1
|
Ongom PO, Fatokun C, Togola A, Dieng I, Salvo S, Gardunia B, Mohammed SB, Boukar O. Genetic progress in cowpea [Vigna unguiculata (L.) Walp.] stemming from breeding modernization efforts at the International Institute of Tropical Agriculture. THE PLANT GENOME 2024; 17:e20462. [PMID: 38778513 DOI: 10.1002/tpg2.20462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
Genetic gain has been proposed as a quantifiable key performance indicator that can be used to monitor breeding programs' effectiveness. The cowpea breeding program at the International Institute of Tropical Agriculture (IITA) has developed and released improved varieties in 70 countries globally. To quantify the genetic changes to grain yield and related traits, we exploited IITA cowpea historical multi-environment trials (METs) advanced yield trial (AYT) data from 2010 to 2022. The genetic gain assessment targeted short duration (SD), medium duration (MD), and late duration (LD) breeding pipelines. A linear mixed model was used to calculate the best linear unbiased estimates (BLUE). Regressed BLUE of grain yield by year of genotype origin depicted realized genetic gain of 22.75 kg/ha/year (2.65%), 7.91 kg/ha/year (0.85%), and 22.82 kg/ha/year (2.51%) for SD, MD, and LD, respectively. No significant gain was realized in 100-seed weight (Hsdwt). We predicted, based on 2022 MET data, that recycling the best genotypes at AYT stage would result in grain yield gain of 37.28 kg/ha/year (SD), 28.00 kg/ha/year (MD), and 34.85 kg/ha/year (LD), and Hsdwt gain of 0.48 g/year (SD), 0.68 g/year (MD), and 0.55 g/year (LD). These results demonstrated a positive genetic gain trend for cowpea, indicating that a yield plateau has not yet been reached and that accelerated gain is expected with the recent integration of genomics in the breeding program. Advances in genomics include the development of the reference genome, genotyping platforms, quantitative trait loci mapping of key traits, and active implementation of molecular breeding.
Collapse
Affiliation(s)
| | - Christian Fatokun
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Abou Togola
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Ibnou Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | | - Ousmane Boukar
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| |
Collapse
|
2
|
Chipeta MM, Kampanje-Phiri J, Moyo D, Colial H, Tamba M, Belarmino D, Hella J, Yohane E, Mvula N, Kafwambira J. Understanding specific gender dynamics in the cowpea value chain for key traits to inform cowpea breeding programs in Malawi, Mozambique and Tanzania. FRONTIERS IN SOCIOLOGY 2024; 9:1254292. [PMID: 38425671 PMCID: PMC10901980 DOI: 10.3389/fsoc.2024.1254292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Introduction Cowpea is an important food and nutrition security crop in Malawi, Mozambique and Tanzania and it is mainly produced by women farmers mainly on a subsistence scale. The majority of these farmers use local varieties despite the availability of improved varieties in the region. Low acceptability and adoption of improved varieties have also hampered cowpea breeding efforts. The low adoption, especially among women farmers, has been attributed to the failure by breeding programs to involve farmers in the process of designing and developing improved varieties with a view to meeting their priorities and preferences. Despite women constituting the majority of cowpea farmers in these countries, no comprehensive gender analysis on cowpea value chain had been instituted to understand the traits that are gender and youth responsive and how to incorporate them in the product profiling so that the developed varieties benefit men, women and youth. The main objective of the gender study was, therefore, to identify preferred traits by different gender groups within the whole cowpea value chain to inform cowpea breeding programs in the three countries. Methods The study employed quantitative and qualitative methods to elucidate preferences, including value chain mapping, a quantitative survey of farmers, focus group discussions and key informant interviews targeting farmers/consumers, traders, policymakers and processors. Results and discussion Results showed that the top-ranking traits in order of importance across the countries and gender were; (1) high grain yield, (2) good grain taste, (3) early maturity time, (4) large grain size, (5) good leaf taste and (6) short cooking time. It was further noted that different gender groups preferred almost similar traits though minor variations were noted in terms of prioritization of these traits. These results have had two major influences on our cowpea breeding program: firstly, the breeding program changed the way it prioritizes traits to include ones that reflect the needs of men, women and the youth in the cowpea value chain. Secondly, our breeding objectives are closely aligned to gender differences in the target population of farmers and other users, by incorporating key priority traits that address the needs of both men and women, including the youth. That is to say, product targets and specific product profiles are more gender sensitive. Since the breeding work is ongoing, the expectation is that the development of improved varieties resulting from this gender sensitive process will translate into higher adoption levels of these varieties (compared with previous releases), which might have ripple effects on food, nutrition and income security in the region.
Collapse
Affiliation(s)
- Michael M. Chipeta
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | | | - Dumisani Moyo
- Development with Data Science (DDSc), Lilongwe, Malawi
| | - Henriques Colial
- Instituto De Investigação Agrária De Moçambique, Nampula, Mozambique
| | - Mussa Tamba
- Tanzania Agriculture Research Institute, Illonga, Tanzania
| | - Divage Belarmino
- Instituto De Investigação Agrária De Moçambique, Nampula, Mozambique
| | - Joseph Hella
- Sokoine University of Agriculture, Morogoro, Tanzania
| | - Esnart Yohane
- Department of Agricultural Research Services, Chitedze Research Station, Lilongwe, Malawi
| | - Naomi Mvula
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - John Kafwambira
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| |
Collapse
|
3
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
4
|
Ongom PO, Fatokun C, Togola A, Garcia-Oliveira AL, Ng EH, Kilian A, Lonardi S, Close TJ, Boukar O. A Mid-Density Single-Nucleotide Polymorphism Panel for Molecular Applications in Cowpea ( Vigna unguiculata (L.) Walp). Int J Genomics 2024; 2024:9912987. [PMID: 38235497 PMCID: PMC10791481 DOI: 10.1155/2024/9912987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Molecular markers are increasingly being deployed to accelerate genetic gain in crop plants. The objective of this study was to assess the potential of a mid-density genotyping panel for molecular applications in cowpea breeding. A core set of 2,602 targeted diversity array technology (DArTag) single-nucleotide polymorphisms (SNPs) was designed from an existing 51,128 Cowpea iSelect Consortium Array. The panel's usefulness was assessed using 376 genotypes from different populations of known genetic backgrounds. The panel was informative, with over 78% of SNPs exceeding a minor allele frequency of 0.20. The panel decoded three stratifications in the constituted population, as was expected. Linkage disequilibrium (LD) decay was correctly depicted as slower in a biparental subset than in other populations. A known flower and seed coat color gene region was located on chromosome Vu07, suggesting that the mid-density panel may be used to hypothesize genomic regions underlying target traits in cowpea. Unexpected heterozygosity was detected in some lines and highly among F1 progenies, divulging the panel's potential application in germplasm purity and hybridity verification. The study unveils the potential of an excellent genomic resource that can be tapped to enhance the development of improved cowpea cultivars.
Collapse
Affiliation(s)
| | - Christian Fatokun
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Abou Togola
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| | - Ana Luisa Garcia-Oliveira
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, UN Avenue, PO Box, Nairobi 1041-00621, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Eng Hwa Ng
- Excellence in Breeding Platform, International Maize and Wheat Improvement Center (CIMMYT), Los Baños, Laguna 4031, Philippines
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd., University of Canberra, Montana St., Bruce, ACT 2617, Australia
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Timothy J. Close
- Department of Botany and Plant Sciences, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Ousmane Boukar
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| |
Collapse
|
5
|
Chen YJ, Catto MA, Pandey S, Leal-Bertioli S, Abney M, Hunt BG, Bag S, Culbreath A, Srinivasan R. Characterization of gene expression patterns in response to an orthotospovirus infection between two diploid peanut species and their hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1270531. [PMID: 38034554 PMCID: PMC10683084 DOI: 10.3389/fpls.2023.1270531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Michael A. Catto
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Soraya Leal-Bertioli
- Plant Pathology Department, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Mark Abney
- Entomology Department, University of Georgia, Tifton, GA, United States
| | - Brendan G. Hunt
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Bag
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | | |
Collapse
|
6
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
7
|
Borges-Martins ANC, Ferreira-Neto JRC, da Silva MD, Morais DADL, Pandolfi V, Silva RLDO, de Melo ALTM, da Costa AF, Benko-Iseppon AM. Unlocking Cowpea's Defense Responses: Conserved Transcriptional Signatures in the Battle against CABMV and CPSMV Viruses. Life (Basel) 2023; 13:1747. [PMID: 37629606 PMCID: PMC10455494 DOI: 10.3390/life13081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cowpea aphid-borne mosaic virus (CABMV) and Cowpea severe mosaic virus (CPSMV) threaten cowpea commercial production. This study aimed to analyze Conserved Transcriptional Signatures (CTS) in cowpea's genotypes that are resistant to these viruses. CTS covered up- (UR) or down-regulated (DR) cowpea transcripts in response to CABMV and CPSMV mechanical inoculations. The conservation of cowpea's UR defense response was primarily observed with the one hpi treatments, with decreased CTS representatives as time elapsed. This suggests that cowpea utilizes generic mechanisms during its early interaction with the studied viruses, and subsequently employs more specialized strategies for each viral agent. The potential action of the CTS-UR emphasizes the importance of redox balance, ethylene and jasmonic acid pathways. Additionally, the CTS-UR provides evidence for the involvement of R genes, PR proteins, and PRRs receptors-extensively investigated in combating bacterial and fungal pathogens-in the defense against viral inoculation. AP2-ERF, WRKY, and MYB transcription factors, as well as PIP aquaporins and MAPK cascades, also emerged as significant molecular players. The presented work represents the first study investigating conserved mechanisms in the cowpea defense response to viral inoculations, highlighting relevant processes for initial defense responses.
