1
|
Khan Z, Jan R, Asif S, Farooq M, Jang YH, Kim EG, Kim N, Kim KM. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci Rep 2024; 14:1214. [PMID: 38216610 PMCID: PMC10786868 DOI: 10.1038/s41598-024-51369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Due to global climate change, crops are certainly confronted with a lot of abiotic and biotic stress factors during their growth that cause a serious threat to their development and overall productivity. Among different abiotic stresses, salt and drought are considered the most devastating stressors with serious impact on crop's yield stability. Here, the current study aimed to elucidate how melatonin works in regulating plant biomass, oxidative stress, antioxidant defense system, as well as the expression of genes related to salt and drought stress in rice plants. Eight groups of rice plants (3 replicates, 5 plants each) underwent varied treatments: control, melatonin, salt, drought, salt + drought, salt + melatonin, drought + melatonin, and salt + drought + melatonin. Melatonin (100 µM) was alternately applied a week before stress exposure; salt stress received 100 mM NaCl every 3 days for 3 weeks, and drought stress involved 10% PEG. Young leaves were randomly sampled from each group. The results showed that melatonin treatment markedly reduces salt and drought stress damage by promoting root, shoot length, fresh and dry weight, increasing chlorophyll contents, and inhibiting excessive production of oxidative stress markers. Salt and drought stress significantly decreased the water balance, and damaged cell membrane by reducing relative water contents and increasing electrolyte leakage. However, melatonin treated rice plants showed high relative water contents and low electrolyte leakage. Under salt and drought stress conditions, exogenous application of melatonin boosted the expression level of salt and drought stress responsive genes like OsSOS, OsNHX, OsHSF and OsDREB in rice plants. Taken together, our results reveal that melatonin treatment significantly increases salt and drought tolerance of rice plants, by increasing plant biomass, suppressing ROS accumulation, elevating antioxidants defense efficiency, and up-regulating the expression of salt and drought stress responsive genes.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Nari Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Luo Y, Hu T, Huo Y, Wang L, Zhang L, Yan R. Transcriptomic and Physiological Analyses Reveal the Molecular Mechanism through Which Exogenous Melatonin Increases Drought Stress Tolerance in Chrysanthemum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1489. [PMID: 37050115 PMCID: PMC10096800 DOI: 10.3390/plants12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium (Ramat.) Hemsl.) is an important species in China's flower industry, and drought stress seriously affects the growth, quality, yield, and geographical distribution of this species. Melatonin (MT) plays a key role in regulating plant abiotic stress responses and stress resistance, but the mechanism through which exogenous MT regulates drought resistance in chrysanthemum remains unclear. This study explored the protective effect of MT on chrysanthemum drought tolerance and its key regulatory pathways. Exogenous MT application increased the photosynthetic capacity (Tr increased by 18.07%; Pn increased by 38.46%; and Gs increased by 26.52%) of chrysanthemum and attenuated decreases in its chlorophyll (19.89%) and relative water contents (26.94%). Moreover, MT increased the levels of osmolarity-related compounds such as soluble sugars (43.60%) and soluble protein (9.86%) under drought stress and increased antioxidant enzyme activity (SOD increased by 20.98%; POD increased by 35.04%; and CAT increased by 26.21%). Additionally, MT increased the endogenous MT (597.96%), growth hormone (45.31% and 92.09%), gibberellic acid (75.92% and 3.79%), salicylic acid (33.02%), and cytokinin contents (1400.00%) under drought stress while decreasing the abscisic acid (50.69% and 56.79%), jasmonate contents (62.57% and 28.31%), and ethylene contents (9.28%). RNA-seq analysis revealed 17,389, 1466, and 9359 differentially expressed genes (DEGs) under three treatments (PEG, MT, and MT _ PEG, respectively) compared with the control. Enrichment analyses of the DEGs identified more than 10 GO terms and 34 KEGG pathways. Nitrogen metabolism, sulfur metabolism, and alanine, aspartate, and glutamate metabolism were significantly increased under all three treatments. The DEGs included many transcription factors, such as MYB, WRKY, and NAC proteins. Our results preliminarily classify candidate genes and metabolic pathways with active roles in the interaction between MT and drought stress and advance the understanding of the molecular mechanism of the response to drought stress under MT conditions, thereby providing a theoretical basis for the breeding of drought-resistant chrysanthemum.
Collapse
Affiliation(s)
- Yan Luo
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Taotao Hu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Yunyun Huo
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Lingling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Li Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Rui Yan
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
4
|
Integrated Physiological, Transcriptomic, and Proteomic Analyses Reveal the Regulatory Role of Melatonin in Tomato Plants’ Response to Low Night Temperature. Antioxidants (Basel) 2022; 11:antiox11102060. [PMID: 36290782 PMCID: PMC9598176 DOI: 10.3390/antiox11102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Melatonin is a direct free radical scavenger that has been demonstrated to increase plants’ resistance to a variety of stressors. Here, we sought to examine the effect of melatonin on tomato seedlings subjected to low night temperatures using an integrated physiological, transcriptomic, and proteomic approach. We found that a pretreatment with 100 μM melatonin increased photosynthetic and transpiration rates, stomatal apertures, and peroxidase activity, and reduced chloroplast damage of the tomato plant under a low night temperature. The melatonin pretreatment reduced the photoinhibition of photosystem I by regulating the balance of both donor- and acceptor-side restriction of PSI and by increasing electron transport. Furthermore, the melatonin pretreatment improved the photosynthetic performance of proton gradient regulation 5 (SlPGR5) and SlPGR5-like photosynthetic phenotype 1 (SlPGRL1)-suppressed transformants under a low night temperature stress. Transcriptomic and proteomic analyses found that the melatonin pretreatment resulted in the upregulation of genes and proteins related to transcription factors, signal transduction, environmental adaptation, and chloroplast integrity maintenance in low night temperature-stressed tomato plants. Collectively, our results suggest that melatonin can effectively improve the photosynthetic efficiency of tomato plants under a low night temperature and provide novel insights into the molecular mechanism of melatonin-mediated abiotic stress resistance.
Collapse
|
5
|
Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5992-6008. [PMID: 35727860 DOI: 10.1093/jxb/erac276] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
Melatonin improves plant resistance to multiple stresses by participating in the biosynthesis of metabolites. Flavonoids are an important family of plant secondary metabolites and are widely recognized to be involved in resistance; however, the crosstalk between melatonin and flavonoid is largely unknown. We found that the resistance of pigeon pea (Cajanus cajan) to salt, drought, and heat stresses were significantly enhanced by pre-treatment with melatonin. Combined transcriptome and LC-ESI-MS/MS metabolomics analyses showed that melatonin significantly induced the enrichment of flavonoids and mediated the reprogramming of biosynthetic pathway genes. The highest fold-increase in expression in response to melatonin treatment was observed for the CcF3´H family, which encodes an enzyme that catalyses the biosynthesis of luteolin, and the transcription factor CcPCL1 directly bonded to the CcF3´H-5 promoter to enhance its expression. In addition, salt stress also induced the expression of CcPCL1 and CcF3´H-5, and their overexpression in transgenic plants greatly enhanced salt tolerance by promoting the biosynthesis of luteolin. Overall, our results indicated that pre-treatment of pigeon pea with melatonin promoted luteolin biosynthesis through the CcPCL1 and CcF3´H-5 pathways, resulting in salt tolerance. Our study shows that melatonin enhances plant tolerance to multiple stresses by mediating flavonoid biosynthesis, providing new avenues for studying the crosstalk between melatonin and flavonoids.
