1
|
Jayarathna SB, Chawla HS, Mira MM, Duncan RW, Stasolla C. Mapping of quantitative trait loci (QTL) in Brassica napus L. for tolerance to water stress. Genome 2024; 67:482-492. [PMID: 39417409 DOI: 10.1139/gen-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.
Collapse
Affiliation(s)
- Samadhi B Jayarathna
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Harmeet S Chawla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Lu G, Tian Z, Chen P, Liang Z, Zeng X, Zhao Y, Li C, Yan T, Hang Q, Jiang L. Comprehensive Morphological and Molecular Insights into Drought Tolerance Variation at Germination Stage in Brassica napus Accessions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3296. [PMID: 39683089 DOI: 10.3390/plants13233296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Drought constitutes a noteworthy abiotic stressor, detrimentally impacting seed germination, plant development, and agricultural yield. In response to the threats imposed by climate change and water paucity, this study examined the morphological divergence and genetic governance of drought resilience traits at the germination stage in 196 rapeseed (Brassica napus L.) lines under both normal (0 MPa) and drought-induced stress (-0.8 MPa) scenarios. Our study showed that the composite drought tolerance D value is a reliable index for identifying drought resilience. Through a genome-wide association study (GWAS), we uncovered 37 significant SNP loci and 136 putative genes linked to drought tolerance based on the D value. A key discovery included the gene BnaA01g29390D (BnNCED3), encoding 9-cis-epoxycarotenoid dioxygenase, which exhibited significantly heightened expression levels in drought-resistant accessions (p < 0.01), underscoring its potential as a positive drought stress regulator and a suitable candidate for genetically enhancing drought resilience. Moreover, we pinpointed four stress-reactive transcription factors (BnaA07g26740D, BnaA07g26870D, BnaA07g26910D, and BnaA07g26980D), two E3 ubiquitin-protein ligases (BnaA05g22900D and BnaC06g28950D), two enzymes (BnaA01g29390D and BnaA03g48550D), and two photosystem-associated proteins (BnaA05g22950D and BnaC06g28840D) as vital components in drought response mechanisms. The construction of a regulatory network reveals an ABA-dependent pathway (NCED3/RGLG5/IDD14) that contributes to drought tolerance in rapeseed seedlings, alongside the involvement of a drought avoidance strategy (APRR6/PHYB). The SNPs and genes unveiled in this study offer a substantial theoretical foundation for subsequent investigations targeting genetic improvement for drought resilience during seed germination in rapeseed.
Collapse
Affiliation(s)
- Guangyuan Lu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhitao Tian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peiyuan Chen
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhiling Liang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xinyu Zeng
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yongguo Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Chunsheng Li
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Tao Yan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Qian Hang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Ravelombola W, Manley A, Pham H, Brown M, Ruhl C, Ghosh P. Genome-Wide Association Study for Seed Yield of Tepary Bean Using Whole-Genome Resequencing. Int J Mol Sci 2024; 25:11302. [PMID: 39457083 PMCID: PMC11508933 DOI: 10.3390/ijms252011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tepary bean (Phaseolus acutifolius A. Gray) is a diploid legume species (2n = 2x = 22). It is the most drought- and heat-tolerant crop of the genus Phaseolus. Tepary bean is native to the northern part of Mexico and the south-western part of the U.S. The lack of molecular markers associated with agronomic traits such as 100-seed weight and seed yield limit the development of elite tepary bean cultivars. Therefore, the objectives of this study were to evaluate tepary bean for 100-seed weight and yield, and identify single-nucleotide polymorphism (SNP) markers associated with these traits. A total of 230,000 high-quality SNPs obtained from the whole-genome resequencing of 153 tepary bean accessions were used for this study. For 100-seed weight, a total of 5 and 20 SNPs were found using a mixed linear model (MLM) and compressed mixed linear model (cMLM), respectively. A candidate gene, Phacu.CVR.002G320800.13, encoding the squamosa promoter-binding protein-like (SBP domain) transcription factor family protein was found to be associated with 100-seed weight. For seed yield, a total of one and eight SNPs were identified using an MLM and cMLM, respectively. Phacu.CVR.009G294200.1, encoding for peroxidase family protein, was identified as a candidate gene for seed yield. Both Phacu.CVR.002G320800.13 and Phacu.CVR.009G294200.1 are likely to be involved in seed development of tepary bean. This is one of the few studies investigating the genetics of 100-seed weight and seed yield in tepary bean.
Collapse
Affiliation(s)
- Waltram Ravelombola
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
- Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| | - Aurora Manley
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Hanh Pham
- Texas A&M AgriLife Research, 1102 East Drew Street, Lubbock, TX 79403, USA
| | - Madeline Brown
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Caroline Ruhl
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Protik Ghosh
- Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
4
|
Yang G, Pan Y, Pan W, Song Q, Zhang R, Tong W, Cui L, Ji W, Song W, Song B, Deng P, Nie X. Combined GWAS and eGWAS reveals the genetic basis underlying drought tolerance in emmer wheat (Triticum turgidum L.). THE NEW PHYTOLOGIST 2024; 242:2115-2131. [PMID: 38358006 DOI: 10.1111/nph.19589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingting Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruoyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licao Cui
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoxing Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, Shaanxi, China
| |
Collapse
|
5
|
Balech R, Maalouf F, Kaur S, Jighly A, Joukhadar R, Alsamman AM, Hamwieh A, Khater LA, Rubiales D, Kumar S. Identification of novel genes associated with herbicide tolerance in Lentil (Lens culinaris ssp. culinaris Medik.). Sci Rep 2024; 14:10215. [PMID: 38702403 PMCID: PMC11068770 DOI: 10.1038/s41598-024-59695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.
Collapse
Affiliation(s)
- Rind Balech
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon.
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon.
| | - Sukhjiwan Kaur
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Abdulqader Jighly
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Reem Joukhadar
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | | | | | - Lynn Abou Khater
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | | |
Collapse
|
6
|
Tian Z, Zhao M, Wang J, Yang Q, Ma Y, Yang X, Ma L, Qi Y, Li J, Quinet M, Shi B, Meng Y. Exogenous melatonin improves germination rate in buckwheat under high temperature stress by regulating seed physiological and biochemical characteristics. PeerJ 2024; 12:e17136. [PMID: 38590707 PMCID: PMC11000643 DOI: 10.7717/peerj.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultrual University, Baoding, China
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Mengyu Zhao
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Junzhen Wang
- Liangshan Yi Autonomous Prefecture Academy of Agricultural Sciences, Xichang, China
| | - Qian Yang
- Hebei Agricultrual University, Baoding, China
| | - Yini Ma
- Hebei Agricultrual University, Baoding, China
| | - Xinlei Yang
- Hebei Agricultrual University, Baoding, China
| | - Luping Ma
- Hebei Agricultrual University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultrual University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Muriel Quinet
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Yu Meng
- Hebei Agricultrual University, Baoding, China
| |
Collapse
|
7
|
Salami M, Heidari B, Alizadeh B, Batley J, Wang J, Tan XL, Dadkhodaie A, Richards C. Dissection of quantitative trait nucleotides and candidate genes associated with agronomic and yield-related traits under drought stress in rapeseed varieties: integration of genome-wide association study and transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1342359. [PMID: 38567131 PMCID: PMC10985355 DOI: 10.3389/fpls.2024.1342359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Introduction An important strategy to combat yield loss challenge is the development of varieties with increased tolerance to drought to maintain production. Improvement of crop yield under drought stress is critical to global food security. Methods In this study, we performed multiomics analysis in a collection of 119 diverse rapeseed (Brassica napus L.) varieties to dissect the genetic control of agronomic traits in two watering regimes [well-watered (WW) and drought stress (DS)] for 3 years. In the DS treatment, irrigation continued till the 50% pod development stage, whereas in the WW condition, it was performed throughout the whole growing season. Results The results of the genome-wide association study (GWAS) using 52,157 single-nucleotide polymorphisms (SNPs) revealed 1,281 SNPs associated with traits. Six stable SNPs showed sequence variation for flowering time between the two irrigation conditions across years. Three novel SNPs on chromosome C04 for plant weight were located within drought tolerance-related gene ABCG16, and their pleiotropically effects on seed weight per plant and seed yield were characterized. We identified the C02 peak as a novel signal for flowering time, harboring 52.77% of the associated SNPs. The 288-kbps LD decay distance analysis revealed 2,232 candidate genes (CGs) associated with traits. The CGs BIG1-D, CAND1, DRG3, PUP10, and PUP21 were involved in phytohormone signaling and pollen development with significant effects on seed number, seed weight, and grain yield in drought conditions. By integrating GWAS and RNA-seq, 215 promising CGs were associated with developmental process, reproductive processes, cell wall organization, and response to stress. GWAS and differentially expressed genes (DEGs) of leaf and seed in the yield contrasting accessions identified BIG1-D, CAND1, and DRG3 genes for yield variation. Discussion The results of our study provide insights into the genetic control of drought tolerance and the improvement of marker-assisted selection (MAS) for breeding high-yield and drought-tolerant varieties.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Alizadeh
- Oil Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research Education and Extension, Organization, (AREEO), Karaj, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
8
|
Kumar S, Liu Y, Wang M, Khan MN, Wang S, Li Y, Chen Y, Zhu G. Alleviating sweetpotato salt tolerance through exogenous glutathione and melatonin: A profound mechanism for active oxygen detoxification and preservation of photosynthetic organs. CHEMOSPHERE 2024; 350:141120. [PMID: 38199502 DOI: 10.1016/j.chemosphere.2024.141120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Salt stress profoundly impacts sweetpotato production. Exogenous glutathione (GSH) and melatonin (MT) promoted plant growth under stress, but their specific roles and mechanisms in sweetpotato salt tolerance need exploration. This study investigated GSH and MT's regulatory mechanisms in sweetpotato under salt stress. Salt stress significantly reduces both growth and biomass by hindering photosynthesis, root traits, K+ content, and K+/Na+ balance, leading to oxidative stress and excessive hydrogen peroxide (H2O2), superoxide ion (O2•-), and malondialdehyde (MDA) production and Na+ accumulation. Nevertheless, GSH (2 mM) and MT (25 μM) pre-treatments effectively mitigated salt-induced oxidative damage and protected the plasma membrane. They reduced osmotic pressure by enhancing K+ uptake, K+/Na+ regulation, osmolyte accumulation, and reducing Na+ accumulation. Improved stomatal traits, chloroplast and grana lamella preservation, and maintenance of mesophyll cells, cell wall, and mitochondrial structure were observed with GSH and MT pre-treatments under salt stress, therefore boosting the photosynthetic system and enhancing plant growth and biomass. Moreover, the findings also indicate that the positive outcomes of GSH and MT pre-treatments result from elevated antioxidant levels, enhanced enzymatic activity, and upregulated expression of sodium hydrogen exchanger 2 (NHX2), K+transporter 1 (AKT1), and cation/H+exchanger (CHX), CBL-interacting protein kinase 1 (CIPK1), and antioxidant enzyme genes. These mechanisms enhance structural stability in photosynthesis and reduce salt stress. Evidently, MT pre-treatment exhibited superior effects compared to GSH. These findings provide a firm theoretical basis for employing GSH and MT to enhance salt tolerance in sweetpotato cultivation.
