1
|
Jiang L, Wen G, Lu J, Yang H, Jin Y, Nie X, Wang Z, Chen M, Du Y, Wang Y. Machine learning in soil nutrient dynamics of alpine grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174295. [PMID: 38936732 DOI: 10.1016/j.scitotenv.2024.174295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqi Wen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jia Lu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hengyuan Yang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yuexia Jin
- Computer Programing, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Xiaowei Nie
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongsong Wang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meirong Chen
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangong Du
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yanfen Wang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lukšić K, Mucalo A, Marinov L, Ozretić Zoković M, Ranković-Vasić Z, Nikolić D, Zdunić G. X-ray Microanalysis of Elemental Composition of Vitis sylvestris Pollen Grains. PLANTS (BASEL, SWITZERLAND) 2024; 13:2338. [PMID: 39204774 PMCID: PMC11359539 DOI: 10.3390/plants13162338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The flowering and fruit set of grapevines are determined by many morphological, physiological, and environmental factors. Although the elemental composition of pollen grains plays a crucial role in the fruit set, there is still a considerable gap in our knowledge. To date, no study has been conducted on the elemental composition of Vitis vinifera subsp. sylvestris (hereafter V. sylvestris) pollen grains. The aim of this work was to investigate the elemental composition of pollen grains of V. sylvestris using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). The pollen grains of ten V. sylvestris individuals (eight male and two female) and one hermaphrodite cultivar 'Plavac mali crni' were analyzed. SEM-EDX analysis revealed the presence of eight elements (carbon-C, oxygen-O, magnesium-Mg, phosphorus-P, potassium-K, calcium-Ca, molybdenum-Mo, and aluminum-Al) in the pollen grains. Interestingly, aluminum was detected exclusively in the pollen of the cultivated grape cultivar 'Plavac mali crni', while it was not present in the genotypes of V. sylvestris. No significant differences between genotypes were found for oxygen and phosphorus, while significant differences were found for other elements. Pollen dimorphism was not associated with differences in element composition, although principal component analysis separated the genotypes into two distinct groups, with two female individuals (Pak10 and Pak12) and one male (Im19) tending to form separate clusters. This study is the first report on the elemental composition of pollen grains of V. sylvestris genotypes and provides valuable insights for further studies on pollen functionality.
Collapse
Affiliation(s)
- Katarina Lukšić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (M.O.Z.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Ana Mucalo
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (M.O.Z.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Luka Marinov
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (M.O.Z.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Maja Ozretić Zoković
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (M.O.Z.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Zorica Ranković-Vasić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (Z.R.-V.); (D.N.)
| | - Dragan Nikolić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (Z.R.-V.); (D.N.)
| | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (K.L.); (A.M.); (L.M.); (M.O.Z.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Vultaggio L, Allevato E, Sabatino L, Ntatsi G, Rouphael Y, Torta L, La Bella S, Consentino BB. Modulation of cherry tomato performances in response to molybdenum biofortification and arbuscular mycorrhizal fungi in a soilless system. Heliyon 2024; 10:e33498. [PMID: 39027518 PMCID: PMC11255863 DOI: 10.1016/j.heliyon.2024.e33498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 μmol L-1], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 μmol L-1). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 μmol Mo L-1) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day-1 of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 μmol L-1) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Leo Sabatino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, 11855 Athens, Greece
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Livio Torta
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Salvatore La Bella
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
4
|
Yang D, Wang L. Molybdenum-mediated nitrogen accumulation and assimilation in legumes stepwise boosted by the coexistence of arbuscular mycorrhizal fungi and earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171840. [PMID: 38522544 DOI: 10.1016/j.scitotenv.2024.171840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Molybdenum (Mo) is a critical micronutrient for nitrogen (N) metabolism in legumes, yet the impact of Mo on legume N metabolism in the context of natural coexistence with soil microorganisms remains poorly understood. This study investigated the dose-dependent effect of Mo on soil N biogeochemical cycling, N accumulation, and assimilation in alfalfa under conditions simulating the coexistence of arbuscular mycorrhizal fungi (AMF) and earthworms. The findings indicated that Mo exerted a hormetic effect on alfalfa N accumulation, facilitating it at low concentrations (below 29.98 mg/kg) and inhibiting it at higher levels. This inhibition was attributed to Mo-induced constraints on C supply for nitrogen fixation. Concurrently, AMF colonization enhanced C assimilation in Mo-treated alfalfas by promoting nutrients uptake, particularly Mg, which is crucial for chlorophyll synthesis. This effect was further amplified by earthworms, which improved AMF colonization (p < 0.05). In the soil N cycle, these organisms exerted opposing effects: AMF enhanced soil nitrification and earthworms reduced soil nitrate (NO3--N) reduction to jointly increase soil phyto-available N content (p < 0.05). Their combined action improved alfalfa N assimilation by restoring the protein synthesis pathway that is compromised by high Mo concentrations, specifically the activity of glutamine synthetase. These findings underscored the potential for soil microorganisms to mitigate N metabolic stress in legumes exposed to elevated Mo levels.
Collapse
Affiliation(s)
- Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Yang D, Fan J, Wang L. The functional division of arbuscular mycorrhizal fungi and earthworm to efficient cooperation on phytoremediation in molybdenum (Mo) contaminated soils. ENVIRONMENTAL RESEARCH 2024; 247:118270. [PMID: 38246294 DOI: 10.1016/j.envres.2024.118270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Single phytoremediation has limited capacity to restore soil contaminated with extreme Mo due to its low metal accumulation. Soil organisms can help compensate for this deficiency in Mo-contaminated soils. However, there is limited information available on the integrated roles of different types of soil organisms, particularly the collaboration between soil microorganisms and soil animals, in phytoremediation. The objective of this study is to investigate the effects of a combination of arbuscular mycorrhizal fungi (AMF) and earthworms on the remediation of Mo-contaminated soils by alfalfa (Medicago sativa L.). The results indicated that in the soil-alfalfa system, earthworms effectively drive soil Mo activation, while AMF significantly improve the contribution of the translocation factor to total Mo removal (TMR) in alfalfas (p < 0.05). Meanwhile, compared to individual treatments, the combination of AMF and earthworm enhanced the expression of alfalfa root specific Mo transporter - MOT1 family genes to increase alfalfa uptake Mo (p < 0.05). This alleviated the competition between P/S nutrients and Mo on non-specific Mo transporters-P/S transporters (p < 0.05). Additionally, the proportion of organelle-bound Mo in the root was reduced to decrease Mo toxicity, while the cell wall-bound Mo proportion in the shoot was increased to securely accumulate Mo. The contributions of inoculants to alfalfa TMR followed the order (maximum increases): AMF + E combination (274.68 %) > alone treatments (130 %). Overall, the "functional division and cooperation" between earthworm and AMF are of great importance to the creation of efficient multi-biological systems in phytoremediation.
Collapse
Affiliation(s)
- Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiazhi Fan
- Yichun Luming Mining Co., Ltd, Tieli, 152500, China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Preiner J, Steccari I, Oburger E, Wienkoop S. Rhizobium symbiosis improves amino acid and secondary metabolite biosynthesis of tungsten-stressed soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2024; 15:1355136. [PMID: 38628363 PMCID: PMC11020092 DOI: 10.3389/fpls.2024.1355136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The industrially important transition metal tungsten (W) shares certain chemical properties with the essential plant micronutrient molybdenum and inhibits the activity of molybdoenzymes such as nitrate reductase, impacting plant growth. Furthermore, tungsten appears to interfere with metabolic processes on a much wider scale and to trigger common heavy metal stress response mechanisms. We have previously found evidence that the tungsten stress response of soybeans (Glycine max) grown with symbiotically associated N2-fixing rhizobia (Bradyrhizobium japonicum) differs from that observed in nitrogen-fertilized soy plants. This study aimed to investigate how association with symbiotic rhizobia affects the primary and secondary metabolite profiles of tungsten-stressed soybean and whether changes in metabolite composition enhance the plant's resilience to tungsten. This comprehensive metabolomic and proteomic study presents further evidence that the tungsten-stress response of soybean plants is shaped by associated rhizobia. Symbiotically grown plants (N fix) were able to significantly increase the synthesis of an array of protective compounds such as phenols, polyamines, gluconic acid, and amino acids such as proline. This resulted in a higher antioxidant capacity, reduced root-to-shoot translocation of tungsten, and, potentially, also enhanced resilience of N fix plants compared to non-symbiotic counterparts (N fed). Taken together, our study revealed a symbiosis-specific metabolic readjustment in tungsten-stressed soybean plants and contributed to a deeper understanding of the mechanisms involved in the rhizobium-induced systemic resistance in response to heavy metals.