Collapse
Affiliation(s)
- Zhihua Song
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Biying Dong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Na Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mengying Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Tingting Du
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ni Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lili Niu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Liu T, Xing G, Chen Z, Zhai X, Wei X, Wang C, Li T, Zheng S. Effect of exogenous melatonin on salt stress in cucumber: alleviating effect and molecular basis. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2128875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tingting Liu
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Guoming Xing
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Zhifeng Chen
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, P.R. China
| | - Xijiao Zhai
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Xuyang Wei
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Chen Wang
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Tianmeng Li
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Shaowen Zheng
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| |
Collapse
|
7
|
Nandi S, Ahmed S, Saxena AK. Exploring the Role of Antioxidants to Combat Oxidative Stress in Malaria Parasites. Curr Top Med Chem 2022; 22:2029-2044. [PMID: 35382719 DOI: 10.2174/1568026622666220405121643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Malaria, a global challenge, is a parasitic disease caused by Plasmodium species. Approximately 229 million cases of malaria were reported in 2019. Major incidences occur in various continents, including African and Eastern Mediterranean Continents and South-East Asia. INTRODUCTION Despite the overall decline in global incidence from 2010 to 2018, the rate of decline has been almost constant since 2014. The morbidity and mortality have been accelerated due to reactive oxygen species (ROS) caused by oxidative stress generated by the parasite responsible for the destruction of host metabolism and cell nutrients. METHODS The excessive release of free radicals is associated with the infection in the animal or human body by the parasites. This may be related to a reduction in nutrients required for the generation of antioxidants and the destruction of cells by parasite activity. Therefore, an intensive literature search has been carried out to find the natural antioxidants used to neutralize the free radicals generated during malarial infection. RESULTS The natural antioxidants may be useful as an adjuvant treatment along with the antimalarial chemotherapeutics to reduce the death rate and enhance the success rate of malaria treatment. CONCLUSION In this manuscript, an attempt has been made to provide significant insight into the antioxidant activities of herbal extracts against malaria parasites.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| | - Anil Kumar Saxena
- Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India
| |
Collapse
|
8
|
Zang H, Ma J, Wu Z, Yuan L, Lin ZQ, Zhu R, Bañuelos GS, Reiter RJ, Li M, Yin X. Synergistic Effect of Melatonin and Selenium Improves Resistance to Postharvest Gray Mold Disease of Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:903936. [PMID: 35812947 PMCID: PMC9257244 DOI: 10.3389/fpls.2022.903936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 05/23/2023]
Abstract
Melatonin (MT) is a ubiquitous hormone molecule that is commonly distributed in nature. MT not only plays an important role in animals and humans but also has extensive functions in plants. Selenium (Se) is an essential micronutrient for animals and humans, and is a beneficial element in higher plants at low concentrations. Postharvest diseases caused by fungal pathogens lead to huge economic losses worldwide. In this study, tomato fruits were treated with an optimal sodium selenite (20 mg/L) and melatonin (10 μmol/L) 2 h and were stored for 7 days at room temperature simulating shelf life, and the synergistic effects of Se and MT collectively called Se-Mel on gray mold decay in tomato fruits by Botrytis cinerea was investigated. MT did not have antifungal activity against B. cinerea in vitro, while Se significantly inhibited gray mold development caused by B. cinerea in tomatoes. However, the interaction of MT and Se showed significant inhibition of the spread and growth of the disease, showing the highest control effect of 74.05%. The combination of MT with Se treatment enhanced the disease resistance of fruits by improving the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as increasing the gene expression level of pathogenesis-related (PR) proteins. Altogether, our results indicate that the combination of MT and Se would induce the activation of antioxidant enzymes and increase the expression of PR proteins genes that might directly enhance the resistance in tomato fruit against postharvest pathogenic fungus B. cinerea.
Collapse
Affiliation(s)
- Huawei Zang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Jiaojiao Ma
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Zhilin Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhi-Qing Lin
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Renbin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Gary S. Bañuelos
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture – Agricultural Research Service, Parlier, CA, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Miao Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- The Central Area of Anhui Province Station for Integrative Agriculture, Research Institute of New Rural Development, Anhui Agricultural University, Hefei, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022; 23:ijms23126646. [PMID: 35743084 PMCID: PMC9223470 DOI: 10.3390/ijms23126646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL), a ubiquitous indolamine molecule, has gained interest in the last few decades due to its regulatory role in plant metabolism. Likewise, nitric oxide (NO), a gasotransmitter, can also affect plant molecular pathways due to its function as a signaling molecule. Both MEL and NO can interact at multiple levels under abiotic stress, starting with their own biosynthetic pathways and inducing a particular signaling response in plants. Moreover, their interaction can result in the formation of NOmela, a very recently discovered nitrosated form of MEL with promising roles in plant physiology. This review summarizes the role of NO and MEL molecules during plant development and fruit ripening, as well as their interactions. Due to the impact of climate-change-related abiotic stresses on agriculture, this review also focuses on the role of these molecules in mediating abiotic stress tolerance and the main mechanisms by which they operate, from the upregulation of the entire antioxidant defense system to the post-translational modifications (PTMs) of important molecules. Their individual interaction and crosstalk with phytohormones and H2S are also discussed. Finally, we introduce and summarize the little information available about NOmela, an emerging and still very unknown molecule, but that seems to have a stronger potential than MEL and NO separately in mediating plant stress response.
Collapse
Affiliation(s)
- Sara E. Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - José M. Martí-Guillén
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Faculty of Biology, Department of Plant Physiology, University of Murcia, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
| | - Rosa M. Rivero
- Center of Edaphology and Applied Biology of Segura CEBAS-CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain; (S.E.M.-L.); (M.P.-H.); (J.M.M.-G.); (M.L.-D.)