Collapse
Affiliation(s)
- Artemisa Nazaré Costa Borges-Martins
- Departamento de Ensino, Instituto Federal do Maranhão, Buriticupu 65393-000, Brazil;
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; (M.D.d.S.); (V.P.); (A.L.T.M.d.M.)
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; (M.D.d.S.); (V.P.); (A.L.T.M.d.M.)
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; (M.D.d.S.); (V.P.); (A.L.T.M.d.M.)
| | | | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; (M.D.d.S.); (V.P.); (A.L.T.M.d.M.)
| | | | - Ana Luiza Trajano Mangueira de Melo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; (M.D.d.S.); (V.P.); (A.L.T.M.d.M.)
| | | | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; (M.D.d.S.); (V.P.); (A.L.T.M.d.M.)
| |
Collapse
|
8
|
Dwivedi SL, Chapman MA, Abberton MT, Akpojotor UL, Ortiz R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front Genet 2023; 14:1193780. [PMID: 37396035 PMCID: PMC10311922 DOI: 10.3389/fgene.2023.1193780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low β-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
Collapse
Affiliation(s)
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
10
|
Lazaridi E, Bebeli PJ. Cowpea Constraints and Breeding in Europe. PLANTS (BASEL, SWITZERLAND) 2023; 12:1339. [PMID: 36987026 PMCID: PMC10052078 DOI: 10.3390/plants12061339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is a legume with a constant rate of cultivation in Southern European countries. Consumer demand for cowpea worldwide is rising due to its nutritional content, while Europe is constantly attempting to reduce the deficit in the production of pulses and invest in new, healthy food market products. Although the climatic conditions that prevail in Europe are not so harsh in terms of heat and drought as in the tropical climates where cowpea is mainly cultivated, cowpea confronts with a plethora of abiotic and biotic stresses and yield-limiting factors in Southern European countries. In this paper, we summarize the main constraints for cowpea cultivation in Europe and the breeding methods that have been or can be used. A special mention is made of the availability plant genetic resources (PGRs) and their potential for breeding purposes, aiming to promote more sustainable cropping systems as climatic shifts become more frequent and fiercer, and environmental degradation expands worldwide.
Collapse
Affiliation(s)
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| |
Collapse
|
11
|
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, Vemula S, Kaur B, Singh V, Tseng TM. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol 2022; 44:5440-5473. [PMID: 36354681 PMCID: PMC9688858 DOI: 10.3390/cimb44110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.
Collapse
Affiliation(s)
- Pawan Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Science University, Barnala 148107, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Anju Biswas
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Sumandeep Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, WA 57007, USA
| | - Harpreet Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88001, USA
| | - Ishveen Kaur
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Harpreet Kaur
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Shailaja Vemula
- Agronomy Department, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
12
|
A Genome-Wide Scan Divulges Key Loci Involved in Resistance to Aphids (Aphis craccivora) in Cowpea (Vigna unguiculata). Genes (Basel) 2022; 13:genes13112002. [DOI: 10.3390/genes13112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Cowpea aphids (Aphis craccivora Koch) double as a direct damaging pest and a virus vector to cowpea, threatening the economic yield of the crop. Given the multiple ecotypes, different alleles have been implicated in aphid resistance, necessitating the identification of key genes involved. The present study implemented a genome-wide scan using 365 cowpea mini-core accessions to decipher loci involved in resistance to aphid ecotype from Kano, Nigeria. Accessions were artificially inoculated with A. craccivora in insect-proof cages and damage severity assessed at 21 days after infestation. Significant phenotypic differences based on aphid damage severity were registered among the accessions. Skewed phenotypic distributions were depicted in the population, suggesting the involvement of major genes in the control of resistance. A genome-wide scan identified three major regions on chromosomes Vu10, Vu08 and Vu02, and two minor ones on chromosomes Vu01 and Vu06, that were significantly associated with aphid resistance. These regions harbored several genes, out of which, five viz Vigun01g233100.1, Vigun02g088900.1, Vigun06g224900.1, Vigun08g030200.1 and Vigun10g031100.1 were the most proximal to the peak single nucleotide polymorphisms (SNPs) positions. These genes are expressed under stress signaling, mechanical wounding and insect feeding. The uncovered loci contribute towards establishing a marker-assisted breeding platform and building durable resistance against aphids in cowpea.
Collapse
|
13
|
Variations of Nutrient and Antinutrient Components of Bambara Groundnut (Vigna subterranea (L.) Verdc.) Seeds. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2772362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bambara groundnut (BGN) fits the bill when it comes to an acceptable level of nutrient and mineral composition. BGN is a balanced food that can help eradicate food and nutritional insecurity if it is incorporated into the major food system. However, there is a large degree of variation in nutrient composition and antinutritional factors among BGN accessions. Here, we show the degree of variability of nutrient and antinutrient components such as percentage ash, moisture, protein, fat, tryptophan, tannin, and phytate contents in seeds of 95 accessions of BGN. Data were subjected to analysis of variance (ANOVA), followed by correlation and principal component analysis. Clustering was done to show the relatedness between the accessions in response to the various traits. A high level of heterogeneity was observed among the accessions for the various traits studied. PC1 and PC2 show 41.2% of the total observed variations. Cluster analysis grouped accessions into four main clusters. This study was able to confirm the high level of diversity in the components of nutrients and antinutrients previously reported in BGN. The results of this study are expected to aid in identifying parent lines for improved breeding programs.
Collapse
|
14
|
Edet OU, Ishii T. Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. PLANT METHODS 2022; 18:106. [PMID: 36031612 PMCID: PMC9422124 DOI: 10.1186/s13007-022-00938-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/17/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cowpea is a dryland crop with potential to improve food security in sub-Saharan Africa, where it is mostly produced and consumed. Contemporary plant improvement technologies, including genome editing, marker-assisted selection, and optimized transformation protocols, are being deployed to improve cowpea characteristics. Integrating speed breeding with these technologies would accelerate genetic gain in cowpea breeding. There are established speed breeding protocols for other important legumes, such as soybean, peanut, and chickpea, but none has been previously reported for cowpea. RESULTS With the aid of regulated growth conditions in two different chamber types, as well as the cultivation of new plant generations from seeds of oven-dried immature pods, we developed and validated, for the first time, an efficient speed breeding protocol that accommodates approximately seven to eight breeding generations per year for 3 cowpea genotypes. The 3 cowpea genotypes were evaluated under controlled growth conditions in light-emitting diode and metal halide lamp chambers to determine the effect of CO2 supplementation on flowering and maturation durations, optimum conditions for plant growth, cross pollination, and pod development. Elevated CO2 concentration had no influence on either flowering time or pod development. Adequate temperature, relative humidity and light intensity improved plant development and the rate of successful hand pollination, and cultivating seeds of 11-day-old immature pods oven-dried at 39 °C for 2 days resulted in at least a 62% reduction in the time between pollination and sowing of the next plant generation. The plants cultivated from seeds of the oven-dried immature pods showed no defect at any stage of development. CONCLUSIONS Using the speed breeding protocol developed in this study, cowpea breeding cycles can be increased from the traditional one cycle per year in the field to as many as 8 generations per year in regulated growth chamber conditions. This protocol has no special technical requirements; hence, it can be implemented in any standard growth chamber. This would fast-track development, testing, validation, and utilization of improved cowpea cultivars.