Collapse
Affiliation(s)
- Julian Preiner
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Irene Steccari
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Molecular Systems Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Jamali ZH, Ali S, Qasim M, Song C, Anwar M, Du J, Wang Y. Assessment of molybdenum application on soybean physiological characteristics in maize-soybean intercropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1240146. [PMID: 37841600 PMCID: PMC10570528 DOI: 10.3389/fpls.2023.1240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Soybean is a leguminous crop known for its efficient nitrogen utilization and ease of cultivation. However, its intercropping with maize may lead to severe reduction in its growth and yield due to shading effect of maize. This issue can be resolved by the appropriate application of essential plant nutrient such as molybdenum (Mo). Aim of this study was to assess the effect of Mo application on the morphological and physiological characteristics of soybean intercropped with maize. A two-year field experiment was conducted for this purpose, and Mo was applied in the form of sodium molybdate (Na2MoO4), and four different levels were maintained i.e., 0, 60, 120 and 180 g ha-1. Soybean exhibited varying responses to different levels of molybdenum (Mo) application. Notably, in both sole and intercropped cropping systems, the application of Mo at a rate of 120 g ha-1 demonstrated the highest level of promise compared to other application levels. However, most significant outcomes were pragmatic in soybean-maize intercropping, as application of Mo @ 120 g ha-1 significantly improved soybean growth and yield attributes, including leaf area index (LAI; 434 and 441%), total plant biomass (430 and 461%), transpiration rate (15 and 18%), stomatal conductance (9 and 11%), and yield (15 and 20%) during year 2020 and 2021 respectively, as compared to control treatment. Similarly, Mo @ 120 g ha-1 application resulted in highest total grain yield (626.0 and 725.3 kg ha-1) during 2020 and 2021 respectively, which exceeded the grain yields of other Mo levels under intercropping. Moreover, under Mo application level (120 g ha-1), grain NPK and Mo contents during years 2020 and 2021 were found to be 1.15, 0.22, 0.83 and 68.94 mg kg-1, and 1.27, 0.25, 0.90 and 72.18 mg kg-1 under intercropping system increased the value as compared to control treatment. Findings of current study highlighted the significance of Mo in enhancing soybean growth, yield, and nutrient uptake efficiency in maize-soybean intercropping systems.
Collapse
Affiliation(s)
| | - Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czechia
| | - Muhammad Qasim
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chun Song
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Anwar
- School of Tropical Agriculture and forestry, Hainan University, Haikou, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Petrović M, Medunić G, Fiket Ž. Essential role of multi-element data in interpreting elevated element concentrations in areas impacted by both natural and anthropogenic influences. PeerJ 2023; 11:e15904. [PMID: 37744221 PMCID: PMC10512964 DOI: 10.7717/peerj.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background This article presents a detailed analysis of a dataset consisting of 27 elements found in soils, soil eluates, and vegetables from private gardens in a region with a long history of coal mining and burning. With coal being one of the world's most significant energy sources, and previous studies highlighting elevated element levels in vegetables from this region, the objective of this study was to identify the factors that impact soil geochemistry and metal(loid) uptake in plants. Methods Total major and trace element concentrations were analyzed in soils, soil eluates and vegetables by high resolution inductively coupled plasma mass spectrometry. The vegetable samples included six species: fennel, garlic, lettuce, parsley, onion, and radicchio. Each plant was divided into roots, stems, leaves, and/or bulbs and analyzed separately. In addition, the soil pollution status, bioavailable fractions and transfer factors from soil and soil eluates to different plant parts were determined. Results The comprehensive dataset revealed that, apart from the substrate enriched with various elements (Al, As, Co, Cr, Mo, Ni, Pb, Sb, Sn, Ti, U, V, and Zn), other anthropogenic factors such as the legacy of coal mining and combustion activities, associated industries in the area, transport, and agricultural practices, also influence the elevated element concentrations (Cd, Cu, Fe, Mn, and Se) in locally grown vegetables. The transfer factors based on element concentrations in aqueous soil eluates and element bioavailable fractions confirmed to be an effective tool for evaluating metal uptake in plants, emphazising to some extent the effects of plant species and revealing unique patterns for each pollution source within its environmental context (e.g., Cd, Mo, S, and Se in this case). The study highlights the crucial importance of utilizing comprehensive datasets that encompass a multitude of factors when interpreting the impacts of element uptake in edible plants.
Collapse
Affiliation(s)
- Marija Petrović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Gordana Medunić
- Department of Geology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Željka Fiket
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Yang J, Xiang N, Liu Y, Guo C, Li C, Li H, Cai S, Dixon R, Wang YP. Organelle-dependent polyprotein designs enable stoichiometric expression of nitrogen fixation components targeted to mitochondria. Proc Natl Acad Sci U S A 2023; 120:e2305142120. [PMID: 37585462 PMCID: PMC10450427 DOI: 10.1073/pnas.2305142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Introducing nitrogen fixation (nif ) genes into eukaryotic genomes and targeting Nif components to mitochondria or chloroplasts is a promising strategy for engineering nitrogen-fixing plants. A prerequisite for achieving nitrogen fixation in crops is stable and stoichiometric expression of each component in organelles. Previously, we designed a polyprotein-based nitrogenase system depending on Tobacco Etch Virus protease (TEVp) to release functional Nif components from five polyproteins. Although this system satisfies the demand for specific expression ratios of Nif components in Escherichia coli, we encountered issues with TEVp cleavage of polyproteins targeted to yeast mitochondria. To overcome this obstacle, a version of the Nif polyprotein system was constructed by replacing TEVp cleavage sites with minimal peptide sequences, identified by knowledge-based engineering, that are susceptible to cleavage by the endogenous mitochondrial-processing peptidase. This replacement not only further reduces the number of genes required, but also prevents potential precleavage of polyproteins outside the target organelle. This version of the polyprotein-based nitrogenase system achieved levels of nitrogenase activity in E. coli, comparable to those observed with the TEVp-based polyprotein nitrogenase system. When applied to yeast mitochondria, stable and balanced expression of Nif components was realized. This strategy has potential advantages, not only for transferring nitrogen fixation to eukaryotic cells, but also for the engineering of other metabolic pathways that require mitochondrial compartmentalization.
Collapse
Affiliation(s)
- Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Nan Xiang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Yiheng Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Chenyue Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Chenyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Hui Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Shuyi Cai
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, NR4 7UHNorwich, United Kingdom
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| |
Collapse
|
10
|
Teeter-Wood KR, Flaherty EJ, Donetz AJ, Hoover GJ, MacDonald WN, Wolyn DJ, Shelp BJ. Improving Boron and Molybdenum Use Efficiencies in Contrasting Cultivars of Subirrigated Greenhouse-Grown Pot Chrysanthemums. PLANTS (BASEL, SWITZERLAND) 2023; 12:2348. [PMID: 37375973 DOI: 10.3390/plants12122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Fertilizer boron (B) and molybdenum (Mo) were provided to contrasting cultivars of subirrigated pot chrysanthemums at approximately 6-100% of current industry standards in an otherwise balanced nutrient solution during vegetative growth, and then all nutrients were removed during reproductive growth. Two experiments were conducted for each nutrient in a naturally lit greenhouse using a randomized complete block split-plot design. Boron (0.313-5.00 µmol L-1) or Mo (0.031-0.500 µmol L-1) was the main plot, and cultivar was the sub-plot. Petal quilling was observed with leaf-B of 11.3-19.4 mg kg-1 dry mass (DM), whereas Mo deficiency was not observed with leaf-Mo of 1.0-3.7 mg kg-1 DM. Optimized supplies resulted in leaf tissue levels of 48.8-72.5 mg B kg-1 DM and 1.9-4.8 mg Mo kg-1 DM. Boron uptake efficiency was more important than B utilization efficiency in sustaining plant/inflorescence growth with decreasing B supply, whereas Mo uptake and utilization efficiencies appeared to have similar importance in sustaining plant/inflorescence growth with decreasing Mo supply. This research contributes to the development of a sustainable low-input nutrient delivery strategy for floricultural operations, wherein nutrient supply is interrupted during reproductive growth and optimized during vegetative growth.