- Correspondence: ; Tel.: +34-968396200 (ext. 445379)
| |
Collapse
|
10
|
Anderson AJ, Kim YC. The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion. THE PLANT PATHOLOGY JOURNAL 2021; 37:415-427. [PMID: 34847628 PMCID: PMC8632612 DOI: 10.5423/ppj.rw.01.2021.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
11
|
Li S, Guo J, Wang T, Gong L, Liu F, Brestic M, Liu S, Song F, Li X. Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat. J Pineal Res 2021; 71:e12761. [PMID: 34392562 DOI: 10.1111/jpi.12761] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022]
Abstract
With increasing plastic production and consumption, large amounts of polystyrene nanoplastics are accumulated in soil due to improper disposal causing pollution and deleterious effects to environment. However, little information is available about how to alleviate the adverse impacts of nanoplastics on crops. In this study, the involvement of melatonin in modulating nanoplastic uptake, translocation, and toxicity in wheat plant was investigated. The results demonstrated that exogenous melatonin application reduced the nanoplastic uptake by roots and their translocation to shoots via regulating the expression of genes associated with aquaporin, including the upregulation of the TIP2-9, PIP2, PIP3, and PIP1.2 in leaves and TIP2-9, PIP1-5, PIP2, and PIP1.2 in roots. Melatonin activated the ROS scavenging system to maintain a better redox homeostasis and ameliorated the negative effects of nanoplastics on carbohydrate metabolism, hence ameliorated the plant growth and enhanced the tolerance to nanoplastics toxicity. This process was closely related to the exogenous melatonin application induced melatonin accumulation in leave. These results suggest that melatonin could alleviate the adverse effects of nanoplastics on wheat, and exogenous melatonin application might be used as a promising management strategy to sustain crop production in the nanoplastic-polluted soils.
Collapse
Affiliation(s)
- Shuxin Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junhong Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Fulai Liu
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Nitra, Slovak Republic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Fengbin Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
13
|
Mannino G, Pernici C, Serio G, Gentile C, Bertea CM. Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals-An Overview. Int J Mol Sci 2021; 22:ijms22189996. [PMID: 34576159 PMCID: PMC8469784 DOI: 10.3390/ijms22189996] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a ubiquitous indolamine, largely investigated for its key role in the regulation of several physiological processes in both animals and plants. In the last century, it was reported that this molecule may be produced in high concentrations by several species belonging to the plant kingdom and stored in specialized tissues. In this review, the main information related to the chemistry of melatonin and its metabolism has been summarized. Furthermore, the biosynthetic pathway characteristics of animal and plant cells have been compared, and the main differences between the two systems highlighted. Additionally, in order to investigate the distribution of this indolamine in the plant kingdom, distribution cluster analysis was performed using a database composed by 47 previously published articles reporting the content of melatonin in different plant families, species and tissues. Finally, the potential pharmacological and biostimulant benefits derived from the administration of exogenous melatonin on animals or plants via the intake of dietary supplements or the application of biostimulant formulation have been largely discussed.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Carlo Pernici
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| |
Collapse
|
14
|
Chen W, Zhang J, Zheng S, Wang Z, Xu C, Zhang Q, Wu J, Lou H. Metabolite profiling and transcriptome analyses reveal novel regulatory mechanisms of melatonin biosynthesis in hickory. HORTICULTURE RESEARCH 2021; 8:196. [PMID: 34465767 PMCID: PMC8408178 DOI: 10.1038/s41438-021-00631-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 06/06/2021] [Indexed: 05/08/2023]
Abstract
Studies have shown that melatonin regulates the expression of various elements in the biosynthesis and catabolism of plant hormones. In contrast, the effects of these different plant hormones on the biosynthesis and metabolism of melatonin and their underlying molecular mechanisms are still unclear. In this study, the melatonin biosynthesis pathway was proposed from constructed metabolomic and transcriptomic libraries from hickory (Carya cathayensis Sarg.) nuts. The candidate pathway genes were further identified by phylogenetic analysis, amino-acid sequence alignment, and subcellular localization. Notably, most of the transcription factor-related genes coexpressed with melatonin pathway genes were hormone-responsive genes. Furthermore, dual-luciferase and yeast one-hybrid assays revealed that CcEIN3 (response to ethylene) and CcAZF2 (response to abscisic acid) could activate melatonin biosynthesis pathway genes, a tryptophan decarboxylase coding gene (CcTDC1) and an N-acetylserotonin methyltransferase coding gene (CcASMT1), by directly binding to their promoters, respectively. Our results provide a molecular basis for the characterization of novel melatonin biosynthesis regulatory mechanisms and demonstrate for the first time that abscisic acid and ethylene can regulate melatonin biosynthesis.
Collapse
Affiliation(s)
- Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, 313000, Huzhou, China
| | - Chuanmei Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, Khan A, Kang SM, Lee IJ. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AOB PLANTS 2021; 13:plab026. [PMID: 34234933 PMCID: PMC8255075 DOI: 10.1093/aobpla/plab026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/08/2021] [Indexed: 05/06/2023]
Abstract
Melatonin is an indolamine bioactive molecule that regulates a wide range of physiological processes during plant growth and enhances abiotic stress tolerance. Here we examined the putative role of exogenous melatonin application (foliar or root zone) in improving drought stress tolerance in soybean seedlings. Pre-treatment of soybean seedlings with melatonin (50 and 100 µM) was found to significantly mitigate the negative effects of drought stress on plant growth-related parameters and chlorophyll content. The beneficial impacts against drought were more pronounced by melatonin application in the rhizosphere than in foliar treatments. The melatonin-induced enhanced tolerance could be attributed to improved photosynthetic activity, reduction of abscisic acid and drought-induced oxidative damage by lowering the accumulation of reactive oxygen species and malondialdehyde. Interestingly, the contents of jasmonic acid and salicylic acid were significantly higher following melatonin treatment in the root zone than in foliar treatment compared with the control. The activity of major antioxidant enzymes such as superoxide dismutase, catalase, polyphenol oxidase, peroxidase and ascorbate peroxidase was stimulated by melatonin application. In addition, melatonin counteracted the drought-induced increase in proline and sugar content. These findings revealed that modifying the endogenous plant hormone content and antioxidant enzymes by melatonin application improved drought tolerance in soybean seedlings. Our findings provide evidence for the stronger physiological role of melatonin in the root zone than in leaves, which may be useful in the large-scale field level application during drought.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Raheem Shahzad
- Department of Horticulture, the University of Haripur, Haripur 21120, Pakistan
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Adil Khan
- Department of Plant and Soil sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| |
Collapse
|
16
|
