1
|
Ahmed S, Qasim M, Sardar R, Yasin NA, Umar I. Multidimensional role of selenium nanoparticles to promote growth and resilience dynamics of Phaseolus vulgaris against sodium fluoride stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-18. [PMID: 39679530 DOI: 10.1080/15226514.2024.2440110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
High fluoride (F) concentrations negatively affect the seed germination, plant growth, development, and yield of crops. Phaseolus vulgaris L. is an F-sensitive crop frequently grown on marginal lands affected by F salts. Selenium (Se) is a vital elicitor of the antioxidative enzymes involved in scavenging free radicals to alleviate abiotic stress. Recent studies have demonstrated that engineered nanoparticles (NPs) have the potential to induce tolerance to abiotic stress in plants. Phytosynthesis of NPs is a novel and sustainable approach to mitigate abiotic stresses. The present study was intended to assess the role of green synthesized Se-nanoparticles (Se-NPs) in improving the physiochemical attributes, growth, and F stress tolerance of P. vulgaris growing in 200 ppm sodium fluoride (NaF) stress. NaF toxicity reduced Chl a, Chl b, and carotenoid content by 88.8%, 95.5%, and 96% compared to control with maximum improvement obtained through phyto-nano seed priming and foliar spray of 70 ppm Se-NPs. The joint treatment of NPs application through seed priming and foliar spray improved stomatal conductance (14.2%) and transpiration rate (11.7%) in plants subjected to NaF stress. The protein content (91.02%) and DPPH activity (33.72%) decreased under NaF stress, which was improved by phyto-nano seed priming and foliar spray (14.10%). Furthermore, the integrated application of Se-NPs seed priming and foliar spray increased nutritional content (P, K, Ca, Mg, and Zn), proline, ascorbic acid, and phenol yet reduced the level of NaF in plants. Se-NPs at 70 ppm were found to be more effective than 60 ppm in all modes of applications. Our results reveal a perception that Se-NPs increase P. vulgaris growth in NaF stress conditions, perhaps through a multipronged approach: improving photosynthetic content, nutrient uptake, and yield of P. vulgaris. Consequently, the findings of this study may be used for breeding and screening F-tolerant cultivars.
Collapse
Affiliation(s)
- Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Mehtab Qasim
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Department of Biological and Environmental Sciences, Emerson University, Multan, Pakistan
| | - Nasim Ahmad Yasin
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Ismat Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
3
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
4
|
Wang X, Ran C, Fu Y, Han L, Yang X, Zhu W, Zhang H, Zhang Y. Application of Exogenous Ascorbic Acid Enhances Cold Tolerance in Tomato Seedlings through Molecular and Physiological Responses. Int J Mol Sci 2024; 25:10093. [PMID: 39337579 PMCID: PMC11432314 DOI: 10.3390/ijms251810093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ascorbic acid (AsA), an essential non-enzymatic antioxidant in plants, regulates development growth and responses to abiotic and biotic stresses. However, research on AsA's role in cold tolerance remains largely unknown. Here, our study uncovered the positive role of AsA in improving cold stress tolerance in tomato seedlings. Physiological analysis showed that AsA significantly enhanced the enzyme activity of the antioxidant defense system in tomato seedling leaves and increased the contents of proline, sugar, abscisic acid (ABA), and endogenous AsA. In addition, we found that AsA is able to protect the photosynthetic system of tomato seedlings, thereby relieving the declining rate of chlorophyll fluorescence parameters. qRT-PCR analysis indicated that AsA significantly increased the expression of genes encoding antioxidant enzymes and involved in AsA synthesis, ABA biosynthesis/signal transduction, and low-temperature responses in tomato. In conclusion, the application of exogenous AsA enhances cold stress tolerance in tomato seedlings through various molecular and physiological responses. This provides a theoretical foundation for exploring the regulatory mechanisms underlying cold tolerance in tomato and offers practical guidance for enhancing cold tolerance in tomato cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| |
Collapse
|
5
|
Chen Z, Qiu S, Xie Y, Li M, Bi Q, He Z, Ge S. Attached indigenous microalgal-bacterial consortium with greater stress-resistance facilitated recovery of integrated fixed-film system after experiencing short-term stagnation inhibition. BIORESOURCE TECHNOLOGY 2024; 406:130997. [PMID: 38897550 DOI: 10.1016/j.biortech.2024.130997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Stability of integrated fixed-film indigenous microalgal-bacterial consortium (IF-IMBC) requires further investigation. This study focused on the influence of short-term stagnation (STS), caused by influent variations or equipment maintenance, on IF-IMBC. Results showed that the IF-IMBC system experienced initial inhibition followed by subsequent recovery during STS treatment. Enhanced organics utilization was believed to contribute to system recovery. It is proposed that the attached IMBC possessed greater stress resistance. On the one hand, a higher increase in bacteria potentially participating in organic degradation was observed. Moreover, the dominant eukaryotic species significantly decreased in suspended IMBC while its abundance remained stable in the attached state. On the other hand, increased abundance for most functional enzymes was primarily observed in the attached bacteria. This fundamental research aims to bridge the knowledge gap regarding the response of IMBC to variations in operational conditions.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yue Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Qian Bi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhaoming He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
6
|
Morales-Merida BE, Grimaldi-Olivas JC, Cruz-Mendívil A, Villicaña C, Valdez-Torres JB, Heredia JB, León-Chan RG, Lightbourn-Rojas LA, Monribot-Villanueva JL, Guerrero-Analco JA, Ruiz-May E, León-Félix J. Integrating Proteomics and Metabolomics Approaches to Elucidate the Mechanism of Responses to Combined Stress in the Bell Pepper ( Capsicum annuum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1861. [PMID: 38999705 PMCID: PMC11244445 DOI: 10.3390/plants13131861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Bell pepper plants are sensitive to environmental changes and are significantly affected by abiotic factors such as UV-B radiation and cold, which reduce their yield and production. Various approaches, including omics data integration, have been employed to understand the mechanisms by which this crop copes with abiotic stress. This study aimed to find metabolic changes in bell pepper stems caused by UV-B radiation and cold by integrating omic data. Proteome and metabolome profiles were generated using liquid chromatography coupled with mass spectrometry, and data integration was performed in the plant metabolic pathway database. The combined stress of UV-B and cold induced the accumulation of proteins related to photosynthesis, mitochondrial electron transport, and a response to a stimulus. Further, the production of flavonoids and their glycosides, as well as affecting carbon metabolism, tetrapyrrole, and scopolamine pathways, were identified. We have made the first metabolic regulatory network map showing how bell pepper stems respond to cold and UV-B stress. We did this by looking at changes in proteins and metabolites that help with respiration, photosynthesis, and the buildup of photoprotective and antioxidant compounds.