Collapse
Affiliation(s)
- Sunjeet Kumar
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mengzhao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Shihai Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yongping Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yanli Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Guopeng Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. Role of Microbes in Alleviating Crop Drought Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:384. [PMID: 38337917 PMCID: PMC10857462 DOI: 10.3390/plants13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress. Moreover, we review the morpho-physiological, biochemical, and molecular mechanisms underlying the mitigation effect of microbes on crop drought stress. Finally, we highlight future research directions, including the characterization of specific rhizosphere microbiome species with corresponding root exudates and the efficiency of rhizobacteria inoculants under drought conditions. Such research will advance our understanding of the complex interactions between crops and microbes and improve crop resistance to drought stress through the application of beneficial drought-adaptive microbes.
Collapse
Affiliation(s)
- Zechen Gu
- Engineering and Technical Center for Modern Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Chengji Hu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Yuxin Gan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Jinyan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Guangli Tian
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Limin Gao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing 210014, China
| |
Collapse
|
10
|
Salami M, Heidari B, Batley J, Wang J, Tan XL, Richards C, Tan H. Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers. FRONTIERS IN PLANT SCIENCE 2024; 14:1249142. [PMID: 38273941 PMCID: PMC10808681 DOI: 10.3389/fpls.2023.1249142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 01/27/2024]
Abstract
Introduction Biochemical and metabolic processes help plants tolerate the adverse effects of drought. In plants accumulating bioactive compounds, understanding the genetic control of the biosynthesis of biochemical pathways helps the discovery of candidate gene (CG)-metabolite relationships. Methods The metabolic profile of flowers in 119 rapeseed (Brassica napus) accessions was assessed over two irrigation treatments, one a well-watered (WW) condition and the other a drought stress (DS) regime. We integrated information gained from 52,157 single-nucleotide polymorphism (SNP) markers, metabolites, and transcriptomes to identify linked SNPs and CGs responsible for the genetic control of flower phenolic compounds and regulatory elements. Results In a genome-wide association study (GWAS), of the SNPs tested, 29,310 SNPs were qualified to assess the population structure and linkage disequilibrium (LD), of which several SNPs for radical scavenging activity (RSA) and total flavanol content (TFLC) were common between the two irrigation conditions and pleiotropic SNPs were found for chlorogenic and coumaric acids content. The principal component analysis (PCA) and stepwise regression showed that chlorogenic acid and epicatechin in WW and myricetin in DS conditions were the most important components for RSA. The hierarchical cluster analysis (HCA) showed that vanillic acid, myricetin, gallic acid, and catechin were closely associated in both irrigation conditions. Analysis of GWAS showed that 60 CGs were identified, of which 18 were involved in stress-induced pathways, phenylpropanoid pathway, and flavonoid modifications. Of the CGs, PAL1, CHI, UGT89B1, FLS3, CCR1, and CYP75B137 contributed to flavonoid biosynthetic pathways. The results of RNA sequencing (RNA-seq) revealed that the transcript levels of PAL, CHI, and CYP75B137 known as early flavonoid biosynthesis-related genes and FLS3, CCR1, and UGT89B1 related to the later stages were increased during drought conditions. The transcription factors (TFs) NAC035 and ERF119 related to flavonoids and phenolic acids were upregulated under drought conditions. Discussion These findings expand our knowledge on the response mechanisms to DS, particularly regarding the regulation of key phenolic biosynthetic genes in rapeseed. Our data also provided specific linked SNPs for marker-assisted selection (MAS) programs and CGs as resources toward realizing metabolomics-associated breeding of rapeseed.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Christopher Richards
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Pahal S, Srivastava H, Saxena S, Tribhuvan KU, Kaila T, Sharma S, Grewal S, Singh NK, Gaikwad K. Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes Genomics 2024; 46:65-94. [PMID: 37985548 DOI: 10.1007/s13258-023-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.
Collapse
Affiliation(s)
- Suman Pahal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sapna Grewal
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
12
|
Tesfaye M, Feyissa T, Hailesilassie T, Kanagarajan S, Zhu LH. Genetic Diversity and Population Structure in Ethiopian Mustard ( Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers. Genes (Basel) 2023; 14:1757. [PMID: 37761897 PMCID: PMC10530317 DOI: 10.3390/genes14091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ethiopian mustard (Brassica carinata A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified B. carinata germplasms are found and conserved ex situ. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of B. carinata genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina InfiniumTM SNP array for genotyping 90 B. carinata genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 B. carinata genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm > 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in B. carinata populations with an average genetic diversity value (HE = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of B. carinata.
Collapse
Affiliation(s)
- Misteru Tesfaye
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden; (M.T.); (S.K.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.F.); (T.H.)
| | - Tileye Feyissa
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.F.); (T.H.)
| | | | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden; (M.T.); (S.K.)
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden; (M.T.); (S.K.)
