1
|
De Francesco S, Le Disquet I, Pereda-Loth V, Tisseyre L, De Pascale S, Amitrano C, Carnero Diaz E, De Micco V. Combined Effects of Microgravity and Chronic Low-Dose Gamma Radiation on Brassica rapa Microgreens. PLANTS (BASEL, SWITZERLAND) 2024; 14:64. [PMID: 39795322 PMCID: PMC11722926 DOI: 10.3390/plants14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions. This paper investigates the combined effect of chronic ionizing radiation and reduced gravity on Brassica rapa seed germination and microgreens growth. Four cultivation scenarios were designed: standard Earth conditions, chronic irradiation alone, simulated reduced gravity alone, and a combination of irradiation and reduced gravity. An analysis of the harvested microgreens revealed that growth was moderately reduced under chronic irradiation combined with altered gravity, likely due to oxidative stress, primarily concentrated in the roots. Indeed, an accumulation of reactive oxygen species (ROS) was observed, as well as of polyphenols, likely to counteract oxidative damage and preserve the integrity of essential structures, such as the root stele. These findings represent an important step toward understanding plant acclimation in space to achieve sustainable food production on orbital and planetary platforms.
Collapse
Affiliation(s)
- Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity of Sorbonne University, 75005 Paris, France;
| | - Veronica Pereda-Loth
- Evolsan-GSBMS, Faculté de Santé, University of Toulouse III, 31062 Toulouse, France; (V.P.-L.); (L.T.)
| | - Lenka Tisseyre
- Evolsan-GSBMS, Faculté de Santé, University of Toulouse III, 31062 Toulouse, France; (V.P.-L.); (L.T.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| | - Eugénie Carnero Diaz
- Institute of Systematic, Evolution, Biodiversity of Sorbonne University, 75005 Paris, France;
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (S.D.F.); (S.D.P.)
| |
Collapse
|
2
|
Amitrano C, De Francesco S, Durante M, Tinganelli W, Arena C, De Micco V. Morphological and Photosynthetic Pigment Screening of Four Microgreens Species Exposed to Heavy Ions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3541. [PMID: 39771239 PMCID: PMC11678762 DOI: 10.3390/plants13243541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance. Thus, the hypotheses behind this study were to explore the following: (i) the pattern (if any) of radio-sensitivity/resistance; and (ii) if the morphological parameters in relation with pigment content may be a feasible way to perform a screening of radiation responses among species. To perform this, we irradiated dry seeds of basil, rocket, radish, and cress with iron (56Fe; 1550 MeV/(g/cm²)) and carbon (12C; 290 MeV/u, 13 keV/µm) heavy ions at the doses of 0.3, 1, 10, 20, and 25 Gy to investigate the growth responses of microgreens to acute radiation exposure in terms of morphological traits and photosynthetic pigment content. Results indicate that the microgreens' reaction to ionizing radiation is highly species-specific and that radiation is often sensed by microgreens as a mild stress, stimulating the same morphological and biochemical acclimation pathways usually activated by other mild environmental stresses, alongside the occurrence of eustress phenomena. Over extended periods, this stimulus could foster adaptive changes, enabling plants to thrive in space.
Collapse
Affiliation(s)
- Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy; (C.A.); (S.D.F.)
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy; (C.A.); (S.D.F.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmsatdt, Germany; (M.D.); (W.T.)
- Institute for Condensed Matter Physics, Technische University Darmstadt, 64289 Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, 80126 Naples, Italy
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmsatdt, Germany; (M.D.); (W.T.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy; (C.A.); (S.D.F.)
| |
Collapse
|
3
|
Garegnani M, Sandri C, Pacelli C, Ferranti F, Bennici E, Desiderio A, Nardi L, Villani ME. Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different LED light recipes. FRONTIERS IN PLANT SCIENCE 2024; 14:1289208. [PMID: 38273958 PMCID: PMC10808373 DOI: 10.3389/fpls.2023.1289208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
Introduction The future of human space missions relies on the ability to provide adequate food resources for astronauts and also to reduce stress due to the environment (microgravity and cosmic radiation). In this context, microgreens have been proposed for the astronaut diet because of their fast-growing time and their high levels of bioactive compounds and nutrients (vitamins, antioxidants, minerals, etc.), which are even higher than mature plants, and are usually consumed as ready-to-eat vegetables. Methods Our study aimed to identify the best light recipe for the soilless cultivation of two cultivars of radish microgreens (Raphanus sativus, green daikon, and rioja improved) harvested eight days after sowing that could be used for space farming. The effects on plant metabolism of three different light emitting diodes (LED) light recipes (L1-20% red, 20% green, 60% blue; L2-40% red, 20% green, 40% blue; L3-60% red, 20% green, 20% blue) were tested on radish microgreens hydroponically grown. A fluorimetric-based technique was used for a real-time non-destructive screening to characterize plant methabolism. The adopted sensors allowed us to quantitatively estimate the fluorescence of flavonols, anthocyanins, and chlorophyll via specific indices verified by standardized spectrophotometric methods. To assess plant growth, morphometric parameters (fresh and dry weight, cotyledon area and weight, hypocotyl length) were analyzed. Results We observed a statistically significant positive effect on biomass accumulation and productivity for both cultivars grown under the same light recipe (40% blue, 20% green, 40% red). We further investigated how the addition of UV and/or far-red LED lights could have a positive effect on plant metabolite accumulation (anthocyanins and flavonols). Discussion These results can help design plant-based bioregenerative life-support systems for long-duration human space exploration, by integrating fluorescence-based non-destructive techniques to monitor the accumulation of metabolites with nutraceutical properties in soilless cultivated microgreens.
Collapse
Affiliation(s)
- Marco Garegnani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
- Department of Aerospace Science and Technology, Politecnico of Milano, Milan, Italy
| | - Carla Sandri
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Claudia Pacelli
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Francesca Ferranti
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Elisabetta Bennici
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Luca Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Maria Elena Villani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| |
Collapse
|
4
|
Totsline N, Kniel KE, Bais HP. Microgravity and evasion of plant innate immunity by human bacterial pathogens. NPJ Microgravity 2023; 9:71. [PMID: 37679341 PMCID: PMC10485020 DOI: 10.1038/s41526-023-00323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA
| |
Collapse
|
5
|
Izzo LG, El Nakhel C, Rouphael Y, Proietti S, Paglialunga G, Moscatello S, Battistelli A, Iovane M, Romano LE, De Pascale S, Aronne G. Applying productivity and phytonutrient profile criteria in modelling species selection of microgreens as Space crops for astronaut consumption. FRONTIERS IN PLANT SCIENCE 2023; 14:1210566. [PMID: 37636122 PMCID: PMC10450622 DOI: 10.3389/fpls.2023.1210566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Introduction Long-duration missions in outer Space will require technologies to regenerate environmental resources such as air and water and to produce food while recycling consumables and waste. Plants are considered the most promising biological regenerators to accomplish these functions, due to their complementary relationship with humans. Plant cultivation for Space starts with small plant growth units to produce fresh food to supplement stowed food for astronauts' onboard spacecrafts and orbital platforms. The choice of crops must be based on limiting factors such as time, energy, and volume. Consequently, small, fast-growing crops are needed to grow in microgravity and to provide astronauts with fresh food rich in functional compounds. Microgreens are functional food crops recently valued for their color and flavor enhancing properties, their rich phytonutrient content and short production cycle. Candidate species of microgreens to be harvested and eaten fresh by crew members, belong to the families Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, Amaranthaceae, and Cucurbitaceae. Methods In this study we developed and applied an algorithm to objectively compare numerous genotypes of microgreens intending to select those with the best productivity and phytonutrient profile for cultivation in Space. The selection process consisted of two subsequent phases. The first selection was based on literature data including 39 genotypes and 25 parameters related to growth, phytonutrients (e.g., tocopherol, phylloquinone, ascorbic acid, polyphenols, lutein, carotenoids, violaxanthin), and mineral elements. Parameters were implemented in a mathematical model with prioritization criteria to generate a ranking list of microgreens. The second phase was based on germination and cultivation tests specifically designed for this study and performed on the six top species resulting from the first ranking list. For the second selection, experimental data on phytonutrients were expressed as metabolite production per day per square meter. Results and discussion In the final ranking list radish and savoy cabbage resulted with the highest scores based on their productivity and phytonutrient profile. Overall, the algorithm with prioritization criteria allowed us to objectively compare candidate species and obtain a ranking list based on the combination of numerous parameters measured in the different species. This method can be also adapted to new species, parameters, or re-prioritizing the parameters for specific selection purposes.