Collapse
Affiliation(s)
- Brandon Estefano Morales-Merida
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - Jesús Christian Grimaldi-Olivas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- CONAHCYT-Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Guasave 81101, Sinaloa, Mexico
| | - Claudia Villicaña
- CONAHCYT-Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - José Benigno Valdez-Torres
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - J Basilio Heredia
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - Rubén Gerardo León-Chan
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A.C., Carretera las Pampas Km 2.5, Jiménez 33980, Chihuahua, Mexico
| | - Luis Alberto Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A.C., Carretera las Pampas Km 2.5, Jiménez 33980, Chihuahua, Mexico
| | - Juan L Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Veracruz, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Veracruz, Mexico
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| |
Collapse
|
7
|
Ceasar SA, Prabhu S, Ebeed HT. Protein research in millets: current status and way forward. PLANTA 2024; 260:43. [PMID: 38958760 DOI: 10.1007/s00425-024-04478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India.
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India
| | - Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
8
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
9
|
Xiao B, Feng X, Li P, Sui Z. Analysis of Hyperosmotic Tolerance Mechanisms in Gracilariopsis lemaneiformis Based on Weighted Co-Expression Network Analysis. Genes (Basel) 2024; 15:781. [PMID: 38927717 PMCID: PMC11203144 DOI: 10.3390/genes15060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‱, 45‱, and 60‱) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network analysis was conducted. The blue, red, and tan modules were most closely associated with salinity, while the black, cyan, light cyan, and yellow modules showed a close correlation with strain attributes. KEGG enrichment of genes from the aforementioned modules revealed that the key enrichment pathways for salinity attributes included the proteasome and carbon fixation in photosynthesis, whereas the key pathways for strain attributes consisted of lipid metabolism, oxidative phosphorylation, soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE) interactions in vesicular transport, and porphyrin and chlorophyll metabolism. Gene expression for the proteasome and carbon fixation in photosynthesis was higher in all strains at 60‱. In addition, gene expression in the proteasome pathway was higher in the X5-60 than Ctr-60 and X3-60. Based on the above data and relevant literature, we speculated that mutant X5 likely copes with high salt stress by upregulating genes related to lysosome and carbon fixation in photosynthesis. The proteasome may be reset to adjust the organism's proteome composition to adapt to high-salt environments, while carbon fixation may aid in maintaining material and energy metabolism for normal life activities by enhancing carbon dioxide uptake via photosynthesis. The differences between the X5-30 and Ctr-30 expression of genes involved in the synthesis of secondary metabolites, oxidative phosphorylation, and SNARE interactions in vesicular transport suggested that the X5-30 may differ from Ctr-30 in lipid metabolism, energy metabolism, and vesicular transport. Finally, among the key pathways with good correlation with salinity and strain traits, the key genes with significant correlation with salinity and strain traits were identified by correlation analysis.
Collapse
Affiliation(s)
| | | | | | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; (B.X.); (X.F.); (P.L.)
| |
Collapse
|
10
|
Jamil HMA, Gatasheh MK, Ahmad R, Ibrahim KE, Khan SA, Irshad U, Shahzad M, Abbasi AM. Ectomycorrhiza and ethylenediurea reduced the impact of high nitrogen and ozone stresses and increased the growth of Cedrus deodara. Heliyon 2024; 10:e28635. [PMID: 38586366 PMCID: PMC10998246 DOI: 10.1016/j.heliyon.2024.e28635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Cedrus deodara is the central conifer plant affected by ozone and nitrogen pollutants among forest species worldwide. The growth of C. deodara depends upon the ectomycorrhizal (ECM) association, which is usually disturbed by these factors. This study aims to understand how these factors affect plants at physiological and biochemical levels. Three fungal strain consortiums were inoculated with two-year-old C. deodara seedlings. The stresses of 100 kg N h-1and 100 ppb O3 were applied for six months to study their impact on chlorophyll and antioxidant enzymes (SOD, CAT, and APX). The results showed that C2 (Consortium of Cedrus deodara) positively impacted the growth of selected plant species. The high photosynthesis rate was determined by enhanced chlorophyll content, and C2-treated plants showed high chlorophyll content. Relatively, chlorophyll a and b contents increased significantly in the seedlings treated with Ethylenediurea (EDU) alone and with ozone stress. In addition, a significant difference was observed between EDU and O3-treated plants (14% EDU400-O3 and 23% EDU600-O3) and the control. Overall, antioxidant activities were higher in the treated samples than in the control. The order of SOD activity was C2 (448 U/gFW) and lowest (354.7 U/gFW) in control. APX also showed higher activity in treated plants in C1 ≥ C2 ≥ C3+O3, whereas CAT activity was the highest in C2 treatments. Ozone and nitrogen-stressed plants showed higher activities than EDU-treated plants compared to non-treated ones. Our findings highlight the importance of understanding the signaling effects of numerous precursors. Moreover, an extended investigation of seedlings developing into trees must be conducted to verify the potential of ectomycorrhizal strains associated with C. deodara and comprehend EDU's role as a direct molecular scavenger of reactive toxicants.