| |
Collapse
|
13
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Muhammad I, Yang L, Ahmad S, Farooq S, Khan A, Muhammad N, Ullah S, Adnan M, Ali S, Liang QP, Zhou XB. Melatonin-priming enhances maize seedling drought tolerance by regulating the antioxidant defense system. PLANT PHYSIOLOGY 2023; 191:2301-2315. [PMID: 36660817 PMCID: PMC10069899 DOI: 10.1093/plphys/kiad027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/13/2023]
Abstract
Drought stress (DS) challenges sustainable agriculture production by limiting crop growth and development. The objective of the study was to evaluate the effect of melatonin-priming on enzymatic and non-enzymatic antioxidant defense mechanisms and its relation with leaf ultrastructure and stomatal traits in maize (Zea mays L) seedlings under DS (PEG-6000). DS drastically decreased seed germination, plant growth, and leaf chlorophyll content due to excessive reactive oxygen species (ROS) production. Melatonin-priming significantly (P < 0.05) increased seed germination, root length, shoot length, fresh seedling weight, proline content, total soluble protein content, sugar content, chlorophyll content, and stomatal aperture size by 101%, 30%, 133%, 51%, 22%, 59%, 54%, 20%, and 424%, compared to no priming (NP) under DS, respectively. Similarly, priming improved leaf ultrastructure and reduced the amount of chlorophyll loss and oxidative damage in maize seedlings. Melatonin seed priming with 500 µM melatonin (M2) greatly increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione, and ascorbate (AsA) activity, by 65%, 63%, 94%, 41%, and 55% compared to NP under DS and by 0.26%, 8%, 33%, 42%, and 15% under no-stress (NS), respectively. Melatonin-priming also reduced malondialdehyde content, electrolyte leakage, hydrogen peroxide (H2O2) content, and superoxide anion (O2-) content by 26%, 31%, 31%, and 33% compared to NP under DS and by 8%, 18%, 10%, and 11% under NS, respectively. In response to DS, melatonin-priming also stabilized the chloroplast structure, sustained cell expansion, protected cell walls, and greatly improved stomatal traits, including stomatal number, length, and width. Our results suggest that melatonin-priming improves drought tolerance in maize seedlings by alleviating the negative effect of ROS.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| | - Li Yang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| | - Saqib Farooq
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| | - Ahmad Khan
- Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Nisar Muhammad
- Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Saif Ullah
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| | - Muhammad Adnan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| | - Shamsher Ali
- Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Qing Ping Liang
- Agricultural Engineering College, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Iqbal A, Huiping G, Qiang D, Xiangru W, Hengheng Z, Xiling Z, Meizhen S. Differential responses of contrasting low phosphorus tolerant cotton genotypes under low phosphorus and drought stress. BMC PLANT BIOLOGY 2023; 23:168. [PMID: 36997867 PMCID: PMC10061777 DOI: 10.1186/s12870-023-04171-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Drought is one of the main reasons for low phosphorus (P) solubility and availability. AIMS The use of low P tolerant cotton genotypes might be a possible option to grow in drought conditions. METHODS This study investigates the tolerance to drought stress in contrasting low P-tolerant cotton genotypes (Jimian169; strong tolerant to low P and DES926; weak tolerant to low P). In hydroponic culture, the drought was artificially induced with 10% PEG in both cotton genotypes followed by low (0.01 mM KH2PO4) and normal (1 mM KH2PO4) P application. RESULTS The results showed that under low P, PEG-induced drought greatly inhibited growth, dry matter production, photosynthesis, P use efficiency, and led to oxidative stress from excessive malondialdehyde (MDA) and higher accumulation of reactive oxygen species (ROS), and these effects were more in DES926 than Jimian169. Moreover, Jimian169 alleviated oxidative damage by improving the antioxidant system, photosynthetic activities, and an increase in the levels of osmoprotectants like free amino acids, total soluble proteins, total soluble sugars, and proline. CONCLUSIONS The present study suggests that the low P-tolerant cotton genotype can tolerate drought conditions through high photosynthesis, antioxidant capacity, and osmotic adjustment.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China
- Department of Agriculture, Hazara University, Khyber Pakhtunkhwa, Mansehra, 21120, Pakistan
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, School of Agricultural Sciences, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| |
Collapse
|
16
|
Odesola KA, Olawuyi OJ, Paliwal R, Oyatomi OA, Abberton MT. Genome-Wide association analysis of phenotypic traits in Bambara groundnut under drought-stressed and non-stressed conditions based on DArTseq SNP. FRONTIERS IN PLANT SCIENCE 2023; 14:1104417. [PMID: 36866383 PMCID: PMC9972976 DOI: 10.3389/fpls.2023.1104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Bambara groundnut (BG) (Vigna subterranea [L.] Verdc) is an indigenous, resilient, but underutilized leguminous crop that occurs mostly as genetically heterogeneous landraces with limited information on the drought tolerant attributes. This study elucidates the associations between sequencing-based diversity array technology (DArTseq) and phenotypic character as well as differing indices related to drought tolerance in one hundred accessions of Bambara groundnut. METHODS The field experiments were conducted at IITA research stations in Kano and Ibadan between 2016 and 2018 planting seasons. The experiments were arranged in randomised complete block design with three replications, under the different water regimes. The phenotypic traits evaluated was further to construct the dendrogram. Genome-wide association mapping was conducted based on 5927 DArTs loci with < 20% missing data. RESULTS AND DISCUSSIONS The genome wide association study predicted drought tolerance in Bambara accessions for geometric mean productivity (GMP) and stress tolerance index (STI). TVSu-423 had the highest GMP and STI values (28.50, 2.40), while TVSu-2017 had the lowest at GMP (1.74) and STI (0.01) respectively. The relative water content (%) was significantly higher for accessions; TVSu-266 (60.35, 61.49), TVSu-2 (58.29, 53.94), and TVSu-411 (55.17, 58.92) in 2016/2017 and 2017/2018, respectively. The phenotypic characters studied delineated the accessions into two major clusters and five distinct sub-clusters, indicating variations across all the geographical locations. The 5,927 DArTseq genomic markers in association with STI further grouped the 100 accessions into two main clusters. TVSu-1897 from Botswana (Southern Africa) was in the first cluster, while the remaining 99 accessions from Western, Central, and Eastern Africa made up the second cluster. The eight significant Quantitative Trait Loci (QTLs) (24346377|F|0-22:A>G-22:A>G, 24384105|F|0-56:A>G33 :A> G, 24385643|F|0-53:G>C-53:G>C, 24385696|F|0-43:A>G-43:A>G, 4177257|F|0-44:A>T-44:A>T, 4182070|F|0-66:G>A-66:G>A, 4183483|F|0-24:G>A-24:G>A, 4183904|F|0-11:C>T-11:C>T) identified with Bonferroni threshold was in association with STI, indicative of variations under the drought-stressed condition. The observation of consistent SNPs in the 2016 and 2017 planting seasons, as well as in combination with the 2016 and 2017 planting seasons, led to the designation of these QTLs as significant. The drought selected accessions could form basis for hybridization breeding. The identified quantitative trait loci could be useful in marker-assisted selection in drought molecular breeding programs.
Collapse
Affiliation(s)
- Kafilat Abiodun Odesola
- Department of Biological Sciences, Bells University of Technology, Sango Otta, Ogun State, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Department of Botany, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Rajneesh Paliwal
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| | - Olaniyi Ajewole Oyatomi
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| | - Michael T. Abberton
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| |
Collapse
|
17
|
Cantila AY, Thomas WJ, Saad NSM, Severn-Ellis AA, Anderson R, Bayer PE, Edwards D, Van de Wouw AP, Batley J. Identification of candidate genes for LepR1 resistance against Leptosphaeria maculans in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1051994. [PMID: 36866377 PMCID: PMC9971972 DOI: 10.3389/fpls.2023.1051994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Utilising resistance (R) genes, such as LepR1, against Leptosphaeria maculans, the causal agent of blackleg in canola (Brassica napus), could help manage the disease in the field and increase crop yield. Here we present a genome wide association study (GWAS) in B. napus to identify LepR1 candidate genes. Disease phenotyping of 104 B. napus genotypes revealed 30 resistant and 74 susceptible lines. Whole genome re-sequencing of these cultivars yielded over 3 million high quality single nucleotide polymorphisms (SNPs). GWAS in mixed linear model (MLM) revealed a total of 2,166 significant SNPs associated with LepR1 resistance. Of these SNPs, 2108 (97%) were found on chromosome A02 of B. napus cv. Darmor bzh v9 with a delineated LepR1_mlm1 QTL at 15.11-26.08 Mb. In LepR1_mlm1, there are 30 resistance gene analogs (RGAs) (13 nucleotide-binding site-leucine rich repeats (NLRs), 12 receptor-like kinases (RLKs), and 5 transmembrane-coiled-coil (TM-CCs)). Sequence analysis of alleles in resistant and susceptible lines was undertaken to identify candidate genes. This research provides insights into blackleg resistance in B. napus and assists identification of the functional LepR1 blackleg resistance gene.
Collapse
Affiliation(s)
- Aldrin Y. Cantila
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - William J.W. Thomas
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Nur Shuhadah Mohd Saad
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Anita A. Severn-Ellis
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Robyn Anderson
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | | | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
18
|
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1009998. [PMID: 36311064 PMCID: PMC9608124 DOI: 10.3389/fpls.2022.1009998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important regulatory process that affects plant development and stress responses by greatly increasing the complexity of transcriptome and proteome. To understand how the AS landscape of B. napus changes in response to abiotic stresses, we investigated 26 RNA-seq libraries, including control and treatments with cold, dehydration, salt, and abscisic acid (ABA) at two different time points, to perform comparative alternative splicing analysis. Apparently, AS events increased under all stresses except dehydration for 1 h, and intron retention was the most common AS mode. In addition, a total of 357 differential alternative splicing (DAS) genes were identified under four abiotic stresses, among which 81 DAS genes existed in at least two stresses, and 276 DAS genes were presented under only one stress. A weighted gene co-expression network analysis (WGCNA) based on the splicing isoforms, rather than the genes, pinpointed out 23 co-expression modules associated with different abiotic stresses. Among them, a number of significant hub genes were also found to be DAS genes, which encode key isoforms involved in responses to single stress or multiple stresses, including RNA-binding proteins, transcription factors, and other important genes, such as RBP45C, LHY, MYB59, SCL30A, RS40, MAJ23.10, and DWF4. The splicing isoforms of candidate genes identified in this study could be a valuable resource for improving tolerance of B. napus against multiple abiotic stresses.
Collapse
Affiliation(s)
- Lingli Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
19
|
Xu F, Chen S, Zhou S, Yue C, Yang X, Zhang X, Zhan K, He D. Genome-wide association, RNA-seq and iTRAQ analyses identify candidate genes controlling radicle length of wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:939544. [PMID: 36247556 PMCID: PMC9554269 DOI: 10.3389/fpls.2022.939544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The radicle, present in the embryo of a seed, is the first root to emerge at germination, and its rapid growth is essential for establishment and survival of the seedling. However, there are few studies on the critical mechanisms underlying radicle and then radicle length in wheat seedlings, despite its importance as a food crop throughout the world. In the present study, 196 wheat accessions from the Huanghuai Wheat Region were screened to measure radicle length under 4 hydroponic culture environments over 3 years. Different expression genes and proteins (DEGs/DEPs) between accessions with extremely long [Yunong 949 (WRL1), Zhongyu 9,302 (WRL2)] and short roots [Yunong 201 (WRS1), Beijing 841 (WRS2)] were identified in 12 sets of root tissue samples by RNA-seq and iTRAQ (Isobaric tags for relative and absolute quantification). Phenotypic results showed that the elongation zone was significantly longer in root accessions with long roots compared to the short-rooted accessions. A genome-wide association study (GWAS) identified four stable chromosomal regions significantly associated with radicle length, among which 1A, 4A, and 7A chromosomes regions explained 7.17% to12.93% of the phenotypic variation. The omics studies identified the expression patterns of 24 DEGs/DEPs changed at both the transcriptional and protein levels. These DEGs/DEPs were mainly involved in carbon fixation in photosynthetic organisms, photosynthesis and phenylpropanoid biosynthesis pathways. TraesCS1A02G104100 and TraesCS2B02G519100 were involved in the biosynthesis of tricin-lignins in cell walls and may affect the extension of cell walls in the radicle elongation zone. A combination of GWAS and RNA-seq analyses revealed 19 DEGs with expression changes in the four accessions, among which, TraesCS1A02G422700 (a cysteine-rich receptor-like protein kinase 6, CRK6) also showed upregulation in the comparison group by RNA-seq, iTRAQ, and qRT-PCR. BSMV-mediated gene silencing also showed that TaCRK6 improves root development in wheat. Our data suggest that TaCRK6 is a candidate gene regulating radicle length in wheat.