Collapse
Affiliation(s)
| | - Edward J Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alyna J Donetz
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gordon J Hoover
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - William N MacDonald
- Agricxulture Department, Niagara College Canada, Niagara-on-the-Lake, ON L0S 1J0, Canada
| | - David J Wolyn
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Barry J Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
12
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
13
|
Almira Casellas MJ, Pérez‐Martín L, Busoms S, Boesten R, Llugany M, Aarts MGM, Poschenrieder C. A genome-wide association study identifies novel players in Na and Fe homeostasis in Arabidopsis thaliana under alkaline-salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:225-245. [PMID: 36433704 PMCID: PMC10108281 DOI: 10.1111/tpj.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In nature, multiple stress factors occur simultaneously. The screening of natural diversity panels and subsequent Genome-Wide Association Studies (GWAS) is a powerful approach to identify genetic components of various stress responses. Here, the nutritional status variation of a set of 270 natural accessions of Arabidopsis thaliana grown on a natural saline-carbonated soil is evaluated. We report significant natural variation on leaf Na (LNa) and Fe (LFe) concentrations in the studied accessions. Allelic variation in the NINJA and YUC8 genes is associated with LNa diversity, and variation in the ALA3 is associated with LFe diversity. The allelic variation detected in these three genes leads to changes in their mRNA expression and correlates with plant differential growth performance when plants are exposed to alkaline salinity treatment under hydroponic conditions. We propose that YUC8 and NINJA expression patters regulate auxin and jasmonic signaling pathways affecting plant tolerance to alkaline salinity. Finally, we describe an impairment in growth and leaf Fe acquisition associated with differences in root expression of ALA3, encoding a phospholipid translocase active in plasma membrane and the trans Golgi network which directly interacts with proteins essential for the trafficking of PIN auxin transporters, reinforcing the role of phytohormonal processes in regulating ion homeostasis under alkaline salinity.
Collapse
Affiliation(s)
- Maria Jose Almira Casellas
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Laura Pérez‐Martín
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
- Department of Botany and Plant BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Silvia Busoms
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - René Boesten
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| |
Collapse
|
14
|
Oliveira SL, Crusciol CAC, Rodrigues VA, Galeriani TM, Portugal JR, Bossolani JW, Moretti LG, Calonego JC, Cantarella H. Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:887682. [PMID: 35720532 PMCID: PMC9199428 DOI: 10.3389/fpls.2022.887682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
Foliar fertilization has been used as a supplemental strategy to plant nutrition especially in crops with high yield potential. Applying nutrients in small doses stimulates photosynthesis and increases yield performance. The aim of this study was to evaluate the efficiency of foliar application of molybdenum (Mo) to soybean and maize. The treatments consisted of the presence (+Mo) and absence (-Mo) of supplementation. Plant nutritional status, nitrate reductase (NR) activity, gas exchange parameters, photosynthetic enzyme activity (Rubisco in soybean and maize and PEPcase in maize), total soluble sugar concentration, leaf protein content, shoot dry matter, shoot nitrogen accumulated, number of grains per plant, mass of 100 grains, and grain yield were evaluated. For soybean and maize, application of Mo increased leaf NR activity, nitrogen and protein content, Rubisco activity, net photosynthesis, and grain yield. These results indicate that foliar fertilization with Mo can efficiently enhance nitrogen metabolism and the plant’s response to carbon fixation, resulting in improved crop yields.
Collapse
Affiliation(s)
- Sirlene Lopes Oliveira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Vitor Alves Rodrigues
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Tatiani Mayara Galeriani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - José Roberto Portugal
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - João William Bossolani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Luiz Gustavo Moretti
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Juliano Carlos Calonego
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Campinas, Brazil
| |
Collapse
|
15
|
Physiological Importance of Molybdate Transporter Family 1 in Feeding the Molybdenum Cofactor Biosynthesis Pathway in Arabidopsis thaliana. Molecules 2022; 27:molecules27103158. [PMID: 35630635 PMCID: PMC9147641 DOI: 10.3390/molecules27103158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein–protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.
Collapse
|
16
|
Lešková A, Javot H, Giehl RFH. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1751-1765. [PMID: 34791130 DOI: 10.1093/jxb/erab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.
Collapse
Affiliation(s)
- Alexandra Lešková
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
17
|
Hu D, Li M, Zhao FJ, Huang XY. The Vacuolar Molybdate Transporter OsMOT1;2 Controls Molybdenum Remobilization in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:863816. [PMID: 35356108 PMCID: PMC8959823 DOI: 10.3389/fpls.2022.863816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all living organisms. The Mo uptake process in plants has been well investigated. However, the mechanisms controlling Mo translocation and remobilization among different plant tissues are largely unknown, especially the allocation of Mo to rice grains that are the major dietary source of Mo for humans. In this study, we characterized the functions of a molybdate transporter, OsMOT1;2, in the interorgan allocation of Mo in rice. Heterologous expression in yeast established the molybdate transport activity of OsMOT1;2. OsMOT1;2 was highly expressed in the blades of the flag leaf and the second leaf during the grain filling stage. Subcellular localization revealed that OsMOT1;2 localizes to the tonoplast. Knockout of OsMOT1;2 led to more Mo accumulation in roots and less Mo translocation to shoots at the seedling stage and to grains at the maturity stage. The remobilization of Mo from older leaves to young leaves under molybdate-depleted condition was also decreased in the osmot1;2 knockout mutant. In contrast, overexpression of OsMOT1;2 enhanced the translocation of Mo from roots to shoots at the seedling stage. The remobilization of Mo from upper leaves to grains was also enhanced in the overexpression lines during grain filling. Our results suggest that OsMOT1;2 may function as a vacuolar molybdate exporter facilitating the efflux of Mo from the vacuole into the cytoplasm, and thus, it plays an important role in the root-to-shoot translocation of Mo and the remobilization of Mo from leaves to grains.
Collapse
|
18
|
Jin X, Zou Z, Wu Z, Liu C, Yan S, Peng Y, Lei Z, Zhou Z. Genome-Wide Association Study Reveals Genomic Regions Associated With Molybdenum Accumulation in Wheat Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:854966. [PMID: 35310638 PMCID: PMC8924584 DOI: 10.3389/fpls.2022.854966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all organisms. Wheat, a major staple crop worldwide, is one of the main dietary sources of Mo. However, the genetic basis for the variation of Mo content in wheat grains remains largely unknown. Here, a genome-wide association study (GWAS) was performed on the Mo concentration in the grains of 207 wheat accessions to dissect the genetic basis of Mo accumulation in wheat grains. As a result, 77 SNPs were found to be significantly associated with Mo concentration in wheat grains, among which 52 were detected in at least two sets of data and distributed on chromosome 2A, 7B, and 7D. Moreover, 48 out of the 52 common SNPs were distributed in the 726,761,412-728,132,521 bp genomic region of chromosome 2A. Three putative candidate genes, including molybdate transporter 1;2 (TraesCS2A02G496200), molybdate transporter 1;1 (TraesCS2A02G496700), and molybdopterin biosynthesis protein CNX1 (TraesCS2A02G497200), were identified in this region. These findings provide new insights into the genetic basis for Mo accumulation in wheat grains and important information for further functional characterization and breeding to improve wheat grain quality.
