent by mitochondrial impairment and oxidative stress. In this context due to the tight connection between oxidative and inflammatory stress and noncommunicable diseases (NCDs) development, it is reasonable to hypothesize that PKU patients may present a higher risk to develop NCDs during their life. Currently available protein substitutes on the market include free amino acids (L-AAs), prolonged-release protein substitute and formula containing glycomacropeptide (GMP). Our results suggest that free L-AAs significanlty worsens the intestinal hydrogen peroxide (H2O2) and lipopolysaccharides (LPS)-induced oxidative and inflammatory status in Caco-2 cells, which are significantly restored towards physiological condition by GMP alone and when present in a 1:1 mixture with free L-AAs, providing new preclinical piece of information which can shed a shadow on the mechanism of action of these products on PKU patients and their future management.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children\'s Hospital, University of Milan, Milan, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lorenza d'Adduzio
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children\'s Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, Reference Centre Expanded Newborn Screening, University Hospital, Padua, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children\'s Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children\'s Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Tummolo A, Melpignano L. The Reciprocal Interplay between Infections and Inherited Metabolic Disorders. Microorganisms 2023; 11:2545. [PMID: 37894204 PMCID: PMC10608884 DOI: 10.3390/microorganisms11102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Infections represent the main cause of acute metabolic derangements and/or the worsening of the clinical course of many inherited metabolic disorders (IMDs). The basic molecular mechanisms behind the role of infections in these conditions have not been completely clarified. This review points out the different mechanisms behind the relationship between IMDs and infections, providing an overview of this still-under-investigated area. Classically, infections have been considered as the consequence of a compromised immune system due to a biochemical defect of energy production. An adjunctive pathogenetic mechanism is related to a genetically altered protein-attached glycans composition, due to congenital glycosilation defects. In addition, a dietary regimen with a reduced intake of both micro- and macronutrients can potentially compromise the ability of the immune system to deal with an infection. There is recent pre-clinical evidence showing that during infections there may be a disruption of substrates of various metabolic pathways, leading to further cellular metabolic alteration. Therefore, infective agents may affect cellular metabolic pathways, by mediation or not of an altered immune system. The data reviewed here strongly suggest that the role of infections in many types of IMDs deserves greater attention for a better management of these disorders and a more focused therapeutic approach.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Livio Melpignano
- Medical Direction, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy;
| |
Collapse
|
8
|
Velasco-Álvarez JR, Torres y Torres N, Chairez I, Castrejón-Flores JL. Microbiome distribution modeling using gradient descent strategies for mock, in vitro and clinical community distributions. PLoS One 2023; 18:e0290082. [PMID: 37603566 PMCID: PMC10441787 DOI: 10.1371/journal.pone.0290082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
The human gut is home to a complex array of microorganisms interacting with the host and each other, forming a community known as the microbiome. This community has been linked to human health and disease, but understanding the underlying interactions is still challenging for researchers. Standard studies typically use high-throughput sequencing to analyze microbiome distribution in patient samples. Recent advancements in meta-omic data analysis have enabled computational modeling strategies to integrate this information into an in silico model. However, there is a need for improved parameter fitting and data integration features in microbial community modeling. This study proposes a novel alternative strategy utilizing state-of-the-art dynamic flux balance analysis (dFBA) to provide a simple protocol enabling accurate replication of abundance data composition through dynamic parameter estimation and integration of metagenomic data. We used a recurrent optimization algorithm to replicate community distributions from three different sources: mock, in vitro, and clinical microbiome. Our results show an accuracy of 98% and 96% when using in vitro and clinical bacterial abundance distributions, respectively. The proposed modeling scheme allowed us to observe the evolution of metabolites. It could provide a deeper understanding of metabolic interactions while taking advantage of the high contextualization features of GEM schemes to fit the study case. The proposed modeling scheme could improve the approach in cases where external factors determine specific bacterial distributions, such as drug intake.