Collapse
Affiliation(s)
- Offiong Ukpong Edet
- Arid Land Research Center, Tottori University, Tottori, Japan
- Department of Crop Science, University of Calabar, Calabar, Nigeria
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, Japan.
| |
Collapse
|
15
|
Carvalho M, Carnide V, Sobreira C, Castro I, Coutinho J, Barros A, Rosa E. Cowpea Immature Pods and Grains Evaluation: An Opportunity for Different Food Sources. PLANTS (BASEL, SWITZERLAND) 2022; 11:2079. [PMID: 36015383 PMCID: PMC9416070 DOI: 10.3390/plants11162079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Currently, the sustainability of agro-food systems is one of the major challenges for agriculture and the introduction of new pulse-based products can be a good opportunity to face this challenge. Cowpea (Vigna unguiculata L. Walp.) is a nutritionally important crop and has the particularity that the aerial section of the plant is entirely edible. The current research determines the nutritional composition of the alternative cowpea food sources immature pods and grains comparatively to dry grains through the evaluation of protein, minerals and different polyphenolic contents, and antioxidant capacity. Ten cowpea genotypes were analyzed during two harvest seasons. Cowpea immature pods and grains revealed high levels of total protein and K, Ca, Zn and Fe contents. In general, most of the genotypes produced cowpea of high nutritional value, with a high variation observed between them. Our results showed the potential of the introduction of new cowpea new products in the market allowing a healthy and variable diet and at the same time a better use of the crop under the scenario of climate change.
Collapse
Affiliation(s)
- Márcia Carvalho
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Valdemar Carnide
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carla Sobreira
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Coutinho
- Chemistry Centre (CQ), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Barros
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Eduardo Rosa
- Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
16
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
17
|
Chongtham SK, Devi EL, Samantara K, Yasin JK, Wani SH, Mukherjee S, Razzaq A, Bhupenchandra I, Jat AL, Singh LK, Kumar A. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. PLANTA 2022; 256:24. [PMID: 35767119 DOI: 10.1007/s00425-022-03923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.
Collapse
Affiliation(s)
- Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, CAEPHT, CAU, Ranipool, Gangtok, Sikkim, 737135, India
| | | | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Odisha, 761211, India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, 192101, Jammu and Kashmir, India.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ingudam Bhupenchandra
- ICAR-KVK Tamenglong, ICAR RC for NEH Region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Aanandi Lal Jat
- Castor-Mustard Research Station, SDAU, S.K. Nagar, Banaskantha, Gujarat, 385 506, India
| | - Laishram Kanta Singh
- ICAR-KVK Imphal West, ICAR RC for NEH region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Tadong, Sikkim Centre, 737102, India
| |
Collapse
|
18
|
Raina A, Laskar RA, Wani MR, Jan BL, Ali S, Khan S. Gamma Rays and Sodium Azide Induced Genetic Variability in High-Yielding and Biofortified Mutant Lines in Cowpea [ Vigna unguiculata (L.) Walp.]. FRONTIERS IN PLANT SCIENCE 2022; 13:911049. [PMID: 35774825 PMCID: PMC9237497 DOI: 10.3389/fpls.2022.911049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 06/02/2023]
Abstract
With the twin pressures of high population growth and extreme weather events, developing countries are the worst hit in meeting the food demands of their people, with millions unable to access adequate and nutritionally balanced food. Crop production must be increased by 70% to keep up with the food demands of a rapidly growing population, which is expected to rise to 9.6 billion by 2050. Legumes are ideal food crops to increase agricultural productivity and achieve sustainable development goals. Cowpea, a warm-season grain legume, is often categorized as a neglected crop with immense scope for genetic improvement through proper breeding strategies. A multi-year field experiment of induced mutagenesis was conducted to increase seed yield and genetic variability in the agro-economic traits of two cowpea varieties treated with different doses of gamma (γ) rays and sodium azide (SA). The study was also aimed to optimize different doses of γ rays and SA employed individually and in combinations. Quantitative trait analysis revealed a maximum increase in seed yield from M2 to M3 generation. Among the 10 quantitative traits studied, seeds per pod and seed weight positively correlated with a major direct impact on yield. An extensive phenotypic selection cycle from M2-M4 generations resulted in isolating new high-yielding and nutrient-dense mutant lines. Such high-yielding biofortified mutant lines with enhanced genetic variability could serve as a donor of elite genes and represent a valuable genetic resource for improving low-yielding warm-season grain legumes.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women's College, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Rafiq Wani
- Department of Botany, Abdul Ahad Azad Memorial Degree College Bemina, Cluster University Srinagar, Srinagar, India
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
19
|
NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. J Proteomics 2022; 261:104575. [DOI: 10.1016/j.jprot.2022.104575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
|
20
|
Griffiths M, Delory BM, Jawahir V, Wong KM, Bagnall GC, Dowd TG, Nusinow DA, Miller AJ, Topp CN. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. PLANT, CELL & ENVIRONMENT 2022; 45:751-770. [PMID: 34914117 PMCID: PMC9306666 DOI: 10.1111/pce.14247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Roots are the interface between the plant and the soil and play a central role in multiple ecosystem processes. With intensification of agricultural practices, rhizosphere processes are being disrupted and are causing degradation of the physical, chemical and biotic properties of soil. However, cover crops, a group of plants that provide ecosystem services, can be utilised during fallow periods or used as an intercrop to restore soil health. The effectiveness of ecosystem services provided by cover crops varies widely as very little breeding has occurred in these species. Improvement of ecosystem service performance is rarely considered as a breeding trait due to the complexities and challenges of belowground evaluation. Advancements in root phenotyping and genetic tools are critical in accelerating ecosystem service improvement in cover crops. In this study, we provide an overview of the range of belowground ecosystem services provided by cover crop roots: (1) soil structural remediation, (2) capture of soil resources and (3) maintenance of the rhizosphere and building of organic matter content. Based on the ecosystem services described, we outline current and promising phenotyping technologies and breeding strategies in cover crops that can enhance agricultural sustainability through improvement of root traits.
Collapse
Affiliation(s)
| | | | | | - Kong M. Wong
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | - Tyler G. Dowd
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | - Allison J. Miller
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
| | | |
Collapse
|
21
|
Panzeri D, Guidi Nissim W, Labra M, Grassi F. Revisiting the Domestication Process of African Vigna Species (Fabaceae): Background, Perspectives and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040532. [PMID: 35214865 PMCID: PMC8879845 DOI: 10.3390/plants11040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 05/14/2023]
Abstract
Legumes are one of the most economically important and biodiverse families in plants recognised as the basis to develop functional foods. Among these, the Vigna genus stands out as a good representative because of its relatively recent African origin as well as its outstanding potential. Africa is a great biodiversity centre in which a great number of species are spread, but only three of them, Vigna unguiculata, Vigna subterranea and Vigna vexillata, were successfully domesticated. This review aims at analysing and valorising these species by considering the perspective of human activity and what effects it exerts. For each species, we revised the origin history and gave a focus on where, when and how many times domestication occurred. We provided a brief summary of bioactive compounds naturally occurring in these species that are fundamental for human wellbeing. The great number of wild lineages is a key point to improve landraces since the domestication process caused a loss of gene diversity. Their genomes hide a precious gene pool yet mostly unexplored, and genes lost during human activity can be recovered from the wild lineages and reintroduced in cultivated forms through modern technologies. Finally, we describe how all this information is game-changing to the design of future crops by domesticating de novo.
Collapse
Affiliation(s)
- Davide Panzeri
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| | - Werther Guidi Nissim
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Massimo Labra
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
| | - Fabrizio Grassi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| |
Collapse
|
22
|
Olorunwa OJ, Adhikari B, Shi A, Barickman TC. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111136. [PMID: 35067306 DOI: 10.1016/j.plantsci.2021.111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The majority of cowpea (Vigna unguiculata (L.) Walp.) produced in the U.S. is planted shortly after the summer rains and subsequently depends on rain or artificial irrigation. Therefore, excessive precipitation and poor soil drainage will cause cowpea plants to suffer temporary waterlogging, reducing the submerged tissue's oxygen level. Although cowpea is sensitive to waterlogging, excessive moisture can induce several morpho-physiological changes with adverse impacts on yield in its early stages of development. The current study subjected 30 cowpea genotypes to 10-days of waterlogging at the seedling stage under a controlled environment. The dynamic changes of 24 morpho-physiological parameters under waterlogging and optimal water conditions were analyzed to understand cowpea's response to waterlogging. Significant waterlogging treatment, cowpea genotypes, and their interactions (P < 0.001) were observed for most of the measured parameters. The results indicated that plant height (PH), leaf area (LA), fresh (FW) and dry weight (DW) of cowpea genotypes were significantly decreased under waterlogging compared to the control treatments. Similar results were obtained for net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E). However, the water use efficiency (WUE) and adventitious roots (ARs) increased linearly under waterlogging conditions. Waterlogging also declined chlorophyll fluorescence parameters except non-photochemical quenching (qN), which increased with excess soil moisture. In addition, waterlogging tolerance coefficient (WTC) and multivariate analysis (MCA) methods were used to characterize cowpea genotypes for waterlogging tolerance. Accordingly, the cowpea genotype Dagupan Pangasinan, UCR 369, and Negro were classified as waterlogging tolerant, while EpicSelect.4 and ICARDA 140071, as the most waterlogging sensitive. The cowpea genotypes and morpho-physiological traits determined from this study may be useful for genetic engineering and breeding programs that integrate cowpea waterlogging tolerance.