Collapse
Affiliation(s)
- Hafiz Muhammad Ansab Jamil
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| |
Collapse
|
11
|
Mukherjee A, Maheshwari U, Sharma V, Sharma A, Kumar S. Functional insight into multi-omics-based interventions for climatic resilience in sorghum (Sorghum bicolor): a nutritionally rich cereal crop. PLANTA 2024; 259:91. [PMID: 38480598 DOI: 10.1007/s00425-024-04365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION The article highlights omics-based interventions in sorghum to combat food and nutritional scarcity in the future. Sorghum with its unique ability to thrive in adverse conditions, has become a tremendous highly nutritive, and multipurpose cereal crop. It is resistant to various types of climatic stressors which will pave its way to a future food crop. Multi-omics refers to the comprehensive study of an organism at multiple molecular levels, including genomics, transcriptomics, proteomics, and metabolomics. Genomic studies have provided insights into the genetic diversity of sorghum and led to the development of genetically improved sorghum. Transcriptomics involves analysing the gene expression patterns in sorghum under various conditions. This knowledge is vital for developing crop varieties with enhanced stress tolerance. Proteomics enables the identification and quantification of the proteins present in sorghum. This approach helps in understanding the functional roles of specific proteins in response to stress and provides insights into metabolic pathways that contribute to resilience and grain production. Metabolomics studies the small molecules, or metabolites, produced by sorghum, provides information about the metabolic pathways that are activated or modified in response to environmental stress. This knowledge can be used to engineer sorghum varieties with improved metabolic efficiency, ultimately leading to better crop yields. In this review, we have focused on various multi-omics approaches, gene expression analysis, and different pathways for the improvement of Sorghum. Applying omics approaches to sorghum research allows for a holistic understanding of its genome function. This knowledge is invaluable for addressing challenges such as climate change, resource limitations, and the need for sustainable agriculture.
Collapse
Affiliation(s)
- Ananya Mukherjee
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Uma Maheshwari
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Vishal Sharma
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ankush Sharma
- Plant Genome Mapping Laboratory, Crop and Soil Science, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173230, India
| |
Collapse
|
12
|
Perron N, Kirst M, Chen S. Bringing CAM photosynthesis to the table: Paving the way for resilient and productive agricultural systems in a changing climate. PLANT COMMUNICATIONS 2024; 5:100772. [PMID: 37990498 PMCID: PMC10943566 DOI: 10.1016/j.xplc.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Modern agricultural systems are directly threatened by global climate change and the resulting freshwater crisis. A considerable challenge in the coming years will be to develop crops that can cope with the consequences of declining freshwater resources and changing temperatures. One approach to meeting this challenge may lie in our understanding of plant photosynthetic adaptations and water use efficiency. Plants from various taxa have evolved crassulacean acid metabolism (CAM), a water-conserving adaptation of photosynthetic carbon dioxide fixation that enables plants to thrive under semi-arid or seasonally drought-prone conditions. Although past research on CAM has led to a better understanding of the inner workings of plant resilience and adaptation to stress, successful introduction of this pathway into C3 or C4 plants has not been reported. The recent revolution in molecular, systems, and synthetic biology, as well as innovations in high-throughput data generation and mining, creates new opportunities to uncover the minimum genetic tool kit required to introduce CAM traits into drought-sensitive crops. Here, we propose four complementary research avenues to uncover this tool kit. First, genomes and computational methods should be used to improve understanding of the nature of variations that drive CAM evolution. Second, single-cell 'omics technologies offer the possibility for in-depth characterization of the mechanisms that trigger environmentally controlled CAM induction. Third, the rapid increase in new 'omics data enables a comprehensive, multimodal exploration of CAM. Finally, the expansion of functional genomics methods is paving the way for integration of CAM into farming systems.
Collapse
Affiliation(s)
- Noé Perron
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA
| | - Matias Kirst
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA; School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
13
|
Perveen S, Padula MP, Safdar N, Abbas S. Functional annotation of proteins in Catharanthus roseus shoot cultures under biogenic zinc nanotreatment. PLANT MOLECULAR BIOLOGY 2024; 114:26. [PMID: 38459275 DOI: 10.1007/s11103-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Nano-interactions are well known for their positive as well as negative impacts on the morphological and physiological systems of plants. Keeping in mind, the conformational changes in plant proteins as one of the key mechanisms for stress adaptation responses, the current project was designed to explore the effect of glutathione-capped and uncapped zinc nano-entities on Catharanthus roseus shoot cultures. Zinc nanotreatment (0.05 μg/mL) significantly induced ester production in C. roseus shoots as detected by Gas Chromatography-Mass spectrometry. These nanotreated shoots were further subjected to peptide-centric nano-LC-MS/MS analysis. Mass spectrometry followed by a Heat map revealed a significant effect of zinc nanoparticles on 59 distinct classes of proteins as compared to control. Proteins involved in regulating stress scavenging, transport, and secondary metabolite biosynthesis were robustly altered under capped zinc nanotreatment. UniProt database identified majority of the localization of the abundantly altered protein in cell membranes and chloroplasts. STRING and Cytoscape analysis assessed inter and intra coordination of triosephosphate isomerase with other identified proteins and highlighted its role in the regulation of protein abundance under applied stress. This study highlights the understanding of complex underlying mechanisms and regulatory networks involved in proteomic alterations and interactions within the plant system to cope with the nano-effect.