Collapse
Affiliation(s)
- Juan Ricardo Velasco-Álvarez
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Gustavo A. Madero, Mexico City, Mexico
| | - Nimbe Torres y Torres
- Departamento de Fisiólogía de la Nutrición, Instituto Nacional Ciencias Médicas y Nutrición(“Salvador Zubirán”, Tlalpan, Mexico City, Mexico
| | - Isaac Chairez
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Gustavo A. Madero, Mexico City, Mexico
- School of Engineering and Sciences, Técnologico de Monterrey-Campus Guadalajara, Zapopan, Jalisco, Mexico
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Gustavo A. Madero, Mexico City, Mexico
| |
Collapse
|
9
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
10
|
Cannet C, Bayat A, Frauendienst-Egger G, Freisinger P, Spraul M, Himmelreich N, Kockaya M, Ahring K, Godejohann M, MacDonald A, Trefz F. Phenylketonuria (PKU) Urinary Metabolomic Phenotype Is Defined by Genotype and Metabolite Imbalance: Results in 51 Early Treated Patients Using Ex Vivo 1H-NMR Analysis. Molecules 2023; 28:4916. [PMID: 37446577 DOI: 10.3390/molecules28134916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Phenylketonuria (PKU) is a rare metabolic disorder caused by mutations in the phenylalanine hydroxylase gene. Depending on the severity of the genetic mutation, medical treatment, and patient dietary management, elevated phenylalanine (Phe) may occur in blood and brain tissues. Research has recently shown that high Phe not only impacts the central nervous system, but also other organ systems (e.g., heart and microbiome). This study used ex vivo proton nuclear magnetic resonance (1H-NMR) analysis of urine samples from PKU patients (mean 14.9 ± 9.2 years, n = 51) to identify the impact of elevated blood Phe and PKU treatment on metabolic profiles. Our results found that 24 out of 98 urinary metabolites showed a significant difference (p < 0.05) for PKU patients compared to age-matched healthy controls (n = 51) based on an analysis of urinary metabolome. These altered urinary metabolites were related to Phe metabolism, dysbiosis, creatine synthesis or intake, the tricarboxylic acid (TCA) cycle, end products of nicotinamide-adenine dinucleotide degradation, and metabolites associated with a low Phe diet. There was an excellent correlation between the metabolome and genotype of PKU patients and healthy controls of 96.7% in a confusion matrix model. Metabolomic investigations may contribute to a better understanding of PKU pathophysiology.
Collapse
Affiliation(s)
| | - Allan Bayat
- Kennedy Centre, Center for PKU, 2600 Glostrup, Denmark
| | | | - Peter Freisinger
- Department of Pediatrics, School of Medicine, University of Tübingen, 72074 Tübingen, Germany
| | | | | | - Musa Kockaya
- Private Pediatric Practice, 68307 Mannheim, Germany
| | | | | | - Anita MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | | |
Collapse
|
11
|
Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective. Parasite Immunol 2023; 45:e12949. [PMID: 36063358 DOI: 10.1111/pim.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
13
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:nu14153198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut–brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Correspondence:
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
14
|
Assessing Gut Microbiota in an Infant with Congenital Propionic Acidemia before and after Probiotic Supplementation. Microorganisms 2021; 9:microorganisms9122599. [PMID: 34946200 PMCID: PMC8703847 DOI: 10.3390/microorganisms9122599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Propionic Acidemia (PA) is a rare inherited metabolic disorder caused by the enzymatic block of propionyl-CoA carboxylase with the consequent accumulation of propionic acid, which is toxic for the brain and cardiac cells. Since a considerable amount of propionate is produced by intestinal bacteria, interest arose in the attempt to reduce propionate-producing bacteria through a monthly antibiotic treatment of metronidazole. In the present study, we investigated the gut microbiota structure of an infant diagnosed at 4 days of life through Expanded Newborn Screening (NBS) and treated the child following international guidelines with a special low-protein diet, specific medications and strict biochemical monitoring. Microbiota composition was assessed during the first month of life, and the presence of Bacteroides fragilis, known to be associated with propionate production, was effectively decreased by metronidazole treatment. After five antibiotic therapy cycles, at 4 months of age, the infant was supplemented with a daily mixture of three bifidobacterial strains, known not to be propionate producers. The supplementation increased the population of bifidobacteria, with Bifidobacterium breve as the dominating species; Ruminococcus gnavus, an acetate and formate producer, was also identified. Metabarcoding analysis, compared with low coverage whole metagenome sequencing, proved to capture all the microbial biodiversity and could be the elected tool for fast and cost-effective monitoring protocols to be implemented in the follow up of rare metabolic disorders such as PA. Data obtained could be a possible starting point to set up tailored microbiota modification treatment studies in the attempt to improve the quality of life of people affected by propionic acidemia.
Collapse
|