Collapse
Affiliation(s)
- Fengdan Xu
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Research Institute of Plant Nutrition and Resources and Environments, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shulin Chen
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Sumei Zhou
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Chao Yue
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiwen Yang
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiang Zhang
- Research Institute of Plant Nutrition and Resources and Environments, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kehui Zhan
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Dexian He
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
20
|
Wang P, Wang D. Gene Differential Co-Expression Networks Based on RNA-Seq: Construction and Its Applications. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2829-2841. [PMID: 34383649 DOI: 10.1109/tcbb.2021.3103280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gene co-expression network (GCN) becomes an increasingly important tool in omics data analysis. A great challenge for GCN construction is that the sample size is far lower than the number of genes. Traditional methods rely on considerable samples. Moreover, association signals are likely weak, nonlinear and stochastic, which are difficult to be identified among thousands of candidates. In this paper, the gray correlation coefficient (GCC) is introduced, and a novel method to construct gene differential co-expression networks (GDCNs) is proposed. Based on the GDCNs, three measures are proposed to explore informative genes. The proposed method can make full use of the information provided by a handful of samples and overcome the shortages of GCNs, which can evaluate the changes of co-expression relationships that are possibly triggered by treatments. Based on RNA-seq data of Brassica napus, GDCNs under multiple experimental conditions are constructed and investigated. It is found that the GCC-based method is very robust to data processing. The GDCNs facilitate the inference of gene functions and the identification of informative genes that are responsible for stress responsiveness. The GDCN-based approaches integrate the 'guilt by association' and the 'guilt by rewiring' rules, which provide alternative tools for omics data analysis.
Collapse
|
21
|
Zhou H, Xiao X, Asjad A, Han D, Zheng W, Xiao G, Huang Y, Zhou Q. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2022; 22:130. [PMID: 35313826 PMCID: PMC8935790 DOI: 10.1186/s12870-022-03508-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND The exchangeable aluminum (Al), released from the acid soils, is another addition to the environmental stress factors in the form of Al toxicity stress. Al stress affects the normal crop development and reduces the overall yield of rapeseed (Brassica napus L.). The response mechanism of plants to Al toxicity is complicated and difficult to understand with few QTL related studies in rapeseed under Al toxicity stress. RESULT Using 200,510 SNPs developed by SLAF-seq (specific-locus amplified fragment sequencing) technology, we carried out the genome-wide association analysis (GWAS) in a population of 254 inbred lines of B. napus with large genetic variation and Al-tolerance differences. There were 43 SNPs significantly associated with eight Al-tolerance traits in the seedling stage were detected on 14 chromosomes, and 777 candidate genes were screened at the flanking 100 kb region of these SNPs. Moreover, RNA-seq detected 8291 and 5341 DEGs (the differentially expressed gene) in the Al -tolerant line (ATL) and -sensitive line (ASL), respectively. Based on integration of GWAS and RNA-seq analysis, 64 candidate genes from GWAS analysis differentially expressed at least once in 6 h vs 0 h or 24 h vs 0 h conditions in ATL or ASL. Moreover, four out of sixty-four candidate genes (BnaA03g30320D, BnaA10g11500D, BnaC03g38360D and BnaC06g30030D) were differentially expressed in both 6 h and 24 h compared to 0 h (control) conditions in both lines. The proposed model based on the candidate genes excavated in this study highlighted that Al stress disturb the oxidation-redox balance, causing abnormal synthesis and repair of cell wall and ABA signal transduction, ultimately resulting in inhibition of root elongation. CONCLUSIONS The integration of GWAS and transcriptome analysis provide an effective strategy to explore the SNPs and candidate genes, which has a potential to develop molecular markers for breeding Al tolerant rapeseed varieties along with theoretical basis of molecular mechanisms for Al toxicity response of Brassica napus plants.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education/Jiangxi Province, Nanchang, 330045, Jiangxi Province, China
- Institute of Jiangxi Oil-tea Camellia, Jiujiang University, Jiujiang, 332005, Jiangxi Province, China
| | - Xiaojun Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education/Jiangxi Province, Nanchang, 330045, Jiangxi Province, China
- Jiangxi Institute of Red Soil, Jinxian, 331717, Jiangxi Province, China
| | - Ali Asjad
- Department of Agriculture and Fisheries, PO Box 1054, Mareeba, QLD, 4880, Australia
| | - Depeng Han
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education/Jiangxi Province, Nanchang, 330045, Jiangxi Province, China
- Jiangxi Institute of Red Soil, Jinxian, 331717, Jiangxi Province, China
| | - Wei Zheng
- Jiangxi Institute of Red Soil, Jinxian, 331717, Jiangxi Province, China
| | - Guobin Xiao
- Jiangxi Institute of Red Soil, Jinxian, 331717, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education/Jiangxi Province, Nanchang, 330045, Jiangxi Province, China.
| | - Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education/Jiangxi Province, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
22
|
D’Oria A, Jing L, Arkoun M, Pluchon S, Pateyron S, Trouverie J, Etienne P, Diquélou S, Ourry A. Transcriptomic, Metabolomic and Ionomic Analyses Reveal Early Modulation of Leaf Mineral Content in Brassica napus under Mild or Severe Drought. Int J Mol Sci 2022; 23:781. [PMID: 35054964 PMCID: PMC8776245 DOI: 10.3390/ijms23020781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.
Collapse
Affiliation(s)
- Aurélien D’Oria
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France;
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Jacques Trouverie
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Sylvain Diquélou
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Alain Ourry
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| |
Collapse
|
23
|
Karunarathna NL, Patiranage DSR, Harloff HJ, Sashidhar N, Jung C. Genomic background selection to reduce the mutation load after random mutagenesis. Sci Rep 2021; 11:19404. [PMID: 34593904 PMCID: PMC8484577 DOI: 10.1038/s41598-021-98934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Random mutagenesis is a standard procedure to increase allelic variation in a crop species, especially in countries where the use of genetically modified crops is limited due to legal constraints. The chemical mutagen EMS is used in many species to induce random mutations throughout the genome with high mutation density. The major drawback for functional analysis is a high background mutation load in a single plant that must be eliminated by subsequent backcrossing, a time and resource-intensive activity. Here, we demonstrate that genomic background selection combined with marker-assisted selection is an efficient way to select individuals with reduced background mutations within a short period. We identified BC1 plants with a significantly higher share of the recurrent parent genome, thus saving one backcross generation. Furthermore, spring rapeseed as the recurrent parent in a backcrossing program could accelerate breeding by reducing the generation cycle. Our study depicts the potential for reducing the background mutation load while accelerating the generation cycle in EMS-induced winter oilseed rape populations by integrating genomic background selection.
Collapse
Affiliation(s)
- Nirosha L Karunarathna
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
- KWS LOCHOW GMBH, Zuchtstation Wetze, Wetze 3, 37154, Northeim, Germany
| | - Dilan S R Patiranage
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Niharika Sashidhar
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24118, Kiel, Germany.
| |
Collapse
|
24
|
Xiao Q, Wang H, Song N, Yu Z, Imran K, Xie W, Qiu S, Zhou F, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. The Bnapus50K array: a quick and versatile genotyping tool for Brassica napus genomic breeding and research. G3-GENES GENOMES GENETICS 2021; 11:6352499. [PMID: 34568935 PMCID: PMC8473974 DOI: 10.1093/g3journal/jkab241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Rapeseed is a globally cultivated commercial crop, primarily grown for its oil. High-density single nucleotide polymorphism (SNP) arrays are widely used as a standard genotyping tool for rapeseed research, including for gene mapping, genome-wide association studies, germplasm resource analysis, and cluster analysis. Although considerable rapeseed genome sequencing data have been released, DNA arrays are still an attractive choice for providing additional genetic data in an era of high-throughput whole-genome sequencing. Here, we integrated re-sequencing DNA array data (32,216, 304 SNPs) from 505 inbred rapeseed lines, allowing us to develop a sensitive and efficient genotyping DNA array, Bnapus50K, with a more consistent genetic and physical distribution of probes. A total of 42,090 high-quality probes were filtered and synthesized, with an average distance between adjacent SNPs of 8 kb. To improve the practical application potential of this array in rapeseed breeding, we also added 1,618 functional probes related to important agronomic traits such as oil content, disease resistance, male sterility, and flowering time. The additional probes also included those specifically for detecting genetically modified material. These probes show a good detection efficiency and are therefore useful for gene mapping, along with crop variety improvement and identification. The novel Bnapus50K DNA array developed in this study could prove to be a quick and versatile genotyping tool for B. napus genomic breeding and research.