Collapse
Affiliation(s)
- Shaghufta Perveen
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Naila Safdar
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Sidra Abbas
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
14
|
Nouraei S, Mia MS, Liu H, Turner NC, Khan JM, Yan G. Proteomic analysis of near-isogenic lines reveals key biomarkers on wheat chromosome 4B conferring drought tolerance. THE PLANT GENOME 2024; 17:e20343. [PMID: 37199103 DOI: 10.1002/tpg2.20343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Drought is a major constraint for wheat production that is receiving increased attention due to global climate change. This study conducted isobaric tags for relative and absolute quantitation proteomic analysis on near-isogenic lines to shed light on the underlying mechanism of qDSI.4B.1 quantitative trait loci (QTL) on the short arm of chromosome 4B conferring drought tolerance in wheat. Comparing tolerant with susceptible isolines, 41 differentially expressed proteins were identified to be responsible for drought tolerance with a p-value of < 0.05 and fold change >1.3 or <0.7. These proteins were mainly enriched in hydrogen peroxide metabolic activity, reactive oxygen species metabolic activity, photosynthetic activity, intracellular protein transport, cellular macromolecule localization, and response to oxidative stress. Prediction of protein interactions and pathways analysis revealed the interaction between transcription, translation, protein export, photosynthesis, and carbohydrate metabolism as the most important pathways responsible for drought tolerance. The five proteins, including 30S ribosomal protein S15, SRP54 domain-containing protein, auxin-repressed protein, serine hydroxymethyltransferase, and an uncharacterized protein with encoding genes on 4BS, were suggested as candidate proteins responsible for drought tolerance in qDSI.4B.1 QTL. The gene coding SRP54 protein was also one of the differentially expressed genes in our previous transcriptomic study.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Javed M Khan
- Proteomics International, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
15
|
Park B, Wi S, Chung H, Lee H. Chlorophyll Fluorescence Imaging for Environmental Stress Diagnosis in Crops. SENSORS (BASEL, SWITZERLAND) 2024; 24:1442. [PMID: 38474977 DOI: 10.3390/s24051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The field of plant phenotype is used to analyze the shape and physiological characteristics of crops in multiple dimensions. Imaging, using non-destructive optical characteristics of plants, analyzes growth characteristics through spectral data. Among these, fluorescence imaging technology is a method of evaluating the physiological characteristics of crops by inducing plant excitation using a specific light source. Through this, we investigate how fluorescence imaging responds sensitively to environmental stress in garlic and can provide important information on future stress management. In this study, near UV LED (405 nm) was used to induce the fluorescence phenomenon of garlic, and fluorescence images were obtained to classify and evaluate crops exposed to abiotic environmental stress. Physiological characteristics related to environmental stress were developed from fluorescence sample images using the Chlorophyll ratio method, and classification performance was evaluated by developing a classification model based on partial least squares discrimination analysis from the image spectrum for stress identification. The environmental stress classification performance identified from the Chlorophyll ratio was 14.9% in F673/F717, 25.6% in F685/F730, and 0.209% in F690/F735. The spectrum-developed PLS-DA showed classification accuracy of 39.6%, 56.2% and 70.7% in Smoothing, MSV, and SNV, respectively. Spectrum pretreatment-based PLS-DA showed higher discrimination performance than the existing image-based Chlorophyll ratio.
Collapse
Affiliation(s)
- Beomjin Park
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| | - Seunghwan Wi
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Wanju 55365, Republic of Korea
| | - Hwanjo Chung
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| | - Hoonsoo Lee
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
16
|
Deng CH, Naithani S, Kumari S, Cobo-Simón I, Quezada-Rodríguez EH, Skrabisova M, Gladman N, Correll MJ, Sikiru AB, Afuwape OO, Marrano A, Rebollo I, Zhang W, Jung S. Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences. Database (Oxford) 2023; 2023:baad088. [PMID: 38079567 PMCID: PMC10712715 DOI: 10.1093/database/baad088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.
Collapse
Affiliation(s)
- Cecilia H Deng
- Molecular and Digital Breeding, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
| | - Irene Cobo-Simón
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute of Forest Science (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Elsa H Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria Skrabisova
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Nick Gladman
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Melanie J Correll
- Agricultural and Biological Engineering Department, University of Florida, 1741 Museum Rd, Gainesville, FL 32611, USA
| | | | | | - Annarita Marrano
- Phoenix Bioinformatics, 39899 Balentine Drive, Suite 200, Newark, CA 94560, USA
| | | | - Wentao Zhang
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sook Jung
- Department of Horticulture, Washington State University, 303c Plant Sciences Building, Pullman, WA 99164-6414, USA
| |
Collapse
|
17
|
Horemans N, Kariuki J, Saenen E, Mysara M, Beemster GTS, Sprangers K, Pavlović I, Novak O, Van Hees M, Nauts R, Duarte GT, Cuypers A. Are Arabidopsis thaliana plants able to recover from exposure to gamma radiation? A molecular perspective. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107304. [PMID: 37871537 DOI: 10.1016/j.jenvrad.2023.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants.
Collapse
Affiliation(s)
- Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium.
| | - Jackline Kariuki
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - May Van Hees
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | | | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
18
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
19
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
20
|
Liu M, Zhao G, Huang X, Pan T, Chen W, Qu M, Ouyang B, Yu M, Shabala S. Candidate regulators of drought stress in tomato revealed by comparative transcriptomic and proteomic analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1282718. [PMID: 37936934 PMCID: PMC10627169 DOI: 10.3389/fpls.2023.1282718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Drought is among the most common abiotic constraints of crop growth, development, and productivity. Integrating different omics approaches offers a possibility for deciphering the metabolic pathways and fundamental mechanisms involved in abiotic stress tolerance. Here, we explored the transcriptional and post-transcriptional changes in drought-stressed tomato plants using transcriptomic and proteomic profiles to determine the molecular dynamics of tomato drought stress responses. We identified 22467 genes and 5507 proteins, among which the expression of 3765 genes and 294 proteins was significantly changed under drought stress. Furthermore, the differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) showed a good correlation (0.743). The results indicated that integrating different omics approaches is promising in exploring the multilayered regulatory mechanisms of plant drought resistance. Gene ontology (GO) and pathway analysis identified several GO terms and pathways related to stress resistance, including response to stress, abiotic stimulus, and oxidative stress. The plant hormone abscisic acid (ABA) plays pivotal roles in response to drought stress, ABA-response element binding factor (AREB) is a key positive regulator of ABA signaling. Moreover, our analysis indicated that drought stress increased the abscisic acid (ABA) content, which activated AREB1 expression to regulate the expression of TAS14, GSH-Px-1, and Hsp, ultimately improving tomato drought resistance. In addition, the yeast one-hybrid assay demonstrated that the AREB1 could bind the Hsp promoter to activate Hsp expression. Thus, this study involved a full-scale analysis of gene and protein expression in drought-stressed tomato, deepening the understanding of the regulatory mechanisms of the essential drought-tolerance genes in tomato.