Yu Y, Teng Z, Mou Z, Lv Y, Li T, Chen S, Zhao D, Zhao Z. Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE). BMC Microbiol 2021; 21:40. [PMID: 33546601 PMCID: PMC7863494 DOI: 10.1186/s12866-021-02098-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background Melatonin (MT), ubiquitous in almost all organisms, functions as a free radical scavenger. Despite several reports on its role as an antioxidant in animals, plants, and some microorganisms, extensive studies in filamentous fungi are limited. Based upon the role of melatonin as an antioxidant, we investigated its role in heavy metal-induced stress tolerance in Exophiala pisciphila, a dark septate endophyte (DSE), by studying the underlying mechanisms in alleviating oxidative stress and reducing heavy metal accumulation. Results A significant decrease in malondialdehyde (MDA) and oxygen free radical (OFR) in E. pisciphila was recorded under Cd, Zn, and Pb stresses as compared to the control. Pretreatment of E. pisciphila with 200.0 μM exogenous melatonin significantly increased the activity of superoxide dismutase (SOD) under Zn and Pb stresses. Pretreatment with 200.0 μM melatonin also lowered Cd, Zn, and Pb concentrations significantly. Melatonin production was enhanced by Cd, Cu, and Zn after 2 d, and melatonin biosynthetic enzyme genes, E. pisciphila tryptophan decarboxylase (EpTDC1) and serotonin N-acetyltransferase (EpSNAT1), were transcriptionally upregulated. The overexpression of EpTDC1 and N-acetylserotonin O-methyltransferase (EpASMT1) in Escherichia coli and Arabidopsis thaliana enhanced its heavy metal-induced stress tolerance. The overexpression of EpTDC1 and EpASMT1 reduced the Cd accumulation in the whole A. thaliana plants, especially in the roots. Conclusions Melatonin conferred heavy metal-induced stress tolerance by alleviating oxidative stress, activating antioxidant enzyme SOD, and reducing heavy metal accumulation in E. pisciphila. Melatonin biosynthetic enzyme genes of E. pisciphila also played key roles in limiting excessive heavy metal accumulation in A. thaliana. These findings can be extended to understand the role of melatonin in other DSEs associated with economically important plants and help develop new strategies in sustainable agriculture practice where plants can grow in soils contaminated with heavy metals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02098-1.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhaowei Teng
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yan Lv
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China. .,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
17
|
Godoy F, Olivos-Hernández K, Stange C, Handford M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. PLANTS 2021; 10:plants10020186. [PMID: 33498148 PMCID: PMC7908993 DOI: 10.3390/plants10020186] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Reductions in crop yields brought about by abiotic stress are expected to increase as climate change, and other factors, generate harsher environmental conditions in regions traditionally used for cultivation. Although breeding and genetically modified and edited organisms have generated many varieties with greater abiotic stress tolerance, their practical use depends on lengthy processes, such as biological cycles and legal aspects. On the other hand, a non-genetic approach to improve crop yield in stress conditions involves the exogenous application of natural compounds, including plant metabolites. In this review, we examine the recent literature related to the application of different natural primary (proline, l-tryptophan, glutathione, and citric acid) and secondary (polyols, ascorbic acid, lipoic acid, glycine betaine, α-tocopherol, and melatonin) plant metabolites in improving tolerance to abiotic stress. We focus on drought, saline, heavy metal, and temperature as environmental parameters that are forecast to become more extreme or frequent as the climate continues to alter. The benefits of such applications are often evaluated by measuring their effects on metabolic, biochemical, and morphological parameters in a variety of crop plants, which usually result in improved yields when applied in greenhouse conditions or in the field. As this strategy has proven to be an effective way to raise plant tolerance to abiotic stress, we also discuss the prospect of its widespread implementation in the short term.
Collapse
|
18
|
Sun C, Liu L, Wang L, Li B, Jin C, Lin X. Melatonin: A master regulator of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:126-145. [PMID: 32678945 DOI: 10.1111/jipb.12993] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth, aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes. Recent evidence also indicated that melatonin functions in the plant's response to biotic stress, cooperating with other phytohormones and well-known molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec, H9X 3V9, Canada
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Mahalanobish S, Dutta S, Saha S, Sil PC. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol 2020; 144:111588. [PMID: 32738376 DOI: 10.1016/j.fct.2020.111588] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/28/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In recent decades, the occurrence of chronic obstructive pulmonary disease (COPD) has been increased remarkably in the population. Cigarette smoke (Cs) plays one of the key roles for COPD development. In our study, we explored the ameliorative role of melatonin on COPD progression by using a Cs inhaled in vivo COPD and cigarette smoke extract (CSE)-treated in vitro L-132 (alveolar epithelial cell) models. Mice exposed to Cs (4hr/day for 4 weeks) exhibited abrupt increase of lactate dehydrogenase (LDH) level in broncho alveolar lavage fluid (BALF) and disrupted alveolar structure in lung tissue. Additionally, increased reactive oxygen species (ROS), decreased cellular antioxidant status with reduced GSH/GSSG ratio were also found in Cs exposed lung. Besides, Cs induced endoplasmic reticulum (ER) stress and mitochondrial dysfunctions causing the activation of NLRP3 inflammasome. Activated NLRP3 inflammasome caused Caspase-1 mediated release of IL-1β and IL-18 resulting in inflammatory outburst. Melatonin showed protection against COPD both in vitro and in vivo. Exhibiting its anti-inflammatory potential, melatonin also attenuated the lung inflammation. It activated the intracellular antioxidant Thioredoxin-1 (thereby suppressing the TXNIP/NLRP3 pathway) and inhibited the impaired mitophagy mediated inflammasome activation (upregulating PINK-1, Parkin, LC3B-II expression). Melatonin also improved the overall antioxidant status of the COPD lung via NRF-2-HO-1 axis restoration.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
20
|
Ibrahim MFM, Elbar OHA, Farag R, Hikal M, El-Kelish A, El-Yazied AA, Alkahtani J, El-Gawad HGA. Melatonin Counteracts Drought Induced Oxidative Damage and Stimulates Growth, Productivity and Fruit Quality Properties of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1276. [PMID: 32998250 PMCID: PMC7601691 DOI: 10.3390/plants9101276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023]
Abstract
Melatonin "N-Acetyl-5-methoxytryptamine" (MT) has recently been considered as a new plant growth regulator with multiple physiological functions. Although many previous studies have confirmed that exogenous applied-MT can alleviate the deleterious effects of drought stress in many plant species, most of these studies were exclusive on seeds, seedlings, and young plants for a short period of their life cycles. Therefore, the knowledge of using MT as a potential promising agricultural foliar application to improve crop productivity and quality is still insufficient under adverse open field conditions. In this study, we investigated the effect of MT as a foliar application at 0, 20, and 40 ppm on tomato plants that were grown in the open field under the long term of optimal and deficit irrigation conditions. The results indicated that exogenous MT significantly enhanced plant growth, chlorophyll and activities of antioxidant enzymes, including ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POX). This improvement was associated with a marked reduction in proline and soluble sugars. In addition, applied-MT worked as a protective agent against oxidative damage by reducing the cellular content of toxic substances such as H2O2 and malondialdehyde (MDA). Similarly, MT-treated plants showed greater total fruit yield with improving its quality attributes like total soluble solids (TSS), ascorbic acid, and lycopene. Generally, the highest significant fruit yield either under well-watered (13.7%) or water deficit (37.4%) conditions was achieved by the treatment of 20 ppm MT. These results indicate that exogenous MT played an essential role in enhancing tomato tolerance to deficit irrigation and could be recommended as a promising agricultural treatment under such conditions.
Collapse
Affiliation(s)
- Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt; (O.H.A.E.); (R.F.)
| | - Ola H. Abd Elbar
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt; (O.H.A.E.); (R.F.)