Collapse
Affiliation(s)
- Xiaojie Jin
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaojun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songxian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai, China
| | - Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
19
|
Zhao L, Chen S, Tan X, Yan X, Zhang W, Huang Y, Ji R, White JC. Environmental implications of MoS 2 nanosheets on rice and associated soil microbial communities. CHEMOSPHERE 2022; 291:133004. [PMID: 34826440 DOI: 10.1016/j.chemosphere.2021.133004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum disulfide (MoS2) is a transition metal dichalcogenides (TMDCs) material that is seeing rapidly increasing use. The wide range of applications will result in significant environmental release. Here, the impact of MoS2 nanosheets on rice and associated soil microbial communities was evaluated. Rice plants were grown for 4 weeks in a natural paddy soil amended with either 1T or 2H phase MoS2 nanosheets at 10 and 100 mg kg-1. The 1T MoS2 nanosheets have a significantly greater dissolution rate (58.9%) compared to 2H MoS2 (4.4%), indicating the instability of 1T MoS2 in environment. High dissolution rate resulted in a high Mo bioaccumulation in rice leaves (272 and 189 mg kg-1 under 1T and 2H exposure at 100 mg kg-1). However, this did not induce overt phytotoxicity, as indicated by a range of phenotypic or biochemical based determine endpoints, e.g., biomass, photosynthetic pigments, and malondialdehyde (MDA) content. Additionally, rice P uptake was significantly increased upon exposure to 1T and 2H MoS2 (10 mg kg-1). Gas chromatography-mass spectrometry (GC-MS) reveals that both phases of MoS2 in soil systematically enhanced the carbon and nitrogen related metabolic pathways in exposed plants. Soil 16S rRNA gene sequencing data show that soil microbial community structure was unchanged upon MoS2 exposure. However, both phases of MoS2 remarkably increased the relative abundance of N2-fixation cyanobacteria, and 2H MoS2 exposure increased a plant growth-promoting rhizobacteria-Bacillus. Overall, our results suggest that MoS2 nanosheets at tested doses did not exert negative impacts on rice plant and the associated soil microbial community.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xianjun Tan
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuxiong Huang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, CT, 06504, United States
| |
Collapse
|
20
|
Fehlauer T, Collin B, Angeletti B, Santaella C, Dentant C, Chaurand P, Levard C, Gonneau C, Borschneck D, Rose J. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. CHEMOSPHERE 2022; 287:132315. [PMID: 34600011 DOI: 10.1016/j.chemosphere.2021.132315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.
Collapse
Affiliation(s)
- Till Fehlauer
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France.
| | - Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108, St-Paul-lez-Durance, France
| | - Cedric Dentant
- Parc national des Écrins, Domaine de Charance, Gap, 05000, France; Univ. Grenoble Alpes, CNRS, Sciences Po Grenoble, Pacte, Grenoble, 38000, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Clement Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Cedric Gonneau
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Daniel Borschneck
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Jérôme Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| |
Collapse
|
21
|
Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland; Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical, Bio Resource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | | |
Collapse
|
22
|
Sedda D, Mackowiak C, Pailloux J, Culerier E, Dudas A, Rontani P, Erard N, Lefevre A, Mavel S, Emond P, Foucher F, Le Bert M, Quesniaux VF, Mihatsch MJ, Ryffel B, Erard-Garcia M. Deletion of Mocos Induces Xanthinuria with Obstructive Nephropathy and Major Metabolic Disorders in Mice. KIDNEY360 2021; 2:1793-1806. [PMID: 35372998 PMCID: PMC8785848 DOI: 10.34067/kid.0001732021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023]
Abstract
Background Xanthinuria type II is a rare autosomal purine disorder. This recessive defect of purine metabolism remains an under-recognized disorder. Methods Mice with targeted disruption of the molybdenum cofactor sulfurase (Mocos) gene were generated to enable an integrated understanding of purine disorders and evaluate pathophysiologic functions of this gene which is found in a large number of pathways and is known to be associated with autism. Results Mocos-deficient mice die with 4 weeks of age due to renal failure of distinct obstructive nephropathy with xanthinuria, xanthine deposits, cystic tubular dilation, Tamm-Horsfall (uromodulin) protein (THP) deposits, tubular cell necrosis with neutrophils, and occasionally hydronephrosis with urolithiasis. Obstructive nephropathy is associated with moderate interstitial inflammatory and fibrotic responses, anemia, reduced detoxification systems, and important alterations of the metabolism of purines, amino acids, and phospholipids. Conversely, heterozygous mice expressing reduced MOCOS protein are healthy with no apparent pathology. Conclusions Mocos-deficient mice develop a lethal obstructive nephropathy associated with profound metabolic changes. Studying MOCOS functions may provide important clues about the underlying pathogenesis of xanthinuria and other diseases requiring early diagnosis.
Collapse
Affiliation(s)
- Delphine Sedda
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Claire Mackowiak
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Julie Pailloux
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Elodie Culerier
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Ana Dudas
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Pauline Rontani
- Institute of NeuroPhysiopathology (INP), Aix-Marseille University, CNRS UMR7051, Marseille, France
| | - Nicolas Erard
- Institute of NeuroPhysiopathology (INP), Aix-Marseille University, CNRS UMR7051, Marseille, France
| | - Antoine Lefevre
- iBrain, Tours University, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1253, Tours, France
| | - Sylvie Mavel
- iBrain, Tours University, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1253, Tours, France
| | - Patrick Emond
- iBrain, Tours University, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1253, Tours, France,Division of In Vitro Nuclear Medicine, Regional University Hospital of Tours, Tours, France,PST Analysis of Biological Systems, Tours University, Tours, France
| | - Frederic Foucher
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Marc Le Bert
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Valerie F.J. Quesniaux
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | | | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| | - Madeleine Erard-Garcia
- Experimental and Molecular Immunology and Neurogenetics (INEM), Orléans University, Centre National de la Recherche Scientifique (CNRS) UMR7355, Orléans, France
| |
Collapse
|
23
|
Kim JH, Lee JE, Jang CS. Regulation of Oryza sativa molybdate transporter1;3 degradation via RING finger E3 ligase OsAIR3. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153484. [PMID: 34343729 DOI: 10.1016/j.jplph.2021.153484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 05/29/2023]
Abstract
High concentrations of As in contaminated environments pose a serious threat to plant, human, and animal health. In this study, we characterized an As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase gene under arsenate (AsV) stress, named as Oryza sativa As-Induced RING E3 ligase 3 (OsAIR3). AsV treatment highly induced the expression of OsAIR3. OsAIR3-EYFP was localized to the nucleus in rice protoplasts and exhibited E3 ligase activity. Yeast two-hybrid screening and bimolecular fluorescence complementation and pull-down assays revealed the interaction of OsAIR3 with an O. sativa molybdate transporter (OsMOT1;3) in the plasma membrane and cytoplasm. In addition, an in vitro cell-free degradation assay was performed to demonstrate the degradation of OsMOT1;3 by OsAIR3 via the 26S proteasome system. Heterogeneous overexpression of OsAIR3 in Arabidopsis yielded AsV-tolerant phenotypes, as indicated by the comparison of cotyledon expansion, root elongation, shoot fresh weight, and As accumulation between the OsAIR3-overexpressing and control plants. Collectively, these findings suggest that OsAIR3 positively regulates plant response to AsV stress.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-resources Sciences, Graduate School, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jeong Eun Lee
- Plant Genomics Laboratory, Department of Bio-resources Sciences, Graduate School, Kangwon National University, Chuncheon, 24341, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-resources Sciences, Graduate School, Kangwon National University, Chuncheon, 24341, South Korea; Interdisciplinary Program in Smart Agriculture, Graduate School, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
24
|
Lawson-Wood K, Jaafar M, Felipe-Sotelo M, Ward NI. Investigation of the uptake of molybdenum by plants from Argentinean groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48929-48941. [PMID: 33928502 PMCID: PMC8410703 DOI: 10.1007/s11356-021-13902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Some regions of Argentina are affected by high concentrations of molybdenum, arsenic and vanadium from natural sources in their groundwater. In particular, Mo levels in groundwater from Eduardo Castex (La Pampa, Argentina) typically exceed the guidelines for drinking water formerly established by WHO at 70 μg/L. Therefore, this study investigated the uptake of Mo in plants, using cress (Lepidium sativum L.) as a model using hydroponic experiments with synthetic solutions and groundwater from La Pampa. Cress grown from control experiments (150 μg/L Mo, pH 7) presented an average Mo concentration of 35.2 mg/kg (dry weight, d.w.), higher than the typical total plant range (0.7-2.5 mg/kg d.w.) in the literature. Using pooled groundwater samples (65.0-92.5 μg/L Mo) from wells of La Pampa (Argentina) as growth solutions resulted in significantly lower cress Mo levels (1.89-4.59 mg/kg d.w.) than were obtained for synthetic solutions of equivalent Mo concentration. This may be due to the high levels in these groundwater samples of As, V, Fe and Mn which are known to be associated with volcanic deposits. This research addressed the hitherto scarcity of data about the effect of various physicochemical parameters on the uptake of Mo in plants.