Collapse
Affiliation(s)
- Minmin Liu
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Ting Pan
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Mei Qu
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
- School of Biological Science, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
21
|
Tiwari PN, Tiwari S, Sapre S, Tripathi N, Payasi DK, Singh M, Thakur S, Sharma M, Tiwari S, Tripathi MK. Prioritization of Physio-Biochemical Selection Indices and Yield-Attributing Traits toward the Acquisition of Drought Tolerance in Chickpea ( Cicer arietinum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3175. [PMID: 37765339 PMCID: PMC10534892 DOI: 10.3390/plants12183175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Chickpea is widely grown in rainfed areas of developing countries because of its nutritional abundance and adaptability. To overcome the environmental effect of drought on yield, a characteristic-linked selection strategy is proved as well-thought-out and advantageous for the development of drought-tolerant cultivars. To precisely understand the contribution of various physio-biochemical and yield-attributing traits toward drought tolerance in chickpea (Cicer arietinum L.), forty chickpea genotypes were evaluated in the years 2020-2021 and 2021-2022 under normal irrigated as well as drought-stressed conditions. Among the studied genotypes, genotype ICC4958 retained the highest chl content (0.55 mg g-1 FW), minimal electrolyte leakage, and superoxide dismutase (1.48 U/mg FW) and peroxidase (2.21 µmol/min/g FW) activities while cultivar JG11 maintained the maximum relative water content and proline accumulation. The principal-component-based biplots prioritized the physio-biochemical and yield-accrediting characteristics based on their association significance and contribution to terminal drought tolerance. Under drought stress, grain yield per plant was depicted to have a strongly positive association with canopy temperature depression, catalase, superoxide dismutase, and peroxidase activities as well as total soluble sugar, proline, and chlorophyll content, along with the numbers of pods and biological yield per plant. These identified physio-biochemical and yield-attributing traits can be further deployed to select drought-tolerant chickpea genotypes for the breeding of climate-smart chickpea genotypes.
Collapse
Affiliation(s)
- Prakash N. Tiwari
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Swapnil Sapre
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Niraj Tripathi
- Directorate of Research, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India;
| | | | - Mrinalini Singh
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Satyendra Thakur
- Department of Plant Physiology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India;
| | - Mohini Sharma
- Department of Plant Molecular Biology and Biotechnology, Rajmata Vijyaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India; (M.S.); (S.T.)
| | - Sushma Tiwari
- Department of Plant Molecular Biology and Biotechnology, Rajmata Vijyaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India; (M.S.); (S.T.)
| | - Manoj Kumar Tripathi
- Department of Plant Molecular Biology and Biotechnology, Rajmata Vijyaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India; (M.S.); (S.T.)
| |
Collapse
|
22
|
Mitalo OW, Kang SW, Tran LT, Kubo Y, Ariizumi T, Ezura H. Transcriptomic analysis in tomato fruit reveals divergences in genes involved in cold stress response and fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1227349. [PMID: 37575935 PMCID: PMC10416649 DOI: 10.3389/fpls.2023.1227349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Cold storage is widely used to extend the postharvest life of most horticultural crops, including tomatoes, but this practice triggers cold stress and leads to the development of undesirable chilling injury (CI) symptoms. The underlying mechanisms of cold stress response and CI development in fruits remain unclear as they are often intermingled with fruit ripening changes. To gain insight into cold responses in fruits, we examined the effect of the potent ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) on fruit ripening, CI occurrence and gene expression in mature green tomatoes during storage at 20°C and 5°C. 1-MCP treatments effectively inhibited ethylene production and peel color changes during storage at 20°C. Storage at 5°C also inhibited both ethylene production and peel color change; during rewarming at 20°C, 1-MCP treatments inhibited peel color change but failed to inhibit ethylene production. Furthermore, fruits stored at 5°C for 14 d developed CI symptoms (surface pitting and decay) during the rewarming period at 20°C regardless of 1-MCP treatment. Subsequent RNA-Seq analysis revealed that cold stress triggers a large-scale transcriptomic adjustment, as noticeably more genes were differentially expressed at 5°C (8,406) than at 20°C (4,814). More importantly, we have found some important divergences among genes involved in fruit ripening (up- or down-regulated at 20°C; inhibited by 1-MCP treatment) and those involved in cold stress (up- or down-regulated at 5°C; unaffected by 1-MCP treatment). Transcriptomic adjustments unique to cold stress response were associated with ribosome biogenesis, NcRNA metabolism, DNA methylation, chromatin formation/remodeling, and alternative splicing events. These data should foster further research into cold stress response mechanisms in fruits with the ultimate aim of improving tolerance to low temperature and reduction of CI symptoms during cold storage.
Collapse
Affiliation(s)
- Oscar W. Mitalo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seung Won Kang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Long T. Tran
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Witaszak N. Global Proteome Profiling Revealed the Adaptive Reprogramming of Barley Flag Leaf to Drought and Elevated Temperature. Cells 2023; 12:1685. [PMID: 37443719 PMCID: PMC10340373 DOI: 10.3390/cells12131685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (A.K.); (P.K.); (M.K.); (N.W.)
| | | | | | | | | |
Collapse
|
24
|
Conti V, Parrotta L, Romi M, Del Duca S, Cai G. Tomato Biodiversity and Drought Tolerance: A Multilevel Review. Int J Mol Sci 2023; 24:10044. [PMID: 37373193 DOI: 10.3390/ijms241210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
25
|
Singh V, Gupta K, Singh S, Jain M, Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1156606. [PMID: 37287713 PMCID: PMC10242046 DOI: 10.3389/fpls.2023.1156606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
Drought stress affects growth and productivity significantly in chickpea. An integrated multi-omics analysis can provide a better molecular-level understanding of drought stress tolerance. In the present study, comparative transcriptome, proteome and metabolome analyses of two chickpea genotypes with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the molecular mechanisms underlying drought stress response/tolerance. Pathway enrichment analysis of differentially abundant transcripts and proteins suggested the involvement of glycolysis/gluconeogenesis, galactose metabolism, and starch and sucrose metabolism in the DT genotype. An integrated multi-omics analysis of transcriptome, proteome and metabolome data revealed co-expressed genes, proteins and metabolites involved in phosphatidylinositol signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways, specifically in the DT genotype under drought. These stress-responsive pathways were coordinately regulated by the differentially abundant transcripts, proteins and metabolites to circumvent the drought stress response/tolerance in the DT genotype. The QTL-hotspot associated genes, proteins and transcription factors may further contribute to improved drought tolerance in the DT genotype. Altogether, the multi-omics approach provided an in-depth understanding of stress-responsive pathways and candidate genes involved in drought tolerance in chickpea.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Shubhangi Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