Collapse
Affiliation(s)
- Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Simona Proietti
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Gabriele Paglialunga
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Stefano Moscatello
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Alberto Battistelli
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
6
|
Amitrano C, Paglialunga G, Battistelli A, De Micco V, Del Bianco M, Liuzzi G, Moscatello S, Paradiso R, Proietti S, Rouphael Y, De Pascale S. Defining growth requirements of microgreens in space cultivation via biomass production, morpho-anatomical and nutritional traits analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1190945. [PMID: 37538067 PMCID: PMC10394706 DOI: 10.3389/fpls.2023.1190945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
During long-term manned missions to the Moon or Mars, the integration of astronauts' diet with fresh food rich in functional compounds, like microgreens, could strengthen their physiological defenses against the oxidative stress induced by the exposure to space factors. Therefore, the development of targeted cultivation practices for microgreens in space is mandatory, since the cultivation in small, closed facilities may alter plant anatomy, physiology, and resource utilization with species-specific responses. Here, the combined effect of two vapor pressure deficit levels (VPD: 0.14 and 1.71 kPa) and two light intensities (150 and 300 µmol photons m-2 s-1 PPFD) on two species for microgreen production (Brassica oleracea var. capitata f. sabauda 'Vertus' and Raphanus raphanistrum subsp. sativus 'Saxa'), was tested on biomass production per square meter, morpho-anatomical development, nutritional and nutraceutical properties. Microgreens were grown in fully controlled conditions under air temperature of 18/24°C, on coconut fiber mats, RGB light spectrum and 12 h photoperiod, till they reached the stage of first true leaves. At this stage microgreens were samples, for growth and morpho-anatomical analyses, and to investigate the biochemical composition in terms of ascorbic acid, phenols, anthocyanin, carotenoids, carbohydrates, as well as of anti-nutritional compounds, such as nitrate, sulfate, and phosphate. Major differences in growth were mostly driven by the species with 'Saxa' always presenting the highest fresh and dry weight as well as the highest elongation; however light intensity and VPDs influenced the anatomical development of microgreens, and the accumulation of ascorbic acid, carbohydrates, nitrate, and phosphate. Both 'Saxa' and 'Vertus' at low VPD (LV) and 150 PPFD increased the tissue thickness and synthetized high β-carotene and photosynthetic pigments. Moreover, 'Vertus' LV 150, produced the highest content of ascorbate, fundamental for nutritional properties in space environment. The differences among the treatments and their interaction suggested a relevant difference in resource use efficiency. In the light of the above, microgreens can be considered suitable for cultivation in limited-volume growth modules directly onboard, provided that all the environmental factors are combined and modulated according to the species requirements to enhance their growth and biomass production, and to achieve specific nutritional traits.
Collapse
Affiliation(s)
- Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Gabriele Paglialunga
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | | | - Greta Liuzzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, Terni, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
7
|
Giordano M, Ciriello M, Formisano L, El-Nakhel C, Pannico A, Graziani G, Ritieni A, Kyriacou MC, Rouphael Y, De Pascale S. Iodine-Biofortified Microgreens as High Nutraceutical Value Component of Space Mission Crew Diets and Candidate for Extraterrestrial Cultivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2628. [PMID: 37514243 PMCID: PMC10384207 DOI: 10.3390/plants12142628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The success of Space missions and the efficacy of colonizing extraterrestrial environments depends on ensuring adequate nutrition for astronauts and autonomy from terrestrial resources. A balanced diet incorporating premium quality fresh foods, such as microgreens, is essential to the mental and physical well-being of mission crews. To improve the nutritional intake of astronaut meals, two levels of potassium iodide (KI; 4 µM and 8 µM) and an untreated control were assessed for iodine (I) biofortification, and overall nutraceutical profile of four microgreens: tatsoi (Brassica rapa L. subsp. narinosa), coriander (Coriandrum sativum L.), green basil, and purple basil (Ocimum basilicum L.). A dose-dependent increase in I was observed at 8 µM for all species, reaching concentrations of 200.73, 118.17, 93.97, and 82.70 mg kg-1 of dry weight, in tatsoi, coriander, purple basil, and green basil, respectively. Across species, I biofortification slightly reduced fresh yield (-7.98%) while increasing the antioxidant activity (ABTS, FRAP, and DPPH). LC-MS/MS Q extractive orbitrap analysis detected 10 phenolic acids and 23 flavonoids among microgreen species. The total concentration of phenolic acids increased (+28.5%) in purple basil at 8 µM KI, while total flavonoids in coriander increased by 23.22% and 34.46% in response to 4 and 8 µM KI, respectively. Both doses of KI increased the concentration of total polyphenols in all species by an average of 17.45%, compared to the control.
Collapse
Affiliation(s)
- Maria Giordano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, 95123 Catania, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Yan Z, Xu D, Yue X, Yuan S, Shi J, Gao L, Wu C, Zuo J, Wang Q. Whole-transcriptome RNA sequencing reveals changes in amino acid metabolism induced in harvested broccoli by red LED irradiation. Food Res Int 2023; 169:112820. [PMID: 37254395 DOI: 10.1016/j.foodres.2023.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Whole-transcriptomic profiling combined with amino acid analysis were conducted in order to gain a better understanding of global changes in amino acid metabolism induced in broccoli by red LED irradiation. The results showed that the contents of almost all 16 amino acids in postharvest broccoli were maintained under red LED illumination. The red LED irradiation enhanced the anabolism of amino acid, including the biosynthesis of aromatic amino acids by upregulating the genes' expression in the shikimate pathway, as well as by upregulating the genes' expression which encoding biosynthetic enzymes in the branched-chain amino acid biosynthesis pathway. Red LED irradiation induced the expression of genes encoding aspartate aminotransferase, which plays a role in Asp synthesis, aspartate kinase, which functions in aspartate metabolism, and a cytoplasmic aspartate aminotransferase that converts 2-Oxoglutarate into Glu. Genes encoding imidazole glycerol-phosphate synthase and histidinol-phosphatase, which function in the His biosynthesis pathway, were also upregulated. According to our results, red LED irradiation delays broccoli's yellowing and senescence by regulating amino acid metabolism. These results enhance our understanding of the role of amino acid metabolism in the senescence of broccoli and the mechanism of red LED irradiation to alter amino acid metabolism in harvested broccoli.
Collapse
Affiliation(s)
- Zhicheng Yan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.
| | - Dongying Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
9
|
Metelli G, Lampazzi E, Pagliarello R, Garegnani M, Nardi L, Calvitti M, Gugliermetti L, Restivo Alessi R, Benvenuto E, Desiderio A. Design of a modular controlled unit for the study of bioprocesses: Towards solutions for Bioregenerative Life Support Systems in space. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:8-17. [PMID: 36682833 DOI: 10.1016/j.lssr.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Space exploration beyond the Low Earth Orbit requires the establishment of Bioregenerative Life Support Systems (BLSSs), which, through bioprocesses for primary resource recycling, ensure crew survival. However, the introduction of new organisms in confined space habitats must be carefully evaluated in advance to avoid unforeseen events that could compromise the mission. In this work, we have designed and built an experimental chamber, named Growing/Rearing Module (GRM), completely isolated and equipped with micro-environmental monitoring and control systems. This unit is specially intended for the study of single bioprocesses, which can be composed to design functional BLSSs. GRM can be implemented with specific devices for the biological system under study and the control of environmental parameters such as temperature, humidity, lighting and if required, pressure of gaseous components. GRM was validated in experiments of both microgreen cultivation, as a source of fresh food for astronauts, and rearing of the decomposer insect Hermetia illucens for bioconversion of organic waste. During the study of each bioprocess, the environmental and biological data were recorded, allowing to make preliminary assessments of the system efficiency. The GRM, as a completely confined environment, represents the first self-consistent unit that allows to fine-tune the optimal parameters for the operability of different bioprocesses. Furthermore, the upgradability according to the mission needs and the functional integrability of modules differently equipped are the keys to GRM versatility, representing a valuable tool for BLSSs' design.
Collapse
Affiliation(s)
- Giulio Metelli
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy; University of Tuscia, DAFNE - Department of Agriculture and Forest Sciences, Viterbo, Italy
| | - Elena Lampazzi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy
| | - Riccardo Pagliarello
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy; University of Tuscia, DAFNE - Department of Agriculture and Forest Sciences, Viterbo, Italy
| | - Marco Garegnani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy; DAER - Department of Aerospace Science and Technology, Politecnico of Milano, Milano, Italy
| | - Luca Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy
| | - Maurizio Calvitti
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy
| | - Luca Gugliermetti
- Sapienza University of Rome, CITERA - Interdepartmental research Center for Territory, Building, Environment and Restoration, Rome, Italy
| | - Riccardo Restivo Alessi
- Sapienza University of Rome, DIAEE-Department of Astronautical, Electrical and Energy Engineering, Rome, Italy
| | - Eugenio Benvenuto
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Biotechnology and Agro-Industry Division, Casaccia Research Center, Rome, Italy.
| |
Collapse
|
10
|
Gmižić D, Pinterić M, Lazarus M, Šola I. High Growing Temperature Changes Nutritional Value of Broccoli ( Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) Seedlings. Foods 2023; 12:foods12030582. [PMID: 36766111 PMCID: PMC9914779 DOI: 10.3390/foods12030582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
High temperature (HT) causes physiological and biochemical changes in plants, which may influence their nutritional potential. This study aimed to evaluate the nutritional value of broccoli seedlings grown at HT on the level of phytochemicals, macro- and microelements, antioxidant capacity, and their extracts' in vitro cytotoxicity. Total phenols, soluble sugars, carotenoids, quercetin, sinapic, ferulic, p-coumaric, and gallic acid were induced by HT. Contrarily, total flavonoids, flavonols, phenolic acids, hydroxycinnamic acids, proteins, glucosinolates, chlorophyll a and b, and porphyrins were reduced. Minerals As, Co, Cr, Hg, K, Na, Ni, Pb, Se, and Sn increased at HT, while Ca, Cd, Cu, Mg, Mn, and P decreased. ABTS, FRAP, and β-carotene bleaching assay showed higher antioxidant potential of seedlings grown at HT, while DPPH showed the opposite. Hepatocellular carcinoma cells were the most sensitive toward broccoli seedling extracts. The significant difference between control and HT-grown broccoli seedling extracts was recorded in mouse embryonal fibroblasts and colorectal carcinoma cells. These results show that the temperature of seedling growth is a critical factor for their nutritional value and the biological effects of their extracts and should definitely be taken into account when growing seedlings for food purposes.