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt; (O.H.A.E.); (R.F.)
| | - Mohamed Hikal
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt;
| | - Amr El-Kelish
- Botany Department, Faculty of Science, Suez Canal University Ismailia, 41522 Ismailia, Egypt
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt;
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt;
| |
Collapse
|
21
|
Onik JC, Wai SC, Li A, Lin Q, Sun Q, Wang Z, Duan Y. Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chem 2020; 337:127753. [PMID: 32777566 DOI: 10.1016/j.foodchem.2020.127753] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/22/2022]
Abstract
The effects of treatment with melatonin on ripening of 'Fuji' apples during storage at 1 °C for 56 d were investigated. The apples were harvested at the commercial ripening stage and treated with 1 mmol L-1 melatonin. Compared with the control, melatonin treated apples had significant reduced ethylene production (28 d-56 d) and weight loss (14 d-56 d) during storage (p < 0.05). Also, the melatonin treatment maintained better apple skin structure throughout storage. The reduced ethylene production was regulated by the decreased expressions of MdACO1, MdACS1, MdAP2.4 and MdERF109, based on RNA-Seq analysis, which was validated using qRT-PCR analysis. Moreover, the activity of 3 enzymes, including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), were significantly increased in melatonin treated fruit (p < 0.05). Taken together, this study highlights the inhibitory effects of melatonin in ethylene biosynthesis and factors influencing postharvest quality in apple.
Collapse
Affiliation(s)
- Jakaria Chowdhury Onik
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Su Chit Wai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Qianqian Sun
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Zhidong Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
22
|
Shah AA, Ahmed S, Ali A, Yasin NA. 2-Hydroxymelatonin mitigates cadmium stress in cucumis sativus seedlings: Modulation of antioxidant enzymes and polyamines. CHEMOSPHERE 2020; 243:125308. [PMID: 31722261 DOI: 10.1016/j.chemosphere.2019.125308] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Cadmium level is continuously increasing in agricultural soils mainly due to anthropogenic activities. Cadmium is one of the most phytotoxic metals in the soils. The present study investigates the possible role of 2-hydroxymelatonin (2-OHMT) in assuagement of Cd-toxicity in cucumber (Cucumis sativus L.) plants. 2-OHMT is an important metabolite produced through interaction of melatonin with oxygenated compounds. Cadmium stress decreased the activity of antioxidant enzymes and polyamines. However, exogenously applied 2-OHMT enhanced plant growth attributes including photosynthetic rate, intercellular CO2 concentration, stomatal conductance and transpiration rate in treated plants. In addition, 2-OHMT induced enhancement of the activity of PAs biosynthesizing enzymes (putrescine, spermidine and spermine) in conjunction with reduction in activity of polyamine oxidase (PAO). 2-OHMT mitigated Cd stress through up-regulation in expression of stress related CS-ERS gene along with the amplified activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in treated seedlings. The improved activity of antioxidant scavengers played central role in reduction of hydrogen peroxide (H2O2), electrolyte leakage (EL) and malondialdehyde (MDA) in plants under Cd stress. Recent findings also advocate the positive correlation between PAs and ethylene, as both possess common precursor. The current study reveals that priming seeds with 2-OHMT reduces Cd-toxicity and makes it possible to cultivate cucumber in Cd-contaminated areas. Future experiments will perhaps help in elucidation of 2-OHMT intervened stress mitigation procedure in C. sativus crop. Furthermore, research with reference to potential of 2-OHMT for stress alleviation in other horticultural and agronomic crops will assist in enhancement of crop productivity.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
23
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
24
|
Ding Z, Wu C, Tie W, Yan Y, He G, Hu W. Strand-specific RNA-seq based identification and functional prediction of lncRNAs in response to melatonin and simulated drought stresses in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:96-104. [PMID: 31085451 DOI: 10.1016/j.plaphy.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 05/20/2023]
Abstract
Melatonin (MT) plays important roles in mediating plant responses to abiotic stresses such as drought. lncRNAs also play crucial roles in regulating responses to drought stress, however, their roles in MT-mediated drought stress responses in plants remain largely unknown. In this study, a total of 1405 high-confidence lncRNAs were identified in leaves of cassava, an important food crop in tropical and sub-tropical regions, using strand-specific RNA-seq technology. Of which, 185 were differentially expressed between polyethylene glycol (PEG) or MT treatment and the control condition. Trans-regulatory co-expression network revealed that MT-uniquely-responsive lncRNAs were mainly involved in tetrapyrrole synthesis, cytochrome P450, and cell wall modification; PEG-uniquely-responsive lncRNAs mainly participated in RNA regulation of transcription, calcium signaling, mitochondrial electron transport/ATP synthesis, hormone metabolism, and transport; and MT and PEG both-responsive lncRNAs were mainly involved in light reaction, light signaling, FA synthesis and FA elongation, secondary metabolism, and tetrapyrrole synthesis. In addition, 28 lncRNA-mRNA pairs referred to cis-acting regulation were identified, and these lncRNAs regulated the expression of their neighboring genes mainly through calcium signaling, RNA regulation of transcription, ABA and ethylene metabolism, and redox homeostasis. Besides, 78 lncRNAs (especially TCONS_00003360, TCONS_00015102, and TCONS_00149293) responsive to MT and/or PEG treatment were identified as putative targets of cassava known miRNAs. These findings provide a comprehensive view of the lncRNAs and their roles in response to MT and drought stress in cassava, which will enable in-depth functional analyses in the near future.
Collapse
Affiliation(s)
- Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China; Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| | - Guangyuan He
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| |
Collapse
|
25
|
Xiao S, Liu L, Wang H, Li D, Bai Z, Zhang Y, Sun H, Zhang K, Li C. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One 2019; 14:e0216575. [PMID: 31237880 PMCID: PMC6592504 DOI: 10.1371/journal.pone.0216575] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
Seed germination is considered the beginning of the spermatophyte lifecycle, and it is a crucial stage in determining subsequent plant growth and development. Although many previous studies have found that melatonin can promote seed germination, the role of melatonin in cotton germination remains unexamined. The main objective of this study is the characterization of potential promotional effects of melatonin (at doses of 0, 10, 20, 50, 100 and 200 μM) on cotton seed germination. This experiment demonstrated that low concentrations of melatonin can promote germination, while high concentrations failed to promote germination and even inhibited germination. Together, these results indicate that a 20 μM melatonin treatment optimally promotes cotton seed germination. Compared with the control, germination potential (GP), germination rate (GR), and final fresh weight (FW) increased by 16.67%, 12.30%, and 4.81%, respectively. Although low concentrations of melatonin showed some improvement in vigor index (VI), germination index (GI), and mean germination time (MGT), these effects were not statistically significant. Antioxidant enzyme activity during seed germination was most prominent under the 20 μM melatonin treatment. Superoxide dismutase (SOD) and peroxidase (POD) activities were significantly increased by 10.37-59.73% and 17.79-47.68%, respectively, compared to the melatonin-free control. Malondialdehyde (MDA) content was reduced by 16.73-40.33%. Two important plant hormones in seed germination, abscisic acid (ABA) and gibberellins (GAs), were also studied. As melatonin concentration increased, ABA content in seeds decreased first and then increased, and GA3 content showed a diametrically opposite trend, in which the 20 μM melatonin treatment was optimal. The 20 μM melatonin treatment reduced ABA content in seeds by 42.13-51.68%, while the 20 μM melatonin treatment increased GA3 content in seeds to about 1.7-2.5 times that of seeds germinated without melatonin. This study provides new evidence suggesting that low concentrations of melatonin can promote cotton seed germination by increasing the activity of antioxidant enzymes, thereby reducing the accumulation of MDA and regulating plant hormones. This has clear applications for improving the germination rate of cotton seeds using melatonin.
