1
|
Thirulogachandar V, Govind G, Hensel G, Kale SM, Kuhlmann M, Eschen-Lippold L, Rutten T, Koppolu R, Rajaraman J, Palakolanu SR, Seiler C, Sakuma S, Jayakodi M, Lee J, Kumlehn J, Komatsuda T, Schnurbusch T, Sreenivasulu N. HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2900-2916. [PMID: 38366171 PMCID: PMC11358255 DOI: 10.1093/jxb/erae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Collapse
Affiliation(s)
- Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Geetha Govind
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Sandip M Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Sudhakar Reddy Palakolanu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Christiane Seiler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Shun Sakuma
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, Tsukuba 3058602, Japan
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, Tsukuba 3058602, Japan
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Barreto Ortiz J, Hirsch CN, Ehlke NJ, Watkins E. SpykProps: an imaging pipeline to quantify architecture in unilateral grass inflorescences. PLANT METHODS 2023; 19:125. [PMID: 37957737 PMCID: PMC10644492 DOI: 10.1186/s13007-023-01104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Inflorescence properties such length, spikelet number, and their spatial distribution across the rachis, are fundamental indicators of seed productivity in grasses and have been a target of selection throughout domestication and crop improvement. However, quantifying such complex morphology is laborious, time-consuming, and commonly limited to human-perceived traits. These limitations can be exacerbated by unfavorable trait correlations between inflorescence architecture and seed yield that can be unconsciously selected for. Computer vision offers an alternative to conventional phenotyping, enabling higher throughput and reducing subjectivity. These approaches provide valuable insights into the determinants of seed yield, and thus, aid breeding decisions. RESULTS Here, we described SpykProps, an inexpensive Python-based imaging system to quantify morphological properties in unilateral inflorescences, that was developed and tested on images of perennial grass (Lolium perenne L.) spikes. SpykProps is able to rapidly and accurately identify spikes (RMSE < 1), estimate their length (R2 = 0.96), and number of spikelets (R2 = 0.61). It also quantifies color and shape from hundreds of interacting descriptors that are accurate predictors of architectural and agronomic traits such as seed yield potential (R2 = 0.94), rachis weight (R2 = 0.83), and seed shattering (R2 = 0.85). CONCLUSIONS SpykProps is an open-source platform to characterize inflorescence architecture in a wide range of grasses. This imaging tool generates conventional and latent traits that can be used to better characterize developmental and agronomic traits associated with inflorescence architecture, and has applications in fields that include breeding, physiology, evolution, and development biology.
Collapse
Affiliation(s)
- Joan Barreto Ortiz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nancy Jo Ehlke
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Eric Watkins
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
3
|
Backhaus AE, Griffiths C, Vergara-Cruces A, Simmonds J, Lee R, Morris RJ, Uauy C. Delayed development of basal spikelets in wheat explains their increased floret abortion and rudimentary nature. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5088-5103. [PMID: 37338600 PMCID: PMC10498016 DOI: 10.1093/jxb/erad233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Large differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form. Basal spikelets are delayed in initiation, yet they continue to develop and produce florets. The precise timing or the cause of their abortion remains largely unknown. Here, we investigated the underlying causes of basal spikelet abortion using shading applications in the field. We found that basal spikelet abortion is likely to be the consequence of complete floret abortion, as both occur concurrently and have the same response to shading treatments. We detected no differences in assimilate availability across the spike. Instead, we show that the reduced developmental age of basal florets pre-anthesis is strongly associated with their increased abortion. Using the developmental age pre-abortion, we were able to predict final grain set per spikelet across the spike, alongside the characteristic gradient in the number of grains from basal to central spikelets. Future efforts to improve spikelet homogeneity across the spike could thus focus on improving basal spikelet establishment and increasing floret development rates pre-abortion.
Collapse
Affiliation(s)
| | - Cara Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Rebecca Lee
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Richard J Morris
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
4
|
Weng X, Song H, Sreedasyam A, Haque T, Zhang L, Chen C, Yoshinaga Y, Williams M, O'Malley RC, Grimwood J, Schmutz J, Juenger TE. Transcriptome and DNA methylome divergence of inflorescence development between two ecotypes in Panicum hallii. PLANT PHYSIOLOGY 2023:kiad209. [PMID: 37018475 DOI: 10.1093/plphys/kiad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The morphological diversity of the inflorescence determines flower and seed production, which is critical for plant adaptation. Hall's panicgrass (Panicum hallii, P. hallii) is a wild perennial grass that has been developed as a model to study perennial grass biology and adaptive evolution. Highly divergent inflorescences have evolved between the two major ecotypes in P. hallii, the upland ecotype (P. hallii var hallii, HAL2 genotype) with compact inflorescence and large seed and the lowland ecotype (P. hallii var filipes, FIL2 genotype) with an open inflorescence and small seed. Here we conducted a comparative analysis of the transcriptome and DNA methylome, an epigenetic mark that influences gene expression regulation, across different stages of inflorescence development using genomic references for each ecotype. Global transcriptome analysis of differentially expressed genes (DEGs) and co-expression modules underlying the inflorescence divergence revealed the potential role of cytokinin signaling in heterochronic changes. Comparing DNA methylome profiles revealed a remarkable level of differential DNA methylation associated with the evolution of P. hallii inflorescence. We found that a large proportion of differentially methylated regions (DMRs) were located in the flanking regulatory regions of genes. Intriguingly, we observed a substantial bias of CHH hypermethylation in the promoters of FIL2 genes. The integration of DEGs, DMRs, and Ka/Ks ratio results characterized the evolutionary features of DMRs-associated DEGs that contribute to the divergence of the P. hallii inflorescence. This study provides insights into the transcriptome and epigenetic landscape of inflorescence divergence in P. hallii and a genomic resource for perennial grass biology.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Haili Song
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
6
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
7
|
Cuellar-Garrido LF, Ruiz-Sanchez E, Vargas-Ponce O, Whipple CJ. Ontogeny and anatomy of Bouteloua (Poaceae: Chloridoideae) species display a basipetal branch formation and a novel modified leaf structure in grasses. ANNALS OF BOTANY 2022; 130:737-747. [PMID: 35961673 PMCID: PMC9670754 DOI: 10.1093/aob/mcac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Shoot ontogenesis in grasses follows a transition from a vegetative phase into a reproductive phase. Current studies provide insight into how branch and spikelet formation occur during the reproductive phase. However, these studies do not explain all the complex diversity of grass inflorescence forms and are mostly focused on model grasses. Moreover, truncated inflorescences of the non-model grass genus Urochloa (Panicoideae) with formation of primary branches have basipetal initiation of branches. Bouteloua species (Chloridoideae) are non-model grasses that form truncated inflorescences of primary branches with apical vestiges of uncertain homology at the tips of branching events and sterile florets above the lowermost fertile floret. Sterile florets are reduced to rudimentary lemmas composed of three large awns diverging from an awn column. Conflict about the awn column identity of this rudimentary lemma is often addressed in species descriptions of this genus. We test if Bouteloua species can display basipetal initiation of branches and explore the identity of vestiges and the awn column of rudimentary lemmas. METHODS We surveyed the inflorescence ontogeny and branch/awn anatomy of Bouteloua species and compared results with recent ontogenetic studies of chloridoids. KEY RESULTS Bouteloua arizonica has florets with basipetal maturation. Branches display basipetal branch initiation and maturation. Branch vestiges are formed laterally by meristems during early branching events. The spikelet meristem forms the awn column of rudimentary lemmas. Vestiges and sterile floret awns have anatomical similarities to C4 leaves. CONCLUSIONS Basipetal initiation of branches is a novel feature for Chloridoideae grasses. Branch vestiges are novel vegetative grass structures. Sterile floret awn columns are likely to be extensions of the rachilla.