Collapse
Affiliation(s)
- Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Maja Lazarus
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +38-514-898-094
| |
Collapse
|
11
|
Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet 2023; 14:1053810. [PMID: 36760994 PMCID: PMC9905132 DOI: 10.3389/fgene.2023.1053810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Nutrient deficiency has resulted in impaired growth and development of the population globally. Microgreens are considered immature greens (required light for photosynthesis and growing medium) and developed from the seeds of vegetables, legumes, herbs, and cereals. These are considered "living superfood/functional food" due to the presence of chlorophyll, beta carotene, lutein, and minerals like magnesium (Mg), Potassium (K), Phosphorus (P), and Calcium (Ca). Microgreens are rich at the nutritional level and contain several phytoactive compounds (carotenoids, phenols, glucosinolates, polysterols) that are helpful for human health on Earth and in space due to their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic properties. Microgreens can be used as plant-based nutritive vegetarian foods that will be fruitful as a nourishing constituent in the food industryfor garnish purposes, complement flavor, texture, and color to salads, soups, flat-breads, pizzas, and sandwiches (substitute to lettuce in tacos, sandwich, burger). Good handling practices may enhance microgreens'stability, storage, and shelf-life under appropriate conditions, including light, temperature, nutrients, humidity, and substrate. Moreover, the substrate may be a nutritive liquid solution (hydroponic system) or solid medium (coco peat, coconut fiber, coir dust and husks, sand, vermicompost, sugarcane filter cake, etc.) based on a variety of microgreens. However integrated multiomics approaches alongwith nutriomics and foodomics may be explored and utilized to identify and breed most potential microgreen genotypes, biofortify including increasing the nutritional content (macro-elements:K, Ca and Mg; oligo-elements: Fe and Zn and antioxidant activity) and microgreens related other traits viz., fast growth, good nutritional values, high germination percentage, and appropriate shelf-life through the implementation of integrated approaches includes genomics, transcriptomics, sequencing-based approaches, molecular breeding, machine learning, nanoparticles, and seed priming strategiesetc.
Collapse
Affiliation(s)
- Astha Gupta
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| | - Tripti Sharma
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University,, Kanpur, India
| | - Archana Bhardwaj
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Deepti Srivastava
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| |
Collapse
|
12
|
Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. Microgreens-A Comprehensive Review of Bioactive Molecules and Health Benefits. Molecules 2023; 28:molecules28020867. [PMID: 36677933 PMCID: PMC9864543 DOI: 10.3390/molecules28020867] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Microgreens, a hypothesized term used for the emerging food product that is developed from various commercial food crops, such as vegetables, grains, and herbs, consist of developed cotyledons along with partially expanded true leaves. These immature plants are harvested between 7-21 days (depending on variety). They are treasured for their densely packed nutrients, concentrated flavors, immaculate and tender texture as well as for their vibrant colors. In recent years, microgreens are on demand from high-end restaurant chefs and nutritional researchers due to their potent flavors, appealing sensory qualities, functionality, abundance in vitamins, minerals, and other bioactive compounds, such as ascorbic acid, tocopherol, carotenoids, folate, tocotrienols, phylloquinones, anthocyanins, glucosinolates, etc. These qualities attracted research attention for use in the field of human health and nutrition. Increasing public concern regarding health has prompted humans to turn to microgreens which show potential in the prevention of malnutrition, inflammation, and other chronic ailments. This article focuses on the applications of microgreens in the prevention of the non-communicable diseases that prevails in the current generation, which emerged due to sedentary lifestyles, thus laying a theoretical foundation for the people creating awareness to switch to the recently introduced category of vegetable and providing great value for the development of health-promoting diets with microgreens.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Dilip Kumar Shanmugam
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-3205
| |
Collapse
|
13
|
Agarose hydrogel composite supports microgreen cultivation with enhanced porosity and continuous water supply under terrestrial and microgravitational conditions. Int J Biol Macromol 2022; 220:135-146. [PMID: 35963353 DOI: 10.1016/j.ijbiomac.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
Hydrogels are attractive soilless media for plant cultivation with strong water and nutrient retention. However, pristine hydrogels contain mostly ultra-micro pores and lack air-filled porosity for root zone aeration. Herein we report a porous hydrogel composite comprising an agarose network and porous growing mix particle (GMP) fillers. The agarose backbone allowed the composite to sustain a 12-d growth cycle for red cabbage microgreens without the need for watering or crew interaction. Moreover, the GMP induced greater total pore volume and increased the prevalence of pores >30 μm by 8-fold. Further investigation suggested that the nutrients from GMP accounted for a 54 % increase in microgreen yield over pristine hydrogel, while the porous structure introduced by GMP improved the yield by another 44 %. Increased air-filled porosity accelerated the water transport and loss of hydrogel but maintained favorable water potential levels for plant extraction. Finally, the hydrogel composite supported microgreen growth satisfyingly under simulated microgravity despite some morphological changes. Results of this study reveal a novel growth substrate that is lightweight, convenient, and water-efficient, while effectively sustaining plant growth for multiple applications including indoor farming and space farming.
Collapse
|
14
|
Zhang L, Dong H, Yu Y, Liu L, Zang P. Application and challenges of
3D
food printing technology in manned spaceflight: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Long‐zhen Zhang
- Space Science and Technology Institute (Shenzhen) Shenzhen 518117 China
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| | - Hai‐sheng Dong
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| | - Yan‐bo Yu
- Space Science and Technology Institute (Shenzhen) Shenzhen 518117 China
| | - Li‐yan Liu
- Lee Kum Kee (Xinhui) Food Co., Ltd. Jiangmen Guangdong 529156 China
| | - Peng Zang
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| |
Collapse
|
15
|
Strollo F, Gentile S, Pipicelli AMV, Mambro A, Monici M, Magni P. Space Flight-Promoted Insulin Resistance as a Possible Disruptor of Wound Healing. Front Bioeng Biotechnol 2022; 10:868999. [PMID: 35646861 PMCID: PMC9136162 DOI: 10.3389/fbioe.2022.868999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
During space flight, especially when prolonged, exposure to microgravity results in a number of pathophysiological changes such as bone loss, muscle atrophy, cardiovascular and metabolic changes and impaired wound healing, among others. Interestingly, chronic low-grade inflammation and insulin resistance appear to be pivotal events linking many of them. Interestingly, real and experimental microgravity is also associated to altered wound repair, a process that is becoming increasingly important in view of prolonged space flights. The association of insulin resistance and wound healing impairment may be hypothesized from some dysmetabolic conditions, like the metabolic syndrome, type 2 diabetes mellitus and abdominal/visceral obesity, where derangement of glucose and lipid metabolism, greater low-grade inflammation, altered adipokine secretion and adipocyte dysfunction converge to produce systemic effects that also negatively involve wound healing. Indeed, wound healing impairment after traumatic events and surgery in space remains a relevant concern for space agencies. Further studies are required to clarify the molecular connection between insulin resistance and wound healing during space flight, addressing the ability of physical, endocrine/metabolic, and pharmacological countermeasures, as well as nutritional strategies to prevent long-term detrimental effects on tissue repair linked to insulin resistance. Based on these considerations, this paper discusses the pathophysiological links between microgravity-associated insulin resistance and impaired wound healing.
Collapse
Affiliation(s)
- F. Strollo
- Endocrinology and Metabolism Unit, IRCCS San Raffaele Pisana, Rome, Italy
- *Correspondence: F. Strollo,
| | - S. Gentile
- Department of Internal Medicine, Campania University “Luigi Vanvitelli”, Naples, Italy and Nefrocenter Research Network, Naples, Italy
| | - A. M. V. Pipicelli
- Nephrology, Dialysis and Transplant Unit, Medical and Surgical Sciences Department, “A. Gemelli” Sacred Heart Catholic University, Rome, Italy
| | - A. Mambro
- Anesthesiology and Intensive Care Unit, Pertini General Hospital, Rome, Italy
| | - M. Monici
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, ASA Campus Joint Laboratory, ASA Res. Div, University of Florence, Florence, Italy
| | - P. Magni
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
- IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
16
|
Moraru PI, Rusu T, Mintas OS. Trial Protocol for Evaluating Platforms for Growing Microgreens in Hydroponic Conditions. Foods 2022; 11:foods11091327. [PMID: 35564050 PMCID: PMC9103178 DOI: 10.3390/foods11091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
The hydroponic production of microgreens has potential to develop, at both an industrial, and a family level, due to the improved production platforms. The literature review found numerous studies which recommend procedures, parameters and best intervals for the development of microgreens. This paper aims to develop, based on the review of the literature, a set of procedures and parameters, included in a test protocol, for hydroponically cultivated microgreens. Procedures and parameters proposed to be included in the trial protocol for evaluating platforms for growing microgreens in hydroponic conditions are: (1) different determinations: in controlled settings (setting the optimal ranges) and in operational environments settings (weather conditions in the area/testing period); (2) procedures and parameters related to microgreen growth (obtaining the microgreens seedling, determining microgreen germination, measurements on the morphology of plants, microgreens harvesting); (3) microgreens production and quality (fresh biomass yield, dry matter content, water use efficiency, bioactive compound analysis, statistical analysis). Procedures and parameters proposed in the protocol will provide us with the evaluation information of the hydroponic platforms to ensure: number of growing days to reach desired size; yield per area, crop health, and secondary metabolite accumulation.