26
|
Li S, Zhou Y, Downs CA, Yuan S, Hou M, Li Q, Zhong X, Zhong F. Proteomics and Lysine Acetylation Modification Reveal the Responses of Pakchoi ( Brassica rapa L. ssp. chinensis) to Oxybenzone Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37216206 DOI: 10.1021/acs.jafc.2c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The broad-spectrum UV filter oxybenzone is toxic to plants at environmentally relevant concentrations. Lysine acetylation (LysAc) is one of the essential post-translational modifications (PTMs) in plant signaling responses. The goal of this study was to uncover the LysAc regulatory mechanism in response to toxic exposures to oxybenzone as a first step in elucidating xenobiotic acclimatory reactions by using the model Brassica rapa L. ssp. chinensis. A total of 6124 sites on 2497 proteins were acetylated, 63 proteins were differentially abundant, and 162 proteins were differentially acetylated under oxybenzone treatment. Bioinformatics analysis showed that a large number of antioxidant proteins were significantly acetylated under oxybenzone treatment, implying that LysAc alleviated the adverse effects of reactive oxygen species (ROS) by inducing antioxidant systems and stress-related proteins; the significant changes in acetylation modification of enzymes involved in different branches of carbon metabolism in plants under oxybenzone treatment mean that plants can change the direction of carbon flow allocation by regulating the activities of carbon metabolism-related enzymes. Our results profile the protein LysAc under oxybenzone treatment and propose an adaptive mechanism at the post-translational level of vascular plants in response to pollutants, providing a dataset reference for future related research.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, Virginia 24533, United States
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Cheng'du 610299, China
| | - Xin Zhong
- Institute of Marine Science and Technology, Shandong University, Qing'dao 266237, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| |
Collapse
|
27
|
Yu X, Wei P, Zhao S, Chen Z, Li X, Zhang W, Liu C, Yang Y, Li X, Liu X. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau. PLANT CELL REPORTS 2023; 42:879-893. [PMID: 36973418 DOI: 10.1007/s00299-023-03005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Positive selection genes are related to metabolism, while differentially expressed genes are related to photosynthesis, suggesting that genetic adaptation and expression regulation may play independent roles in different gene classes. Genome-wide investigation of the molecular mechanisms for high-altitude adaptation is an intriguing topic in evolutionary biology. The Qinghai-Tibet Plateau (QTP) with its extremely variable environments is an ideal site for studying high-altitude adaptation. Here, we used transcriptome data of 100 individuals from 20 populations collected from various altitudes on the QTP to investigate the adaptive mechanisms of the aquatic plant Batrachium bungei at both the genetic and transcriptional level. To explore genes and biological pathways that may contribute to QTP adaptation, we employed a two-step approach, in which we identified positively selected genes and differentially expressed genes using the landscape genomic and differential expression approaches. The positive selection analysis showed that genes involved in metabolic regulation played a crucial role in B. bungei adaptation to the extreme environments of the QTP, especially intense ultraviolet radiation. Altitude-based differential expression analysis suggested that B. bungei could increase the rate of energy dissipation or reduce the efficiency of light energy absorption by down regulating the expression of photosynthesis-related genes to adapt to the strong ultraviolet radiation. Weighted gene co-expression network analysis identified ribosomal genes as hubs of altitude adaptation in B. bungei. Only a small part of genes (about 10%) overlapped between positively selected genes and differentially expressed genes in B. bungei, suggesting that genetic adaptation and gene expression regulation might play relatively independent roles in different categories of functional genes. Taken together, this study enriches our understanding of the high-altitude adaptation mechanism of B. bungei on the QTP.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China.
| |
Collapse
|
28
|
Yang H, Qiao KW, Teng JJ, Chen JB, Zhong YL, Rao LQ, Xiong XY, Li H. Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat. HORTICULTURE RESEARCH 2023; 10:uhad023. [PMID: 37786860 PMCID: PMC10541525 DOI: 10.1093/hr/uhad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 10/04/2023]
Abstract
Cold acclimation is a complex biological process leading to the development of freezing tolerance in plants. In this study, we demonstrated that cold-induced expression of protease inhibitor FmASP in a Citrus-relative species kumquat [Fortunella margarita (Lour.) Swingle] contributes to its freezing tolerance by minimizing protein degradation. Firstly, we found that only cold-acclimated kumquat plants, despite extensive leaf cellular damage during freezing, were able to resume their normal growth upon stress relief. To dissect the impact of cold acclimation on this anti-freezing performance, we conducted protein abundance assays and quantitative proteomic analysis of kumquat leaves subjected to cold acclimation (4°C), freezing treatment (-10°C) and post-freezing recovery (25°C). FmASP (Against Serine Protease) and several non-specific proteases were identified as differentially expressed proteins induced by cold acclimation and associated with stable protein abundance throughout the course of low-temperature treatment. FmASP was further characterized as a robust inhibitor of multiple proteases. In addition, heterogeneous expression of FmASP in Arabidopsis confirmed its positive role in freezing tolerance. Finally, we proposed a working model of FmASP and illustrated how this extracellular-localized protease inhibitor protects proteins from degradation, thereby maintaining essential cellular function for post-freezing recovery. These findings revealed the important role of protease inhibition in freezing response and provide insights on how this role may help develop new strategies to enhance plant freezing tolerance.
Collapse
Affiliation(s)
- Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Germplasm Innovation and Crop Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Ke-wei Qiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jin-jing Teng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jia-bei Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying-li Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Li-qun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xing-yao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Crop Utilization, Hunan Agricultural University, Changsha 410128, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Huang Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
29
|
Bisht A, Saini DK, Kaur B, Batra R, Kaur S, Kaur I, Jindal S, Malik P, Sandhu PK, Kaur A, Gill BS, Wani SH, Kaur B, Mir RR, Sandhu KS, Siddique KHM. Multi-omics assisted breeding for biotic stress resistance in soybean. Mol Biol Rep 2023; 50:3787-3814. [PMID: 36692674 DOI: 10.1007/s11033-023-08260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.