Collapse
Affiliation(s)
- Kathryn Lawson-Wood
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- Perkin Elmer, Chalfont Road, Seer Green, Buckinghamshire, HP9 2FX, UK
| | - Maisarah Jaafar
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Mónica Felipe-Sotelo
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | - Neil I Ward
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
25
|
Moseler A, Kruse I, Maclean AE, Pedroletti L, Franceschetti M, Wagner S, Wehler R, Fischer-Schrader K, Poschet G, Wirtz M, Dörmann P, Hildebrandt TM, Hell R, Schwarzländer M, Balk J, Meyer AJ. The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. PLANT PHYSIOLOGY 2021; 186:1507-1525. [PMID: 33856472 PMCID: PMC8260144 DOI: 10.1093/plphys/kiab172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
Collapse
Affiliation(s)
- Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Université de Lorraine, INRAE, IAM, Nancy 54000, France
| | - Inga Kruse
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Wellcome Trust Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Luca Pedroletti
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Regina Wehler
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katrin Fischer-Schrader
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | | | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP)—Plant Energy Biology, University of Münster, 48143 Münster, Germany
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, 52425 Jülich, Germany
- Author for communication:
| |
Collapse
|
26
|
Arif M, Chilvers G, Day S, Naveed S, Woolfe M, Rodionova O, Pomerantsev A, Kracht O, Brodie C, Mihailova A, Abrahim A, Cannavan A, Kelly S. Differentiating Pakistani long-grain rice grown inside and outside the accepted Basmati Himalayan geographical region using a ‘one-class’ multi-element chemometric model. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Kohatsu MY, Pelegrino MT, Monteiro LR, Freire BM, Pereira RM, Fincheira P, Rubilar O, Tortella G, Batista BL, de Jesus TA, Seabra AB, Lange CN. Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16350-16367. [PMID: 33389577 DOI: 10.1007/s11356-020-12169-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/18/2020] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) can be used in several ways in agriculture, including increasing production rates and improving nutritional values in plants. The present study aims to clarify how biogenic copper oxide nanoparticles (CuO NPs) applied by two routes of exposure (foliar spray and soil irrigation) affect the elemental uptake by lettuce. In vivo experiments using lettuce (n = 4) were performed with CuO NPs in comparison with copper salt (CuSO4), considering a final mass added of 20 mg of CuO per plant. The elemental composition of roots was mostly affected by the soil irrigation exposure for both Cu forms (NPs and salt). Neither Cu form added by soil irrigation was translocated to leaves. Copper concentration in leaves was mainly affected by foliar spray exposure for both Cu forms (NPs and salt). All Cu forms through foliar spray were sequestered in the leaves and no translocation to roots was observed. Foliar spray of CuO NPs caused no visual damage in leaves, resulted in less disturbance of elemental composition, and improved dry weight, number of leaves, CO2 assimilation, and the levels of K, Na, S, Ag, Cd, Cr, Cu, and Zn in leaves without causing significant changes in daily intake of most elements, except for Cu. Although Cu concentration increased in leaves by foliar spray of CuO NPs, it remained safe for consumption.
Collapse
Affiliation(s)
- Marcio Yukihiro Kohatsu
- Programa de pós-graduação em Ciência e Tecnologia Ambiental (CTA), Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Milena Trevisan Pelegrino
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Lucilena Rebelo Monteiro
- Centro de Química e Meio Ambiente, IPEN/CNEN-SP - Instituto de Pesquisas Energéticas e Nucleares/Comissão Nacional de Energia Nuclear, São Paulo, SP, Brazil
| | - Bruna Moreira Freire
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Rodrigo Mendes Pereira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Paola Fincheira
- Department of Chemical Engineering, Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Olga Rubilar
- Department of Chemical Engineering, Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tortella
- Department of Chemical Engineering, Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Tatiane Araujo de Jesus
- Programa de pós-graduação em Ciência e Tecnologia Ambiental (CTA), Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Amedea Barozzi Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Camila Neves Lange
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
28
|
D’Oria A, Courbet G, Lornac A, Pluchon S, Arkoun M, Maillard A, Etienne P, Diquélou S, Ourry A. Specificity and Plasticity of the Functional Ionome of Brassica napus and Triticum aestivum Exposed to Micronutrient or Beneficial Nutrient Deprivation and Predictive Sensitivity of the Ionomic Signatures. FRONTIERS IN PLANT SCIENCE 2021; 12:641678. [PMID: 33643368 PMCID: PMC7902711 DOI: 10.3389/fpls.2021.641678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 06/02/2023]
Abstract
The specific variation in the functional ionome was studied in Brassica napus and Triticum aestivum plants subjected to micronutrient or beneficial mineral nutrient deprivation. Effects of these deprivations were compared to those of macronutrient deprivation. In order to identify early events, plants were harvested after 22 days, i.e., before any significant reduction in growth relative to control plants. Root uptake, tissue concentrations and relative root nutrient contents were analyzed revealing numerous interactions with respect to the 20 elements quantified. The assessment of the functional ionome under individual mineral nutrient deficiency allows the identification of a large number of interactions between elements, although it is not totally exhaustive, and gives access to specific ionomic signatures that discriminate among deficiencies in N, P, S, K, Ca, Mn, Fe, Zn, Na, Si, and Se in both species, plus Mg, Cl, Cu, and Mo in wheat. Ionome modifications and components of ionomic signatures are discussed in relation to well-known mechanisms that may explain crosstalks between mineral nutrients, such as between Na and K, V, Se, Mo and S or Fe, Zn and Cu. More surprisingly, when deprived of beneficial nutrients such as Na, Si, Co, or Se, the plant ionome was strongly modified while these beneficial nutrients contributed greatly to the leaf ionomic signature of most mineral deficiencies.
Collapse
Affiliation(s)
- Aurélien D’Oria
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Galatéa Courbet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Aurélia Lornac
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Anne Maillard
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation, Le Groupe Roullier, Saint-Malo, France
| | - Philippe Etienne
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Sylvain Diquélou
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| | - Alain Ourry
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Normandie Université, UNICAEN, INRAE, Caen, France
| |
Collapse
|
29
|
Acid-Modified and Unmodified Natural Clay Deposits for In Situ Immobilization and Reducing Phytoavailability of Molybdenum in a Sandy Loam Calcareous Soil. SUSTAINABILITY 2020. [DOI: 10.3390/su12198203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molybdenum (Mo) in basic soils has high bioavailability and plant toxicity. This study aimed to investigate the effect of increasing Mo concentration on its availability and toxicity threshold in alfalfa plants grown in sandy loam calcareous soils, and the potential use of raw and acid- modified clay deposits as soil additives to immobilize Mo and reduce its phytoavailability. Raw clay deposits (RCD) were treated with H2SO4 to produce acid-modified clay deposits (AMCD). The first experiment was performed using soils treated with 0, 0.1, 1, 10, 50, and 100 mg Mo kg−1. The second experiment was conducted with soils treated with 10 or 50 mg Mo kg−1 and amended with RCD and AMCD at application rates of 0, 2.5, 5, and 10% (w/w). After harvesting, water-soluble Mo, ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA)-extractable Mo, and shoot Mo content as well as dry matter were measured. The results showed that water-soluble Mo, AB-DTPA-extractable Mo, and shoot Mo concentration increased at higher Mo soil addition. AMCD had a stronger influence on Mo immobilization and reduction effect on plant shoots compared to RCD, depending on soil Mo concentration and application rate. Applying AMCD decreased soil pH but increased salinity levels. The shoot dry matter significantly increased in soils amended with RCD and/or AMCD compared to control soils; with the highest improvement recorded for RCD at 10%. It was concluded that AMCD is an efficient immobilizing agent to reduce Mo mobility and its phytoavailability in calcareous soils. Additionally, both AMCD and especially RCD were able to create favorable conditions for plant growth.