Collapse
Affiliation(s)
- Luis Fernando Cuellar-Garrido
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Eduardo Ruiz-Sanchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Ofelia Vargas-Ponce
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
8
|
Reinhardt D, Gola EM. Law and order in plants - the origin and functional relevance of phyllotaxis. TRENDS IN PLANT SCIENCE 2022; 27:1017-1032. [PMID: 35643801 DOI: 10.1016/j.tplants.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The regular arrangement of organs (phyllotaxis) in vegetative shoots and flowers is one of the most stunning features of plants. Spiral patterns characterized by Fibonacci numbers have attracted the particular interest of natural scientists and mathematicians. Numerous reviews have dealt with the molecular genetic mechanisms underlying phyllotaxis, and modeling studies have sought to recreate phyllotaxis according to mathematical, biochemical, or physical laws. However, what is the functional significance of regular plant architecture, and how did it evolve? We discuss the developmental constraints and selective forces that may have favored the selection of phyllotaxis, and we argue that a central driver of regular phyllotaxis may have been limitations in the allocation of founder cells and metabolic resources to the different tissues in the shoot apex.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, Route Albert Gockel 3, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Edyta M Gola
- Department of Plant Developmental Biology, Faculty of Plant Sciences, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| |
Collapse
|
9
|
McSteen P, Kellogg EA. Molecular, cellular, and developmental foundations of grass diversity. Science 2022; 377:599-602. [PMID: 35926032 DOI: 10.1126/science.abo5035] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans have cultivated grasses for food, feed, beverages, and construction materials for millennia. Grasses also dominate the landscape in vast parts of the world, where they have adapted morphologically and physiologically, diversifying to form ~12,000 species. Sequences of hundreds of grass genomes show that they are essentially collinear; nonetheless, not all species have the same complement of genes. Here, we focus on the molecular, cellular, and developmental bases of grain yield and dispersal-traits that are essential for domestication. Distinct genes, networks, and pathways were selected in different crop species, reflecting underlying genomic diversity. With increasing genomic resources becoming available in nondomesticated species, we anticipate advances in coming years that illuminate the ecological and economic success of the grasses.
Collapse
Affiliation(s)
- Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | | |
Collapse
|
10
|
Kellogg EA. Genetic control of branching patterns in grass inflorescences. THE PLANT CELL 2022; 34:2518-2533. [PMID: 35258600 PMCID: PMC9252490 DOI: 10.1093/plcell/koac080] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the underlying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review focuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory modules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by conserved auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflorescence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modified within individual species, particularly as regards formation of secondary branches. Differences between species are caused both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks described here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.
Collapse
|
11
|
Backhaus AE, Lister A, Tomkins M, Adamski NM, Simmonds J, Macaulay I, Morris RJ, Haerty W, Uauy C. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. PLANT PHYSIOLOGY 2022; 189:1536-1552. [PMID: 35377414 PMCID: PMC9237664 DOI: 10.1093/plphys/kiac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 05/03/2023]
Abstract
Spikelets are the fundamental building blocks of Poaceae inflorescences, and their development and branching patterns determine the various inflorescence architectures and grain yield of grasses. In wheat (Triticum aestivum), the central spikelets produce the most and largest grains, while spikelet size gradually decreases acropetally and basipetally, giving rise to the characteristic lanceolate shape of wheat spikes. The acropetal gradient corresponds with the developmental age of spikelets; however, the basal spikelets are developed first, and the cause of their small size and rudimentary development is unclear. Here, we adapted G&T-seq, a low-input transcriptomics approach, to characterize gene expression profiles within spatial sections of individual spikes before and after the establishment of the lanceolate shape. We observed larger differences in gene expression profiles between the apical, central, and basal sections of a single spike than between any section belonging to consecutive developmental time points. We found that SHORT VEGETATIVE PHASE MADS-box transcription factors, including VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2), are expressed highest in the basal section of the wheat spike and display the opposite expression gradient to flowering E-class SEPALLATA1 genes. Based on multi-year field trials and transgenic lines, we show that higher expression of VRT-A2 in the basal sections of the spike is associated with increased numbers of rudimentary basal spikelets. Our results, supported by computational modeling, suggest that the delayed transition of basal spikelets from vegetative to floral developmental programs results in the lanceolate shape of wheat spikes. This study highlights the value of spatially resolved transcriptomics to gain insights into developmental genetics pathways of grass inflorescences.
Collapse
Affiliation(s)
- Anna E Backhaus
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ashleigh Lister
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Melissa Tomkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
12
|
Raissig MT, Woods DP. The wild grass Brachypodium distachyon as a developmental model system. Curr Top Dev Biol 2022; 147:33-71. [PMID: 35337454 DOI: 10.1016/bs.ctdb.2021.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.
Collapse
Affiliation(s)
- Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
13
|
Duncan KE, Czymmek KJ, Jiang N, Thies AC, Topp CN. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. PLANT PHYSIOLOGY 2022; 188:831-845. [PMID: 34618094 PMCID: PMC8825331 DOI: 10.1093/plphys/kiab405] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 05/12/2023]
Abstract
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.
Collapse
Affiliation(s)
- Keith E Duncan
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Christopher N Topp
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Author for communication:
| |
Collapse
|
14
|
Koppolu R, Chen S, Schnurbusch T. Evolution of inflorescence branch modifications in cereal crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102168. [PMID: 35016076 DOI: 10.1016/j.pbi.2021.102168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Grasses are ubiquitous in our daily lives, with gramineous cereal crops such as maize, rice, and wheat constituting a large proportion of our daily staple food intake. Evolutionary forces, especially over the past ∼20 million years, have shaped grass adaptability, inflorescence architecture, and reproductive success. Here, we provide basic information on grass evolution and inflorescence structures mainly related to two inflorescence types: branched panicle- and spike-type inflorescences, the latter of which has highly modified branching. We summarize and compare known genetic pathways underlying each infloresecence type and discuss how the maize RAMOSA, rice ABERRANT PANICLE ORGANIZATION, and Triticeae COMPOSITUM pathways are regulated. Our analyses might lay the foundation for understanding species-specific gene regulatory networks that could result in improved sink capacities.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - Shulin Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Thorsten Schnurbusch
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
15
|
Koppolu R, Jiang G, Milner SG, Muqaddasi QH, Rutten T, Himmelbach A, Guo Y, Stein N, Mascher M, Schnurbusch T. The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:571-590. [PMID: 34773464 PMCID: PMC8866347 DOI: 10.1007/s00122-021-03986-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/26/2021] [Indexed: 05/26/2023]
Abstract
Spikelet indeterminacy and supernumerary spikelet phenotypes in barley multiflorus2.b mutant show polygenic inheritance. Genetic analysis of multiflorus2.b revealed major QTLs for spikelet determinacy and supernumerary spikelet phenotypes on 2H and 6H chromosomes. Understanding the genetic basis of yield forming factors in small grain cereals is of extreme importance, especially in the wake of stagnation of further yield gains in these crops. One such yield forming factor in these cereals is the number of grain-bearing florets produced per spikelet. Wild-type barley (Hordeum vulgare L.) spikelets are determinate structures, and the spikelet axis (rachilla) degenerates after producing single floret. In contrast, the rachilla of wheat (Triticum ssp.) spikelets, which are indeterminate, elongates to produce up to 12 florets. In our study, we characterized the barley spikelet determinacy mutant multiflorus2.b (mul2.b) that produced up to three fertile florets on elongated rachillae of lateral spikelets. Apart from the lateral spikelet indeterminacy (LS-IN), we also characterized the supernumerary spikelet phenotype in the central spikelets (CS-SS) of mul2.b. Through our phenotypic and genetic analyses, we identified two major QTLs on chromosomes 2H and 6H, and two minor QTLs on 3H for the LS-IN phenotype. For, the CS-SS phenotype, we identified one major QTL on 6H, and a minor QTL on 5H chromosomes. Notably, the 6H QTLs for CS-SS and LS-IN phenotypes co-located with each other, potentially indicating that a single genetic factor might regulate both phenotypes. Thus, our in-depth phenotyping combined with genetic analyses revealed the quantitative nature of the LS-IN and CS-SS phenotypes in mul2.b, paving the way for cloning the genes underlying these QTLs in the future.