Collapse
Affiliation(s)
- Paula Ioana Moraru
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Teodor Rusu
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence:
| | | |
Collapse
|
17
|
Sharma S, Shree B, Sharma D, Kumar S, Kumar V, Sharma R, Saini R. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res Int 2022; 155:111038. [DOI: 10.1016/j.foodres.2022.111038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/22/2023]
|
18
|
Duri LG, Pannico A, Petropoulos SA, Caporale AG, Adamo P, Graziani G, Ritieni A, De Pascale S, Rouphael Y. Bioactive Compounds and Antioxidant Activity of Lettuce Grown in Different Mixtures of Monogastric-Based Manure With Lunar and Martian Soils. Front Nutr 2022; 9:890786. [PMID: 35571954 PMCID: PMC9101051 DOI: 10.3389/fnut.2022.890786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 11/15/2022] Open
Abstract
The supplementation of bioactive compounds in astronaut's diets is undeniable, especially in the extreme and inhospitable habitat of future space settlements. This study aims to enhance the Martian and Lunar regolith fertility (testing two commercial simulants) through the provision of organic matter (manure) as established by in situ resource utilization (ISRU) approach. In this perspective, we obtained 8 different substrates after mixing Mojave Mars Simulant (MMS-1) or Lunar Highlands Simulant (LHS-1), with four different rates of manure (0, 10, 30, and 50%, w/w) from monogastric animals. Then, we assessed how these substrates can modulate fresh yield, organic acid, carotenoid content, antioxidant activity, and phenolic profile of lettuce plants (Lactuca sativa L.). Regarding fresh biomass production, MMS-1-amended substrates recorded higher yields than LHS-1-ones; plants grown on a 70:30 MMS-1/manure mixture produced the highest foliar biomass. Moreover, we found an increase in lutein and β-carotene content by + 181 and + 263%, respectively, when applying the highest percentage of manure (50%) compared with pure simulants or less-amended mixtures. The 50:50 MMS-1/manure treatment also contained the highest amounts of individual and total organic acids, especially malate content. The highest antioxidant activity for the ABTS assay was recorded when no manure was added. The highest content of total hydroxycinnamic acids was observed when no manure was added, whereas ferulic acid content (most abundant compound) was the highest in 70:30 simulant/manure treatment, as well as in pure LHS-1 simulant. The flavonoid content was the highest in pure-simulant treatment (for most of the compounds), resulting in the highest total flavonoid and total phenol content. Our findings indicate that the addition of manure at specific rates (30%) may increase the biomass production of lettuce plants cultivated in MMS-1 simulant, while the phytochemical composition is variably affected by manure addition, depending on the stimulant. Therefore, the agronomic practice of manure amendment showed promising results; however, it must be tested with other species or in combination with other factors, such as fertilization rates and biostimulants application, to verify its applicability in space colonies for food production purposes.
Collapse
Affiliation(s)
- Luigi G. Duri
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Antonio G. Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre on the “Earth Critical Zone” for Supporting the Landscape and Agroenvironment Management (CRISP), University of Naples Federico II, Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
19
|
Castellaneta A, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI. Glycerophospholipidomics of Five Edible Oleaginous Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2410-2423. [PMID: 35144380 DOI: 10.1021/acs.jafc.1c07754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microgreens are a special type of vegetal product, born as a culinary novelty (traditionally used to garnish gourmet dishes) and then progressively studied for their potentially high content in nutraceuticals, like polyphenolic compounds, carotenoids, and glucosinolates, also in the perspective of implementing their cultivation in space stations/colonies. Among further potential nutraceuticals of microgreens, lipids have received very limited attention so far. Here, glycerophospholipids contained in microgreens of typical oleaginous plants, namely, soybean, chia, flax, sunflower, and rapeseed, were studied using hydrophilic interaction liquid chromatography (HILIC), coupled to high-resolution Fourier transform mass spectrometry (FTMS) or low-resolution collisionally induced dissociation tandem mass spectrometry (CID-MS2) with electrospray ionization (ESI). Specifically, this approach was employed to obtain qualitative and quantitative profiling of the four main classes of glycerophospholipids (GPL) found in the five microgreens, i.e., phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and phosphatidylinositols (PI). Saturated chains with 16 and 18 carbon atoms and unsaturated 18:X (with X = 1-3) chains emerged as the most common fatty acyl substituents of those GPL; a characteristic 16:1 chain (including a C═C bond between carbon atoms 3 and 4) was also found in some PG species. Among polyunsaturated acyl chains, the 18:3 one, likely referred mainly to α-linolenic acid, exhibited a relevant incidence, with the highest estimated amount (corresponding to 160 mg per 100 g of lyophilized vegetal tissue) found for chia. This outcome opens interesting perspectives for the use of oleaginous microgreens as additional sources of essential fatty acids, especially in vegetarian/vegan diets.
Collapse
|
20
|
Impact of the Hydroponic Cropping System on Growth, Yield, and Nutrition of a Greek Sweet Onion (Allium cepa L.) Landrace. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nerokremmydo of Zakynthos, a Greek landrace of sweet onion producing a large bulb, was experimentally cultivated in a glasshouse using aeroponic, floating, nutrient film technique, and aggregate systems, i.e., AER, FL, NFT, and AG, respectively. The aim of the experiment was to compare the effects of these soilless culture systems (SCSs) on plant characteristics, including fresh and dry weight, bulb geometry, water use efficiency, tissue macronutrient concentrations, and uptake concentrations (UC), i.e., uptake ratios between macronutrients and water, during the main growth, bulbing, and maturation stages, i.e., 31, 62, and 95 days after transplanting. The plants grown in FL and AG yielded 7.87 and 7.57 kg m−2, respectively, followed by those grown in AER (6.22 kg m−2), while those grown in NFT produced the lowest yield (5.20 kg m−2). The volume of nutrient solution (NS) consumed per plant averaged 16.87 L, with NFT plants recording the least consumption. The SCS affected growth rate of new roots and “root mat” density that led to corresponding nutrient uptake differences. In NFT, reduced nutrient uptake was accompanied by reduced water consumption. The SCS and growth stage strongly affected tissue N, P, K, Ca, Mg, and S mineral concentrations and the respective UC. The UC of N and Κ followed a decreasing trend, while that of Mg decreased only until bulbing, and the UC of the remainder of the macronutrients increased slightly during the cropping period. The UC can be used as a sound basis to establish NS recommendations for cultivation of this sweet onion variety in closed SCSs.
Collapse
|
21
|
Castellaneta A, Losito I, Losacco V, Leoni B, Santamaria P, Calvano CD, Cataldi TRI. HILIC-ESI-MS analysis of phosphatidic acid methyl esters artificially generated during lipid extraction from microgreen crops. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4784. [PMID: 34528340 PMCID: PMC9286551 DOI: 10.1002/jms.4784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 05/14/2023]
Abstract
The uncontrolled activation of endogenous enzymes may introduce both qualitative and quantitative artefacts when lipids are extracted from vegetal matrices. In the present study, a method based on hydrophilic interaction liquid chromatography coupled either to high-resolution/accuracy Fourier-transform mass spectrometry (HILIC-ESI-FTMS) or to linear ion trap multiple stage mass spectrometry (HILIC-ESI-MSn , with n = 2 and 3) with electrospray ionization was developed to unveil one of those artefacts. Specifically, the artificial generation of methyl esters of phosphatidic acids (MPA), catalysed by endogenous phospholipase D (PLD) during lipid extraction from five oleaginous microgreen crops (chia, soy, flax, sunflower and rapeseed), was studied. Phosphatidylcholines (PC) and phosphatidylglycerols (PG) were found to be the most relevant precursors of MPA among glycerophospholipids (GPLs), being involved in a transphosphatidylation process catalysed by PLD and having methanol as a coreactant. The combination of MS2 and MS3 measurements enabled the unambiguous recognition of MPA from their fragmentation pathways, leading to distinguish them from isobaric PA including a further CH2 group on their side chains. PLD was also found to catalyse the hydrolysis of PC and PG to phosphatidic acids (PAs). The described transformations were confirmed by the remarkable decrease of MPA abundance observed when isopropanol, known to inhibit PLD, was tentatively adopted instead of water during the homogenization of microgreens. The unequivocal identification of MPA might be exploited to assess if GPL alterations are actually triggered by endogenous PLD during lipid extractions from specific vegetal tissues.
Collapse
Affiliation(s)
| | - Ilario Losito
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Valentina Losacco
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Beniamino Leoni
- Dipartimento di Scienze Agro‐Ambientali e TerritorialiUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Pietro Santamaria
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Dipartimento di Scienze Agro‐Ambientali e TerritorialiUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Cosima D. Calvano
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Dipartimento di Farmacia e Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Tommaso R. I. Cataldi
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
| |
Collapse
|
22
|
Gao M, He R, Shi R, Li Y, Song S, Zhang Y, Su W, Liu H. Combination of Selenium and UVA Radiation Affects Growth and Phytochemicals of Broccoli Microgreens. Molecules 2021; 26:molecules26154646. [PMID: 34361799 PMCID: PMC8348033 DOI: 10.3390/molecules26154646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 μmol/L Na2SeO3), UVA (40 μmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.
Collapse
|
23
|
Maina S, Ryu DH, Cho JY, Jung DS, Park JE, Nho CW, Bakari G, Misinzo G, Jung JH, Yang SH, Kim HY. Exposure to Salinity and Light Spectra Regulates Glucosinolates, Phenolics, and Antioxidant Capacity of Brassica carinata L. Microgreens. Antioxidants (Basel) 2021; 10:1183. [PMID: 34439431 PMCID: PMC8389028 DOI: 10.3390/antiox10081183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts' ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds' ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Da Seul Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Jai-Eok Park
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Gaymary Bakari
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| |
Collapse
|
24
|
Teng J, Liao P, Wang M. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food Funct 2021; 12:1914-1932. [PMID: 33595583 DOI: 10.1039/d0fo03299a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increasing public concern about health has prompted humans to find new sources of food. Microgreens are young and immature plants that have been recently introduced as a new category of vegetables, adapting their production at the micro-scale. In this paper, the chemical compositions including micro-nutrients and some typical phytochemicals of microgreens are summarized. Their edible safety and potential health benefits are also reviewed. Microgreens play an increasingly vital role in health-promoting diets. They are considered good sources of nutritional and bioactive compounds, and show potential in the prevention of malnutrition and chronic diseases. Some strategies in the pre- or post-harvest stages of microgreens can be further applied to obtain better nutritional, functional, and sensorial quality with freshness and extended shelf life. This review provides valuable nutrient data and health information for microgreens, laying a theoretical foundation for people to consume microgreens more wisely, and providing great value for the development of functional products with microgreens.