Collapse
Affiliation(s)
- Omolayo J Olorunwa
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA
| | - Bikash Adhikari
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA
| | - Ainong Shi
- Department of Horticulture, PTSC 316, University of Arkansas, Fayetteville, AR, 72701, USA
| | - T Casey Barickman
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA.
| |
Collapse
|
23
|
Coulibaly M, Bodjrenou G, Akohoue F, Agoyi EE, Merinosy Francisco FM, Agossou COA, Sawadogo M, Achigan-Dako EG. Profiling Cultivars Development in Kersting's Groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] for Improved Yield, Higher Nutrient Content, and Adaptation to Current and Future Climates. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.759575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kersting's groundnut [Macrotyloma geocarpum (Harms.) Maréchal and Baudet], Fabaceae, is an important source of protein and essential amino acids. As a grain legume species, it also contributes to improving soil fertility through symbiotic nitrogen fixation. However, the crop is characterized by a relatively low yield (≤500 kg/ha), and limited progress has been made so far, toward the development of high-yielding cultivars that can enhance and sustain its productivity. Recently, there was an increased interest in alleviating the burdens related to Kersting's groundnut (KG) cultivation through the development of improved varieties. Preliminary investigations assembled germplasms from various producing countries. In-depth ethnobotanical studies and insightful investigation on the reproductive biology of the species were undertaken alongside morphological, biochemical, and molecular characterizations. Those studies revealed a narrow genetic base for KG. In addition, the self-pollinating nature of its flowers prevents cross-hybridization and represents a major barrier limiting the broadening of the genetic basis. Therefore, the development of a research pipeline to address the bottlenecks specific to KG is a prerequisite for the successful expansion of the crop. In this paper, we offer an overview of the current state of research on KG and pinpoint the knowledge gaps; we defined and discussed the main steps of breeding for KG' cultivars development; this included (i) developing an integrated genebank, inclusive germplasm, and seed system management; (ii) assessing end-users preferences and possibility for industrial exploitation of the crop; (iii) identifying biotic and abiotic stressors and the genetic control of responsive traits to those factors; (iv) overcoming the cross-pollination challenges in KG to propel the development of hybrids; (v) developing new approaches to create variability and setting adequate cultivars and breeding approaches; (vi) karyotyping and draft genome analysis to accelerate cultivars development and increase genetic gains; and (vii) evaluating the adaptability and stability of cultivars across various ecological regions.
Collapse
|
24
|
Azman Halimi R, Raymond CA, Barkla BJ, Mayes S, King GJ. Development of Selection Indices for Improvement of Seed Yield and Lipid Composition in Bambara Groundnut ( Vigna subterranea (L.) Verdc.). Foods 2021; 11:foods11010086. [PMID: 35010212 PMCID: PMC8750730 DOI: 10.3390/foods11010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
The underutilised grain legume bambara groundnut (Vigna subterranea) has the potential to contribute significantly to nutritional security. However, the lack of commercial cultivars has hindered its wider adoption and utilisation as a food source. The development of competitive cultivars is impeded by (1) lack of systematic data describing variation in nutritional composition within the gene pool, and (2) a poor understanding of how concentrations of different nutritional components interact. In this study, we analysed seed lipid and protein concentration and lipid composition within a collection of 100 lines representing the global gene pool. Seed protein and lipid varied over twofold with a normal distribution, but no significant statistical correlation was detected between the two components. Seed lipid concentration (4.2–8.8 g/100 g) is primarily determined by the proportion of oleic acid (r2 = 0.45). Yield and composition data for a subset of 40 lines were then used to test selection parameters for high yielding, high lipid breeding lines. From five selection indices tested using 15 scenarios, an index based on the seed number, seed weight, and oleic acid yielded a >50% expected increase in each of the mean values of seed number, pod dry weight, seed dry weight, and seed size, as well as an expected 7% increase in seed lipid concentration.
Collapse
Affiliation(s)
- Razlin Azman Halimi
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia; (R.A.H.); (C.A.R.); (B.J.B.)
| | - Carolyn A. Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia; (R.A.H.); (C.A.R.); (B.J.B.)
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia; (R.A.H.); (C.A.R.); (B.J.B.)
| | - Sean Mayes
- School of Bioscience, University of Nottingham, Loughborough LE12 5RD, UK;
- Crops for the Future, NIAB-EMR, Cambridge CB3 0LG, UK
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia; (R.A.H.); (C.A.R.); (B.J.B.)
- School of Bioscience, University of Nottingham, Loughborough LE12 5RD, UK;
- Correspondence:
| |
Collapse
|
25
|
de Oliveira Bustamante F, do Nascimento TH, Montenegro C, Dias S, do Vale Martins L, Braz GT, Benko-Iseppon AM, Jiang J, Pedrosa-Harand A, Brasileiro-Vidal AC. Oligo-FISH barcode in beans: a new chromosome identification system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3675-3686. [PMID: 34368889 DOI: 10.1007/s00122-021-03921-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.
Collapse
Affiliation(s)
- Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Biologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | | | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
26
|
Omomowo OI, Babalola OO. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. FRONTIERS IN PLANT SCIENCE 2021; 12:751731. [PMID: 34745184 PMCID: PMC8570086 DOI: 10.3389/fpls.2021.751731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/30/2021] [Indexed: 05/23/2023]
Abstract
Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
27
|
Ongom PO, Fatokun C, Togola A, Salvo S, Oyebode OG, Ahmad MS, Jockson ID, Bala G, Boukar O. Molecular Fingerprinting and Hybridity Authentication in Cowpea Using Single Nucleotide Polymorphism Based Kompetitive Allele-Specific PCR Assay. FRONTIERS IN PLANT SCIENCE 2021; 12:734117. [PMID: 34675950 PMCID: PMC8524091 DOI: 10.3389/fpls.2021.734117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Optimization of a breeding program for increased genetic gain requires quality assurance (QA) and quality control (QC) at key phases of the breeding process. One vital phase in a breeding program that requires QC and QA is the choice of parents and successful hybridizations to combine parental attributes and create variations. The objective of this study was to determine parental diversity and confirm hybridity of cowpea F1 progenies using KASP (Kompetitive Allele-Specific PCR)-based single nucleotide polymorphism (SNP) markers. A total of 1,436 F1 plants were derived from crossing 220 cowpea breeding lines and landraces to 2 elite sister lines IT99K-573-1-1 and IT99K-573-2-1 as male parents, constituting 225 cross combinations. The progenies and the parents were genotyped with 17 QC SNP markers via high-throughput KASP genotyping assay. The QC markers differentiated the parents with mean efficiency of 37.90% and a range of 3.4-82.8%, revealing unique fingerprints of the parents. Neighbor-Joining cladogram divided the 222 parents into 3 clusters. Genetic distances between parents ranged from 0 to 3.74 with a mean of 2.41. Principal component analysis (PCA) depicted a considerable overlap between parents and F1 progenies with more scatters among parents than the F1s. The differentiation among parents and F1s was best contributed to by 82% of the markers. As expected, parents and F1s showed a significant contrast in proportion of heterozygous individuals, with mean values of 0.02 and 0.32, respectively. KASP markers detected true hybridity with 100% success rate in 72% of the populations. Overall, 79% of the putative F1 plants were true hybrids, 14% were selfed plants, and 7% were undetermined due to missing data and lack of marker polymorphism between parents. The study demonstrated an effective application of KASP-based SNP assay in fingerprinting, confirmation of hybridity, and early detection of false F1 plants. The results further uncovered the need to deploy markers as a QC step in a breeding program.