Collapse
Affiliation(s)
- Ashita Bisht
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
- CSK Himachal Pradesh Krishi Vishvavidyalaya, Highland Agricultural Research and Extension Centre, 175142, Kukumseri, Lahaul and Spiti, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India.
| | - Baljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, 25004, Meerut, India
| | - Sandeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ishveen Kaur
- Agriculture, Environmental and Sustainability Sciences, College of sciences, University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA
| | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Palvi Malik
- , Gurdev Singh Khush Institute of Genetics, Plant Breeding and Biotechnology, Punjab Agricultural University,, 141004, Ludhiana, India
| | - Pawanjit Kaur Sandhu
- Department of Chemistry, University of British Columbia, V1V 1V7, Okanagan, Kelowna, Canada
| | - Amandeep Kaur
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Balwinder Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Shabir Hussain Wani
- MRCFC Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Shalimar, India
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, 33430, Belle Glade, Florida, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, 193201, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, 6001, Perth, WA, Australia.
| |
Collapse
|
30
|
Poza-Viejo L, Redondo-Nieto M, Matías J, Granado-Rodríguez S, Maestro-Gaitán I, Cruz V, Olmos E, Bolaños L, Reguera M. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep 2023; 13:4951. [PMID: 36973333 PMCID: PMC10043034 DOI: 10.1038/s41598-023-32114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Quinoa is an Andean crop whose cultivation has been extended to many different parts of the world in the last decade. It shows a great capacity for adaptation to diverse climate conditions, including environmental stressors, and, moreover, the seeds are very nutritious in part due to their high protein content, which is rich in essential amino acids. They are gluten-free seeds and contain good amounts of other nutrients such as unsaturated fatty acids, vitamins, or minerals. Also, the use of quinoa hydrolysates and peptides has been linked to numerous health benefits. Altogether, these aspects have situated quinoa as a crop able to contribute to food security worldwide. Aiming to deepen our understanding of the protein quality and function of quinoa seeds and how they can vary when this crop is subjected to water-limiting conditions, a shotgun proteomics analysis was performed to obtain the proteomes of quinoa seeds harvested from two different water regimes in the field: rainfed and irrigated conditions. Differentially increased levels of proteins determined in seeds from each field condition were analysed, and the enrichment of chitinase-related proteins in seeds harvested from rainfed conditions was found. These proteins are described as pathogen-related proteins and can be accumulated under abiotic stress. Thus, our findings suggest that chitinase-like proteins in quinoa seeds can be potential biomarkers of drought. Also, this study points to the need for further research to unveil their role in conferring tolerance when coping with water-deficient conditions.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | | | - Verónica Cruz
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
31
|
Machado J, Vasconcelos MW, Soares C, Fidalgo F, Heuvelink E, Carvalho SMP. Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism. PLANTS (BASEL, SWITZERLAND) 2023; 12:1181. [PMID: 36904041 PMCID: PMC10005627 DOI: 10.3390/plants12051181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to understand the morphophysiological responses and primary metabolism of tomato seedlings subjected to mild levels of nitrogen and/or water deficit (50% N and/or 50% W). After 16 days of exposure, plants grown under the combined deficit showed similar behavior to the one found upon exposure to single N deficit. Both N deficit treatments resulted in a significantly lower dry weight, leaf area, chlorophyll content, and N accumulation but in a higher N use efficiency when compared to control (CTR) plants. Moreover, concerning plant metabolism, at the shoot level, these two treatments also responded in a similar way, inducing higher C/N ratio, nitrate reductase (NR) and glutamine synthetase (GS) activity, expression of RuBisCO encoding genes as well as a downregulation of GS2.1 and GS2.2 transcripts. Interestingly, plant metabolic responses at the root level did not follow the same pattern, with plants under combined deficit behaving similarly to W deficit plants, resulting in enhanced nitrate and proline concentrations, NR activity, and an upregulation of GS1 and NR genes than in CTR plants. Overall, our data suggest that the N remobilization and osmoregulation strategies play a relevant role in plant acclimation to these abiotic stresses and highlight the complexity of plant responses under a combined N+W deficit.
Collapse
Affiliation(s)
- Joana Machado
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal;
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Marta W. Vasconcelos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristiano Soares
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal;
| |
Collapse
|
32
|
da Camara N, Dubery IA, Piater LA. Proteome Analysis of Nicotiana tabacum Cells following Isonitrosoacetophenone Treatment Reveals Defence-Related Responses Associated with Priming. PLANTS (BASEL, SWITZERLAND) 2023; 12:1137. [PMID: 36903995 PMCID: PMC10005295 DOI: 10.3390/plants12051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Proteins play an essential regulatory role in the innate immune response of host plants following elicitation by either biotic or abiotic stresses. Isonitrosoacetophenone (INAP), an unusual oxime-containing stress metabolite, has been investigated as a chemical inducer of plant defence responses. Both transcriptomic and metabolomic studies of various INAP-treated plant systems have provided substantial insight into this compound's defence-inducing and priming capabilities. To complement previous 'omics' work in this regard, a proteomic approach of time-dependent responses to INAP was followed. As such, Nicotiana tabacum (N. tabacum) cell suspensions were induced with INAP and changes monitored over a 24-h period. Protein isolation and proteome analysis at 0, 8, 16 and 24 h post-treatment were performed using two-dimensional electrophoresis followed by the gel-free eight-plex isobaric tags for relative and absolute quantitation (iTRAQ) based on liquid chromatography and mass spectrometry. Of the identified differentially abundant proteins, 125 were determined to be significant and further investigated. INAP treatment elicited changes to the proteome that affected proteins from a wide range of functional categories: defence, biosynthesis, transport, DNA and transcription, metabolism and energy, translation and signalling and response regulation. The possible roles of the differentially synthesised proteins in these functional classes are discussed. Results indicate up-regulated defence-related activity within the investigated time period, further highlighting a role for proteomic changes in priming as induced by INAP treatment.
Collapse
|
33
|
Moghadam A, Foroozan E, Tahmasebi A, Taghizadeh MS, Bolhassani M, Jafari M. System network analysis of Rosmarinus officinalis transcriptome and metabolome-Key genes in biosynthesis of secondary metabolites. PLoS One 2023; 18:e0282316. [PMID: 36862714 PMCID: PMC9980811 DOI: 10.1371/journal.pone.0282316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Medicinal plants contain valuable compounds that have attracted worldwide interest for their use in the production of natural drugs. The presence of compounds such as rosmarinic acid, carnosic acid, and carnosol in Rosmarinus officinalis has made it a plant with unique therapeutic effects. The identification and regulation of the biosynthetic pathways and genes will enable the large-scale production of these compounds. Hence, we studied the correlation between the genes involved in biosynthesis of the secondary metabolites in R. officinalis using proteomics and metabolomics data by WGCNA. We identified three modules as having the highest potential for the metabolite engineering. Moreover, the hub genes highly connected to particular modules, TFs, PKs, and transporters were identified. The TFs of MYB, C3H, HB, and C2H2 were the most likely candidates associated with the target metabolic pathways. The results indicated that the hub genes including Copalyl diphosphate synthase (CDS), Phenylalanine ammonia lyase (PAL), Cineole synthase (CIN), Rosmarinic acid synthase (RAS), Tyrosine aminotransferase (TAT), Cinnamate 4-hydroxylase (C4H), and MYB58 are responsible for biosynthesis of important secondary metabolites. Thus, we confirmed these results using qRT-PCR after treating R. officinalis seedlings with methyl jasmonate. These candidate genes may be employed for genetic and metabolic engineering research to increase R. officinalis metabolite production.