Collapse
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P.R. China and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| |
Collapse
|
25
|
De Pascale S, Arena C, Aronne G, De Micco V, Pannico A, Paradiso R, Rouphael Y. Biology and crop production in Space environments: Challenges and opportunities. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:30-37. [PMID: 33888285 DOI: 10.1016/j.lssr.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 05/09/2023]
Abstract
Long-term manned space-exploration missions and the permanence of human colonies on orbital stations or planetary habitats will require the regeneration of resources onboard or in-situ. Bioregenerative Life Support Systems (BLSSs) are artificial environments where different compartments, involving both living organisms and physical-chemical processes, are integrated to achieve a safe, self-regulating, and chemically balanced Earth-like environment to support human life. Higher plants are key elements of such systems and Space greenhouses represent the producers' compartment. Growing plants in Space requires the knowledge of their growth responses not only to all environmental factors acting on Earth, but also to specific Space constraints such as altered gravity, ionizing radiations and confined volume. Moreover, cultivation techniques need to be adjusted considering such limitations. The type and intensity of environmental factors to be taken into account depend on the mission scenarios. Here, we summarize constraints and opportunities of cultivating higher plants in Space to regenerate resources and produce fresh food onboard. Both biological and agro-technological issues are considered briefly going through experiments both ground-based on Earth and in Space.
Collapse
Affiliation(s)
- S De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - C Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - G Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - V De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy.
| | - A Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - R Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Y Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| |
Collapse
|
26
|
Sreeharsha RV, Venkata Mohan S. Symbiotic integration of bioprocesses to design a self-sustainable life supporting ecosystem in a circular economy framework. BIORESOURCE TECHNOLOGY 2021; 326:124712. [PMID: 33517050 DOI: 10.1016/j.biortech.2021.124712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Climate change, resource depletion and unsustainable crop productivity are major challenges that mankind is currently facing. Natural ecosystems of earth's biosphere are becoming vulnerable and there is a need to design Bioregenerative Life Support Systems (BLSS) which are ecologically engineered microcosms that could effectively deal with problems associated with urbanization and industrialization in a sustainable manner. The principles of BLSS could be integrated with waste fed biorefineries and solar energy to create a self-sustainable bioregenerative ecosystem (SSBE). Such engineered ecosystems will have potential to fulfil urban life essentials and climate change mitigation thus generating ecologically smart and resilient communities which can strengthen the global economy. This article provides a detailed overview on SSBE framework and its improvement in the contemporary era to achieve circular bioeconomy by means of effective resource recycling.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental, Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental, Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
27
|
Small Functional Foods: Comparative Phytochemical and Nutritional Analyses of Five Microgreens of the Brassicaceae Family. Foods 2021; 10:foods10020427. [PMID: 33672089 PMCID: PMC7919663 DOI: 10.3390/foods10020427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Microgreens are the seedlings of herbs and vegetables which are harvested at the development stage of their two cotyledonary leaves, or sometimes at the emergence of their rudimentary first pair of true leaves. They are functional foods, the consumption of which is steadily increasing due to their high nutritional value. The species of the Brassicaceae family are good sources of bioactive compounds, with a favorable nutritional profile. The present study analyzed some phytochemical compounds with nutritional values, such as chlorophylls, polyphenols, carotenoids, anthocyanins, ascorbic acid, total and reducing sugars, and the antioxidant activity of five Brassicaceae species: broccoli (Brassica oleracea L.), daikon (Raphanus raphanistrum subsp. sativus (L.) Domin), mustard (Brassica juncea (L.) Czern.), rocket salad (Eruca vesicaria (L.) Cav.), and watercress (Nasturtium officinale R.Br.). Broccoli had the highest polyphenol, carotenoid and chlorophyll contents, as well as a good antioxidant ability. Mustard was characterized by high ascorbic acid and total sugar contents. By contrast, rocket salad exhibited the lowest antioxidant content and activity. The essential oil (EO) composition of all of these species was determined in order to identify their profile and isothiocyanates content, which are compounds with many reported health benefits. Isothiocyanates were the most abundant group in broccoli (4-pentenyl isothiocyanate), mustard (allyl isothiocyanate), and watercress (benzyl isothiocyanate) EOs, while rocket salad and daikon exhibited higher contents of monoterpene hydrocarbons (myrcene) and oxygenated diterpenes (phytol), respectively. Broccoli microgreens exhibited the overall best nutritional profile, appearing as the most promising species to be consumed as a functional food among those analyzed.
Collapse
|
28
|
Acharya J, Gautam S, Neupane P, Niroula A. Pigments, ascorbic acid, and total polyphenols content and antioxidant capacities of beet ( Beta vulgaris) microgreens during growth. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1955924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jyoti Acharya
- Department of Food Technology, Nagarik College, Tribhuvan University, Nepal
| | - Sonila Gautam
- Department of Food Technology, Nagarik College, Tribhuvan University, Nepal
| | - Prakshya Neupane
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Nepal
| | - Anuj Niroula
- Department of Food Technology, Nagarik College, Tribhuvan University, Nepal
| |
Collapse
|
29
|
The Effect of Light on Antioxidant Properties and Metabolic Profile of Chia Microgreens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chia (Salvia hispanica L.) is a one-year plant known as a source of nutrients that can be consumed in the diet in the form of seeds or sprouts. The purpose of this study is to investigate the effect of illumination for 24 and 48 h on dark-grown chia microgreens. Total antioxidant capacity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays, along with the total phenolics, ascorbic acid and cellulose content, and chlorophyll and carotenoid concentrations. Fourier transform infrared spectroscopy (FTIR) was used to evaluate the biochemical composition and elucidate the changes in compound structures between dark-grown and illuminated chia microgreens. Analysis of the results showed that illumination significantly increased the content of all measured bioactive compounds as well as antioxidative capacity, especially 48 h after exposure to light. FTIR analyses supported structural and molecular changes in chia microgreens grown under different light regimes. Our results suggest that illumination has a positive effect on the antioxidant potential of chia microgreens, which may present a valuable addition to the human diet.
Collapse
|
30
|
Abstract
Microgreens are gaining increasing recognition among consumers, acclaimed for their freshness and health promoting properties associated with densely fortified secondary metabolites. These immature greens enhance human diet and enrich it with sharp colors and flavors. While numerous species are being tested for agronomic and nutritional suitability, consumer acceptance of appearance, texture, and flavor is critical for the microgreens’ marketplace success. This study investigates whether sensory attributes and visual appearance affect consumer preference for microgreens and their willingness to consume them. By means of a consumer test, the sensory attributes of 12 microgreens species were evaluated, wherein a partial least squares structural equation model was developed to link sensorial attributes to willingness to eat the product. The results showed that although visual appearance of the microgreens was largely appreciated, consumer acceptance overall was mainly determined by flavor and texture. In particular, the lower the astringency, sourness, and bitterness, the higher the consumer acceptability of microgreens. Among the 12 examined species, mibuna and cress scored the lowest acceptance by consumers, while Swiss chard and coriander were the most appreciated, being therefore good candidates to be introduced in Western country markets. In addition, both Swiss chard and coriander have been identified by previous literature as good dietary source of phenolic antioxidants.
Collapse
|
31
|
Ongoing Research on Microgreens: Nutritional Properties, Shelf-Life, Sustainable Production, Innovative Growing and Processing Approaches. Foods 2020; 9:foods9060826. [PMID: 32599782 PMCID: PMC7353615 DOI: 10.3390/foods9060826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Microgreens garner immense potential for improving the nutritional value of the human diet, considering their high content of healthy compounds. On the other hand, they are gaining more and more interest not only for their nutritional value but also for their interesting organoleptic traits and commercial potential. The purpose of this Special Issue is to publish high-quality research papers with the aim to cover the state-of-the-art, recent progress and perspectives related to production, post-harvest, characterization, and potential of microgreens. A broad range of aspects such as cultivation, post-harvest techniques and packaging, analytical methods, nutritional value, bioaccessibily and prospects are covered. All contributions are of significant relevance and could stimulate further research in this area.
Collapse
|
32
|
Caporale AG, Vingiani S, Palladino M, El-Nakhel C, Duri LG, Pannico A, Rouphael Y, De Pascale S, Adamo P. Geo-mineralogical characterisation of Mars simulant MMS-1 and appraisal of substrate physico-chemical properties and crop performance obtained with variable green compost amendment rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137543. [PMID: 32135285 DOI: 10.1016/j.scitotenv.2020.137543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The configuration of a biologically fertile substrate for edible plant growth during long-term manned missions to Mars constitutes one of the main challenges in space research. Mars regolith amendment with compost derived from crew and crop waste in bioregenerative life support systems (BLSS) may generate a substrate able to extend crew autonomy and long-term survival in space. In this context, the aim of our work was threefold: first, to study the geochemistry and mineralogy of Mojave Mars Simulant (MMS-1) and the physico-chemical and hydraulic properties of mixtures obtained by mixing MMS-1 and green compost at varying rates (0:100, 30:70, 70:30, 100:0; v:v); secondly, to evaluate the potential use of MMS-1 as a growing medium of two lettuce (Lactuca sativa L.) cultivars; thirdly, to assess how compost addition may impact on sustainability of space agriculture by exploiting in situ resources. MMS-1 is a coarse-textured alkaline substrate consisting mostly of plagioclase, amorphous material and secondarily of zeolite, hematite and smectites. Although it can be a source of nutrients, it lacks organic matter, nitrogen, phosphorus and sulphur, which may be supplied by compost. Both cultivars grew well on all mixtures for 19 days under fertigation. Red Salanova lettuce produced a statistically higher dry biomass, leaf number and area than Green Salanova. Leaf area and plant dry biomass were the highest on 30:70 simulant:compost mixture. Nevertheless, the 70:30 mixture was the best substrate in terms of pore-size distribution for water-plant relationship and the best compromise for plant growth and sustainable use of compost, a limited resource in BLSS. Many remaining issues warrant further investigation concerning the dynamics of compost production, standardisation of supply during space missions and representativeness of simulants to real Mars regolith.