Collapse
Affiliation(s)
| | - Christian Fatokun
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Abou Togola
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| | - Stella Salvo
- Bayer Research and Development Services LLC, Chesterfield, MO, United States
| | | | - Mansur Sani Ahmad
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| | | | - Garba Bala
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| | - Ousmane Boukar
- International Institute of Tropical Agriculture (IITA), Kano, Nigeria
| |
Collapse
|
28
|
Gbedevi KM, Boukar O, Ishikawa H, Abe A, Ongom PO, Unachukwu N, Rabbi I, Fatokun C. Genetic Diversity and Population Structure of Cowpea [ Vigna unguiculata (L.) Walp.] Germplasm Collected from Togo Based on DArT Markers. Genes (Basel) 2021; 12:1451. [PMID: 34573433 PMCID: PMC8465771 DOI: 10.3390/genes12091451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Crop genetic diversity is a sine qua non for continuous progress in the development of improved varieties, hence the need for germplasm collection, conservation and characterization. Over the years, cowpea has contributed immensely to the nutrition and economic life of the people in Togo. However, the bulk of varieties grown by farmers are landraces due to the absence of any serious genetic improvement activity on cowpea in the country. In this study, the genetic diversity and population structure of 255 cowpea accessions collected from five administrative regions and the agricultural research institute of Togo were assessed using 4600 informative diversity array technology (DArT) markers. Among the regions, the polymorphic information content (PIC) ranged from 0.19 to 0.27 with a mean value of 0.25. The expected heterozygosity (He) varied from 0.22 to 0.34 with a mean value of 0.31, while the observed heterozygosity (Ho) varied from 0.03 to 0.07 with an average of 0.05. The average inbreeding coefficient (FIS) varied from 0.78 to 0.89 with a mean value of 0.83, suggesting that most of the accessions are inbred. Cluster analysis and population structure identified four groups with each comprising accessions from the six different sources. Weak to moderate differentiation was observed among the populations with a genetic differentiation index varying from 0.014 to 0.117. Variation was highest (78%) among accessions within populations and lowest between populations (7%). These results revealed a moderate level of diversity among the Togo cowpea germplasm. The findings of this study constitute a foundation for genetic improvement of cowpea in Togo.
Collapse
Affiliation(s)
- Kodjo M. Gbedevi
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
- Life and Earth Sciences Institute (Including Health and Agriculture), Pan African University, University of Ibadan, Ibadan 200284, Oyo State, Nigeria
| | - Ousmane Boukar
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
| | - Haruki Ishikawa
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
| | - Ayodeji Abe
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan 200284, Oyo State, Nigeria;
| | - Patrick O. Ongom
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
| | - Nnanna Unachukwu
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
| | - Ismail Rabbi
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
| | - Christian Fatokun
- Cowpea Breeding Unit, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria; (O.B.); (H.I.); (P.O.O.); (N.U.); (I.R.); (C.F.)
| |
Collapse
|
29
|
Paudel D, Dareus R, Rosenwald J, Muñoz-Amatriaín M, Rios EF. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea ( Vigna unguiculata [L.] Walp.). Front Genet 2021; 12:667038. [PMID: 34220944 PMCID: PMC8242349 DOI: 10.3389/fgene.2021.667038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
Cowpea (Vigna unguiculata [L.] Walp., diploid, 2n = 22) is a major crop used as a protein source for human consumption as well as a quality feed for livestock. It is drought and heat tolerant and has been bred to develop varieties that are resilient to changing climates. Plant adaptation to new climates and their yield are strongly affected by flowering time. Therefore, understanding the genetic basis of flowering time is critical to advance cowpea breeding. The aim of this study was to perform genome-wide association studies (GWAS) to identify marker trait associations for flowering time in cowpea using single nucleotide polymorphism (SNP) markers. A total of 368 accessions from a cowpea mini-core collection were evaluated in Ft. Collins, CO in 2019 and 2020, and 292 accessions were evaluated in Citra, FL in 2018. These accessions were genotyped using the Cowpea iSelect Consortium Array that contained 51,128 SNPs. GWAS revealed seven reliable SNPs for flowering time that explained 8-12% of the phenotypic variance. Candidate genes including FT, GI, CRY2, LSH3, UGT87A2, LIF2, and HTA9 that are associated with flowering time were identified for the significant SNP markers. Further efforts to validate these loci will help to understand their role in flowering time in cowpea, and it could facilitate the transfer of some of this knowledge to other closely related legume species.
Collapse
Affiliation(s)
- Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Rocheteau Dareus
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Julia Rosenwald
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Esteban F. Rios
- Agronomy Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Ferreira-Neto JRC, da Silva MD, Rodrigues FA, Nepomuceno AL, Pandolfi V, de Lima Morais DA, Kido EA, Benko-Iseppon AM. Importance of inositols and their derivatives in cowpea under root dehydration: An omics perspective. PHYSIOLOGIA PLANTARUM 2021; 172:441-462. [PMID: 33247842 DOI: 10.1111/ppl.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
This work presents a robust analysis of the inositols (INSs) and raffinose family oligosaccharides (RFOs) pathways, using genomic and transcriptomic tools in cowpea under root dehydration. Nineteen (~70%) of the 26 scrutinized enzymes presented transcriptional up-regulation in at least one treatment time. The transcriptional orchestration allowed categorization of the analyzed enzymes as time-independent (those showing the same regulation throughout the assay) and time-dependent (those showing different transcriptional regulation over time). It is suggested that up-regulated time-independent enzymes (INSs: myo-inositol oxygenase, inositol-tetrakisphosphate 1-kinase 3, phosphatidylinositol 4-phosphate 5-kinase 4-like, 1-phosphatidylinositol-3-phosphate 5-kinase, phosphoinositide phospholipase C, and non-specific phospholipase C; RFOs: α-galactosidase, invertase, and raffinose synthase) actively participate in the reorganization of cowpea molecular physiology under the applied stress. In turn, time-dependent enzymes, especially those up-regulated in some of the treatment times (INSs: inositol-pentakisphosphate 2-kinase, phosphatidylinositol 4-kinase, phosphatidylinositol synthase, multiple inositol polyphosphate phosphatase 1, methylmalonate-semialdehyde dehydrogenase, triosephosphate isomerase, myo-inositol-3-phosphate synthase, phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein-tyrosine-phosphatase, and phosphatidylinositol 3-kinase; RFOs: galactinol synthase) seem to participate in fine-tuning of the molecular physiology, helping the cowpea plants to acclimatize under dehydration stress. Not all loci encoding the studied enzymes were expressed during the assay; most of the expressed ones exhibited a variable transcriptional profile in the different treatment times. Genes of the INSs and RFOs pathways showed high orthology with analyzed Phaseoleae members, suggesting a relevant role within this legume group. Regarding the promoter regions of INSs and RFOs genes, some bona fide cis-regulatory elements were identified in association with seven transcription factor families (AP2-EFR, Dof-type, MADS-box, bZIP, CPP, ZF-HD, and GATA-type). Members of INSs and RFOs pathways potentially participate in other processes regulated by these proteins in cowpea.
Collapse
Affiliation(s)
- José R C Ferreira-Neto
- Laboratory of Molecular Genetics, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - Fabiana A Rodrigues
- Federal Institute of Education, Science and Technology of Mato Grosso do Sul, Cuiaba, Brazil
| | - Alexandre L Nepomuceno
- Brazilian Agricultural Research Corporation's-EMBRAPA Soybean, Rodovia Carlos João Strass-Distrito de Warta, Londrina, Brazil
| | - Valesca Pandolfi
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - Ederson A Kido
- Laboratory of Molecular Genetics, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Ana M Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Simbine MG, Jaiswal SK, Dakora FD. Diverse symbiovars nodulating cowpea (Vigna unguiculata L. Walp.) in highly adaptable agro-ecological zones in Mozambique. Syst Appl Microbiol 2021; 44:126220. [PMID: 34126328 DOI: 10.1016/j.syapm.2021.126220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/03/2023]
Abstract
The presence of effective microsymbionts in the soil and their compatibility with the host plant are the key determinants to the N2 fixation process. In Sub-Saharan Africa, nitrogen fixation in locally adapted cowpea and the distribution of their symbiovars are not well understood. The Aim of the study was to assess the distribution and symbiotic phylogenetic position of cowpea microsymbionts. Root nodules were sampled from various cowpea genotypes planted in Agro-Ecological Zone 7 and 8 (AEZ 7 and AEZ 8). Root-nodule bacteria were isolated and their molecular characterization was conducted. Physicochemical properties of soil were recorded. Enterobacterial Repetitive Intergenic Consensus (ERIC) distribution patterns in rhizobial genomes resulted in genetically diverse rhizobial population in Northern Mozambique. Principal component analysis showed that location-specific soil environment determined the presence of particular microsymbionts. Based on 16S rRNA and symbiotic gene analysis many diverse symbiovars were found in Mozambican soils. With few discrepancies, the results further confirmed the coevolution of the nifH, nodD, nodC and nodY/K genes, which was indicative of natural events such as vertical/horizontal gene transfer. The results suggested that ecological and phylogenetic studies of the microsymbionts are necessary to better reflect symbiovar identification and the ecological adaptation of the cowpea-nodulating rhizobial community.