Collapse
Affiliation(s)
- Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany.
| | - Guojing Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Sara G Milner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Quddoos H Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
- BASF Agricultural Solutions GmbH, Am Schwabeplan 8, OT Gatersleben, 06466, Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
- Department of Crop Sciences, Center of Integrated Breeding Research (CiBreed), Georg-August-University, 37075, Göttingen, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correns Strasse 3, OT Gatersleben, 06466, Seeland, Germany.
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
16
|
Liu S, Magne K, Daniel S, Sibout R, Ratet P. Brachypodium distachyon UNICULME4 and LAXATUM-A are redundantly required for development. PLANT PHYSIOLOGY 2022; 188:363-381. [PMID: 34662405 PMCID: PMC8774750 DOI: 10.1093/plphys/kiab456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
In cultivated grasses, tillering, leaf, and inflorescence architecture, as well as abscission ability, are major agronomical traits. In barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and brachypodium (Brachypodium distachyon), NOOT-BOP-COCH-LIKE (NBCL) genes are essential regulators of vegetative and reproductive development. Grass species usually possess 2-4 NBCL copies and until now a single study in O. sativa showed that the disruption of all NBCL genes strongly altered O. sativa leaf development. To improve our understanding of the role of NBCL genes in grasses, we extended the study of the two NBCL paralogs BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) in the nondomesticated grass B. distachyon. For this, we applied reversed genetics and generated original B. distachyon single and double nbcl mutants by clustered regularly interspaced short palindromic repeats - CRISPR associated protein 9 (CRISPR-Cas9) approaches and genetic crossing between nbcl targeting induced local lesions in genomes (TILLING) mutants. Through the study of original single laxa CRISPR-Cas9 null alleles, we validated functions previously proposed for LAXA in tillering, leaf patterning, inflorescence, and flower development and also unveiled roles for these genes in seed yield. Furthermore, the characterization of cul4laxa double mutants revealed essential functions for nbcl genes in B. distachyon development, especially in the regulation of tillering, stem cell elongation and secondary cell wall composition as well as for the transition toward the reproductive phase. Our results also highlight recurrent antagonist interactions between NBCLs occurring in multiple aspects of B. distachyon development.
Collapse
Affiliation(s)
- Shengbin Liu
- Université Paris-Saclay, INRAE, CNRS, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay 91405, France
| | - Kévin Magne
- Université Paris-Saclay, INRAE, CNRS, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay 91405, France
| | - Sylviane Daniel
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - Richard Sibout
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - Pascal Ratet
- Université Paris-Saclay, INRAE, CNRS, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay 91405, France
| |
Collapse
|
17
|
Seetharam AS, Yu Y, Bélanger S, Clark LG, Meyers BC, Kellogg EA, Hufford MB. The Streptochaeta Genome and the Evolution of the Grasses. FRONTIERS IN PLANT SCIENCE 2021; 12:710383. [PMID: 34671369 PMCID: PMC8521107 DOI: 10.3389/fpls.2021.710383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
In this work, we sequenced and annotated the genome of Streptochaeta angustifolia, one of two genera in the grass subfamily Anomochlooideae, a lineage sister to all other grasses. The final assembly size is over 99% of the estimated genome size. We find good collinearity with the rice genome and have captured most of the gene space. Streptochaeta is similar to other grasses in the structure of its fruit (a caryopsis or grain) but has peculiar flowers and inflorescences that are distinct from those in the outgroups and in other grasses. To provide tools for investigations of floral structure, we analyzed two large families of transcription factors, AP2-like and R2R3 MYBs, that are known to control floral and spikelet development in rice and maize among other grasses. Many of these are also regulated by small RNAs. Structure of the gene trees showed that the well documented whole genome duplication at the origin of the grasses (ρ) occurred before the divergence of the Anomochlooideae lineage from the lineage leading to the rest of the grasses (the spikelet clade) and thus that the common ancestor of all grasses probably had two copies of the developmental genes. However, Streptochaeta (and by inference other members of Anomochlooideae) has lost one copy of many genes. The peculiar floral morphology of Streptochaeta may thus have derived from an ancestral plant that was morphologically similar to the spikelet-bearing grasses. We further identify 114 loci producing microRNAs and 89 loci generating phased, secondary siRNAs, classes of small RNAs known to be influential in transcriptional and post-transcriptional regulation of several plant functions.
Collapse
Affiliation(s)
- Arun S. Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | | | - Lynn G. Clark
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Blake C. Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | | | - Matthew B. Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Wolde GM, Schreiber M, Trautewig C, Himmelbach A, Sakuma S, Mascher M, Schnurbusch T. Genome-wide identification of loci modifying spike-branching in tetraploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1925-1943. [PMID: 33961064 PMCID: PMC8263435 DOI: 10.1007/s00122-020-03743-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 05/03/2023]
Abstract
Genetic modification of spike architecture is essential for improving wheat yield. Newly identified loci for the 'Miracle wheat' phenotype on chromosomes 1AS and 2BS have significant effects on spike traits. The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched headt (bht) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat ('Miracle wheat') and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bht-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bht-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bht-B1). Thus, RILs that combined both bht-A1 and bht-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.
Collapse
Affiliation(s)
- Gizaw M Wolde
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
- Department of Plant Sciences One Shields Avenue, University of California, Davis, CA, 95616, USA.
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Shun Sakuma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8553, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
19
|
Thiel J, Koppolu R, Trautewig C, Hertig C, Kale SM, Erbe S, Mascher M, Himmelbach A, Rutten T, Esteban E, Pasha A, Kumlehn J, Provart NJ, Vanderauwera S, Frohberg C, Schnurbusch T. Transcriptional landscapes of floral meristems in barley. SCIENCE ADVANCES 2021; 7:eabf0832. [PMID: 33910893 PMCID: PMC8081368 DOI: 10.1126/sciadv.abf0832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/26/2021] [Indexed: 05/02/2023]
Abstract
Organ development in plants predominantly occurs postembryonically through combinatorial activity of meristems; therefore, meristem and organ fate are intimately connected. Inflorescence morphogenesis in grasses (Poaceae) is complex and relies on a specialized floral meristem, called spikelet meristem, that gives rise to all other floral organs and ultimately the grain. The fate of the spikelet determines reproductive success and contributes toward yield-related traits in cereal crops. Here, we examined the transcriptional landscapes of floral meristems in the temperate crop barley (Hordeum vulgare L.) using RNA-seq of laser capture microdissected tissues from immature, developing floral structures. Our unbiased, high-resolution approach revealed fundamental regulatory networks, previously unknown pathways, and key regulators of barley floral fate and will equally be indispensable for comparative transcriptional studies of grass meristems.
Collapse
Affiliation(s)
- J Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - R Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - C Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - C Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - S M Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - S Erbe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - M Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - A Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - T Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - E Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - A Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - J Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - N J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - S Vanderauwera
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - C Frohberg
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - T Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
20
|
Probing the floral developmental stages, bisexuality and sex reversions in castor (Ricinus communis L.). Sci Rep 2021; 11:4246. [PMID: 33608605 PMCID: PMC7895920 DOI: 10.1038/s41598-021-81781-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/06/2021] [Indexed: 11/08/2022] Open
Abstract
Castor (Ricinus communis L) is an ideal model species for sex mechanism studies in monoecious angiosperms, due to wide variations in sex expression. Sex reversion to monoecy in pistillate lines, along with labile sex expression, negatively influences hybrid seed purity. The study focuses on understanding the mechanisms of unisexual flower development, sex reversions and sex variations in castor, using various genotypes with distinct sex expression pattern. Male and female flowers had 8 and 12 developmental stages respectively, were morphologically similar till stage 4, with an intermediate bisexual state and were intermediate between type 1 and type 2 flowers. Pistil abortion was earlier than stamen inhibition. Sex alterations occurred at floral and inflorescence level. While sex-reversion was unidirectional towards maleness via bisexual stage, at high day temperatures (Tmax > 38 °C), femaleness was restored with subsequent drop in temperatures. Temperature existing for 2–3 weeks during floral meristem development, influences sexuality of the flower. We report for first time that unisexuality is preceded by bisexuality in castor flowers which alters with genotype and temperature, and sex reversions as well as high sexual polymorphisms in castor are due to alterations in floral developmental pathways. Differentially expressed (male-abundant or male-specific) genes Short chain dehydrogenase reductase 2a (SDR) and WUSCHEL are possibly involved in sex determination of castor.