Collapse
Affiliation(s)
- Antonio G Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Simona Vingiani
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Interdepartmental Research Centre on the 'Earth Critical Zone' for Supporting the Landscape and Agroenvironment Management (CRISP), University of Naples Federico II, Portici, Italy.
| | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi G Duri
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Interdepartmental Research Centre on the 'Earth Critical Zone' for Supporting the Landscape and Agroenvironment Management (CRISP), University of Naples Federico II, Portici, Italy
| |
Collapse
|
33
|
Peiro E, Pannico A, Colleoni SG, Bucchieri L, Rouphael Y, De Pascale S, Paradiso R, Gòdia F. Air Distribution in a Fully-Closed Higher Plant Growth Chamber Impacts Crop Performance of Hydroponically-Grown Lettuce. FRONTIERS IN PLANT SCIENCE 2020; 11:537. [PMID: 32477383 PMCID: PMC7237739 DOI: 10.3389/fpls.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The MELiSSA Pilot Plant (MPP) is testing in terrestrial conditions regenerative life support technologies for human exploration in Space. One of its components is a controlled Higher Plant Chamber (HPC) accommodating hydroponic plant cultures. It consists of a 9 m3 single closed growth chamber providing adequate environmental conditions for growing plants, enabling the production of food, water and oxygen for the crew. A critical aspect for a reliable HPC performance is to achieve homogeneous air distribution. The initial experiment carried out in the MPP with lettuce as salad crop, showed uneven plant growth throughout the HPC, which was attributed to inadequate air distribution due to non-homogeneous air velocity profile along the inlet-vents. After a detailed computational fluid dynamics (CFD) analysis, the heating, ventilation, and air conditioning subsystem of the HPC was upgraded and a new experiment was carried out in optimized air flow conditions. Nine-day seedlings of lettuce cultivar "Grand Rapids" were transplanted into the HPC and harvested at the end of the growing cycle, where shoot fresh weight, dry biomass, and shoot mineral composition were analyzed. During the experiment, the environmental control system performed remarkably well based on the biometric measurements as well as the mineral composition leading to a vast homogeneous growth. Overall, the results demonstrated the beneficial effect of an adequate air distribution system in HPCs and the effectiveness of CFD-analysis to design properly the gas distribution. The obtained results are of high relevance for life support systems in space involving plants growth.
Collapse
Affiliation(s)
- Enrique Peiro
- MELiSSA Pilot Plant – Claude Chipaux Laboratory, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centre d’Estudis I Recerca Espacials, Institut d’Estudis Espacials de Catalunya, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesc Gòdia
- MELiSSA Pilot Plant – Claude Chipaux Laboratory, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centre d’Estudis I Recerca Espacials, Institut d’Estudis Espacials de Catalunya, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Marzioli P, Gugliermetti L, Santoni F, Delfini A, Piergentili F, Nardi L, Metelli G, Benvenuto E, Massa S, Bennici E. CultCube: Experiments in autonomous in-orbit cultivation on-board a 12-Units CubeSat platform. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:42-52. [PMID: 32414492 DOI: 10.1016/j.lssr.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
The feasibility and design of the CultCube 12U CubeSat hosting a small Environmental Control and Life Support Systems (ECLSS) for the autonomous cultivation of a small plant in orbit is described. The satellite is aimed at running experiments in fruit plants growing for applications in crewed vehicles for long-term missions in space. CultCube is mainly composed of a pressurized vessel, constituting the outer shell of the ECLSS, and by various environmental controls (water, nutrients, air composition and pressure, light, etc.) aimed at maintaining a survivable habitat for the fruit plants to grow. The plant health status and growth performances is monitored using hyperspectral cameras installed within the vessel, able to sense leaves' chlorophyll content and temperature, and allowing the estimation of plant volume in all its life cycle phases. The paper study case is addressed to the in-orbit experimental cultivation of a dwarf tomato plant (MicroTom), which was modified for enhancing the anti-oxidants production and for growing in stressful environments. While simulated microgravity tests have been passed by the MicroTom plant, the organism behaviour in a real microgravity environment for a full seed-to-seed cycle needs to be tested. The CultCube 12U CubeSat mission presents no particular requirements on the kind of orbit, whereas its minimum significative duration corresponds to one seed-to-seed cycle for the plant, which is 90 days for the paper study case. In the paper, after an introduction on the importance of an autonomous testbed for plant cultivation, in the perspective of the implementation of bioregenerative systems on-board future manned long-term missions, the satellite design and the MicroTom engineered plant for in-orbit growth are described. In addition to the description of the whole set of subsystems, with focus on the payload and its controllers and instrumentation, the system budgets are presented. Finally, the first tests conducted by the authors are briefly reported.
Collapse
Affiliation(s)
- Paolo Marzioli
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy.
| | - Luca Gugliermetti
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Santoni
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Andrea Delfini
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Fabrizio Piergentili
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Luca Nardi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Giulio Metelli
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Eugenio Benvenuto
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Massa
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Elisabetta Bennici
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
35
|
Setup of an Extraction Method for the Analysis of Carotenoids in Microgreens. Foods 2020; 9:foods9040459. [PMID: 32276423 PMCID: PMC7231143 DOI: 10.3390/foods9040459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023] Open
Abstract
Microgreens are gaining increasing interest as a potential functional food due to their relevant contents of micronutrients and bioactive compounds, including carotenoids. Nevertheless, the analysis of carotenoids is inherently difficult, due to their thermal and chemical susceptibility, as well as to their varying polarity. From this point of view, extraction is the most critical step, compared to chromatographic separation and detection. Thus, the reliability of data on carotenoids should be guaranteed by a constant focus on analytical issues, with appropriate adaptations to each sample matrix. In this research, a specific extraction procedure for the analysis of carotenoids in microgreens was developed. Solvent composition, extraction time, solvent/sample ratio, and repeated extractions were evaluated. The obtained protocol showed recovery of 97.2%, limits of quantitation of 5.2 μg·g−1 for lutein and 15.9 μg·g−1 for β-carotene, as well as intra-day mean repeatability of 5.7% and inter-day mean repeatability of 4.7%.
Collapse
|
36
|
El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Giordano M, Ritieni A, De Pascale S, Rouphael Y. Variation in Macronutrient Content, Phytochemical Constitution and In Vitro Antioxidant Capacity of Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity. Antioxidants (Basel) 2020; 9:antiox9040300. [PMID: 32260224 PMCID: PMC7222179 DOI: 10.3390/antiox9040300] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Rising life expectancy and the demanding modern lifestyle drive the growing appeal of healthy and balanced diets centered on vegetable and fruit consumption. Functional, phytonutrient-packed and principally raw food is in high demand. Microgreens constitute such a novel functional food that combines a high sensory and bioactive value, which invites comparison to their mature-leaf counterparts. For this purpose, a controlled environment chamber experiment was carried out to compare the mineral, phytochemical and antioxidant capacity attributes of two-pigmented Lactuca sativa L. var. capitata cultivars (green and red Salanova®) harvested at the microgreens and the mature-leaf stage. Macronutrients were assessed through ion chromatography, while carotenoids and polyphenols were assessed and quantified through HPLC-DAD and UHPLC-Q-Orbitrap HRMS, respectively. Calcium and magnesium were higher in microgreens irrespective of the cultivar; conversely, phosphorous, potassium and nitrate where higher in mature leaves. All pigments including chlorophyll, lutein and β-carotene augmented at advanced maturity stage and were more concentrated in the red pigmented cultivar at both stages. Total polyphenols accumulated more densely in red Salanova, particularly in the microgreens stage; whereas, in green Salanova, the accumulation was significant but less pronounced in the mcirogreens stage. Chlorogenic acid, quercetin malonyl glucoside, rutin and coumaroyl quinic acid were the most concentrated phenolic acids in microgreens, while feruloyl tartaric acid was predominant in mature leaves. Finally, when a high carotenoids content is sought, mature lettuce leaves should be the prime culinary choice, whereas high polyphenolic content is dictated by both the cultivar and the harvest stage, with red Salanova microgreens being the most nutrient-packed choice.