Collapse
|
30
|
Liu L, Shi H, Li S, Sun M, Zhang R, Wang Y, Ren F. Integrated Analysis of Molybdenum Nutrition and Nitrate Metabolism in Strawberry. FRONTIERS IN PLANT SCIENCE 2020; 11:1117. [PMID: 32849687 PMCID: PMC7399381 DOI: 10.3389/fpls.2020.01117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/06/2020] [Indexed: 06/02/2023]
Abstract
Molybdenum (Mo) is a component of the Mo cofactor (Moco) of nitrate reductase (NR) and is therefore essential for nitrate metabolism. However, little is known about Mo deficiency phenotypes or about how physiological and molecular mechanisms of Mo uptake and transport influence nitrate uptake and utilization in strawberry. Here, we used physiological and cytological techniques to identify Mo deficiency phenotypes in strawberry. Seedlings cultured with MoO4 2- grew well and exhibited normal microstructure and ultrastructure of leaves and roots. By contrast, seedlings cultivated under Mo-deficient conditions showed yellow leaf blades and ultrastructural changes such as irregular chloroplasts and unclear membrane structures that were similar to the symptoms of nitrogen deficiency. We cloned and analyzed a putative molybdate transporter, FaMOT1, which may encode a molybdate transporter involved in the uptake and translocation of molybdate. Interestingly, the addition of the molybdate analog tungstate led to lower tissue Mo concentrations, reduced the translocation of Mo from roots to shoots, and increased the plants' sensitivity to Mo deficiency. Seedlings cultivated with MoO4 2- altered expression of genes in Moco biosynthesis. As expected, NR activity was higher under sufficient MoO4 2- levels. Furthermore, seedlings grown on Mo-deficient medium exhibited decreased 15NO3 - translocation and lower 15NO3 - use efficiency. These findings represent an important step towards understanding how molybdate transport, concentration, and deficiency symptoms influence nitrate uptake and utilization in strawberry.
Collapse
Affiliation(s)
- Li Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shaoxuan Li
- Fruit & Tea Institute, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yongmei Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fengshan Ren
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
31
|
Osman SA, Salama DM, Abd El-Aziz ME, Shaaban EA, Abd Elwahed MS. The influence of MoO 3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:77-87. [PMID: 32200193 DOI: 10.1016/j.plaphy.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Molybdenum is considered one of the most important micronutrients applied as a foliar fertilizer for common dry bean. In this study, molybdenum oxide nanoparticles (MoO3-NPs) were applied in different concentrations (0, 10, 20, 30 and 40 ppm) over two sequent seasons, 2018 and 2019, to investigate their effect on the plant morphological criteria, yield, and the genomic stability of DNA. The results showed that the application of 40 ppm MoO3-NPs as a foliar fertilizer showed preferable values of plant morphological criteria, such as the number of leaves and branches per plant, as well as the fresh and dry weight with regard to the common bean plant. In addition, the seed yield increased by 82.4% and 84.1% with 40 ppm, while the shoot residue increased by 32.2% and 32.1% with 20 ppm of MoO3-NPs during two seasons, 2018 and 2019, respectively. Furthermore, the common bean treated with 20 and 40 ppm MoO3-NPs had positive unique bands with ISSR primer 848 at 1400 bp (Rf 0.519) and with primer ISSR2M at 200 bp (Rf 0.729), respectively. In addition, SDS-PAGE reveald some proteins in seedlings which were absent in the flowering stage at 154, 102, 64, 37 and 34 KDa, which may be due to differences in plant proteins required for metabolic processes in each stage. In conclusion, the application of 40 ppm MoO3-NPs was more effective on the productivity of the common bean plants.
Collapse
Affiliation(s)
- Samira A Osman
- Genetics and Cytology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - Dina M Salama
- Vegetable Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - M E Abd El-Aziz
- Polymers & Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - Essam A Shaaban
- Pomology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - Mohamed S Abd Elwahed
- Botany Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
32
|
Yan B, Isaure MP, Mounicou S, Castillo-Michel H, De Nolf W, Nguyen C, Cornu JY. Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113987. [PMID: 31962265 DOI: 10.1016/j.envpol.2020.113987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 05/15/2023]
Abstract
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Collapse
Affiliation(s)
- Bofang Yan
- ISPA, INRAE, Bordeaux Sciences Agro, France
| | - Marie-Pierre Isaure
- CNRS / Université de Pau et des Pays de l'Adour / E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Sandra Mounicou
- CNRS / Université de Pau et des Pays de l'Adour / E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF), ID21 Beamline, BP 220, 38043, Grenoble, France
| | - Wout De Nolf
- European Synchrotron Radiation Facility (ESRF), ID21 Beamline, BP 220, 38043, Grenoble, France
| | | | | |
Collapse
|
33
|
Zuidersma EI, Ausma T, Stuiver CEE, Prajapati DH, Hawkesford MJ, De Kok LJ. Molybdate toxicity in Chinese cabbage is not the direct consequence of changes in sulphur metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:331-336. [PMID: 31675464 PMCID: PMC7065239 DOI: 10.1111/plb.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
In polluted areas, plants may be exposed to supra-optimal levels of the micronutrient molybdenum. The physiological basis of molybdenum phytotoxicity is poorly understood. Plants take up molybdenum as molybdate, which is a structural analogue of sulphate. Therefore, it is presumed that elevated molybdate concentrations may hamper the uptake and subsequent metabolism of sulphate, which may induce sulphur deficiency. In the current research, Chinese cabbage (Brassica pekinensis) seedlings were exposed to 50, 100, 150 and 200 μm Na2 MoO4 for 9 days. Leaf chlorosis and a decreased plant growth occurred at concentrations ≥100 μm. Root growth was more affected than shoot growth. At ≥100 μm Na2 MoO4 , the sulphate uptake rate and capacity were increased, although only when expressed on a root fresh weight basis. When expressed on a whole plant fresh weight basis, which corrects for the impact of molybdate on the shoot-to-root ratio, the sulphate uptake rate and capacity remained unaffected. Molybdate concentrations ≥100 μm altered the mineral nutrient composition of plant tissues, although the levels of sulphur metabolites (sulphate, water-soluble non-protein thiols and total sulphur) were not altered. Moreover, the levels of nitrogen metabolites (nitrate, amino acids, proteins and total nitrogen), which are generally strongly affected by sulphate deprivation, were not affected. The root water-soluble non-protein thiol content was increased, and the tissue nitrate levels decreased, only at 200 μm Na2 MoO4 . Evidently, molybdenum toxicity in Chinese cabbage was not due to the direct interference of molybdate with the uptake and subsequent metabolism of sulphate.
Collapse
Affiliation(s)
- E I Zuidersma
- Isotope Laboratory Life Sciences, Graduate School of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - T Ausma
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - C E E Stuiver
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - D H Prajapati
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - M J Hawkesford
- Plant Sciences Department, Rothamsted Research, Harpenden, UK
| | - L J De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Sarthou MCM, Revel BH, Villiers F, Alban C, Bonnot T, Gigarel O, Boisson AM, Ravanel S, Bourguignon J. Development of a metalloproteomic approach to analyse the response of Arabidopsis cells to uranium stress. Metallomics 2020; 12:1302-1313. [DOI: 10.1039/d0mt00092b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elaboration of a top-down proteomic, biochemical and ionoproteomic toolbox to gain insights into the impact of uranyl (U) on Arabidopsis cells.