Collapse
Affiliation(s)
- Shuang Xiao
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Liantao Liu
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
- * E-mail: (CL); (LL)
| | - Hao Wang
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Dongxiao Li
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Zhiying Bai
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Yongjiang Zhang
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Hongchun Sun
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Ke Zhang
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
| | - Cundong Li
- Key Laboratory of Crop Growth Regulation of Hebei Province / Hebei Agricultural University, Baoding, Hebei Province, China
- * E-mail: (CL); (LL)
| |
Collapse
|
26
|
Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. CHEMOSPHERE 2019; 225:627-638. [PMID: 30901656 DOI: 10.1016/j.chemosphere.2019.03.026] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 05/03/2023]
Abstract
Two independent trials were conducted to examine the involvement of nitric oxide (NO) in MT-mediated tolerance to Cd toxicity in wheat plants. Cadmium toxicity considerably led to a decrease in plant growth, total chlorophyll, PSII maximum efficiency (Fv/Fm), leaf water potential, potassium (K+) and calcium (Ca2+). Simultaneously, it caused an increase in levels of leaf malondialdehyde (MDA), hydrogen peroxide (H2O2), electron leakage (EL), cadmium (Cd) and nitric oxide (NO) compared to those in control plants. Both MT (50 or 100 μM) treatments increased plant growth attributes and leaf Ca2+ and K+ in the leaves, but reduced MDA, H2O2 as well as leaf Cd content compared to those in Cd-stressed plants. A further experiment was designed to understand whether or not NO played a role in alleviation of Cd stress in wheat seedlings by melotonin using a scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) combined with the MT treatments. Melatonin-enhanced tolerance to Cd stress was completely reversed by the supply of cPTIO, which in turn considerably reduced the levels of endogenous NO. The results evidently showed that MT enhanced tolerance of wheat seedlings to Cd toxicity by triggering the endogenous NO. This was reinforced by the rise in the levels of MDA and H2O2, and decrease in the activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC. 1.11.1.6) and peroxidase (POD; EC. 1.11.1.7). The cPTO supply along with that of MT caused growth inhibition and a considerable increase in leaf Cd. So, both MT and NO together enhanced Cd tolerance in wheat.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Mustafa Okant
- Field Crops, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460 Riyadh 11451, Saudi Arabia
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460 Riyadh 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
27
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
28
|
Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS One 2019; 14:e0213040. [PMID: 30830939 PMCID: PMC6398973 DOI: 10.1371/journal.pone.0213040] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Plant growth regulators (PGRs) and plant growth promoting rhizobacteria (PGPRs) play an important role in mitigating abiotic stresses. However, little is known about the parallel changes in physiological processes coupled with metabolic changes induced by PGRs and PGPRs that help to cope with drought stress in chickpeas. The present investigation was carried out to study the integrative effects of PGRs and PGPRs on the physiological and metabolic changes, and their association with drought tolerance in two chickpea genotypes. Inoculated seeds of two chickpea genotypes, Punjab Noor-2009 (drought sensitive) and 93127 (drought tolerance), were planted in greenhouse condition at the University of Florida. Prior to sowing, seeds of two chickpea varieties were soaked for 3 h in 24 h old cultures of PGPRs (Bacillus subtilis, Bacillus thuringiensis, and Bacillus megaterium), whereas, some of the seeds were soaked in distilled water for the same period of time and were treated as control. Plant growth regulators, salicylic acid (SA) and putrescine (Put), were applied on 25 days old seedlings just prior to the induction of drought stress. Drought stress was imposed by withholding the supply of water on 25-day-old seedlings (at the three-leaf stage) and continued for the next 25 days until the soil water content reached 14%. Ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) analysis concomitant with physiological parameters were carried out in chickpea leaves at two-time points i.e. 14 and 25 d after imposition of drought stress. The results showed that both genotypes, treated with PGRs and PGPRs (consortium), performed significantly better under drought condition through enhanced leaf relative water content (RWC), greater biomass of shoot and root, higher Fv/FM ratio and higher accumulation of protein, sugar and phenolic compounds. The sensitive genotype was more responsive than tolerant one. The results revealed that the accumulation of succinate, leucine, disaccharide, saccharic acid and glyceric acid was consistently higher in both genotypes at both time points due to PGRs and PGPRs treatment. Significant accumulation of malonate, 5-oxo-L-proline, and trans-cinnamate occurred at both time points only in the tolerant genotype following the consortium treatment. Aminoacyl-tRNA, primary and secondary metabolite biosynthesis, amino acid metabolism or synthesis pathways, and energy cycle were significantly altered due to PGRs and PGPRs treatment. It is inferred that changes in different physiological and metabolic parameters induced by PGRs and PGPRs treatment could confer drought tolerance in chickpeas.
Collapse
|
29
|
Karaca P, Cekic FÖ. Exogenous melatonin-stimulated defense responses in tomato plants treated with polyethylene glycol. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/19315260.2019.1575317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Perihan Karaca
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Fazilet Özlem Cekic
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| |
Collapse
|
30
|
Lee HY, Back K. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. J Pineal Res 2018; 65:e12504. [PMID: 29770489 DOI: 10.1111/jpi.12504] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen (1 O2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O2- production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
31
|
Hwang OJ, Back K. Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants. J Pineal Res 2018; 65:e12495. [PMID: 29607549 DOI: 10.1111/jpi.12495] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/25/2018] [Indexed: 12/30/2022]
Abstract
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis catalyzing the conversion of serotonin into N-acetylserotonin. In plants, SNAT is encoded by 2 isogenes of which SNAT1 is constitutively expressed and its overexpression confers increased yield in rice. However, the role of SNAT2 remains to be clarified. In contrast to SNAT1, the diurnal rhythm of SNAT2 mRNA expression peaks at night. In this study, transgenic rice plants in which SNAT2 expression were suppressed by RNAi technology showed a decrease in melatonin and a dwarf phenotype with erect leaves, reminiscent of brassinosteroids (BR)-deficient mutants. Of note, the dwarf phenotype was dependent on the presence of dark, suggesting that melatonin is involved in dark growth (skotomorphogenesis). In support of this suggestion, SNAT2 RNAi lines exhibited photomorphogenic phenotypes such as inhibition of internodes and increased expression of light-inducible CAB genes in the dark. The causative gene for the melatonin-mediated BR biosynthetic gene was DWARF4, a rate-limiting BR biosynthetic gene. Exogenous melatonin treatment induced several BR biosynthetic genes, including DWARF4, D11, and RAVL1. As expected from the erect leaves, the SNAT2 RNAi lines produced less BR than the wild type. Our results show for the first time that melatonin is a positive regulator of dark growth or shade outgrowth by regulating BR biosynthesis in plants.