Collapse
|
21
|
Kellogg EA, Abbott JR, Bawa KS, Gandhi KN, Kailash BR, Ganeshaiah K, Shrestha UB, Raven P. Checklist of the grasses of India. PHYTOKEYS 2020; 163:1-560. [PMID: 37397271 PMCID: PMC10311516 DOI: 10.3897/phytokeys.163.38393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/22/2020] [Indexed: 07/04/2023]
Abstract
A checklist of the grasses of India is presented, as compiled from survey of all available literature. Of the twelve subfamilies of grasses, ten are represented in India. Most subfamilies have been examined by taxonomic experts for up-to-date nomenclature. The list includes 1506 species plus infraspecific taxa and presents information on types, synonyms, distribution within India, and habit. Twelve new combinations are made, viz. Arctopoa tibetica (Munro ex Stapf) Prob. var. aristulata (Stapf) E.A. Kellogg, comb. nov.; Chimonocalamus nagalandianus (H.B. Naithani) L.G. Clark, comb. nov.; Chionachne digitata (L.f.) E.A. Kellogg, comb. nov.; Chionachne wallichiana (Nees) E.A. Kellogg, comb. nov.; Dinebra polystachyos (R. Br.) E.A. Kellogg, comb. nov.; Moorochloa eruciformis (Sm.) Veldkamp var. divaricata (Basappa & Muniv.) E.A. Kellogg, comb. nov.; Phyllostachys nigra (Lodd. ex Lindl.) Munro var. puberula (Miq.) Kailash, comb. & stat. nov.; Tzveleviochloa schmidii (Hook. f.) E.A. Kellogg, comb. nov.; Urochloa lata (Schumach.) C.E. Hubb. var. pubescens (C.E. Hubb.) E.A. Kellogg, comb. nov.; Urochloa ramosa (L.) T.Q. Nguyen var. pubescens (Basappa & Muniy.) E.A. Kellogg, comb. nov.; Urochloa semiundulata (Hochst. ex A. Rich.) Ashalatha & V.J. Nair var. intermedia (Basappa & Muniy.) E.A. Kellogg, comb. nov.
Collapse
Affiliation(s)
| | - J. Richard Abbott
- Missouri Botanical GardenSt. LouisUnited States of America
- Missouri Botanical GardenSt. Louis, MOUnited States of America
| | - Kamaljit S. Bawa
- University of Massachusetts, BostonBostonUnited States of America
| | | | - B. R. Kailash
- 5Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | | | - Peter Raven
- Missouri Botanical GardenSt. LouisUnited States of America
| |
Collapse
|
22
|
COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nat Commun 2020; 11:5138. [PMID: 33046693 PMCID: PMC7550572 DOI: 10.1038/s41467-020-18890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. Here, we identify the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressing in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in barley (Triticeae) versus branch-formation in non-Triticeae grasses. Analyses of cell size, cell walls and transcripts reveal barley COM1 regulates cell growth, thereby affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless1 and confers meristem identity partially independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity pathway has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae. Grasses have diverse inflorescence morphologies, but the underlying genetic mechanisms are unclear. Here, the authors report a TCP transcription factor COM1 affects cell growth through regulation of cell wall properties and promotes branch formation in non-Triticeae grasses but branch inhibition in barley (Triticeae).
Collapse
|
23
|
Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH 2020; 1:276-292. [PMID: 36304128 PMCID: PMC9590455 DOI: 10.1007/s42994-020-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 01/25/2023]
Abstract
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity. The growth patterns and number of spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic mutants and genome sequences from other grass families, the regulatory networks underpinning spikelet development are becoming clearer. This is particularly evident for domesticated traits in agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fertility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat, Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and molecular breeding to enhance grain yield.
Collapse
|
24
|
D’Amato G, Chong‐Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario N, Haahtela T, Galan C, Pawankar R, Murrieta‐Aguttes M, Cecchi L, Bergmann C, Ridolo E, Ramon G, Gonzalez Diaz S, D’Amato M, Annesi‐Maesano I. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 2020; 75:2219-2228. [PMID: 32589303 DOI: 10.1111/all.14476] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
The impact of climate change on the environment, biosphere, and biodiversity has become more evident in the recent years. Human activities have increased atmospheric concentrations of carbon dioxide (CO2 ) and other greenhouse gases. Change in climate and the correlated global warming affects the quantity, intensity, and frequency of precipitation type as well as the frequency of extreme events such as heat waves, droughts, thunderstorms, floods, and hurricanes. Respiratory health can be particularly affected by climate change, which contributes to the development of allergic respiratory diseases and asthma. Pollen and mold allergens are able to trigger the release of pro-inflammatory and immunomodulatory mediators that accelerate the onset the IgE-mediated sensitization and of allergy. Allergy to pollen and pollen season at its beginning, in duration and intensity are altered by climate change. Studies showed that plants exhibit enhanced photosynthesis and reproductive effects and produce more pollen as a response to high atmospheric levels of carbon dioxide (CO2 ). Mold proliferation is increased by floods and rainy storms are responsible for severe asthma. Pollen and mold allergy is generally used to evaluate the interrelation between air pollution and allergic respiratory diseases, such as rhinitis and asthma. Thunderstorms during pollen seasons can cause exacerbation of respiratory allergy and asthma in patients with hay fever. A similar phenomenon is observed for molds. Measures to reduce greenhouse gas emissions can have positive health benefits.
Collapse
Affiliation(s)
- Gennaro D’Amato
- Division of Respiratory and Allergic Diseases Department of Chest Diseases High Specialty A. Cardarelli Hospital Napoli Italy
- Medical School of Specialization in Respiratory Diseases University on Naples Federico II Napoli Italy
| | | | | | - Carolina Vitale
- Department of Medicine and Surgery University of Salerno Baronissi Italy
| | - Ignacio Ansotegui
- Department of Allergy and Immunology Hospital Quirónsalud Bizkaia Erandio Bilbao Spain
| | - Nelson Rosario
- Allergy and Immunology Division Federal University of Paraná Curitiba Brazil
| | - Tari Haahtela
- Department of Dermatology, Allergology and Venereology University of Helsinki Helsinki Finland
| | - Carmen Galan
- Department of Botany, Ecology and Plant Physiology University of Cordoba Cordoba Spain
| | - Ruby Pawankar
- Nippon Medical School Department of Pediatrics Tokyo Japan
| | | | - Lorenzo Cecchi
- Department of SOS Allergy and Clinical Immunology USL Toscana Centro Prato Prato Italy
| | - Christian Bergmann
- Arzt für Lungen‐ und Bronchialheilkunde Innere Medizin Allergologie Klinik für Dermatologie Venerologie und Allergologie Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Erminia Ridolo
- Department of Clinical and Experimental Medicine University of Parma Parma Italy
| | - German Ramon
- Instituto de Alergia e Inmunología del Sur Buenos Aires Argentina
| | - Sandra Gonzalez Diaz
- Titular Centro Regional de Alergia e Inmunología Clínica Universidad Autonoma de Nuevo Leon San Nicolás de los Garza Mexico
| | - Maria D’Amato
- First Division of Pneumology High Speciality Hospital ‘V. Monaldi’ and University ‘Federico II’ Medical School Naples Napoli Italy
| | - Isabella Annesi‐Maesano
- Research Director at the French NIH (INSERM) and Responsible of the EPAR Department IPLESP INSERM and Sorbonne University Paris France
| |
Collapse
|
25
|
Luo L, Zhang Y, Xu G. How does nitrogen shape plant architecture? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4415-4427. [PMID: 32279073 PMCID: PMC7475096 DOI: 10.1093/jxb/eraa187] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 05/20/2023]
Abstract
Plant nitrogen (N), acquired mainly in the form of nitrate and ammonium from soil, dominates growth and development, and high-yield crop production relies heavily on N fertilization. The mechanisms of root adaptation to altered supply of N forms and concentrations have been well characterized and reviewed, while reports concerning the effects of N on the architecture of vegetative and reproductive organs are limited and are widely dispersed in the literature. In this review, we summarize the nitrate and amino acid regulation of shoot branching, flowering, and panicle development, as well as the N regulation of cell division and expansion in shaping plant architecture, mainly in cereal crops. The basic regulatory steps involving the control of plant architecture by the N supply are auxin-, cytokinin-, and strigolactone-controlled cell division in shoot apical meristem and gibberellin-controlled inverse regulation of shoot height and tillering. In addition, transport of amino acids has been shown to be involved in the control of shoot branching. The N supply may alter the timing and duration of the transition from the vegetative to the reproductive growth phase, which in turn may affect cereal crop architecture, particularly the structure of panicles for grain yield. Thus, proper manipulation of N-regulated architecture can increase crop yield and N use efficiency.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| |
Collapse
|
26
|
Magne K, Liu S, Massot S, Dalmais M, Morin H, Sibout R, Bendahmane A, Ratet P. Roles of BdUNICULME4 and BdLAXATUM-A in the non-domesticated grass Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:645-659. [PMID: 32343459 DOI: 10.1111/tpj.14758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT-BOP-COCH-LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non-domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum-a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE-ON-PETIOLE1 and OsBLADE-ON-PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade-sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non-domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.