Collapse
Affiliation(s)
- Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
- Correspondence: ; Tel.: +39-081-2539-134
| |
Collapse
|
37
|
Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Soteriou GA, Giordano M, Palladino M, Ritieni A, De Pascale S, Rouphael Y. Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants (Basel) 2020; 9:E252. [PMID: 32244953 PMCID: PMC7139710 DOI: 10.3390/antiox9030252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
The present study examined the modulatory effects of natural fiber substrates (agave fiber, coconut fiber and peat moss) and synthetic alternatives (capillary mat and cellulose sponge) on the nutritive and phytochemical composition of select microgreens species (coriander, kohlrabi and pak choi) grown in a controlled environment. Polyphenols were analyzed by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro-minerals by ion chromatography. Microgreens grown on peat moss had outstanding fresh and dry yield but low dry matter content. Natural fiber substrates increased nitrate and overall macro-mineral concentrations in microgreens compared to synthetic substrates. The concentrations of chlorophylls, carotenoids and ascorbate were influenced primarily by species. On the contrary, variability in polyphenols content was wider between substrates than species. Out of twenty phenolic compounds identified, chlorogenic acid and quercetin-3-O-rutinoside were most abundant. Hydroxycinnamic acids and their derivatives accounted for 49.8% of mean phenolic content across species, flavonol glycosides for 48.4% and flavone glycosides for 1.8%. Peat moss provided optimal physicochemical conditions that enhanced microgreens growth rate and biomass production at the expense of phenolic content. In this respect, the application of controlled stress (eustress) on microgreens growing on peat moss warrants investigation as a means of enhancing phytochemical composition without substantial compromise in crop performance and production turnover. Finally, nitrate deprivation practices should be considered for microgreens grown on natural fiber substrates in order to minimize consumer exposure to nitrate.
Collapse
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Georgios A. Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| |
Collapse
|
38
|
Zhang X, Bian Z, Li S, Chen X, Lu C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13577-13588. [PMID: 31730344 DOI: 10.1021/acs.jafc.9b05594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light-emitting diode (LED) based light sources, which can selectively and quantitatively provide different spectra, have been frequently applied to manipulate plant growth and development. In this study, the effects of different LED light spectra on the growth, phenolic compounds profile, antioxidant capacity, and transcriptional changes in genes regulating phenolic biosynthesis in soybean microgreens were investigated. The results showed that light illumination decreased the seedling length and yield but increased phenolic compound content. Blue light and ultraviolet-A (UV-A) induced significant increases in total phenolic and total flavonoid content, as compared with the white light control. Sixty-six phenolic compounds were identified in the soybean samples, of which isoflavone, phenolic acid, and flavonol were the main components. Ten phenolic compounds obtained from the orthogonal partial least-squares discriminant analysis (OPLS-DA) were reflecting the effect of light spectra. The antioxidant capacity was consistent with the phenolic metabolite levels, which showed higher levels under blue light and UV-A compared with the control. The highest transcript levels of phenolic biosynthesis-related genes were observed under blue light and UV-A. The transcript levels of GmCHI, GmFLS, and GmIOMT were also upregulated under far-red and red light. Taken together, our findings suggested that the application of LED light could pave a green and effective way to produce phenolic compound-enriched soybean microgreens with high nutritional quality, which could stimulate further investigations for improving plant nutritional value and should have a wide impact on maintaining human health.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Zhonghua Bian
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Shuai Li
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Xin Chen
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| |
Collapse
|
39
|
Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Soteriou GA, Giordano M, Zarrelli A, Ritieni A, De Pascale S, Rouphael Y. Genotype-Specific Modulatory Effects of Select Spectral Bandwidths on the Nutritive and Phytochemical Composition of Microgreens. FRONTIERS IN PLANT SCIENCE 2019; 10:1501. [PMID: 31850015 PMCID: PMC6896982 DOI: 10.3389/fpls.2019.01501] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
Advanced analytical data on microgreens' response to different light spectra constitutes a valuable resource for designing future crop-specific spectral management systems. The current study defined variation in productivity, nutritive and functional quality (mineral-carotenoid-polyphenolic profiles and antioxidant capacity) of novel microgreens (amaranth, cress, mizuna, purslane) in response to select spectral bandwidths (red, blue, blue-red), and appraised clustering patterns configured by the genotype-light-spectrum nexus. Growth parameters dependent on primary metabolism were most favored by blue-red light's efficiency in activating the photosynthetic apparatus. Nitrate accumulation was higher under monochromatic light owing to the dependency of nitrite reductase on the light-driven activity of PSI, most efficiently promoted by blue-red light. Although mineral composition was mostly genotype-dependent, monochromatic red and blue lights tended to increase K and Na and decrease Ca and Mg concentrations. Lutein, β-carotene, and lipophilic antioxidant capacity were generally increased by blue-red light putatively due to the coupling of heightened photosynthetic activity to increased demand for protection against oxidative stress; the disparate response however of purslane highlights the importance of genotype specificity in these responses and calls for additional investigation. Analysis of polyphenols by Orbitrap LC-MS/MS revealed substantial genotypic differences. Most abundant phenolics were chlorogenic acid (x ¯ = 5503 µg g-1 dw), feruloylquinic acid (x ¯ = 974.1 µg g-1 dw), and caffeoyl feruloyl tartaric acid (x ¯ = 993 µg g-1 dw). Hydroxycinnamic acids accounted for 79.0% of the mean total phenolic content across species, flavonol glycosides for 20.7%, and flavone glycosides for 0.3%. The general response across species was a decrease in individual polyphenolic constituents, particularly flavonol glycosides, and total polyphenols under blue-red light. The pronounced effectiveness of monochromatic blue light in eliciting synthesis of flavonoids could be linked to their capacity for absorbing shorter wavelengths thereby quenching generated photo-oxidation potential. The light-induced stimulation of the phenylpropanoid pathway by monochromatic blue light through epigenetic mechanisms or redox signaling in the photosynthetic apparatus warrants further investigation. The current work highlights how optimized genetic background combined with effective light management might facilitate the production of superior functional quality microgreens.
Collapse
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
40
|
Brazaitytė A, Viršilė A, Samuolienė G, Vaštakaitė-Kairienė V, Jankauskienė J, Miliauskienė J, Novičkovas A, Duchovskis P. Response of Mustard Microgreens to Different Wavelengths and Durations of UV-A LEDs. FRONTIERS IN PLANT SCIENCE 2019; 10:1153. [PMID: 31681343 PMCID: PMC6811603 DOI: 10.3389/fpls.2019.01153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/23/2019] [Indexed: 05/25/2023]
Abstract
Ultraviolet A (UV-A) light-emitting diodes (LEDs) could serve as an effective tool for improving the content of health-promoting bioactive compounds in plants in controlled-environment agriculture (CEA) systems. The goal of this study was to investigate the effects of UV-A LEDs at different wavelengths (366, 390, and 402 nm) and durations (10 and 16 h) on the growth and phytochemical contents of mustard microgreens (Brassica juncea L. cv. "Red Lion"), when used as supplemental light to the main LED lighting system (with peak wavelengths of 447, 638, 665, and 731 nm). Plants were grown for 10 days under a total photon flux density (TPFD) of 300 µmol m-2 s-1 and 16-h light/8-h dark period. Different UV-A wavelengths and irradiance durations had varied effects on mustard microgreens. Supplemental UV-A radiation did not affect biomass accumulation; however, the longest UV-A wavelength (402 nm) increased the leaf area of mustard microgreens, regardless of the duration of irradiance. The concentration of the total phenolic content and α-tocopherol mostly increased under 402-nm UV-A, while that of nitrates increased under 366- and 390-nm UV-A at both radiance durations. The contents of lutein/zeaxanthin and β-carotene increased in response to the shortest UV-A wavelength (366 nm) at 10-h irradiance as well as longer UV-A wavelength (390 nm) at 16 h irradiance. The most positive effect on the accumulation of mineral elements, except iron, was observed under longer UV-A wavelengths at 16-h irradiance. Overall, these results suggest that properly composed UV-A LED parameters in LED lighting systems could improve the nutritional quality of mustard microgreens, without causing any adverse effects on plant growth.
Collapse
|
41
|
El-Nakhel C, Giordano M, Pannico A, Carillo P, Fusco GM, De Pascale S, Rouphael Y. Cultivar-Specific Performance and Qualitative Descriptors for Butterhead Salanova Lettuce Produced in Closed Soilless Cultivation as a Candidate Salad Crop for Human Life Support in Space. Life (Basel) 2019; 9:life9030061. [PMID: 31337144 PMCID: PMC6789809 DOI: 10.3390/life9030061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/26/2022] Open
Abstract
Plant production is crucial for space journeys self-autonomy by contributing to the dietary intake necessary to sustain the physical and psychological well-being of space colonists, as well as for contributing to atmospheric revitalization, water purification and waste product recycling. Choosing the appropriate cultivar is equally important as the species selection, since cultivar influences the obtained fresh biomass, water use efficiency (WUE), growing cycle duration, qualitative features and postharvest performance. Two differently pigmented butterhead Lactuca sativa L. (red and green Salanova) cultivars were assessed in terms of morphometric, mineral, bioactive and physiological parameters. The experiment was carried out in a controlled environment growth chamber using a closed soilless system (nutrient film technique). Red Salanova registered a biomass of 130 g at harvest, which was 22.1% greater than green Salanova, and a water uptake of 1.42 L during the full growing period corresponding to WUE of 91.9 g L−1, which was 13.8% higher than that of green Salanova. At harvest, green Salanova had accumulated more P, K, Ca, Mg and 37.2% more nitrate than red Salanova, which however had higher relative water content, leaf total and osmotic potential and higher SPAD index. Red Salanova also exhibited at harvest around two-fold higher lipophilic antioxidant activity and total phenols, and around six-fold higher total ascorbic acid levels. These latter characteristics improved the antioxidant capacity of red Salanova enabling it to use light more efficiently and deliver better overall performance and yield than green Salanova. Moreover, the higher phenolics and total ascorbic acid contents of red Salanova constitute natural sources of antioxidants for enriching the human diet and render it an optimal candidate cultivar for near-term missions.