Collapse
Affiliation(s)
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, South Africa.
| | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, South Africa.
| |
Collapse
|
32
|
Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O'Neill D, Torres-Mendoza M, Guo Y, Marasigan KM, Vielle-Calzada JP, Ozias-Akins P, Albertsen MC, Jones TJ. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:817-830. [PMID: 33595147 DOI: 10.1101/738971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 05/21/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience, Johnston, Iowa, 50131, USA
| | | | | | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | | | | | | | - Mijael Torres-Mendoza
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, México
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | - Kathleen M Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, México
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | | | | |
Collapse
|
33
|
Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O’Neill D, Torres‐Mendoza M, Guo Y, Marasigan KM, Vielle‐Calzada J, Ozias‐Akins P, Albertsen MC, Jones TJ. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:817-830. [PMID: 33595147 PMCID: PMC8252785 DOI: 10.1111/tpj.15202] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 05/21/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.
Collapse
Affiliation(s)
- Ping Che
- Corteva AgriscienceJohnstonIowa50131USA
| | - Shujun Chang
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | | | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Ahmed Shaharyar
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | - Jesse Ourada
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | | | - Mijael Torres‐Mendoza
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la BiodiversidadCINVESTAV IrapuatoGuanajuato36821México
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Kathleen M. Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Jean‐Philippe Vielle‐Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la BiodiversidadCINVESTAV IrapuatoGuanajuato36821México
| | - Peggy Ozias‐Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | | | | |
Collapse
|
34
|
Assessing Yield Response and Relationship of Soil Boron Fractions with Its Accumulation in Sorghum and Cowpea under Boron Fertilization in Different Soil Series. SUSTAINABILITY 2021. [DOI: 10.3390/su13084192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Boron (B) is an essential micronutrient in the growth of reproductive plant parts. Its deficiency and/or toxicity are widespread in arid and semi-arid soils with low clay contents. This study was planned to determine the response of sorghum (Sorghum bicolor L., non-leguminous crop) and cowpea (Vigna sinensis L., leguminous crop) to boron (0, 2, 4, and 16 µg g−1) on four distinct soil series from Punjab, Pakistan i.e., Udic Haplustalf (Pindorian region), Typic Torrifluvent (Shahdra region), Halic Camborthid (Khurianwala region), and Udic Haplustalf (Gujranwala region). Overall, there was a significant difference (p < 0.05) in yield between the sorghum (3.8 to 5.5 g pot−1 of 5 kg dry soil) and cowpea (0.2 to 3.2 g pot−1 of 5 kg dry soil) in response to B application. The highest yield was observed in both sorghum and cowpea either in control or at 2 µg g−1 B application in all four soils. Cowpea showed the same yield trend in all four soils (i.e., an increase in yield at 2 µg g−1 B application, followed by a significant decrease at the higher B levels). In contrast, sorghum exhibited greater variability of response on different soils; Udic Haplustalf (Pindorian region) produced the greatest yield at low levels of B application. However, Halic Camborthid produced its lowest yield at that level. Boron concentration in shoots increased with the levels of B application, particularly in sorghum. In cowpea, the plant growth was extremely retarded—and most of the plants died at higher levels of B application even if a lower concentration of B was measured within the shoot. Hot water-extractable B was the most available fraction for cowpea (R2 = 0.96), whereas the easily exchangeable B was most available for sorghum (R2 = 0.90). Overall, these results have implications for micronutrient uptake for both leguminous and non-leguminous crops.
Collapse
|
35
|
Eswaramoorthy V, Kandasamy T, Thiyagarajan K, Vanniarajan C, Jegadeesan S. Effectiveness and efficiency of electron beam in comparison with gamma rays and ethyl methane sulfonate mutagens in cowpea. Appl Radiat Isot 2021; 171:109640. [PMID: 33639325 DOI: 10.1016/j.apradiso.2021.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 01/07/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Cowpea is the poor man's crop that lacks variability due to its autogamous nature. Induced mutation serves as a potential source in the induction of variability in crops. On the other hand, the effectiveness and efficiency of mutagens will vary between species and even varieties. In the present study, a novel mutagen electron beam was used in cowpea for the first time along with commonly used mutagens gamma rays (physical) and ethyl methanesulfonate (chemical). The biological damages on eight quantitative characters in M1 generation and chlorophyll mutants in M2 generation were recorded. Two popular varieties viz., P 152 and VBN 1 constituted as the biological material of study. The rate of reduction in biological damage on quantitative characters was directly proportional to the dose of mutagen irrespective of the varieties and mutagens used. Physical mutagens showed the highest biological damage (EB- 37.5% and G- 37.3% overall reduction from control) than chemical mutagen (EMS- 30.4%). Comparing the physical mutagens at similar doses, 200 Gy or 300 Gy of electron beam showed more biological damage than 200 Gy or 300 Gy of gamma rays. Eleven different types of chlorophyll mutants were identified in the M2 generation. Xantha is the most occurred chlorophyll mutants (44.44%), while aurea and yellow viridis have least occurred mutants. Chemical mutagen (EMS) is considered to be the most effective (6.47%) and efficient mutagen (27.09%) based on the chlorophyll mutants and it was followed by an electron beam and gamma rays. Among the physical mutagens, electron beam showed the highest biological damage (37.50% overall reduction from control) and higher effectiveness and efficiency (3.80% and 23.38%) compared to gamma rays (1.87% and 13.38%). Hence, the electron beam can also be used as an effective mutagen in creating variation in cowpea and other crops as it is highly effective, cost less and safe mutagen.
Collapse
Affiliation(s)
- Vijayakumar Eswaramoorthy
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| | - Thangaraj Kandasamy
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, 625 104, India.
| | - Kalaimagal Thiyagarajan
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai, 625 104, India.
| | - Souframanien Jegadeesan
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| |
Collapse
|
36
|
Ongom PO, Fatokun C, Togola A, Oyebode OG, Ahmad MS, Jockson ID, Bala G, Boukar O. Genetic worth of multiple sets of cowpea breeding lines destined for advanced yield testing. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2021; 217:30. [PMID: 33603249 PMCID: PMC7846544 DOI: 10.1007/s10681-020-02763-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
UNLABELLED The objective of this study was to determine genetic potentials in eight sets of cowpea lines for grain yield (GY), hundred seed weight (HSDWT) and days to 50% flowering (DT50FL). A total of 614 F6 genotypes constituting the sets, grouped by maturity, were evaluated across two locations in Northern Nigeria, in an alpha lattice design, two replications each. Data were recorded on GY, HSDWT and DT50FL.Variance components, genotypic coefficient of variation (GCV), and genetic advance (GA) were used to decode the magnitude of genetic variance within and among sets. Genetic usefulness (Up) which depends on mean and variance to score the genetic merits in historically bi-parental populations was applied to groups of breeding lines with mixed parentage. Principal component analysis (PCA) was used to depict contribution of traits to observed variations. GY and DT50FL explained the variance within and between sets respectively. Genotypes were significantly different, although genotype-by-location and set-by-location interaction effects were also prominent. Genetic variance (δ2 G) and GCV were high for GY in Prelim2 (δ2 G = 45,897; GCV = 19.58%), HSDWT in Prelim11 (δ2 G = 7.137; GCV = 17.07%) and DT50F in Prelim5 (δ2 G = 4.54; GCV = 4.4%). Heritability varied among sets for GY (H = 0.21 to 0.57), HSDWT (H = 0.76 to 0.93) and DT50FL (H = 0.20 to 0.81). GA and percentage GA (GAPM) were high for GY in Prelim2 (GAPM = 24.59%; GA = 269.05Kg/ha), HSDWT in Prelim11 (GAPM = 28.54%; GA = 4.47 g), and DT50F in Prelim10 (GAPM = 6.49%; GA = 3.01 days). These sets also registered high values of genetic usefulness, suggesting potential application in non-full sib populations. These approaches can be used during preliminary performance tests to reinforce decisions in extracting promising lines and choose among defined groups of lines. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s10681-020-02763-y).