Collapse
Affiliation(s)
- Kévin Magne
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Shengbin Liu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Sophie Massot
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Marion Dalmais
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
- INRAE, UR BIA, F-44316, Nantes, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
27
|
Li M, Shao M, Zeng D, Ju T, Kellogg EA, Topp CN. Comprehensive 3D phenotyping reveals continuous morphological variation across genetically diverse sorghum inflorescences. THE NEW PHYTOLOGIST 2020; 226:1873-1885. [PMID: 32162345 PMCID: PMC7317572 DOI: 10.1111/nph.16533] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/23/2020] [Indexed: 05/21/2023]
Abstract
●Inflorescence architecture in plants is often complex and challenging to quantify, particularly for inflorescences of cereal grasses. Methods for capturing inflorescence architecture and for analyzing the resulting data are limited to a few easily captured parameters that may miss the rich underlying diversity. ●Here, we apply X-ray computed tomography combined with detailed morphometrics, offering new imaging and computational tools to analyze three-dimensional inflorescence architecture. To show the power of this approach, we focus on the panicles of Sorghum bicolor, which vary extensively in numbers, lengths, and angles of primary branches, as well as the three-dimensional shape, size, and distribution of the seed. ●We imaged and comprehensively evaluated the panicle morphology of 55 sorghum accessions that represent the five botanical races in the most common classification system of the species, defined by genetic data. We used our data to determine the reliability of the morphological characters for assigning specimens to race and found that seed features were particularly informative. ●However, the extensive overlap between botanical races in multivariate trait space indicates that the phenotypic range of each group extends well beyond its overall genetic background, indicating unexpectedly weak correlation between morphology, genetic identity, and domestication history.
Collapse
Affiliation(s)
- Mao Li
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Mon‐Ray Shao
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Dan Zeng
- Department of Computer Science and EngineeringWashington UniversitySt LouisMO63130USA
| | - Tao Ju
- Department of Computer Science and EngineeringWashington UniversitySt LouisMO63130USA
| | | | | |
Collapse
|
28
|
Genome-wide transcriptome profile of rice hybrids with and without Oryza rufipogon introgression reveals candidate genes for yield. Sci Rep 2020; 10:4873. [PMID: 32184449 PMCID: PMC7078188 DOI: 10.1038/s41598-020-60922-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, we compared genome-wide transcriptome profile of two rice hybrids, one with (test hybrid IR79156A/IL50-13) and the other without (control hybrid IR79156A/KMR3) O. rufipogon introgressions to identify candidate genes related to grain yield in the test hybrid. IL50-13 (Chinsurah Nona2 IET21943) the male parent (restorer) used in the test hybrid, is an elite BC4F8 introgression line of KMR3 with O. rufipogon introgressions. We identified 2798 differentially expressed genes (DEGs) in flag leaf and 3706 DEGs in panicle. Overall, 78 DEGs were within the major yield QTL qyld2.1 and 25 within minor QTL qyld8.2. The DEGs were significantly (p < 0.05) enriched in starch synthesis, phenyl propanoid pathway, ubiquitin degradation and phytohormone related pathways in test hybrid compared to control hybrid. Sequence analysis of 136 DEGs from KMR3 and IL50-13 revealed 19 DEGs with SNP/InDel variations. Of the 19 DEGs only 6 showed both SNP and InDel variations in exon regions. Of these, two DEGs within qyld2.1, Phenylalanine ammonia- lyase (PAL) (Os02t0626400-01, OsPAL2) showed 184 SNPs and 11 InDel variations and Similar to phenylalanine ammonia- lyase (Os02t0627100-01, OsPAL4) showed 205 SNPs and 13 InDel variations. Both PAL genes within qyld2.1 and derived from O. rufipogon are high priority candidate genes for increasing grain yield in rice.
Collapse
|
29
|
Sakuma S, Schnurbusch T. Of floral fortune: tinkering with the grain yield potential of cereal crops. THE NEW PHYTOLOGIST 2020; 225:1873-1882. [PMID: 31509613 DOI: 10.1111/nph.16189] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 05/19/2023]
Abstract
Enhancing the yield potential and stability of small-grain cereals, such as wheat (Triticum sp.), rice (Oryza sativa), and barley (Hordeum vulgare), is a priority for global food security. Over the last several decades, plant breeders have increased grain yield mainly by increasing the number of grains produced in each inflorescence. This trait is determined by the number of spikelets per spike and the number of fertile florets per spikelet. Recent genetic and genomic advances in cereal grass species have identified the molecular determinants of grain number and facilitated the exchange of information across genera. In this review, we focus on the genetic basis of inflorescence architecture in Triticeae crops, highlighting recent insights that have helped to improve grain yield by, for example, reducing the preprogrammed abortion of floral organs. The accumulating information on inflorescence development can be harnessed to enhance grain yield by comparative trait reconstruction and rational design to boost the yield potential of grain crops.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
30
|
Ge Y, Lu H, Zhang J, Wang C, Gao X. Phytoliths in Inflorescence Bracts: Preliminary Results of an Investigation on Common Panicoideae Plants in China. FRONTIERS IN PLANT SCIENCE 2020; 10:1736. [PMID: 32153596 PMCID: PMC7044271 DOI: 10.3389/fpls.2019.01736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Phytoliths in the inflorescence of Poaceae plants can be of high taxonomic value in some archaeological contexts and provide insight into plant taxonomy and crop domestication processes. In this study, phytoliths in every inflorescence bract of 38 common Panicoideae weeds and minor crops in China were studied. Based on dissection of the inflorescence into different bracts using a treatment that retained the phytoliths anatomical position, observations of inflorescence phytoliths types and distribution were described in detail. We found that Interdigitating, Blocky amoeboid, Rectangular dentate, and Elongate dendritic with multi tent-like arch tops were of higher taxonomic value than the other types in our studied species. Both morphological and morphometric traits of the Interdigitating were summarized and compared with previous studies; the findings suggested that genus level discrimination of some Paniceae species could be reliable, and tribe/species level discrimination might be feasible. The phytoliths in the involucre of domesticated and wild type Coix lacryma-jobi provided insight into the domestication process of this plant. Our data also indicated that phytolith production in the inflorescence bracts might be under the genetic and molecular control of inflorescence development. Thus, the findings of this study could assist future studies in plant taxonomy and archaeobotany.