Collapse
Affiliation(s)
- Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| |
Collapse
|
42
|
de la Fuente B, López-García G, Máñez V, Alegría A, Barberá R, Cilla A. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods 2019; 8:foods8070250. [PMID: 31324050 PMCID: PMC6679176 DOI: 10.3390/foods8070250] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Microgreens constitute an emerging class of fresh, healthy foods due to their nutritional composition. In this study the content of minerals and antioxidant bioactive compounds, and for the first time bioaccessibility, were evaluated in broccoli (Brassica oleracea L. var. italica Plenck), green curly kale (Brassica oleracea var. sabellica L.), red mustard (Brassica juncea (L.) Czern.) and radish (Raphanus sativus L.) hydroponic microgreens. Macro- (K, Ca, Mg) and oligo-elements (Fe, Zn), ascorbic acid, total soluble polyphenols, total carotenoids, total anthocyanins, total isothiocyanates and total antioxidant capacity (Trolox Equivalent Antioxidant Capacity and Oxygen Radical Absorbance Capacity) were determined before and after the standardized simulated gastrointestinal digestion process. All microgreens provided relevant amounts of vitamin C (31-56 mg/100 g fresh weight) and total carotenoids (162-224 mg β-carotene/100 g dry weight). Mineral content was comparable to that normally found in hydroponic microgreens and the low potassium levels observed would allow their dietetic recommendation for patients with impaired kidney function. Both total soluble polyphenols and total isothiocyanates were the greatest contributors to the total antioxidant capacity after digestion (43-70% and 31-63% bioaccessibility, respectively) while macroelements showed an important bioaccessibility (34-90%). In general, radish and mustard presented the highest bioaccessibility of bioactive compounds and minerals. Overall, the four hydroponic Brassicaceae microgreens present a wide array of antioxidant bioactive compounds.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Vicent Máñez
- CIAM (Centro de Innovación Agronómico_Grupo Alimentario Citrus), Avda. dels Gremis, Parcela 28. Pol. Ind. Sector 13, Riba-roja de Túria, 46394 Valencia, Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| |
Collapse
|
43
|
Rouphael Y, Petropoulos SA, El-Nakhel C, Pannico A, Kyriacou MC, Giordano M, Troise AD, Vitaglione P, De Pascale S. Reducing Energy Requirements in Future Bioregenerative Life Support Systems (BLSSs): Performance and Bioactive Composition of Diverse Lettuce Genotypes Grown Under Optimal and Suboptimal Light Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:1305. [PMID: 31736990 PMCID: PMC6831738 DOI: 10.3389/fpls.2019.01305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/19/2019] [Indexed: 05/14/2023]
Abstract
Space farming for fresh food production is essential for sustaining long-duration space missions and supporting human life in space colonies. However, several obstacles need to be overcome including abnormal light conditions and energy limitations in maintaining Bioregenerative Life Support Systems (BLSSs). The aim of the present study was to evaluate six lettuce cultivars (baby Romaine, green Salanova, Lollo verde, Lollo rossa, red oak leaf and red Salanova) of different types and pigmentations under optimal and suboptimal light intensity and to identify the most promising candidates for BLSSs. Baby Romaine performed better than the rest of the tested cultivars under suboptimal light intensity, demonstrating a more efficient light-harvesting mechanism. Stomatal resistance increased under suboptimal light conditions, especially in the case of Lollo verde and red oak leaf cultivars, indicating stress conditions, whereas intrinsic water-use efficiency was the highest in baby Romaine and red oak leaf cultivars regardless of light regime. Nitrate content increased under suboptimal light intensity, especially in the cultivars green Salanova and Lollo verde, while P and Ca accumulation trends were also observed in baby Romaine and Lollo verde cultivars, respectively. Chicoric acid was the major detected phenolic acid in the hydroxycinnamic derivatives sub-class, followed by chlorogenic, caffeoyl-tartaric and caffeoyl-meso-tartaric acids. Chicoric and total hydroxycinnamic acids were not affected by light intensity, whereas the rest of the detected phenolic compounds showed a varied response to light intensity. Regarding cultivar response, red oak leaf exhibited the highest content in chicoric acid and total hydroxycinnamic acids content under suboptimal light intensity, whereas red Salanova exhibited the highest hydroxycinnamic derivatives profile under optimal light conditions. The main detected carotenoids were β-cryptoxanthin and violaxanthin+neoxanthin, followed by lutein and β-carotene. All the target carotenoids decreased significantly under low light intensity, while red Salanova maintained a distinct carotenoids profile. Overall, cultivation of assorted lettuce cultivars is the optimal scenario for space farming, where baby Romaine could provide adequate amounts of fresh biomass owing to its high light-use efficiency while red oak leaf and red Salanova could contribute to the daily dietary requirements for health-promoting bioactive compounds such as polyphenols and carotenoids.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- *Correspondence: Youssef Rouphael, ; Stefania De Pascale,
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- *Correspondence: Youssef Rouphael, ; Stefania De Pascale,
| |
Collapse
|
44
|
Rouphael Y, Kyriacou MC. Quality and safety of fresh fruits and vegetables at harvest. SCIENTIA HORTICULTURAE 2018; 239:78-79. [PMID: 0 DOI: 10.1016/j.scienta.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
45
|
Berni R, Cantini C, Romi M, Hausman JF, Guerriero G, Cai G. Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. Int J Mol Sci 2018; 19:E2248. [PMID: 30071603 PMCID: PMC6121869 DOI: 10.3390/ijms19082248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
The identification and use of species that have best adapted to their growth territory is of paramount importance to preserve biodiversity while promoting sustainable agricultural practices. Parameters including resistance to natural conditions (biotic and abiotic risk factors), biomass and fruit productivity, and phytochemical content with nutraceutical potential, could be used as quantitative markers of the adaptability of plants to wild environments characterized by minimal human impact. Ancient varieties, which are plant varieties growing in regional territories and not destined for market distribution, are a source of unique genetic characters derived from many years of adaptation to the original territory. These plants are often more resistant to biotic and abiotic stresses. In addition, these varieties have a high phytochemical (also known as bioactives) content considered health-beneficial. Notably, the content of these compounds is often lower in commercial cultivars. The use of selected territorial varieties according to the cultivation area represents an opportunity in the agricultural sector in terms of biodiversity preservation, environmental sustainability, and valorization of the final products. Our survey highlights the nutraceutical potential of ancient local varieties and stresses the importance of holistic studies (-omics) to investigate their physiology and secondary metabolism.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Claudio Cantini
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Marco Romi
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
46
|
The Multiplanetary Future of Plant Synthetic Biology. Genes (Basel) 2018; 9:genes9070348. [PMID: 29996548 PMCID: PMC6071031 DOI: 10.3390/genes9070348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
The interest in human space journeys to distant planets and moons has been re-ignited in recent times and there are ongoing plans for sending the first manned missions to Mars in the near future. In addition to generating oxygen, fixing carbon, and recycling waste and water, plants could play a critical role in producing food and biomass feedstock for the microbial manufacture of materials, chemicals, and medicines in long-term interplanetary outposts. However, because life on Earth evolved under the conditions of the terrestrial biosphere, plants will not perform optimally in different planetary habitats. The construction or transportation of plant growth facilities and the availability of resources, such as sunlight and liquid water, may also be limiting factors, and would thus impose additional challenges to efficient farming in an extraterrestrial destination. Using the framework of the forthcoming human missions to Mars, here we discuss a series of bioengineering endeavors that will enable us to take full advantage of plants in the context of a Martian greenhouse. We also propose a roadmap for research on adapting life to Mars and outline our opinion that synthetic biology efforts towards this goal will contribute to solving some of the main agricultural and industrial challenges here on Earth.
Collapse
|
47
|
Renna M, Castellino M, Leoni B, Paradiso VM, Santamaria P. Microgreens Production with Low Potassium Content for Patients with Impaired Kidney Function. Nutrients 2018; 10:E675. [PMID: 29861444 PMCID: PMC6024851 DOI: 10.3390/nu10060675] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease represents a global problem together with other so-called 'lifestyle-related diseases'. Unlike the healthy population, for the patients with impaired kidney function, it is of course prudent to recommend a restriction of high-potassium foods. Thus, it is suggested to limit the consumption of vegetables, because they generally contain high concentrations of potassium. At the same time, a lower consumption of vegetables reduces the intake of healthy compounds such as vitamins, fibers, and antioxidants, which also reduces the vegetables' potential benefit in chronic kidney disease patients. Microgreens are an emerging class of specialty crop that represent a nutritious and refined food. In this study, for the first time, some chicory (local variety 'Molfetta' and cultivar 'Italico a costa rossa') and lettuce (cultivar 'Bionda da taglio') genotypes were grown using a hydroponic system with different potassium (K) levels (0, 29.1, 58.4, and 117 mg L-1) in order to produce microgreens with a low potassium content. The crop performances, cations content, proximate composition, and antioxidant activity were analyzed. Independent of the genotype, the K content in the microgreens was successfully reduced using a nutrient solution (NS), without K or with 29.1 mg K L-1, which supplied between 103 and 129 mg of K 100 g-1 FW (about 7.7⁻8.6% of the K daily intake that was recommended for the patients that were affected by chronic kidney disease). Whereas, 100 g of microgreens that were grown by using an NS with 58.4 or 117 mg K L-1 supply between 225 and 250 mg of K (about 15.8⁻16.5% of the K daily intake recommended for patients affected by chronic kidney disease). No differences were observed in terms of the shoot height, dry matter, proximate composition, and visual quality. A slightly lower yield was observed using an NS with a K concentration.
Collapse
Affiliation(s)
- Massimiliano Renna
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
| | - Maria Castellino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
| | - Beniamino Leoni
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
| | - Vito Michele Paradiso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|