Collapse
Affiliation(s)
- Qing Xiao
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Huadong Wang
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Nuan Song
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Zewen Yu
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Khan Imran
- Department of Biochemistry, School of Dental Medicine; University of Pennsylvania, Philadelphia, USA 19104-6303
| | - Weibo Xie
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Shuqing Qiu
- Greenfafa Institute of Novel Genechip R&D Co. Ltd., Wuhan, China 430010
| | - Fasong Zhou
- Greenfafa Institute of Novel Genechip R&D Co. Ltd., Wuhan, China 430010
| | - Jing Wen
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Cheng Dai
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Chaozhi Ma
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Jinxing Tu
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Jinxiong Shen
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Tingdong Fu
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| | - Bin Yi
- College of plant science and technology; National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University, Wuhan, China, 430070
| |
Collapse
|
25
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 PMCID: PMC8205867 DOI: 10.1007/s00122-021-03793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/18/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
26
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 DOI: 10.1007/s00122-021-03793-3.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
27
|
Physiological and Biochemical Characterization of the GABA Shunt Pathway in Pea (Pisum sativum L.) Seedlings under Drought Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The physiological and biochemical role of the γ-aminobutyric acid (GABA) shunt pathway in green pea seedlings (Pisum sativum L.) was studied in response to soil water holding capacity levels: 80%, 60%, 40%, 20%, and 10% grown under continuous light at 25 °C for 7 days and 14 days, separately. Characterization of seeds germination pattern, seedlings growth (plant height, fresh and dry weight, and chlorophyll contents), GABA shunt metabolite (GABA, glutamate, and alanine) levels, total protein and carbohydrate levels, and oxidative damage (MDA level) were examined. Data showed a significant effect of drought stress on seed germination, plant growth, GABA shunt metabolites level, total protein and carbohydrate contents, and MDA level. A significant decline in seed germination percentage was recorded at a 20% drought level, which indicated that 20% of soil water holding capacity is the threshold value of water availability for normal germination after 14 days. Seedling fresh weight, dry weight, and plant height were significantly reduced with a positive correlation as water availability was decreased. There was a significant decrease with a positive correlation in Chl a and Chl b contents in response to 7 days and 14 days of drought. GABA shunt metabolites were significantly increased with a negative correlation as water availability decreased. Pea seedlings showed a significant increase in protein content as drought stress was increased. Total carbohydrate levels increased significantly when the amount of water availability decreased. MDA content increased slightly but significantly after 7 days and sharply after 14 days under all water stress levels. The maximum increase in MDA content was observed at 20% and 10% water levels. Overall, the significant increases in GABA, protein and carbohydrate contents were to cope with the physiological impact of drought stress on Pisum sativum L. seedlings by maintaining cellular osmotic adjustment, protecting plants from oxidative stress, balancing carbon and nitrogen (C:N) metabolism, and maintaining cell metabolic homeostasis and cell turgor. The results presented in this study indicated that severe (less than 40% water content of the holding capacity) and long-term drought stress should be avoided during the germination stage to ensure proper seedling growth and metabolism in Pisum sativum L.
Collapse
|
28
|
Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed ( Brassica napus L.). PLANTS 2021; 10:plants10030426. [PMID: 33668258 PMCID: PMC7996214 DOI: 10.3390/plants10030426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Low temperature inhibits rapid germination and successful seedling establishment of rapeseed (Brassica napus L.), leading to significant productivity losses. Little is known about the genetic diversity for seed vigor under low-temperature conditions in rapeseed, which motivated our investigation of 13 seed germination- and emergence-related traits under normal and low-temperature conditions for 442 diverse rapeseed accessions. The stress tolerance index was calculated for each trait based on performance under non-stress and low-temperature stress conditions. Principal component analysis of the low-temperature stress tolerance indices identified five principal components that captured 100% of the seedling response to low temperature. A genome-wide association study using ~8 million SNP (single-nucleotide polymorphism) markers identified from genome resequencing was undertaken to uncover the genetic basis of seed vigor related traits in rapeseed. We detected 22 quantitative trait loci (QTLs) significantly associated with stress tolerance indices regarding seed vigor under low-temperature stress. Scrutiny of the genes in these QTL regions identified 62 candidate genes related to specific stress tolerance indices of seed vigor, and the majority were involved in DNA repair, RNA translation, mitochondrial activation and energy generation, ubiquitination and degradation of protein reserve, antioxidant system, and plant hormone and signal transduction. The high effect variation and haplotype-based effect of these candidate genes were evaluated, and high priority could be given to the candidate genes BnaA03g40290D, BnaA06g07530D, BnaA09g06240D, BnaA09g06250D, and BnaC02g10720D in further study. These findings should be useful for marker-assisted breeding and genomic selection of rapeseed to increase seed vigor under low-temperature stress.
Collapse
|
29
|
Gad M, Chao H, Li H, Zhao W, Lu G, Li M. QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 11:629970. [PMID: 33633753 PMCID: PMC7900748 DOI: 10.3389/fpls.2020.629970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion-deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.
Collapse
Affiliation(s)
- Mahmoud Gad
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaixin Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Zhao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Lu
- Faculty of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Maoteng Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Muhu-Din Ahmed HG, Sajjad M, Zeng Y, Iqbal M, Habibullah Khan S, Ullah A, Nadeem Akhtar M. Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions. AGRICULTURE 2020; 10:392. [DOI: 10.3390/agriculture10090392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The decrease in water resources is a serious threat to food security world-wide. In this regard, a genome-wide association study (GWAS) was conducted to identify grain yield and quality-related genes/loci under normal and water-deficit conditions. Highly significant differences were exhibited among genotypes under both conditions for all studied traits. Water-deficit stress caused a reduction in grains yield and an increase in grains protein contents (GPC) and gluten contents (GLC). Population structure divided the 96 genotypes into four sub-populations. Out of 72 significant marker-trait associations (MTAs), 28 and 44 were observed under normal and water-deficit stress conditions, respectively. Pleiotropic loci (RAC875_s117925_244, BobWhite_c23828_341 and wsnp_CAP8_c334_304253) for yield and quality traits were identified on chromosomes 5A, 6B and 7B, respectively, under normal conditions. Under a water-deficit condition, the pleiotropic loci (Excalibur_c48047_90, Tdurum_contig100702_265 and BobWhite_c19429_95) for grain yield per plant (GYP), GPC and GLC were identified on chromosomes 3A, 4A and 7B, respectively. The pleiotropic loci (BS00063551_51 and RAC875_c28721_290) for GPC and GLC on chromosome 1B and 3A, respectively, were found under both conditions. Besides the validation of previously reported MTAs, some new MTAs were identified for flag leaf area (FLA), thousand grain weight (TGW), GYP, GPC and GLC under normal and water-deficit conditions. Twenty SNPs associated with the traits were mapped in the coding DNA sequence (CDS) of the respective candidate genes. The protein functions of the identified candidate genes were predicted and discussed. Isolation and characterization of the candidate genes, wherein, SNPs were mapped in CDS will result in discovering novel genes underpinning water-deficit tolerance in bread wheat.
Collapse
Affiliation(s)
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad 45550, Pakistan
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Muhammad Iqbal
- Department of Plant Breeding and Genetics, Faculty of Agriculture, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sultan Habibullah Khan
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Aziz Ullah
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Malik Nadeem Akhtar
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad 45550, Pakistan
| |
Collapse
|
31
|
Schiessl SV, Quezada-Martinez D, Orantes-Bonilla M, Snowdon RJ. Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110515. [PMID: 32563455 DOI: 10.1016/j.plantsci.2020.110515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 05/19/2023]
Abstract
Spring droughts are expected to become more frequent in Central Europe as a result of climate change. Their coincidence with flowering of biennial crops like winter oilseed rape (Brassica napus) can cause major impact for yield development. However, no data is available on the diversity of genetic regulation of drought tolerance during this stage under realistic conditions. Here, we assessed the phenotypic plasticity of drought response for eight diverse B. napus accessions under field-like conditions and linked their stress response to gene and miRNA expression during early and late stress. We observed highly diverse responses, both on the phenotypic and on the gene expression level. Our data suggest that drought tolerant accessions have more effective molecular protection mechanisms like ROS scavenging, source/sink ratio and regulation of developmental timing, compared to otherwise phenotypically similar accessions. Bna.MAP3K13.C05 expression was found to be protective independently of the tolerance mechanism, indicating cross-talk to nitrogen signaling. Moreover, we identified putative miRNA genes in the B. napus genome which respond to stress and may also be involved in protective mechanisms, representing possible breeding targets.
Collapse
Affiliation(s)
- Sarah V Schiessl
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.
| | - Daniela Quezada-Martinez
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Mauricio Orantes-Bonilla
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
32
|
Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, Wang X, Bai Z, Li C, Liu L. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 2020; 8:e9450. [PMID: 32704446 PMCID: PMC7346864 DOI: 10.7717/peerj.9450] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The germination of cotton (Gossypium hirsutum L.) seeds is affected by drought stress; however, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on cotton seed germination under drought stress. Therefore, we studied the effects of exogenous MT on the antioxidant capacity and epidermal microstructure of cotton under drought stress. The results demonstrated a retarded water absorption capacity of testa under drought stress, significantly inhibiting germination and growth in cotton seeds. Drought stress led to the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA), and osmoregulatory substances (e.g., proline, soluble protein, and soluble sugars); it also decreased the activity of antioxidant enzymes and α-amylase. Drought stress inhibited gibberellin acid (GA3) synthesis and increased abscisic acid (ABA) content, seriously affecting seed germination. However, seeds pre-soaked with MT (100 µM) showed a positive regulation in the number and opening of stomata in cotton testa. The exogenous application of MT increased the germination rate, germination potential, radical length, and fresh weight, as well as the activities of superoxide dismutase (SOD), peroxidase (POD), and α-amylase. In addition, MT application increased the contents of organic osmotic substances by decreasing the hydrogen peroxide (H2O2), superoxide anion (O2 -), and MDA levels under drought stress. Further analysis demonstrated that seeds pre-soaked with MT alleviated drought stress by affecting the ABA and GA3 contents. Our findings show that MT plays a positive role in protecting cotton seeds from drought stress.