Collapse
Affiliation(s)
- Ok Jin Hwang
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
32
|
Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D, Zhao Z. The Role of Phyto-Melatonin and Related Metabolites in Response to Stress. Molecules 2018; 23:E1887. [PMID: 30060559 PMCID: PMC6222801 DOI: 10.3390/molecules23081887] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/29/2022] Open
Abstract
Plant hormone candidate melatonin has been widely studied in plants under various stress conditions, such as heat, cold, salt, drought, heavy metal, and pathogen attack. Under stress, melatonin usually accumulates sharply by modulating its biosynthesis and metabolic pathways. Beginning from the precursor tryptophan, four consecutive enzymes mediate the biosynthesis of tryptamine or 5-hydroxytryptophan, serotonin, N-acetylserotonin or 5-methoxytryptamine, and melatonin. Then, the compound is catabolized into 2-hydroxymelatonin, cyclic-3-hydroxymelatonin, and N¹-acetyl-N²-formyl-5-methoxyknuramine through 2-oxoglutarate-dependent dioxygenase catalysis or reaction with reactive oxygen species. As an ancient and powerful antioxidant, melatonin directly scavenges ROS induced by various stress conditions. Furthermore, it confreres stress tolerance by activating the plant's antioxidant system, alleviating photosynthesis inhibition, modulating transcription factors that are involved with stress resisting, and chelating and promoting the transport of heavy metals. Melatonin is even proven to defense against pathogen attacks for the plant by activating other stress-relevant hormones, like salicylic acid, ethylene, and jasmonic acid. Intriguingly, other precursors and metabolite molecules involved with melatonin also can increase stress tolerance for plant except for unconfirmed 5-methoxytryptamine, cyclic-3-hydroxymelatonin, and N¹-acetyl-N²-formyl-5-methoxyknuramine. Therefore, the precursors and metabolites locating at the whole biosynthesis and catabolism pathway of melatonin could contribute to plant stress resistance, thus providing a new perspective for promoting plant stress tolerance.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Yan Lv
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Yana Shi
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Yanchun Chen
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650504, China.
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming 650504, China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|
33
|
Kobylińska A, Borek S, Posmyk MM. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells. J Pineal Res 2018; 64:e12466. [PMID: 29292521 DOI: 10.1111/jpi.12466] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions.
Collapse
Affiliation(s)
- Agnieszka Kobylińska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Arnao MB, Hernández-Ruiz J. Melatonin and its relationship to plant hormones. ANNALS OF BOTANY 2018; 121:195-207. [PMID: 29069281 PMCID: PMC5808790 DOI: 10.1093/aob/mcx114] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. SCOPE This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. CONCLUSIONS Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
Collapse
Affiliation(s)
- M B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - J Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
35
|
Li X, Wei JP, Scott ER, Liu JW, Guo S, Li Y, Zhang L, Han WY. Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L. Molecules 2018; 23:molecules23010165. [PMID: 29342935 PMCID: PMC6017414 DOI: 10.3390/molecules23010165] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
The unprecedented early spring frost that appears as a cold stress adversely affects growth and productivity in tea (Camellia sinensis L.); therefore, it is indispensable to develop approaches to improve the cold tolerance of tea. Here, we investigated the effect of pretreatment with exogenous melatonin on the net photosynthetic rate, the maximum photochemical efficiency of PSII, chlorophyll content, lipid peroxidation, reactive oxygen species (ROS) accumulation, antioxidant potential, and redox homeostasis in leaves of tea plants following cold stress. Our results revealed that cold treatment induced oxidative stress by increasing ROS accumulation, which in turn affected the photosynthetic process in tea leaves. However, treatment with melatonin mitigated cold-induced reductions in photosynthetic capacity by reducing oxidative stress through enhanced antioxidant potential and redox homeostasis. This study provides strong evidence that melatonin could alleviate cold-induced adverse effects in tea plants.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Ji-Peng Wei
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Eric R Scott
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - Jian-Wei Liu
- Agricultural Technology Extension Center of Fuyang District, 118 Guihua West Road, Hangzhou 330183, China.
| | - Shuai Guo
- Hangzhou Botanical Garden, 1 Taoyuanling, Hangzhou 310013, China.
| | - Yang Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Wen-Yan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
36
|
Hu W, Yang H, Tie W, Yan Y, Ding Z, Liu Y, Wu C, Wang J, Reiter RJ, Tan DX, Shi H, Xu B, Jin Z. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9987-9994. [PMID: 29077394 DOI: 10.1021/acs.jafc.7b03354] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study aimed to investigate the role of melatonin in postharvest ripening and quality in various banana varieties with contrasting ripening periods. During the postharvest life, endogenous melatonin showed similar performance with ethylene in connection to ripening. In comparison to ethylene, melatonin was more correlated with postharvest banana ripening. Exogenous application of melatonin resulted in a delay of postharvest banana ripening. Moreover, this effect is concentration-dependent, with 200 and 500 μM treatments more effective than the 50 μM treatment. Exogenous melatonin also led to elevated endogenous melatonin content, reduced ethylene production through regulation of the expression of MaACO1 and MaACS1, and delayed sharp changes of quality indices. Taken together, this study highlights that melatonin is an indicator for banana fruit ripening in various varieties, and the repression of ethylene biosynthesis and postharvest ripening by melatonin can be used for biological control of postharvest fruit ripening and quality.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Luoyu Road 1037, Wuhan, Hubei 430074, People's Republic of China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Yang Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Jiashui Wang
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences , Haikou, Hainan 570102, People's Republic of China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University , Haikou, Hainan 570228, People's Republic of China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Xueyuan Road 4, Haikou, Hainan 571101, People's Republic of China
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences , Haikou, Hainan 570102, People's Republic of China
| |
Collapse
|
37
|
Lee K, Choi GH, Back K. Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: Key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. J Pineal Res 2017; 63. [PMID: 28793366 DOI: 10.1111/jpi.12441] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
In plants, melatonin production is induced by stimuli such as cold and drought, and cadmium (Cd) is the best elicitor of melatonin production in rice. However, the mechanism by which Cd induces melatonin synthesis in plants remains unknown. We challenged rice seedlings with Cd under different light conditions and found that continuous light produced the highest levels of melatonin, while continuous dark failed to induce melatonin production. Transcriptional and translational induction of tryptophan decarboxylase contributed to the light induction of melatonin during Cd treatment, whereas the protein level of light-induced caffeic acid O-methyltransferase (COMT) was decreased by Cd treatment. In analogy, COMT enzyme activity was inhibited in vitro by Cd in a dose-dependent manner. Notably, the Cd-induced melatonin synthesis was significantly impaired by treatment with either an H2 O2 production inhibitor (DPI) or an NO scavenger (cPTIO). The combination of both inhibitors almost completely abolished Cd-induced melatonin synthesis, suggesting an absolute requirement for H2 O2 and NO. However, neither serotonin nor N-acetylserotonin (NAS) was induced by H2 O2 alone. In contrast, NO significantly induced serotonin production but not NAS or melatonin production. This indicated that serotonin did not enter chloroplasts, where serotonin N-acetyltransferase (SNAT) is constitutively expressed. This suggests that chloroplastidic SNAT expression prevents increased melatonin production after exposure to stress, ultimately leading to the maintenance of a steady-state melatonin level inside cells.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Geun-Hee Choi
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
38
|
Huang YH, Liu SJ, Yuan S, Guan C, Tian DY, Cui X, Zhang YW, Yang FY. Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci Rep 2017; 7:12212. [PMID: 28939842 PMCID: PMC5610178 DOI: 10.1038/s41598-017-12566-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022] Open
Abstract
Melatonin is a well-known bioactive molecule with an array of health-promoting properties. Here, we detected the physiological function of melatonin in transgenic switchgrass overexpressing the homologous sheep arylalkylamine N-acetyltransferase and hydroxyindole O-methyltransferase genes, which catalyze the last two steps of melatonin synthesis. Compared to the wild-type (WT) and transgenic control (EV, expressing the empty vector only) plants, the transgenic switchgrass showed higher melatonin levels. Melatonin was detected in almost all switchgrass tissues, and relatively higher levels were detected in the roots and stems. Besides, melatonin showed diurnal or circadian rhythms in switchgrass similar to that in other species. Furthermore, we also found that melatonin positively affected switchgrass growth, flowering and salt tolerance. The genes related to flowering (APL3, SL1, FT1, FLP3, MADS6 and MADS15) and salt stress resistance (PvNHX1) in transgenic switchgrass exhibited a different expression profiles when compared to the control plants. Our study provided valuable findings that melatonin functions as a promoter in the regulation of switchgrass growth, flowering and salt tolerance.