Collapse
|
35
|
Courbet G, Gallardo K, Vigani G, Brunel-Muguet S, Trouverie J, Salon C, Ourry A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4183-4196. [PMID: 31055598 DOI: 10.1093/jxb/erz214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/29/2019] [Indexed: 05/02/2023]
Abstract
A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N.
Collapse
Affiliation(s)
- Galatéa Courbet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Sophie Brunel-Muguet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Jacques Trouverie
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Alain Ourry
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| |
Collapse
|
36
|
Poschenrieder C, Busoms S, Barceló J. How Plants Handle Trivalent (+3) Elements. Int J Mol Sci 2019; 20:E3984. [PMID: 31426275 PMCID: PMC6719099 DOI: 10.3390/ijms20163984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion's redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Silvia Busoms
- Plant Sciences, Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
37
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
38
|
Preiner J, Wienkoop S, Weckwerth W, Oburger E. Molecular Mechanisms of Tungsten Toxicity Differ for Glycine max Depending on Nitrogen Regime. FRONTIERS IN PLANT SCIENCE 2019; 10:367. [PMID: 31001297 PMCID: PMC6454624 DOI: 10.3389/fpls.2019.00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 05/06/2023]
Abstract
Tungsten (W) finds increasing application in military, aviation and household appliance industry, opening new paths into the environment. Since W shares certain chemical properties with the essential plant micronutrient molybdenum (Mo), it is proposed to inhibit enzymatic activity of molybdoenzymes [e.g., nitrate reductase (NR)] by replacing the Mo-ion bound to the co-factor. Recent studies suggest that W, much like other heavy metals, also exerts toxicity on its own. To create a comprehensive picture of tungsten stress, this study investigated the effects of W on growth and metabolism of soybean (Glycine max), depending on plant nitrogen regime [nitrate fed (N fed) vs. symbiotic N2 fixation (N fix)] by combining plant physiological data (biomass production, starch and nutrient content, N2 fixation, nitrate reductase activity) with root and nodule proteome data. Irrespective of N regime, NR activity and total N decreased with increasing W concentrations. Nodulation and therefore also N2 fixation strongly declined at high W concentrations, particularly in N fix plants. However, N2 fixation rate (g N fixed g-1 nodule dwt) remained unaffected by increasing W concentrations. Proteomic analysis revealed a strong decline in leghemoglobin and nitrogenase precursor levels (NifD), as well as an increase in abundance of proteins involved in secondary metabolism in N fix nodules. Taken together this indicates that, in contrast to the reported direct inhibition of NR, N2 fixation appears to be indirectly inhibited by a decrease in nitrogenase synthesis due to W induced changes in nodule oxygen levels of N fix plants. Besides N metabolism, plants exhibited a strong reduction of shoot (both N regimes) and root (N fed only) biomass, an imbalance in nutrient levels and a failure of carbon metabolic pathways accompanied by an accumulation of starch at high tungsten concentrations, independent of N-regime. Proteomic data (available via ProteomeXchange with identifier PXD010877) demonstrated that the response to high W concentrations was independent of nodule functionality and dominated by several peroxidases and other general stress related proteins. Based on an evaluation of several W responsive proteotypic peptides, we identified a set of protein markers of W stress and possible targets for improved stress tolerance.
Collapse
Affiliation(s)
- Julian Preiner
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Huang XY, Liu H, Zhu YF, Pinson SRM, Lin HX, Guerinot ML, Zhao FJ, Salt DE. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. THE NEW PHYTOLOGIST 2019; 221:1983-1997. [PMID: 30339276 DOI: 10.1111/nph.15546] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/07/2018] [Indexed: 05/07/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for most living organisms, including humans. Cereals such as rice (Oryza sativa) are the major dietary source of Mo. However, little is known about the genetic basis of the variation in Mo content in rice grain. We mapped a quantitative trait locus (QTL) qGMo8 that controls Mo accumulation in rice grain by using a recombinant inbred line population and a backcross introgression line population. We identified a molybdate transporter, OsMOT1;1, as the causal gene for this QTL. OsMOT1;1 exhibits transport activity for molybdate, but not sulfate, when heterogeneously expressed in yeast cells. OsMOT1;1 is mainly expressed in roots and is involved in the uptake and translocation of molybdate under molybdate-limited condition. Knockdown of OsMOT1;1 results in less Mo being translocated to shoots, lower Mo concentration in grains and higher sensitivity to Mo deficiency. We reveal that the natural variation of Mo concentration in rice grains is attributed to the variable expression of OsMOT1;1 due to sequence variation in its promoter. Identification of natural allelic variation in OsMOT1;1 may facilitate the development of rice varieties with Mo-enriched grain for dietary needs and improve Mo nutrition of rice on Mo-deficient soils.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Fei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shannon R M Pinson
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, 72160, USA
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
40
|
From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules 2018; 23:molecules23123287. [PMID: 30545001 PMCID: PMC6321594 DOI: 10.3390/molecules23123287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.
Collapse
|
41
|
Watanabe S, Sato M, Sawada Y, Tanaka M, Matsui A, Kanno Y, Hirai MY, Seki M, Sakamoto A, Seo M. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Sci Rep 2018; 8:16592. [PMID: 30413758 PMCID: PMC6226459 DOI: 10.1038/s41598-018-34862-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Arabidopsis ABA3 is an enzyme involved in the synthesis of the sulfurated form of the molybdenum (Mo) cofactor (MoCo), which is required for the enzymatic activity of so-called Mo enzymes such as aldehyde oxidase (AO) and xanthine dehydrogenase (XDH). It has been reported that AO and XDH are essential for the biosynthesis of the bioactive compounds, ABA and allantoin, respectively. However, aba3 mutants often exhibit pleiotropic phenotypes that are not explained by defects in ABA and/or allantoin biosynthesis, leading us to hypothesize that ABA3 regulates additional metabolic pathways. To reveal the currently unidentified functions of ABA3 we compared transcriptome and metabolome of the Arabidopsis aba3 mutant with those of wild type and a typical ABA-deficient mutant aba2. We found that endogenous levels of anthocyanins, members of the flavonoid group, were significantly lower in the aba3 mutant than in the wild type or the aba2 mutant under oxidative stress. In contrast, mutants defective in the AO and XDH holoenzymes accumulated significantly higher levels of anthocyanins when compared with aba3 mutant under the same conditions. Our findings shed light on a key role of ABA3 in the ABA- and allantoin-independent accumulation of anthocyanins during stress responses.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Sakamoto
- Department of Mathematics and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
42
|
Vigani G, Murgia I. Iron-Requiring Enzymes in the Spotlight of Oxygen. TRENDS IN PLANT SCIENCE 2018; 23:874-882. [PMID: 30077479 DOI: 10.1016/j.tplants.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
Iron (Fe) is a cofactor required for a variety of essential redox reactions in plant metabolism. Thus, plants have developed a complex network of interacting pathways to withstand Fe deficiency, including metabolic reprogramming. This opinion aims at revisiting such reprogramming by focusing on: (i) the functional relationships of Fe-requiring enzymes (FeREs) with respect to oxygen; and (ii) the progression of FeREs engagement, occurring under Fe deficiency stress. In particular, we considered such progression of FeREs engagement as strain responses of increasing severity during the stress phases of alarm, resistance, and exhaustion. This approach can contribute to reconcile the variety of experimental results obtained so far from different plant species and/or different Fe supplies.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, via Quarello 15/A 10135, Torino, Italy.
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
43
|
Batyrshina Z, Yergaliyev TM, Nurbekova Z, Moldakimova NA, Masalimov ZK, Sagi M, Omarov RT. Differential influence of molybdenum and tungsten on the growth of barley seedlings and the activity of aldehyde oxidase under salinity. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:189-196. [PMID: 29960143 DOI: 10.1016/j.jplph.2018.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
The influence of molybdenum, tungsten on germination and growth of barley Hordeum vulgare L. was studied. Results of this study revealed the differential effect of heavy metals on seedlings growth. Exogenous molybdenum treatment stimulated the growth of seedlings. The addition of the metal significantly stimulated root elongation. Contrastingly, the addition of tungsten resulted in increased seed germination and inhibits the growth of seedlings. The negative effect of tungsten on the growth of barley was more profound for roots of plants. In addition, the influence of metals on the growth of plants was also tested in saline conditions. It is shown that under salinity stress plant growth drastically decreased in presence of tungsten. Results of this study showed that activity of molybdenum-containing aldehyde oxidase (AO; EC 1.2.3.1) was also significantly affected by metals. The activity of AO in leaves and roots enhanced with increasing concentrations of molybdate, while tungstate treatment inhibited the enzyme activity. Perhaps, the differential influence of molybdenum and tungsten on the growth of barley is a direct effect of metals on aldehyde oxidase activity in plants. Moreover, the intense negative effect of tungsten treatment on barley growth under salinity conditions emphasizes an important role of aldehyde oxidase in plant resistance to stress factors.