Collapse
Affiliation(s)
- Yandan Bai
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Shuang Xiao
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Zichen Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Yongjiang Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Hongchun Sun
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Ke Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultrual University, Baoding, China
| | - Zhiying Bai
- College of Life Science, Hebei Agricultrual University, Baoding, China
| | - Cundong Li
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Liantao Liu
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| |
Collapse
|
33
|
Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. J Adv Res 2020; 24:447-461. [PMID: 32577311 PMCID: PMC7300156 DOI: 10.1016/j.jare.2020.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Drought seriously curtails growth, physiology and productivity in rapeseed (Brassica napus). Although drought tolerance is a complex trait, efficient phenotyping and genotyping has led to the identification of novel marker-trait associations underlying drought tolerance. A diverse panel of 228 Brassica accessions was phenotyped under normal (without stress) and water-stress conditions, simulated by polyethylene glycol (PEG-6000) (15% PEG stress) at the seedling stage; stress tolerance index (STI) and stress susceptibility index (SSI) values were acquired. Genome-wide association studies (GWAS) using 201 817 high quality SNPs identified 314 marker-trait associations strongly linked with drought indices and distributed across all nineteen chromosomes in both the A and C genomes. None of these quantitative trait loci (QTL) had been previously identified by other studies. We identified 85 genes underlying these QTL (most within 100 kb of associated SNPs) which were orthologous to Arabidopsis genes known to be associated with drought tolerance. Our study provides a novel resource for breeding drought-tolerant Brassica crops.
Collapse
|
34
|
Mia MS, Liu H, Wang X, Zhang C, Yan G. Root transcriptome profiling of contrasting wheat genotypes provides an insight to their adaptive strategies to water deficit. Sci Rep 2020; 10:4854. [PMID: 32184417 PMCID: PMC7078264 DOI: 10.1038/s41598-020-61680-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Water deficit limits plant growth and productivity in wheat. The effect of water deficit varies considerably in the contrasting genotypes. This study attempted comparative transcriptome profiling of the tolerant (Abura) and susceptible (AUS12671) genotypes under PEG-simulated water stress via genome-wide RNA-seq technology to understand the dynamics of tolerance mechanism. Morphological and physiological analyses indicated that the tolerant genotype Abura had a higher root growth and net photosynthesis, which accounted for its higher root biomass than AUS12671 under stress. Transcriptomic analysis revealed a total of 924 differentially expressed genes (DEGs) that were unique in the contrasting genotypes under stress across time points. The susceptible genotype AUS12671 had slightly more abundant DEGs (505) than the tolerant genotype Abura (419). Gene ontology enrichment and pathway analyses of these DEGs suggested that the two genotypes differed significantly in terms of adaptive mechanism. Predominant upregulation of genes involved in various metabolic pathways was the key adaptive feature of the susceptive genotype AUS12671 indicating its energy-consuming approach in adaptation to water deficit. In contrast, downregulation the expression of genes of key pathways, such as global and overview maps, carbohydrate metabolism, and genetic information processing was the main strategy for the tolerant genotype Abura. Besides, significantly higher number of genes encoding transcription factors (TF) families like MYB and NAC, which were reported to be associated with stress defense, were differentially expressed in the tolerant genotype Abura. Gene encoding transcription factors TIFY were only differentially expressed between stressed and non-stressed conditions in the sensitive genotype. The identified DEGs and the suggested differential adaptive strategies of the contrasting genotypes provided an insight for improving water deficit tolerance in wheat.
Collapse
Affiliation(s)
- Md Sultan Mia
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.,Department of Plant Breeding, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia. .,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Xingyi Wang
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Chi Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Guijun Yan
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia. .,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
35
|
Wu X, Alexander LW. Genome-wide association studies for inflorescence type and remontancy in Hydrangea macrophylla. HORTICULTURE RESEARCH 2020; 7:27. [PMID: 32140236 PMCID: PMC7049302 DOI: 10.1038/s41438-020-0255-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 05/28/2023]
Abstract
Inflorescence type and remontancy are two valuable traits in bigleaf hydrangea (Hydrangea macrophylla L.) and both are recessively inherited. Molecular marker-assisted selection (MAS) can greatly reduce the time necessary to breed cultivars with desired traits. In this study, a genome-wide association study (GWAS) using 5803 single-nucleotide polymorphisms (SNPs) was performed using a panel of 82 bigleaf hydrangea cultivars. One SNP locus (Hy_CAPS_Inflo) associated with inflorescence type was identified with general linear model (GLM) and mixed linear model (MLM) methods that explained 65.5% and 36.1% of the phenotypic variations, respectively. Twenty-three SNPs associated with remontancy were detected in GLM whereas no SNP was detected in MLM. The SNP locus (Hy_CAPS_Inflo) was converted to a cleaved amplified polymorphic sequence (CAPS) marker that showed absolute identification accuracy (100%) of inflorescence type in a validation panel consisting of eighteen H. macrophylla cultivars. The SNP was investigated in 341 F1 progenies using genotyping by sequencing (GBS) and co-segregated with inflorescence type (χ 2 = 0.12; P = 0.73). The SNP was subsequently used for breeding selection using kompetitive allele specific PCR (KASP) technology. Future directions for the use of genomics and MAS in hydrangea breeding improvement are discussed. The results presented in this study provide insights for further research on understanding genetic mechanisms behind inflorescence type and remontancy in H. macrophylla. The CAPS and KASP markers developed here will be immediately useful for applying MAS to accelerate breeding improvement in hydrangea.
Collapse
Affiliation(s)
- Xingbo Wu
- Oak Ridge Institute of Science and Technology, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN USA
| | - Lisa W. Alexander
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN USA
| |
Collapse
|
36
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
37
|
Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. High Nitrogen Enhance Drought Tolerance in Cotton through Antioxidant Enzymatic Activities, Nitrogen Metabolism and Osmotic Adjustment. PLANTS (BASEL, SWITZERLAND) 2020; 9:E178. [PMID: 32024197 PMCID: PMC7076502 DOI: 10.3390/plants9020178] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
Drought is one of the most important abiotic stresses and hampers many plant physiological processes under suboptimal nitrogen (N) concentration. Seedling tolerance to drought stress is very important for optimum growth and development, however, the enhancement of plant stress tolerance through N application in cotton is not fully understood. Therefore, this study investigates the role of high N concentration in enhancing drought stress tolerance in cotton. A hydroponic experiment supplying low (0.25 mM) and high (5 mM) N concentrations, followed by 150 g L-1 polyethylene glycol (PEG)-induced stress was conducted in a growth chamber. PEG-induced drought stress inhibited seedling growth, led to oxidative stress from excessive malondialdehyde (MDA) generation, and reduced N metabolism. High N concentrations alleviated oxidative damage and stomatal limitation by increasing antioxidant enzymatic activities, leaf relative water content, and photosynthesis in cotton seedlings under drought stress. The results revealed that the ameliorative effects of high N concentration may be ascribed to the enhancement of N metabolizing enzymes and an increase in the amounts of osmoprotectants like free amino acids and total soluble protein. The present data suggest that relatively high N concentrations may contribute to drought stress tolerance in cotton through N metabolism, antioxidant capacity, and osmotic adjustment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiling Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.); (X.W.); (H.G.); (H.Z.)
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.); (X.W.); (H.G.); (H.Z.)
| |
Collapse
|
38
|
Wang J, Sun H, Sheng J, Jin S, Zhou F, Hu Z, Diao Y. Transcriptome, physiological and biochemical analysis of Triarrhena sacchariflora in response to flooding stress. BMC Genet 2019; 20:88. [PMID: 31783726 PMCID: PMC6884903 DOI: 10.1186/s12863-019-0790-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background In recent decades, the frequency of flooding is increasing with the change of global climate. Flooding has become one of the major abiotic stresses that seriously affect growth and development of plants. Triarrhena sacchariflora Nakai has been considered a promising energy crop for utilization in ethanol production. Flooding stress is among the most severe abiotic stressors in the production of Nakai. However, the physiological and molecular biological mechanisms of Nakai response to flooding is still unclear. In the present study, in order to understand the molecular mechanisms of Nakai in response to flooding stress, the transcriptome, physiological and biochemical were investigated. Results The results demonstrated that significant physiological changes were observed in photosynthetic system, antioxidative enzyme activity, chlorophyll, carotenoid, proline, lipid peroxidation and soluble sugar content under normal and flooding treatments. Such as, the chlorophyll, carotenoid contents and photosynthetic system were significantly decreased. Whereas, the antioxidative enzyme activity, proline, lipid peroxidation and soluble sugar has increased first and then decreased under treatments compared with the normal plants. Additionally, a total of 8832, 6608 and 3649 unigenes were validated to be differentially expressed under different treatments, respectively. Besides, gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the different expression levels of genes also presented processes, which involved in photosynthesis, sucrose catabolism, glycolysis, stress response and defense, phytohormone biosynthesis and signal transduction. Conclusions The results provide a comprehensive view of the complex molecular events involved in the response to flooding stress of Nakai leaves, which also will promote the research in the development of flood-resistant crops and provide new tools for Nakai breeders.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Han Sun
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jiajin Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,College of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Surong Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fasong Zhou
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Ying Diao
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China.