Collapse
Affiliation(s)
- Patrick Obia Ongom
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| | - Christian Fatokun
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Abou Togola
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| | - Oluwaseye Gideon Oyebode
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| | - Mansur Sani Ahmad
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| | - Ishaya Daniel Jockson
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| | - Garba Bala
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| | - Ousmane Boukar
- International Institute of Tropical Agriculture (IITA), IITA Kano Station, PMB 3112, Kano, Nigeria
| |
Collapse
|
37
|
Seo E, Kim K, Jun TH, Choi J, Kim SH, Muñoz-Amatriaín M, Sun H, Ha BK. Population Structure and Genetic Diversity in Korean Cowpea Germplasm Based on SNP Markers. PLANTS 2020; 9:plants9091190. [PMID: 32932572 PMCID: PMC7569878 DOI: 10.3390/plants9091190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Cowpea is one of the most essential legume crops providing inexpensive dietary protein and nutrients. The aim of this study was to understand the genetic diversity and population structure of global and Korean cowpea germplasms. A total of 384 cowpea accessions from 21 countries were genotyped with the Cowpea iSelect Consortium Array containing 51,128 single-nucleotide polymorphisms (SNPs). After SNP filtering, a genetic diversity study was carried out using 35,116 SNPs within 376 cowpea accessions, including 229 Korean accessions. Based on structure and principal component analysis, a total of 376 global accessions were divided into four major populations. Accessions in group 1 were from Asia and Europe, those in groups 2 and 4 were from Korea, and those in group 3 were from West Africa. In addition, 229 Korean accessions were divided into three major populations (Q1, Jeonra province; Q2, Gangwon province; Q3, a mixture of provinces). Additionally, the neighbor-joining tree indicated similar results. Further genetic diversity analysis within the global and Korean population groups indicated low heterozygosity, a low polymorphism information content, and a high inbreeding coefficient in the Korean cowpea accessions. The population structure analysis will provide useful knowledge to support the genetic potential of the cowpea breeding program, especially in Korea.
Collapse
Affiliation(s)
- Eunju Seo
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea;
| | - Kipoong Kim
- Department of Statistics, Pusan National University, Busan 46241, Korea;
| | - Tae-Hwan Jun
- Department of Plant Bioscience, Pusan National University, Busan 46241, Korea;
| | - Jinsil Choi
- Jeollanamdo Agricultural Research and Extension Services, Naju 58213, Korea;
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea;
| | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Hokeun Sun
- Department of Statistics, Pusan National University, Busan 46241, Korea;
- Correspondence: (H.S.); (B.-K.H.); Tel.: +92-51-510-2257 (H.S.); +82-62-530-2055 (B.-K.H.)
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (H.S.); (B.-K.H.); Tel.: +92-51-510-2257 (H.S.); +82-62-530-2055 (B.-K.H.)
| |
Collapse
|
38
|
Paliwal R, Abberton M, Faloye B, Olaniyi O. Developing the role of legumes in West Africa under climate change. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:242-258. [PMID: 32616362 DOI: 10.1016/j.pbi.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 05/22/2023]
Abstract
West Africa is faced with significant challenges from climate change, including parts of the region becoming hotter with more variable rainfall. The Sahelian region in particular is already subject to severe droughts. To address this better adapted crop varieties (such as for cowpea) are clearly a central element, a complementary one is a greater use of resilient alternative crops especially underutilized legumes particularly Bambara groundnut, African yam bean, winged bean and Kersting's groundnut. Genetic diversity of these crops conserved in genebanks and farmer's field provides an opportunity to exploit climate resilient traits using cutting-edge genomic tools and to use genomics-assisted breeding to accelerate genetic gains in combination of rapid cycle breeding strategy to develop climate-resilient cultivars for sub-Saharan Africa.
Collapse
Affiliation(s)
- Rajneesh Paliwal
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Michael Abberton
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.
| | - Benjamin Faloye
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Oyatomi Olaniyi
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
39
|
Genetic dissection of yield associated traits in a cross between cowpea and yard-long bean (Vigna unguiculata (L.) Walp.) based on DArT markers. J Genet 2020. [DOI: 10.1007/s12041-020-01216-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Mohammed H, Jaiswal SK, Mohammed M, Mbah GC, Dakora FD. Insights into nitrogen fixing traits and population structure analyses in cowpea ( Vigna unguiculata L. Walp) accessions grown in Ghana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1263-1280. [PMID: 32549688 PMCID: PMC7266896 DOI: 10.1007/s12298-020-00811-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/13/2019] [Accepted: 04/06/2020] [Indexed: 05/29/2023]
Abstract
With legumes, symbiotic N2 fixation can meet the species N demand and reduce the over-reliance on chemical fertilizers in tropical regions where N deficiency is a major factor limiting crop yields and increased agricultural sustainability. Therefore, to optimize the use of cowpea (Vigna unguiculata L. Walp) germplasm in effective breeding, evaluation of genetic diversity and quantification of N2 fixation are essential prerequisites. The aim of this study was to explore the level of diversity using SSR markers and N2-fixing traits in a set of cowpea germplasm grown in Ghana. We analysed 49 cowpea accessions collected from Northern Ghana using qualitative vegetative and N2 fixation traits, and simple sequence repeat (SSR) markers. Experimental field results revealed considerable morpho-physiological variation for plant growth habits, grain yield and symbiotic performance between and among the cowpea accessions. Results from both the 15N natural abundance and ureides in the xylem sap were able to descriminate between high and low levels of N2 fixation in cowpea accessions. Five subpopulations were identified within accessions inferred from STRUCTURE 2.3.4. A general linear model was used to assess the association of SSR markers with N2-fixing traits. There were significant (p ≤ 0.05) links between SSR markers and symbiosis-related traits such as nodule number, nodule dry weight, shoot dry weight, N-fixed, N derived from air (Ndfa), and relative uried-N (RU-N).
Collapse
Affiliation(s)
- Haruna Mohammed
- Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Sanjay K. Jaiswal
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadi, Pretoria, 0001 South Africa
| | - Mustapha Mohammed
- Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Glory C. Mbah
- Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadi, Pretoria, 0001 South Africa
| |
Collapse
|
41
|
Anwar A, Kim JK. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int J Mol Sci 2020; 21:E2695. [PMID: 32295026 PMCID: PMC7216248 DOI: 10.3390/ijms21082695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The recent rapid climate changes and increasing global population have led to an increased incidence of abiotic stress and decreased crop productivity. Environmental stresses, such as temperature, drought, nutrient deficiency, salinity, and heavy metal stresses, are major challenges for agriculture, and they lead to a significant reduction in crop growth and productivity. Abiotic stress is a very complex phenomenon, involving a variety of physiological and biochemical changes in plant cells. Plants exposed to abiotic stress exhibit enhanced levels of ROS (reactive oxygen species), which are highly reactive and toxic and affect the biosynthesis of chlorophyll, photosynthetic capacity, and carbohydrate, protein, lipid, and antioxidant enzyme activities. Transgenic breeding offers a suitable alternative to conventional breeding to achieve plant genetic improvements. Over the last two decades, genetic engineering/transgenic breeding techniques demonstrated remarkable developments in manipulations of the genes for the induction of desired characteristics into transgenic plants. Transgenic approaches provide us with access to identify the candidate genes, miRNAs, and transcription factors (TFs) that are involved in specific plant processes, thus enabling an integrated knowledge of the molecular and physiological mechanisms influencing the plant tolerance and productivity. The accuracy and precision of this phenomenon assures great success in the future of plant improvements. Hence, transgenic breeding has proven to be a promising tool for abiotic stress improvement in crops. This review focuses on the potential and successful applications, recent progress, and future perspectives of transgenic breeding for improving abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea;
| |
Collapse
|
42
|
Messina FJ, Lish AM, Gompert Z. Components of Cowpea Resistance to the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2418-2424. [PMID: 31081895 DOI: 10.1093/jee/toz117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Cowpea, Vigna unguiculata (L.) Walp., serves as a major source of dietary protein in many tropical and subtropical regions around the world. To identify loci associated with agronomically desirable traits, eight elite cowpea cultivars were systematically inter-crossed for eight generations to yield 305 recombinant inbred lines. Here, we investigated whether these founder parents also possess resistance to the seed beetle Callosobruchus maculatus (F.), a highly destructive post-harvest pest. We estimated larval survival in seeds, egg-to-adult development time, adult mass at emergence, and seed acceptance for oviposition. Survival varied significantly among cowpea cultivars, but the pattern was complicated by an unexpected source of mortality; on three cultivars, mature larvae in a substantial fraction of seeds (20-36%) exited seeds prematurely, and consequently failed to molt into viable adults. Even if such seeds were eliminated from the analysis, survival in the remaining seeds varied from 49 to 92% across the eight parents. Development time and body mass also differed among hosts, with particularly slow larval development on three closely related cultivars. Egg-laying females readily accepted all cultivars except one with a moderately rugose seed coat. Overall, suitability ranks of the eight cultivars depended on beetle trait; a cultivar that received the most eggs (IT82E-18) also conferred low survival. However, one cultivar (IT93K-503-1) was a relatively poor host for all traits. Given the magnitude of variation among parental cultivars, future assays of genotyped recombinant progeny can identify genomic regions and candidate genes associated with resistance to seed beetles.