Collapse
Affiliation(s)
- Zhaniya Batyrshina
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Timur M Yergaliyev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan; Department of Biology and Chemistry, A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Zhadyrassyn Nurbekova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan; Biostress Research Laboratory, J. Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nazira A Moldakimova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Zhaksylyk K Masalimov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Moshe Sagi
- Biostress Research Laboratory, J. Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Rustem T Omarov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan.
| |
Collapse
|
44
|
Wu S, Hu C, Tan Q, Zhao X, Xu S, Xia Y, Sun X. Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. PLANT CELL REPORTS 2018; 37:599-610. [PMID: 29340785 DOI: 10.1007/s00299-018-2254-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Our study first reveals that Mo mediates oxidative tolerance through ABA signaling. Moreover, NO acts downstream of ABA signaling in Mo-induced oxidative tolerance in wheat under drought stress. Nitric oxide (NO) is related to the improvement of molybdenum (Mo)-induced oxidative tolerance. While the function of Mo in abscisic acid (ABA) synthesis and in mediating oxidative tolerance by the interaction of ABA and NO remain to be studied. The -Mo and +Mo treatment-cultivated wheat was separated and subsequently was pretreated with AO inhibitor, ABA synthesis inhibitor, exogenous ABA, NO scavenger, NO donor or their combinations under polyethylene glycol 6000 (PEG)-stimulated drought stress (PSD). The AO activity and ABA content were increased by Mo in wheat under PSD, however, AO inhibitor decreased AO activity, correspondingly reduced ABA accumulation, suggesting that AO involves in the regulation of Mo-induced ABA synthesis. Mo enhanced activities and expressions of antioxidant enzyme, while these effects of Mo were reversed by AO inhibitor and ABA synthesis inhibitor due to the decrease of ABA content, but regained by exogenous ABA, indicating that Mo induces oxidative tolerance through ABA. Moreover, NO scavenger inhibited activities of antioxidant enzyme caused by Mo and exogenous ABA, but the inhibitions were eliminated by NO donor, indicating that NO is involved in ABA pathway in the regulation of Mo-induced oxidative tolerance in wheat under PSD. Finally, we proposed a scheme for the mechanism of Mo-induced oxidative tolerance.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Shoujun Xu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Yitao Xia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
45
|
Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria. Biochem J 2018; 475:495-509. [PMID: 29247140 PMCID: PMC5791162 DOI: 10.1042/bcj20170559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/04/2023]
Abstract
Mitochondria play a key role in the biosynthesis of two metal cofactors, iron–sulfur (FeS) clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but a scarcity of mutants has hindered studies to better understand these links. We screened a collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3 (ABC transporter of the mitochondria 3), encoding the ATP-binding cassette transporter of the mitochondria 3 (systematic name ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco biosynthesis. We also identified a mutant allele in CNX2, cofactor of nitrate reductase and xanthine dehydrogenase 2, encoding GTP 3′,8-cyclase, the first step in Moco biosynthesis which is localized in the mitochondria. A single-nucleotide polymorphism in cnx2-2 leads to substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are small and chlorotic, with severely decreased Moco enzyme activities, but they performed better than a cnx2-1 knockout mutant, which could only survive with ammonia as a nitrogen source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC–MS/MS showed that this Moco intermediate was below the limit of detection in both cnx2-1 and cnx2-2, and accumulated more than 10-fold in seedlings mutated in the downstream gene CNX5. Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous reports of a similar decrease in nitrate reductase activity. Taken together, our data functionally characterize CNX2 and suggest that ATM3 is indirectly required for cPMP synthesis.
Collapse
|
46
|
Prodhan MA, Jost R, Watanabe M, Hoefgen R, Lambers H, Finnegan PM. Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat. THE NEW PHYTOLOGIST 2017; 215:1068-1079. [PMID: 28656667 DOI: 10.1111/nph.14640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/03/2017] [Indexed: 05/27/2023]
Abstract
Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species' supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.
Collapse
Affiliation(s)
- M Asaduzzaman Prodhan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Ricarda Jost
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
47
|
Duan G, Hakoyama T, Kamiya T, Miwa H, Lombardo F, Sato S, Tabata S, Chen Z, Watanabe T, Shinano T, Fujiwara T. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1108-1119. [PMID: 28276145 DOI: 10.1111/tpj.13532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high-affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate-mutagenized line (ljmot1) decreased by 70-95% compared with wild-type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60-70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm. LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons-removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules.
Collapse
Affiliation(s)
- Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsuneo Hakoyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Miwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fabien Lombardo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- National Agriculture and Food Research Organization (NARO) Institute of Crop Science, Ibaraki, 305-8518, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
| | - Zheng Chen
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
| | - Takuro Shinano
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- NARO Tohoku Agricultural Research Center, Arai, Fukushima, 960-2156, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
48
|
Burney OT, Redente EF, Lambert CE. Plant growth in amended molybdenum mine waste rock. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11215-11227. [PMID: 28293829 DOI: 10.1007/s11356-017-8716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.
Collapse
Affiliation(s)
- Owen T Burney
- John T Harrington Forestry Research Center, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, PO Box 359, Mora, NM, 87732, USA.
| | - Edward F Redente
- Redente Ecological Consultants, 2417 Brookwood Drive, Fort Collins, CO, 80525, USA
| | - Charles E Lambert
- Intrinsik, Inc., 1608 Pacific Ave., Suite 201, Venice, CA, 90291, USA
| |
Collapse
|
49
|
Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants. THE NEW PHYTOLOGIST 2017; 213:1222-1241. [PMID: 27735062 DOI: 10.1111/nph.14214] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 05/22/2023]
Abstract
Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Anna Maria Agresta
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Silvia Donnini
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Christian Gehl
- Institute of Horticulture Production Systems, Leibniz University of Hannover, Herrenhaeuser Str. 2, 30419, Hannover, Germany
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
50
|
Forieri I, Sticht C, Reichelt M, Gretz N, Hawkesford MJ, Malagoli M, Wirtz M, Hell R. System analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency. PLANT, CELL & ENVIRONMENT 2017; 40:95-107. [PMID: 27726154 DOI: 10.1111/pce.12842] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 05/22/2023]
Abstract
Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient-specific and general stress-induced transcriptional responses. In this study, we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth. Nevertheless, limitation by individual nutrients resulted in specific morphological adaptations and distinct shifts within the root metabolite fingerprint. The metabolic shifts affected key metabolites of primary metabolism and the stress-related phytohormones, jasmonic, salicylic and abscisic acid. These phytohormone signatures contributed to specific nutrient deficiency-induced transcriptional regulation. Limitation by the micronutrient iron caused the strongest regulation and affected 18% of the root transcriptome. Only 130 genes were regulated by all nutrients. Specific co-regulation between the iron and sulfur metabolic routes upon iron or sulfur deficiency was observed. Interestingly, iron deficiency caused regulation of a different set of genes of the sulfur assimilation pathway compared with sulfur deficiency itself, which demonstrates the presence of specific signal-transduction systems for the cross-regulation of the pathways. Combined iron and sulfur starvation experiments demonstrated that a requirement for a specific nutrient can overrule this cross-regulation. The comparative metabolomics and transcriptomics approach used dissected general stress from nutrient-specific regulation in roots of Arabidopsis.
Collapse
Affiliation(s)
- Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Sticht
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Norbert Gretz
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|