| |
Collapse
|
39
|
Xiao Z, Zhang C, Tang F, Yang B, Zhang L, Liu J, Huo Q, Wang S, Li S, Wei L, Du H, Qu C, Lu K, Li J, Li N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:216. [PMID: 31528204 PMCID: PMC6737612 DOI: 10.1186/s13068-019-1557-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/31/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Increasing seed oil content is one of the most important targets for rapeseed (Brassica napus) breeding. However, genetic mechanisms of mature seed oil content in Brassica napus (B. napus) remain little known. To identify oil content-related genes, a genome-wide association study (GWAS) was performed using 588 accessions. RESULTS High-throughput genome resequencing resulted in 385,692 high-quality single nucleotide polymorphism (SNPs) with a minor allele frequency (MAF) > 0.05. We identified 17 loci that were significantly associated with seed oil content, among which 12 SNPs were distributed on the A3 (11 loci) and A1 (one loci) chromosomes, and five novel significant SNPs on the C5 (one loci) and C7 (four loci) chromosomes, respectively. Subsequently, we characterized differentially expressed genes (DEGs) between the seeds and silique pericarps on main florescences and primary branches of extremely high- and low-oil content accessions (HO and LO). A total of 64 lipid metabolism-related DEGs were identified, 14 of which are involved in triacylglycerols (TAGs) biosynthesis and assembly. Additionally, we analyzed differences in transcription levels of key genes involved in de novo fatty acid biosynthesis in the plastid, TAGs assembly and lipid droplet packaging in the endoplasmic reticulum (ER) between high- and low-oil content B. napus accessions. CONCLUSIONS The combination of GWAS and transcriptome analyses revealed seven candidate genes located within the confidence intervals of significant SNPs. Current findings provide valuable information for facilitating marker-based breeding for higher seed oil content in B. napus.
Collapse
Affiliation(s)
- Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Chao Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Fang Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Liyuan Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Jingsen Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Qiang Huo
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Shufeng Wang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715 China
| | - Shengting Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715 China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Nannan Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|
40
|
Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Transcriptome Profile Analysis of Winter Rapeseed ( Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Int J Mol Sci 2019; 20:ijms20112771. [PMID: 31195741 PMCID: PMC6600501 DOI: 10.3390/ijms20112771] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Winter rapeseed is not only an important oilseed crop, but also a winter cover crop in Northern China, where its production was severely limited by freezing stress. As an overwinter crop, the production is severely limited by freezing stress. Therefore, understanding the physiological and molecular mechanism of winter rapeseed (Brassica napus L.) in freezing stress responses becomes essential for the improvement and development of freezing-tolerant varieties of Brassica napus. In this study, morphological, physiological, ultrastructure and transcriptome changes in the Brassica napus line "2016TS(G)10" (freezing-tolerance line) that was exposed to -2 °C for 0 h, 1 h, 3 h and 24 h were characterized. The results showed that freezing stress caused seedling dehydration, and chloroplast dilation and degradation. The content of malondialdehyde (MDA), proline, soluble protein and soluble sugars were increased, as well as the relative electrolyte leakage (REL) which was significantly increased at frozen 24 h. Subsequently, RNA-seq analysis revealed a total of 98,672 UniGenes that were annotated in Brassica napus and 3905 UniGenes were identified as differentially expressed genes after being exposed to freezing stress. Among these genes, 2312 (59.21%) were up-regulated and 1593 (40.79%) were down-regulated. Most of these DEGs were significantly annotated in the carbohydrates and energy metabolism, signal transduction, amino acid metabolism and translation. Most of the up-regulated DEGs were especially enriched in plant hormone signal transduction, starch and sucrose metabolism pathways. Transcription factor enrichment analysis showed that the AP2/ERF, WRKY and MYB families were also significantly changed. Furthermore, 20 DEGs were selected to validate the transcriptome profiles via quantitative real-time PCR (qRT-PCR). In conclusion, the results provide an overall view of the dynamic changes in physiology and insights into the molecular regulation mechanisms of winter Brassica napus in response to freezing treatment, expanding our understanding on the complex molecular mechanism in plant response to freezing stress.
Collapse
Affiliation(s)
- Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhong Zhao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jing Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jinli Yue
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Zaoxia Niu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
41
|
Scheben A, Verpaalen B, Lawley CT, Chan CKK, Bayer PE, Batley J, Edwards D. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:142-152. [PMID: 30548723 DOI: 10.1111/tpj.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Advances in sequencing technology have led to a rapid rise in the genomic data available for plants, driving new insights into the evolution, domestication and improvement of crops. Single nucleotide polymorphisms (SNPs) are a major component of crop genomic diversity, and are invaluable as genetic markers in research and breeding programs. High-throughput SNP arrays, or 'SNP chips', can generate reproducible sets of informative SNP markers and have been broadly adopted. Although there are many public repositories for sequencing data, which are routinely uploaded, there are no formal repositories for crop SNP array data. To make SNP array data more easily accessible, we have developed CropSNPdb (http://snpdb.appliedbioinformatics.com.au), a database for SNP array data produced by the Illumina Infinium™ hexaploid bread wheat (Triticum aestivum) 90K and Brassica 60K arrays. We currently host SNPs from datasets covering 526 Brassica lines and 309 bread wheat lines, and provide search, download and upload utilities for users. CropSNPdb provides a useful repository for these data, which can be applied for a range of genomics and molecular crop-breeding activities.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brent Verpaalen
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Chon-Kit K Chan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Australian Genome Research Facility, Melbourne, Vic., 3000, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
42
|
Associating transcriptional regulation for rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis. Sci Rep 2019; 9:55. [PMID: 30635606 PMCID: PMC6329770 DOI: 10.1038/s41598-018-37099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Slow germination speed caused by low temperature stress intensifies the risk posed by adverse environmental factors, contributing to low germination rate and reduced production of rapeseed. The purpose of this study was to understand the transcriptional regulation mechanism for rapid germination of rapeseed. The results showed that seed components and size do not determine the seed germination speed. Different temporal transcriptomic profiles were generated under normal and low temperature conditions in genotypes with fast and slow germination speeds. Using weight gene co-expression network analysis, 37 823 genes were clustered into 15 modules with different expression patterns. There were 10 233 and 9111 differentially expressed genes found to follow persistent tendency of up- and down-regulation, respectively, which provided the conditions necessary for germination. Hub genes in the continuous up-regulation module were associated with phytohormone regulation, signal transduction, the pentose phosphate pathway, and lipolytic metabolism. Hub genes in the continuous down-regulation module were involved in ubiquitin-mediated proteolysis. Through pairwise comparisons, 1551 specific upregulated DEGs were identified for the fast germination speed genotype under low temperature stress. These DEGs were mainly enriched in RNA synthesis and degradation metabolisms, signal transduction, and defense systems. Transcription factors, including WRKY, bZIP, EFR, MYB, B3, DREB, NAC, and ERF, are associated with low temperature stress in the fast germination genotype. The aquaporin NIP5 and late embryogenesis abundant (LEA) protein genes contributed to the water uptake and transport under low temperature stress during seed germination. The ethylene/H2O2-mediated signal pathway plays an important role in cell wall loosening and embryo extension during germination. The ROS-scavenging system, including catalase, aldehyde dehydrogenase, and glutathione S-transferase, was also upregulated to alleviate ROS toxicity in the fast germinating genotype under low temperature stress. These findings should be useful for molecular assisted screening and breeding of fast germination speed genotypes for rapeseed.