Collapse
|
43
|
Togola A, Boukar O, Chamarthi S, Belko N, Tamò M, Oigiangbe N, Ojo J, Ibikunle M, Fatokun C. Evaluation of cowpea mini core accessions for resistance to flower bud thrips Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). JOURNAL OF APPLIED ENTOMOLOGY = ZEITSCHRIFT FUR ANGEWANDTE ENTOMOLOGIE 2019; 143:683-692. [PMID: 31423052 PMCID: PMC6686721 DOI: 10.1111/jen.12637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/28/2019] [Accepted: 03/11/2019] [Indexed: 05/31/2023]
Abstract
The flower bud thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae), is an economically important pest of cowpea in sub-Saharan Africa. Varietal resistance is the most preferred, environmentally friendly, cost-effective and sustainable option for controlling this pest. The objective of this study was to identify sources of resistance to M. sjostedti among mini core accessions from the largest world cowpea germplasm collection maintained at the International Institute of Tropical Agriculture (IITA). The study was conducted during the 2015 and 2016 cropping seasons where 365 accessions were screened under field conditions. Each accession was rated visually for thrips damage score, flower abortion rate, number of pods per plant and number of thrips per flower. The resistance levels observed in genotypes TVu8631, TVu16368, TVu8671 and TVu7325 were similar to that of the resistant check "Sanzisabinli" (called Sanzi) during both seasons. In addition, 56 mini core genotypes showed moderate resistance to thrips damage. High heritability values were associated with thrips damage scores at 65 days after planting (0.60), percentage of effective peduncles (0.59), flower bud abortion rate (0.59), number of pods per plant (0.51) and number of peduncles with pods (0.5). The accessions identified with good levels of resistance to flower bud thrips will be used in cowpea breeding programs to develop improved resistant varieties.
Collapse
Affiliation(s)
- Abou Togola
- International Institute of Tropical AgricultureKanoNigeria
| | - Ousmane Boukar
- International Institute of Tropical AgricultureKanoNigeria
| | - Siva Chamarthi
- International Institute of Tropical AgricultureKanoNigeria
| | | | - Manuele Tamò
- International Institute of Tropical AgricultureCotonouBenin
| | | | - Joseph Ojo
- International Institute of Tropical AgricultureIbadanNigeria
| | - Mumini Ibikunle
- International Institute of Tropical AgricultureIbadanNigeria
| | | |
Collapse
|
44
|
The potential of the underutilized pulse bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2018.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Bett B, Gollasch S, Moore A, Harding R, Higgins TJV. An Improved Transformation System for Cowpea ( Vigna unguiculata L. Walp) via Sonication and a Kanamycin-Geneticin Selection Regime. FRONTIERS IN PLANT SCIENCE 2019; 10:219. [PMID: 30873198 PMCID: PMC6401653 DOI: 10.3389/fpls.2019.00219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/08/2019] [Indexed: 05/30/2023]
Abstract
An improved cowpea transformation method utilizing Agrobacterium-mediated gene delivery to explants derived from the cotyledonary nodes of imbibed cowpea seed is described. The explants were regenerated following a sonication procedure and a stringent selection comprising alternating regimes of kanamycin and geneticin. The method was reproducible and led to the recovery of independent fertile transgenic plants in the greenhouse at a level of about one per cent of starting explants. A transgene encoding an insecticidal protein from Bacillus thuringiensis was used to demonstrate the efficacy of the system.
Collapse
Affiliation(s)
- Bosibori Bett
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Biotechnology Centre, Kenya Agricultural & Livestock Research Organisation, Nairobi, Kenya
| | | | - Andy Moore
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Robert Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thomas J. V. Higgins
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Ohlson EW, Thio GI, Sawadogo M, Sérémé P, Timko MP. Quantitative trait loci analysis of brown blotch resistance in cowpea variety KN1. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:110. [PMID: 30147431 PMCID: PMC6096496 DOI: 10.1007/s11032-018-0867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Cowpea is one of the most important crops in West Africa and is essential for the region's food and nutrition security and economic development. Consequently, improving its agronomic performance and yield is a desirable goal. Brown blotch disease, caused by the fungal pathogen Colletotrichum capsici, is an important constraint of cowpea productivity, and at present, only limited genetic resources are available for breeding improved brown blotch-resistant varieties. The current study has characterized the genetic basis for brown blotch resistance conferred by the cowpea cultivar KN1 and identified a major dominant quantitative trait locus (QTL) for resistance on chromosome Vu02. A segregating F2 population (n = 200), derived from a cross between KN1 and brown blotch-susceptible Tiligre (KVx775-33-2G), was developed and scored for disease severity following controlled inoculation. A subset of the population (n = 94) was genotyped with 99 newly developed allele-specific polymerase chain reaction (AS-PCR) markers, and multiple interval mapping was performed. One major and three minor QTL were identified. This is the first reported mapping of QTL conferring resistance to C. capsici in cowpea, and it is expected that the markers identified here will be a valuable resource for developing elite cowpea cultivars with resistance to brown blotch.
Collapse
Affiliation(s)
- Erik W. Ohlson
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - Gilles I. Thio
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
- Laboratory of Genetic and Plant Biotechnology, Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, 01 BP 476 Burkina Faso
- Laboratory of Plant Pathology, Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, 01 BP 476 Burkina Faso
| | - Mahamadou Sawadogo
- Laboratory of Plant Pathology, Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, 01 BP 476 Burkina Faso
- Laboratory of Biosciences/Genetics and Biotechnology, Université Ouaga 1 Pr Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Paco Sérémé
- Laboratory of Plant Pathology, Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, 01 BP 476 Burkina Faso
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
47
|
Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C, Vadez V, Whitbread AM, Siddique KHM, Nguyen HT, Carberry PS, Bergvinson D. Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3293-3312. [PMID: 29514298 DOI: 10.1093/jxb/ery088] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/22/2018] [Indexed: 05/23/2023]
Abstract
Grain legumes form an important component of the human diet, provide feed for livestock, and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress, posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the past half century. To achieve faster genetic gains in legumes in rainfed conditions, this review proposes the integration of modern genomics approaches, high throughput phenomics, and simulation modelling in support of crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval, and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experimental plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains, including not only productivity but also nutritional and market traits, will increase the profitability of farming and the availability of affordable nutritious food especially in developing countries.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Francois Tardieu
- French National Institute for Agricultural Research (INRA), Monpellier, France
| | - Chris Ojiewo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Institut de recherche pour le développement (IRD), Montpellier, France
| | - Anthony M Whitbread
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | - Peter S Carberry
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - David Bergvinson
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
48
|
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Abd_Allah EF, Alqarawi AA, Tran LSP. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:2111. [PMID: 29312379 PMCID: PMC5742256 DOI: 10.3389/fpls.2017.02111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Office Chérifien des Phosphates (OCP)-Africa, Casablanca, Morocco
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Faouzi Bekkaoui
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Signalling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
49
|
Misra VA, Wang Y, Timko MP. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genomics 2017; 18:898. [PMID: 29166879 PMCID: PMC5700742 DOI: 10.1186/s12864-017-4306-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/14/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. RESULTS We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. CONCLUSIONS The availability of detailed information on the coding capacity of the cowpea genome and in particular the various TF and TAP gene families will facilitate future comparative analysis and development of strategies for controlling growth, differentiation, and abiotic and biotic stress resistances of cowpea.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232-6848 USA
| | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|
50
|
Akami M, Chakira H, Andongma AA, Khaeso K, Gbaye OA, Nicolas NY, Nukenine EN, Niu CY. Essential oil optimizes the susceptibility of Callosobruchus maculatus and enhances the nutritional qualities of stored cowpea Vigna unguiculata. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170692. [PMID: 28879012 PMCID: PMC5579128 DOI: 10.1098/rsos.170692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
The intensive use of synthetic pesticides in cowpea storage has led to the development of resistance by Callosobruchus maculatus and subsequent degradation of grain quality. In an attempt to circumvent these constraints, the susceptibility of C. maculatus to 2,2-dichlorovinyldimethyl phosphate (DDVP) and Lippia adoensis essential oil (EO) was investigated and variations in the proportions of nutritional values of treated grains 150 days after storage were assessed. The survival rate was recorded after five generations. The resistance index and biochemical parameters of grains were determined. The results from this study revealed that the survival rate and resistance index significantly increased proportionally with damage in DDVP treatments (r = 0.889; p = 0.018) while in EO treatments, those values remained low without significant variations (p = 0.0764) throughout the generations. DDVP stored grains yielded higher crude protein values, but lower carbohydrates, tannins, phenolics and minerals compared to EO. Eighteen amino acids were detected in EO treated grains and 14 in DDVP which was devoid of albumin and prolamin. Lippia adoensis EO could therefore represent a safe alternative bio-pesticide to cope with insect resistance and enhance the nutritional qualities of stored cowpea seeds.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hamada Chakira
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Awawing A. Andongma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kanjana Khaeso
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Olajire A. Gbaye
- Department of Biology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Njintang Y. Nicolas
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
- Department of Food Science and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - E.-N. Nukenine
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Chang-Ying Niu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|