Collapse
Affiliation(s)
- Yan-Hua Huang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si-Jia Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shan Yuan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Guan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan-Yang Tian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Wei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China. .,Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China. .,National Energy R&D Center for Biomass (NECB), Beijing, China.
| | - Fu-Yu Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China. .,Beijing Sure Academy of Biosciences, Beijing, China.
| |
Collapse
|
39
|
Choi GH, Lee HY, Back K. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J Pineal Res 2017; 63. [PMID: 28378373 DOI: 10.1111/jpi.12412] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants.
Collapse
Affiliation(s)
- Geun-Hee Choi
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
40
|
Wang Q, An B, Shi H, Luo H, He C. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis. Int J Mol Sci 2017; 18:ijms18050991. [PMID: 28475148 PMCID: PMC5454904 DOI: 10.3390/ijms18050991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.
Collapse
Affiliation(s)
- Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
41
|
Lee K, Back K. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 2017; 62. [PMID: 28118490 DOI: 10.1111/jpi.12392] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
42
|
Zhang N, Qi Y, Zhang HJ, Wang X, Li H, Shi Y, Guo YD. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way. FRONTIERS IN PLANT SCIENCE 2016; 7:1804. [PMID: 27990149 PMCID: PMC5130974 DOI: 10.3389/fpls.2016.01804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage.
Collapse
Affiliation(s)
- Na Zhang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Yan Qi
- College of Horticulture, China Agricultural UniversityBeijing, China
- Beijing Agriculture Technology Extension StationBeijing, China
| | - Hai-Jun Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Xiaoyun Wang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Hongfei Li
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Yantong Shi
- Beijing Agriculture Technology Extension StationBeijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural UniversityBeijing, China
| |
Collapse
|
43
|
Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK. Melatonin in Plants and Plant Culture Systems: Variability, Stability and Efficient Quantification. FRONTIERS IN PLANT SCIENCE 2016; 7:1721. [PMID: 27899931 PMCID: PMC5110574 DOI: 10.3389/fpls.2016.01721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/02/2016] [Indexed: 05/04/2023]
Abstract
Despite growing evidence of the importance of melatonin and serotonin in the plant life, there is still much debate over the stability of melatonin, with extraction and analysis methods varying greatly from lab to lab with respect to time, temperature, light levels, extraction solvents, and mechanical disruption. The variability in methodology has created conflicting results that confound the comparison of studies to determine the role of melatonin in plant physiology. We here describe a fully validated method for the quantification of melatonin, serotonin and their biosynthetic precursors: tryptophan, tryptamine and N-acetylserotonin by liquid chromatography single quadrupole mass spectrometry (LC-MS) in diverse plant species and tissues. This method can be performed on a simple and inexpensive platform, and is both rapid and simple to implement. The method has excellent reproducibility and acceptable sensitivity with percent relative standard deviation (%RSD) in all matrices between 1 and 10% and recovery values of 82-113% for all analytes. Instrument detection limits were 24.4 ng/mL, 6.10 ng/mL, 1.52 ng/mL, 6.10 ng/mL, and 95.3 pg/mL, for serotonin, tryptophan, tryptamine, N-acetylserotonin and melatonin respectively. Method detection limits were 1.62 μg/g, 0.407 μg/g, 0.101 μg/g, 0.407 μg/g, and 6.17 ng/g respectively. The optimized method was then utilized to examine the issue of variable stability of melatonin in plant tissue culture systems. Media composition (Murashige and Skoog, Driver and Kuniyuki walnut or Lloyd and McCown's woody plant medium) and light (16 h photoperiod or dark) were found to have no effect on melatonin or serotonin content. A Youden trial suggested temperature as a major factor leading to degradation of melatonin. Both melatonin and serotonin appeared to be stable across the first 10 days in media, melatonin losses reached a mean minimum degradation at 28 days of approximately 90%; serotonin reached a mean minimum value of approximately 60% at 28 days. These results suggest that melatonin and serotonin show considerable stability in plant systems and these indoleamines and related compounds can be used for investigations that span over 3 weeks.
Collapse
Affiliation(s)
| | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Institute for Plant Preservation, University of GuelphGuelph, ON, Canada
| |
Collapse
|
44
|
Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 2016; 61:426-437. [PMID: 27600803 DOI: 10.1111/jpi.12364] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants.
Collapse
Affiliation(s)
- Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea.
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
45
|
Yuan S, Guan C, Liu S, Huang Y, Tian D, Cui X, Zhang Y, Yang F. Comparative Transcriptomic Analyses of Differentially Expressed Genes in Transgenic Melatonin Biosynthesis Ovine HIOMT Gene in Switchgrass. FRONTIERS IN PLANT SCIENCE 2016; 7:1613. [PMID: 27877177 PMCID: PMC5099686 DOI: 10.3389/fpls.2016.01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/12/2016] [Indexed: 05/02/2023]
Abstract
Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405, and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. Two hundred and seventy-five upregulated and 130 downregulated unigenes were detected in transgenic oHIOMT line comparing with control, including the significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3) genes, which were potentially correlated with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc.) were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc.) were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants.
Collapse
Affiliation(s)
- Shan Yuan
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Cong Guan
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Sijia Liu
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yanhua Huang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- College of Agriculture, China Agricultural UniversityBeijing, China
| | - Danyang Tian
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yunwei Zhang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for BiomassBeijing, China
- *Correspondence: Yunwei Zhang
| | - Fuyu Yang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Sure Academy of BiosciencesBeijing, China
- Fuyu Yang
| |
Collapse
|