Collapse
|
43
|
Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. HORTICULTURE RESEARCH 2019; 6:21. [PMID: 30729011 PMCID: PMC6355785 DOI: 10.1038/s41438-018-0101-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 10/09/2018] [Indexed: 05/05/2023]
Abstract
Chrysanthemums are sensitive to waterlogging stress, and the development of screening methods for tolerant germplasms or genes and the breeding of tolerant new varieties are of great importance in chrysanthemum breeding. To understand the genetic basis of waterlogging tolerance (WT) in chrysanthemums, we performed a genome-wide association study (GWAS) using 92,811 single nucleotide polymorphisms (SNPs) in a panel of 88 chrysanthemum accessions, including 64 spray cut and 24 disbud chrysanthemums. The results showed that the average MFVW (membership function value of waterlogging) of the disbud type (0.65) was significantly higher than that of the spray type (0.55) at P < 0.05, and the MFVW of the Asian accessions (0.65) was significantly higher than that of the European accessions (0.48) at P < 0.01. The GWAS performed using the general linear model (GLM) and mixed linear model (MLM) identified 137 and 14 SNP loci related to WT, respectively, and 11 associations were commonly predicted. By calculating the phenotypic effect values for 11 common SNP loci, six highly favorable SNP alleles that explained 12.85-21.85% of the phenotypic variations were identified. Furthermore, the dosage-pyramiding effects of the favorable alleles and the significant linear correlations between the numbers of highly favorable alleles and phenotypic values were identified (r 2 = 0.45; P < 0.01). A major SNP locus (Marker6619-75) was converted into a derived cleaved amplified polymorphic sequence (dCAPS) marker that cosegregated with WT with an average efficiency of 78.9%. Finally, four putative candidate genes in the WT were identified via quantitative real-time PCR (qRT-PCR). The results presented in this study provide insights for further research on WT mechanisms and the application of molecular marker-assisted selection (MAS) in chrysanthemum WT breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| |
Collapse
|
44
|
Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. HORTICULTURE RESEARCH 2019. [PMID: 30729011 DOI: 10.1038/s41438-018-0101-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chrysanthemums are sensitive to waterlogging stress, and the development of screening methods for tolerant germplasms or genes and the breeding of tolerant new varieties are of great importance in chrysanthemum breeding. To understand the genetic basis of waterlogging tolerance (WT) in chrysanthemums, we performed a genome-wide association study (GWAS) using 92,811 single nucleotide polymorphisms (SNPs) in a panel of 88 chrysanthemum accessions, including 64 spray cut and 24 disbud chrysanthemums. The results showed that the average MFVW (membership function value of waterlogging) of the disbud type (0.65) was significantly higher than that of the spray type (0.55) at P < 0.05, and the MFVW of the Asian accessions (0.65) was significantly higher than that of the European accessions (0.48) at P < 0.01. The GWAS performed using the general linear model (GLM) and mixed linear model (MLM) identified 137 and 14 SNP loci related to WT, respectively, and 11 associations were commonly predicted. By calculating the phenotypic effect values for 11 common SNP loci, six highly favorable SNP alleles that explained 12.85-21.85% of the phenotypic variations were identified. Furthermore, the dosage-pyramiding effects of the favorable alleles and the significant linear correlations between the numbers of highly favorable alleles and phenotypic values were identified (r 2 = 0.45; P < 0.01). A major SNP locus (Marker6619-75) was converted into a derived cleaved amplified polymorphic sequence (dCAPS) marker that cosegregated with WT with an average efficiency of 78.9%. Finally, four putative candidate genes in the WT were identified via quantitative real-time PCR (qRT-PCR). The results presented in this study provide insights for further research on WT mechanisms and the application of molecular marker-assisted selection (MAS) in chrysanthemum WT breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| |
Collapse
|
45
|
Masalia RR, Temme AA, Torralba NDL, Burke JM. Multiple genomic regions influence root morphology and seedling growth in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited conditions. PLoS One 2018; 13:e0204279. [PMID: 30235309 PMCID: PMC6147562 DOI: 10.1371/journal.pone.0204279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022] Open
Abstract
With climate change and an ever-increasing human population threatening food security, developing a better understanding of the genetic basis of crop performance under stressful conditions has become increasingly important. Here, we used genome-wide association studies to genetically dissect variation in seedling growth traits in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited (i.e., osmotic stress) conditions, with a particular focus on root morphology. Water limitation reduced seedling size and produced a shift toward deeper rooting. These effects varied across genotypes, and we identified 13 genomic regions that were associated with traits of interest across the two environments. These regions varied in size from a single marker to 186.2 Mbp and harbored numerous genes, some of which are known to be involved in the plant growth/development as well as the response to osmotic stress. In many cases, these associations corresponded to growth traits where the common allele outperformed the rare variant, suggesting that selection for increased vigor during the evolution of cultivated sunflower might be responsible for the relatively high frequency of these alleles. We also found evidence of pleiotropy across multiple traits, as well as numerous environmentally independent genetic effects. Overall, our results indicate the existence of genetic variation in root morphology and allocation and further suggest that the majority of alleles associated with these traits have consistent effects across environments.
Collapse
Affiliation(s)
- Rishi R. Masalia
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Andries A. Temme
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicole de leon Torralba
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
46
|
Wang P, Yang C, Chen H, Luo L, Leng Q, Li S, Han Z, Li X, Song C, Zhang X, Wang D. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L. BMC PLANT BIOLOGY 2018; 18:202. [PMID: 30231862 PMCID: PMC6146658 DOI: 10.1186/s12870-018-1417-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/05/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Brassica napus (B. napus) encompasses diverse transcription factors (TFs), but thorough identification and characterization of TF families, as well as their transcriptional responsiveness to multifarious stresses are still not clear. RESULTS Totally 2167 TFs belonging to five families were genome-widely identified in B. napus, including 518 BnAP2/EREBPs, 252 BnbZIPs, 721 BnMYBs, 398 BnNACs and 278 BnWRKYs, which contained some novel members in comparison with existing results. Sub-genome distributions of BnAP2/EREBPs and BnMYBs indicated that the two families might have suffered from duplication and divergence during evolution. Synteny analysis revealed strong co-linearity between B. napus and its two ancestors, although chromosomal rearrangements have occurred and 85 TFs were lost. About 7.6% and 9.4% TFs of the five families in B. napus were novel genes and conserved genes, which both showed preference on the C sub-genome. RNA-Seq revealed that more than 80% TFs were abiotic stress inducible and 315 crucial differentially expressed genes (DEGs) were screened out. Network analysis revealed that the 315 DEGs are highly co-expressed. The homologous gene network in A. thaliana revealed that a considerable amount of TFs could trigger the differential expression of targeted genes, resulting in a complex clustered network with clusters of genes responsible for targeted stress responsiveness. CONCLUSIONS We identified and characterized five TF families in B. napus. Some crucial members and regulatory networks involved in different abiotic stresses have been explored. The investigations deepen our understanding of TFs for stress tolerance in B. napus.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Cuiling Yang
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Hao Chen
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Longhai Luo
- Beijing igeneCode Biotech Co.,Ltd, Changping District Xisanqi Center for the Olympic Century, Beijing, 100096 China
| | - Qiuli Leng
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Shicong Li
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Zujing Han
- Beijing igeneCode Biotech Co.,Ltd, Changping District Xisanqi Center for the Olympic Century, Beijing, 100096 China
| | - Xinchun Li
- Beijing igeneCode Biotech Co.,Ltd, Changping District Xisanqi Center for the Olympic Century, Beijing, 100096 China
| | - Chunpeng Song
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology; School of Mathematics and Statistics; State Key Laboratory of Cotton Biology; College of Life Sciences; Institute of Applied Mathematics; Laboratory of Data Analysis Technology; Henan University, Kaifeng, Henan, 475004, China, Jinming avenue, Kaifeng, 475004 China
| |
Collapse
|
47
|
Rurek M, Czołpińska M, Pawłowski TA, Staszak AM, Nowak W, Krzesiński W, Spiżewski T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int J Mol Sci 2018; 19:ijms19041130. [PMID: 29642585 PMCID: PMC5979313 DOI: 10.3390/ijms19041130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Aleksandra Maria Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
- Present address: Department of Plant Physiology, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
48
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
49
|
Mason AS, Higgins EE, Snowdon RJ, Batley J, Stein A, Werner C, Parkin IAP. A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:621-633. [PMID: 28220206 DOI: 10.1007/s00122-016-2849-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The Brassica napus 60K Illumina Infinium™ SNP array has had huge international uptake in the rapeseed community due to the revolutionary speed of acquisition and ease of analysis of this high-throughput genotyping data, particularly when coupled with the newly available reference genome sequence. However, further utilization of this valuable resource can be optimized by better understanding the promises and pitfalls of SNP arrays. We outline how best to analyze Brassica SNP marker array data for diverse applications, including linkage and association mapping, genetic diversity and genomic introgression studies. We present data on which SNPs are locus-specific in winter, semi-winter and spring B. napus germplasm pools, rather than amplifying both an A-genome and a C-genome locus or multiple loci. Common issues that arise when analyzing array data will be discussed, particularly those unique to SNP markers and how to deal with these for practical applications in Brassica breeding applications.
Collapse
Affiliation(s)
- Annaliese S Mason
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N0X2, Canada
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jacqueline Batley
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane, 4072, Australia
- School of Plant Biology and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia
| | - Anna Stein
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Christian Werner
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N0X2, Canada
| |
Collapse
|
50
|
Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics 2017; 18:232. [PMID: 28292259 PMCID: PMC5351109 DOI: 10.1186/s12864-017-3607-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND B. napus (oilseed) is an important source of edible vegetable oil, and its nutritional and economic value is determined by its fatty acid composition and content. RESULTS Using the Brassica 60 K SNP array, we performed a genome-wide association study of fatty acid composition in a population of 520 genetically diverse oilseed accessions. Using the PCA + K model in TASSEL 5.2.1, we identified 62 genomic regions that were significantly associated with the composition of seven fatty acids, and five consensus regions that mapped to the A2, A8, A9, C1, and C3 chromosomes, respectively, of the Brassica napus Darmor-bzh genome. We then identified 24 orthologs of the functional candidate genes involved in fatty acid biosynthesis, excluding BnaA.FAE1 and BnaC.FAE1 on the A8 and C3 homologous genome blocks, which are known to have critical roles in the fatty acid biosynthesis pathway, and potential orthologs of these genes (e.g., LACS9, KCR1, FAB1, LPAT4, KCS17, CER4, TT16, and ACBP5). CONCLUSIONS Our results demonstrate the power of association mapping in identifying genes of interest in B. napus and provide insight into the genetic basis of fatty acid biosynthesis in B. napus. Furthermore, our findings may facilitate marker-based breeding efforts aimed at improving fatty acid composition and quality in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Shimeng Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|