Collapse
Affiliation(s)
- Yong Ge
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Houyuan Lu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Can Wang
- Department of Archaeology, School of History and Culture, Shandong University, Jinan, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Debernardi JM, Greenwood JR, Jean Finnegan E, Jernstedt J, Dubcovsky J. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:171-187. [PMID: 31494998 PMCID: PMC6972666 DOI: 10.1111/tpj.14528] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 05/08/2023]
Abstract
The spikelet is the basic unit of the grass inflorescence. In tetraploid (Triticum turgidum) and hexaploid wheat (Triticum aestivum), the spikelet is a short indeterminate branch with two proximal sterile bracts (glumes) followed by a variable number of florets, each including a bract (lemma) with an axillary flower. Varying levels of miR172 and/or its target gene Q (AP2L5) result in gradual transitions of glumes to lemmas, and vice versa. Here, we show that AP2L5 and its related paralog AP2L2 play critical and redundant roles in the specification of axillary floral meristems and lemma identity. AP2L2, also targeted by miR172, displayed similar expression profiles to AP2L5 during spikelet development. Loss-of-function mutants in both homeologs of AP2L2 (henceforth ap2l2) developed normal spikelets, but ap2l2 ap2l5 double mutants generated spikelets with multiple empty bracts before transitioning to florets. The coordinated nature of these changes suggest an early role of these genes in floret development. Moreover, the flowers of ap2l2 ap2l5 mutants showed organ defects in paleas and lodicules, including the homeotic conversion of lodicules into carpels. Mutations in the miR172 target site of AP2L2 were associated with reduced plant height, more compact spikes, promotion of lemma-like characters in glumes and smaller lodicules. Taken together, our results show that the balance in the expression of miR172 and AP2-like genes is crucial for the correct development of spikelets and florets, and that this balance has been altered during the process of wheat and barley (Hordeum vulgare) domestication. The manipulation of this regulatory module provides an opportunity to modify spikelet architecture and improve grain yield.
Collapse
Affiliation(s)
- Juan Manuel Debernardi
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | | | | | - Judy Jernstedt
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| |
Collapse
|
32
|
Leiboff S, Hake S. Reconstructing the Transcriptional Ontogeny of Maize and Sorghum Supports an Inverse Hourglass Model of Inflorescence Development. Curr Biol 2019; 29:3410-3419.e3. [PMID: 31587998 DOI: 10.1016/j.cub.2019.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Assembling meaningful comparisons between species is a major limitation in studying the evolution of organismal form. To understand development in maize and sorghum, closely related species with architecturally distinct inflorescences, we collected RNA-seq profiles encompassing inflorescence body-plan specification in both species. We reconstructed molecular ontogenies from 40 B73 maize tassels and 47 BTx623 sorghum panicles and separated them into transcriptional stages. To discover new markers of inflorescence development, we used random forest machine learning to determine stage by RNA-seq. We used two descriptions of transcriptional conservation to identify hourglass-like stages during inflorescence development. Despite a relatively short 12 million years since their last common ancestor, we found maize and sorghum inflorescences are most different during their hourglass-like stages of development, following an inverse-hourglass model of development. We discuss whether agricultural selection may account for the rapid divergence signatures in these species and the observed separation of evolutionary pressure and developmental reprogramming.
Collapse
Affiliation(s)
- Samuel Leiboff
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California, Berkeley, Albany, CA 94710, USA.
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California, Berkeley, Albany, CA 94710, USA
| |
Collapse
|
33
|
Li C, Lin H, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 2019; 146:dev.175398. [PMID: 31337701 PMCID: PMC6679363 DOI: 10.1242/dev.175398] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023]
Abstract
The spikelet is the basic unit of the grass inflorescence. In this study, we show that wheat MADS-box genes VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet and spike development, and also affect flowering time and plant height. In the vrn1ful2ful3-null triple mutant, the inflorescence meristem formed a normal double-ridge structure, but then the lateral meristems generated vegetative tillers subtended by leaves instead of spikelets. These results suggest an essential role of these three genes in the fate of the upper spikelet ridge and the suppression of the lower leaf ridge. Inflorescence meristems of vrn1ful2ful3-null and vrn1ful2-null remained indeterminate and single vrn1-null and ful2-null mutants showed delayed formation of the terminal spikelet and increased number of spikelets per spike. Moreover, the ful2-null mutant showed more florets per spikelet, which together with a higher number of spikelets, resulted in a significant increase in the number of grains per spike in the field. Our results suggest that a better understanding of the mechanisms underlying wheat spikelet and spike development can inform future strategies to improve grain yield in wheat. Summary: The wheat MADS-box proteins VRN1, FUL2 and FUL3 are essential for the initial development of the lateral and terminal spikelets, and control the number of spikelets per spike.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Meiyee Lau
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
34
|
Kim DY, Hong MJ, Seo YW. Genome-wide transcript analysis of inflorescence development in wheat. Genome 2019; 62:623-633. [PMID: 31269405 DOI: 10.1139/gen-2018-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of inflorescence development is directly related to yield components that determine the final grain yield in most cereal crops. Here, microarray analysis was conducted for four different developmental stages of inflorescence to identify genes expressed specifically during inflorescence development. To select inflorescence-specific expressed genes, we conducted meta-analysis using 1245 Affymetrix GeneChip array sets obtained from various development stages, organs, and tissues of members of Poaceae. The early stage of inflorescence development was accompanied by a significant upregulation of a large number of cell differentiation genes, such as those associated with the cell cycle, cell division, DNA repair, and DNA synthesis. Moreover, key regulatory genes, including the MADS-box gene, KNOTTED-1-like homeobox genes, GROWTH-REGULATING FACTOR 1 gene, and the histone methyltransferase gene, were highly expressed in the early inflorescence development stage. In contrast, fewer genes were expressed in the later stage of inflorescence development, and played roles in hormone biosynthesis and meiosis-associated genes. Our work provides novel information regarding the gene regulatory network of cell division, key genes involved in the differentiation of inflorescence in wheat, and regulation mechanism of inflorescence development that are crucial stages for determining final grain number per spike and the yield potential of wheat.
Collapse
Affiliation(s)
- Dae Yeon Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yong Weon Seo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Gou J, Tang C, Chen N, Wang H, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Allen RD, Wang ZY. SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass. THE NEW PHYTOLOGIST 2019; 222:1610-1623. [PMID: 30688366 DOI: 10.1111/nph.15712] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.
Collapse
Affiliation(s)
- Jiqing Gou
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chaorong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- Hainan University, Haiko, 570228, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Smriti Debnath
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liang Sun
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Amy Flanagan
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
36
|
Koppolu R, Schnurbusch T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:278-295. [PMID: 30609316 DOI: 10.1111/jipb.12771] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
Grass species display a wide array of inflorescences ranging from highly branched compound/panicle inflorescences to unbranched spike inflorescences. The unbranched spike is a characteristic feature of the species of tribe Triticeae, including economically important crops, such as wheat and barley. In this review, we describe two important developmental genetic mechanisms regulating spike inflorescence architecture in barley and wheat. These include genetic regulation of (i) row-type pathway specific to Hordeum species and (ii) unbranched spike development in barley and wheat. For a comparative understanding, we describe the branched inflorescence phenotypes of rice and maize along with unbranched Triticeae inflorescences. In the end, we propose a simplified model describing a probable mechanism leading to unbranched spike formation in Triticeae species.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independant HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Independant HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
37
|
Peng Y, Hou F, Bai Q, Xu P, Liao Y, Zhang H, Gu C, Deng X, Wu T, Chen X, Ali A, Wu X. Rice Calcineurin B-Like Protein-Interacting Protein Kinase 31 (OsCIPK31) Is Involved in the Development of Panicle Apical Spikelets. FRONTIERS IN PLANT SCIENCE 2018; 9:1661. [PMID: 30524455 PMCID: PMC6262370 DOI: 10.3389/fpls.2018.01661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/25/2018] [Indexed: 05/08/2023]
Abstract
Panicle apical abortion (PAA) causes severe yield losses in rice production, but details about its development and molecular basis remain elusive. Herein, a PAA mutant, paa1019, was identified among the progeny of an elite indica maintainer rice line Yixiang 1B (YXB) mutagenized population obtained using ethyl methyl sulfonate. The abortion rate of spikelets in paa1019 was observed up to 60%. Genetic mapping combined with Mutmap analysis revealed that LOC_Os03g20380 harbored a single-bp substitution (C to T) that altered its transcript length. This gene encodes calcineurin B-like protein-interacting protein kinase 31 (OsCIPK31) localized into the cytoplasm, and is preferentially expressed in transport tissues of rice. Complementation of paa1019 by transferring the open reading frame of LOC_Os03g20380 from YXB reversed the mutant phenotype, and conversely, gene editing by knocking out of OsCIPK31 in YXB results in PAA phenotype. Our results support that OsCIPK31 plays an important role in panicle development. We found that dysregulation is caused by the disruption of OsCIPK31 function due to excessive accumulation of ROS, which ultimately leads to cell death in rice panicle. OsCIPK31 and MAPK pathway might have a synergistic effect to lead ROS accumulation in response to stresses. Meanwhile the PAA distribution is related to IAA hormone accumulation in the panicle. Our study provides an understanding of the role of OsCIPK31 in panicle development by responding to various stresses and phytohormones.
Collapse
Affiliation(s)
- Yongbin Peng
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Feixue Hou
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Que Bai
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Yongxiang Liao
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Chaojian Gu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xiaoshu Deng
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xiaoqiong Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, China
| |
Collapse
|
38
|
Dobrovolskaya OB, Dresvyannikova AE. Cereal inflorescence: features of morphology, development and genetic regulation of morphogenesis. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cereals (Poaceae Barnh.) are the largest family of monocotyledonous flowering plants growing on all continents and constituting a significant part of Earth's many ecological communities. The Poaceae includes many important crops, such as rice, maize, wheat, barley, and rye. The qualitative and quantitative characteristics of cereal inflorescences are directly related to yield and are determined by the features of inflorescence development. This review considers modern concepts of the morphology, development and genetic mechanisms regulating the cereal inflorescence development. A common feature of cereal inflorescences is a spikelet, a reduced branch that bears florets with a similar structure and common scheme of development in all cereals. The length and the structure of the main axis, the presence and type of lateral branches cause a great variety of cereal inflorescences. Complex cereal inflorescences are formed from meristems of several types. The transition from the activity of one meristem to another is a multi-step process. The genes involved in the control of the cereal inflorescence development have been identified using mutants (mainly maize and rice) with altered inflorescence and floret morphology; most of these genes regulate the initiation and fate of meristems. The presence of some genetic mechanisms in cereals confirms the models previously discovered in dicotyledonous plants; on the other hand, there are cereal-specific developmental processes that are controlled by new modules of genetic regulation, in particular, associated with the formation of a branched inflorescence. An important aspect is the presence of quantitative variability of traits under the control of developmental genes, which is a prerequisite for the use of weak alleles contributing to the variability of plant growth and yield in breeding programs (for example, genes of the CLAVATA signaling pathway).
Collapse
Affiliation(s)
- O. B. Dobrovolskaya
- Institute of Cytology and Genetics, SB RAS; All-Russian Plant Quarantine Centre
| | | |
Collapse
|
39
|
Ochagavía H, Prieto P, Savin R, Griffiths S, Slafer G. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2621-2631. [PMID: 29562296 PMCID: PMC5920321 DOI: 10.1093/jxb/ery104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/10/2018] [Indexed: 05/20/2023]
Abstract
Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.
Collapse
Affiliation(s)
- Helga Ochagavía
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
| | - Paula Prieto
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
| | - Roxana Savin
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - GustavoA Slafer
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| |
Collapse
|
40
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
41
|
|
42
|
Pri-Tal O, Shaar-Moshe L, Wiseglass G, Peleg Z, Mosquna A. Non-redundant functions of the dimeric ABA receptor BdPYL1 in the grass Brachypodium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:774-786. [PMID: 28891214 DOI: 10.1111/tpj.13714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 05/05/2023]
Abstract
Abiotic stresses have severe detrimental effects on agricultural productivity worldwide. Abscisic acid (ABA) levels rise in response to abiotic stresses, and play a role in coordinating physiological responses. ABA elicits its effects by binding a family of soluble receptors, increasing affinity of the receptors to type 2C phosphatases (PP2Cs) leading to phosphatase inhibition. In the current study, we conducted a comprehensive analysis of the ABA signaling pathway in the cereal model grass Brachypodium distachyon. The Brachypodium genome encodes a family of 10 functionally conserved ABA receptors. The 10th in the series, BdPYL10, encodes a defective receptor and is likely a pseudogene. Combinatorial protein interaction assay further validated computational analysis, which grouped Brachypodium ABA receptors into three subfamilies, similarly to Arabidopsis classification. Brachypodium subfamily III receptors inhibited PP2C activity in vitro and complemented Arabidopsis quadruple (pyr1/pyl1/pyl2/pyl4) mutant. BdPYL1 T-DNA mutant exhibited clear ABA hyposensitivity phenotypes during seedling establishment and in mature plants. Single receptor predominance is in agreement with high transcriptional abundance of only a small Brachypodium ABA receptors subset, harboring the higher marginal significance of BdPYL1. Our findings suggest that unlike the highly redundant ABA core signaling components of Arabidopsis, Brachypodium encompasses a more compact and specialized ABA receptor apparatus. This organization may contribute to plant adaptations to ecological niches. These results lay the groundwork for targeting the prominent ABA receptors for stress perception in grasses, and reveal functional differences and commonalities between monocots and eudicots.
Collapse
Affiliation(s)
- Oded Pri-Tal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Lidor Shaar-Moshe
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gil Wiseglass
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
43
|
Grass inflorescence architecture and meristem determinacy. Semin Cell Dev Biol 2017; 79:37-47. [PMID: 29020602 DOI: 10.1016/j.semcdb.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
The grass inflorescence is striking not only for its beauty and diversity, but also for its developmental complexity. While models of inflorescence architecture have been proposed in both eudicots and grasses, these are inadequate to fully explain the complex branching events that occur during the development of the grass inflorescence. Key to understanding grass inflorescence architecture is the meristem determinacy/indeterminacy decision, which regulates the number of branching events that occur. Here we review what has been learned about meristem determinacy from grass mutants with defects in inflorescence development. A picture is emerging of a complex network of signaling molecules and meristem identity factors that interact to regulate inflorescence meristem activity, many of which have been modified during crop domestication directly affecting yield traits.
Collapse
|
44
|
Feng N, Song G, Guan J, Chen K, Jia M, Huang D, Wu J, Zhang L, Kong X, Geng S, Liu J, Li A, Mao L. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes. PLANT PHYSIOLOGY 2017; 174:1779-1794. [PMID: 28515146 PMCID: PMC5490901 DOI: 10.1104/pp.17.00310] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/13/2017] [Indexed: 05/20/2023]
Abstract
Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields.
Collapse
Affiliation(s)
- Nan Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gaoyuan Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiantao Guan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dehua Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
45
|
Cai H, Zhao L, Wang L, Zhang M, Su Z, Cheng Y, Zhao H, Qin Y. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. THE NEW PHYTOLOGIST 2017; 214:1579-1596. [PMID: 28295392 DOI: 10.1111/nph.14521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 05/02/2023]
Abstract
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.
Collapse
Affiliation(s)
- Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Zhenxia Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Heming Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| |
Collapse
|
46
|
Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S. Major genes determining yield-related traits in wheat and barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1081-1098. [PMID: 28314933 PMCID: PMC5440550 DOI: 10.1007/s00122-017-2880-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 02/17/2017] [Indexed: 05/20/2023]
Abstract
Current development of advanced biotechnology tools allows us to characterize the role of key genes in plant productivity. The implementation of this knowledge in breeding strategies might accelerate the progress in obtaining high-yielding cultivars. The achievements of the Green Revolution were based on a specific plant ideotype, determined by a single gene involved in gibberellin signaling or metabolism. Compared with the 1950s, an enormous increase in our knowledge about the biological basis of plant productivity has opened new avenues for novel breeding strategies. The large and complex genomes of diploid barley and hexaploid wheat represent a great challenge, but they also offer a large reservoir of genes that can be targeted for breeding. We summarize examples of productivity-related genes/mutants in wheat and barley, identified or characterized by means of modern biology. The genes are classified functionally into several groups, including the following: (1) transcription factors, regulating spike development, which mainly affect grain number; (2) genes involved in metabolism or signaling of growth regulators-cytokinins, gibberellins, and brassinosteroids-which control plant architecture and in consequence stem hardiness and grain yield; (3) genes determining cell division and proliferation mainly impacting grain size; (4) floral regulators influencing inflorescence architecture and in consequence seed number; and (5) genes involved in carbohydrate metabolism having an impact on plant architecture and grain yield. The implementation of selected genes in breeding programs is discussed, considering specific genotypes, agronomic and climate conditions, and taking into account that many of the genes are members of multigene families.
Collapse
Affiliation(s)
- Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland.
| | - Izabela K Rajchel
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| |
Collapse
|
47
|
Yamburenko MV, Kieber JJ, Schaller GE. Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development. PLoS One 2017; 12:e0176060. [PMID: 28419168 PMCID: PMC5395194 DOI: 10.1371/journal.pone.0176060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture.
Collapse
Affiliation(s)
- Maria V. Yamburenko
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
48
|
A photoperiod-responsive protein compendium and conceptual proteome roadmap outline in maize grown in growth chambers with controlled conditions. PLoS One 2017; 12:e0174003. [PMID: 28399169 PMCID: PMC5388471 DOI: 10.1371/journal.pone.0174003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Maize (Zea mays L.) is one of the major staple food crops of the world. However, high photoperiod sensitivity, especially for tropical germplasms, impedes attempts to improve maize agronomical traits by integration of tropical and temperate maize germplasms. Physiological and phenotypic responses of maize to photoperiod have widely been investigated based on multi-site field observations; however, proteome-based responsive mechanisms under controlled photoperiod regimes, nutrient and moisture soils are not yet well understood. In the present study, we sequenced and analyzed six proteomes of tropically-adapted and photoperiod-sensitive M9 inbred line at the vegetative 3 stage and proteomes from tropically-adapted and photoperiod-sensitive Shuang M9 (SM9) inbred line at the vegetative-tasseling stage. All plants were grown in growth chambers with controlled soil and temperature and three photoperiod regimes, a short photoperiod (SP) of 10 h light/14 h dark, a control neutral photoperiod (NP) of 12 h light/12 h dark, and a long photoperiod (LP) of 16 h light/8 h dark for a daily cycle. We identified 4,395 proteins of which 401 and 425 differentially-expressed proteins (DPs) were found in abundance in M9 leaves and in SM9 leaves as per SP/LP vs. NP, respectively. Some DPs showed responses to both SP and LP while some only responded to either SP or LP, depending on M9 or SM9. Our study showed that the photoperiodic response pathway, circadian clock rhythm, and high light density/intensity crosstalk with each other, but apparently differ from dark signaling routes. Photoperiod response involves light-responsive or dark-responsive proteins or both. The DPs positioned on the signaling routes from photoperiod changes to RNA/DNA responses involve the mago nashi homolog and glycine-rich RNA-binding proteins. Moreover, the cell-to-cell movement of ZCN14 through plasmodesmata is likely blocked under a 16-h-light LP. Here, we propose a photoperiodic model based on our findings and those from previous studies.
Collapse
|
49
|
Lu H, Dai Z, Li L, Wang J, Miao X, Shi Z. OsRAMOSA2 Shapes Panicle Architecture through Regulating Pedicel Length. FRONTIERS IN PLANT SCIENCE 2017; 8:1538. [PMID: 28955349 PMCID: PMC5601049 DOI: 10.3389/fpls.2017.01538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 05/05/2023]
Abstract
The panicle architecture of rice is an important characteristic that influences reproductive success and yield. It is largely determined by the number and length of the primary and secondary branches. The number of panicle branches is defined by the inflorescence meristem state between determinacy and indeterminacy; for example, the maize ramosa2 (ra2) mutant has more branches in its tassel through loss of spikelet determinacy. Some genes and factors influencing the number of primary and secondary branches have been studied, but little is known about the molecular mechanism underlying pedicel development, which also influences panicle architecture. We report here that rice OsRAMOSA2 (OsRA2) gene modifies panicle architecture through regulating pedicel length. Ectopic expression of OsRA2 resulted in a shortened pedicel while inhibition of OsRA2 through RNA interference produced elongated pedicel. In addition, OsRA2 influenced seed morphology. The OsRA2 protein localized to the nucleus and showed transcriptional activation in yeast; in accordance with its function in pedicel development, OsRA2 mRNA was enriched in the anlagen of axillary meristems, such as primary and secondary branch meristems and the spikelet meristems of young panicles. This indicates a conserved role of OsRA2 for shaping the initial steps of inflorescence architecture. Genetic analysis revealed that OsRA2 may control panicle architecture using the same pathway as that of the axillary meristem gene LAX1 (LAX PANICLE1). Moreover, OsRA2 acted downstream of RCN2 in regulating pedicel and branch lengths, but upstream of RCN2 for control of the number of secondary branches, indicating that branch number and length development in the panicle were respectively regulated using parallel pathway. Functional conservation between OsRA2 and AtLOB, and the conservation and diversification of RA2 in maize and rice are also discussed.
Collapse
Affiliation(s)
- Huan Lu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- University of Chinese Academy of SciencesShanghai, China
| | - Zhengyan Dai
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Ling Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Jiang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- *Correspondence: Zhenying Shi,
| |
Collapse
|
50
|
Pellegrini MOO, Horn CN. Two peculiar new species of Heteranthera Ruiz & Pavón (Pontederiaceae) from Brazil, with notes on inflorescence architecture in the family. PHYTOKEYS 2017; 82:35-56. [PMID: 28794681 PMCID: PMC5546388 DOI: 10.3897/phytokeys.82.13752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/19/2017] [Indexed: 05/22/2023]
Abstract
Two new and peculiar species of Heteranthera are herein described. Heteranthera catharinensis is unique in the genus due to its glomerulate, many-flowered inflorescences, in which the flowers are restricted to the base and apex of the cincinni. It also possesses the biggest flowers in the H. reniformis Ruiz & Pavón species complex, with glabrous perianth lobes, medial filament, and style. On the other hand, Heteranthera pumila is described as the smallest known species of Pontederiaceae, with its dwarf stature, petiolate leaves with especially diminute blades, inflorescences 1-2-(3)-flowered, peduncle densely covered with glandular hairs, basal bract with glandular hairs at base, and smooth seeds, rarely possessing 7-9 inconspicuous longitudinal wings. We present detailed descriptions, illustrations, comments, a distribution map, conservation assessments for the new species, and an identification key to the Brazilian species of Heterantheras.l. Finally, we discuss inflorescence morphology and terminology in Pontederiaceae, characterizing it as thyrsoid.
Collapse
Affiliation(s)
- Marco O. O. Pellegrini
- Universidade de São Paulo, Departamento de Botânica, Rua do Matão 277, CEP 05508-900, São Paulo, SP, Brazil
- Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil
- Smithsonian Institution, NMNH, Department of Botany, MRC 166, P.O. Box 37012, Washington DC 20013-7012, USA (current address)
| | - Charles N. Horn
- Newberry College, Department of Sciences and Mathematics, 2100 College Street, Newberry, SC 29108, USA
| |
Collapse
|