Collapse
Affiliation(s)
- Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Eisa Foroozan
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | | | | | - Morteza Jafari
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
34
|
Fortini EA, Batista DS, Felipe SHS, Silva TD, Correia LNF, Farias LM, Faria DV, Pinto VB, Santa-Catarina C, Silveira V, De-la-Peña C, Castillo-Castro E, Otoni WC. Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine. PROTOPLASMA 2023; 260:467-482. [PMID: 35788779 DOI: 10.1007/s00709-022-01789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 μM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.
Collapse
Affiliation(s)
- Evandro Alexandre Fortini
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, Bananeiras, PB, 58220-000, Brazil
| | - Sérgio Heitor Sousa Felipe
- PPG em Agroecologia, Universidade Estadual do Maranhão, Av. Lourenço Vieira da Silva, s/nº, Cidade Universitária Paulo VI, São Luís, MA, Brazil
| | - Tatiane Dulcineia Silva
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Ludmila Nayara Freitas Correia
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Letícia Monteiro Farias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Daniele Vidal Faria
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Eduardo Castillo-Castro
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
35
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
36
|
Zhou M, Li Y, Yan Y, Gao L, He C, Wang J, Yuan Q, Miao L, Li S, Di Q, Yu X, Sun M. Proteome and phosphoproteome analysis of 2,4-epibrassinolide-mediated cold stress response in cucumber seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1104036. [PMID: 36895878 PMCID: PMC9989176 DOI: 10.3389/fpls.2023.1104036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The 2, 4-epibrassinolide (EBR) significantly increased plants cold tolerance. However, mechanisms of EBR in regulating cold tolerance in phosphoproteome and proteome levels have not been reported. The mechanism of EBR regulating cold response in cucumber was studied by multiple omics analysis. In this study, phosphoproteome analysis showed that cucumber responded to cold stress through multi-site serine phosphorylation, while EBR further upregulated single-site phosphorylation for most of cold-responsive phosphoproteins. Association analysis of the proteome and phosphoproteome revealed that EBR reprogrammed proteins in response to cold stress by negatively regulating protein phosphorylation and protein content, and phosphorylation negatively regulated protein content in cucumber. Further functional enrichment analysis of proteome and phosphoproteome showed that cucumber mainly upregulated phosphoproteins related to spliceosome, nucleotide binding and photosynthetic pathways in response to cold stress. However, different from the EBR regulation in omics level, hypergeometric analysis showed that EBR further upregulated 16 cold-up-responsive phosphoproteins participated photosynthetic and nucleotide binding pathways in response to cold stress, suggested their important function in cold tolerance. Analysis of cold-responsive transcription factors (TFs) by correlation between proteome and phosphoproteome showed that cucumber regulated eight class TFs may through protein phosphorylation under cold stress. Further combined with cold-related transcriptome found that cucumber phosphorylated eight class TFs, and mainly through targeting major hormone signal genes by bZIP TFs in response to cold stress, while EBR further increased these bZIP TFs (CsABI5.2 and CsABI5.5) phosphorylation level. In conclusion, the EBR mediated schematic of molecule response mechanisms in cucumber under cold stress was proposed.
Collapse
Affiliation(s)
- Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Tablecrops, China Agricultural University, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Tablecrops, China Agricultural University, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quan Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Li Miao
- College of Horticulture, Zhejiang A & F University, Hangzhou, China
| | - Shuzhen Li
- College of Life Science, Gannan Normal University, Ganzhou, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, Gupta AK, Kumar P, Kumar V, Saris PEJ, Rather MA, Bhuyan S, Neog PR, Mishra S, Rustagi S. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int J Mol Sci 2023; 24:3025. [PMID: 36769343 PMCID: PMC9918255 DOI: 10.3390/ijms24033025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Mansi Chauhan
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun 248007, Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
38
|
Gmižić D, Pinterić M, Lazarus M, Šola I. High Growing Temperature Changes Nutritional Value of Broccoli ( Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) Seedlings. Foods 2023; 12:foods12030582. [PMID: 36766111 PMCID: PMC9914779 DOI: 10.3390/foods12030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
High temperature (HT) causes physiological and biochemical changes in plants, which may influence their nutritional potential. This study aimed to evaluate the nutritional value of broccoli seedlings grown at HT on the level of phytochemicals, macro- and microelements, antioxidant capacity, and their extracts' in vitro cytotoxicity. Total phenols, soluble sugars, carotenoids, quercetin, sinapic, ferulic, p-coumaric, and gallic acid were induced by HT. Contrarily, total flavonoids, flavonols, phenolic acids, hydroxycinnamic acids, proteins, glucosinolates, chlorophyll a and b, and porphyrins were reduced. Minerals As, Co, Cr, Hg, K, Na, Ni, Pb, Se, and Sn increased at HT, while Ca, Cd, Cu, Mg, Mn, and P decreased. ABTS, FRAP, and β-carotene bleaching assay showed higher antioxidant potential of seedlings grown at HT, while DPPH showed the opposite. Hepatocellular carcinoma cells were the most sensitive toward broccoli seedling extracts. The significant difference between control and HT-grown broccoli seedling extracts was recorded in mouse embryonal fibroblasts and colorectal carcinoma cells. These results show that the temperature of seedling growth is a critical factor for their nutritional value and the biological effects of their extracts and should definitely be taken into account when growing seedlings for food purposes.
Collapse
Affiliation(s)
- Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Maja Lazarus
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +38-514-898-094
| |
Collapse
|
39
|
Annum N, Ahmed M, Tester M, Mukhtar Z, Saeed NA. Physiological responses induced by phospholipase C isoform 5 upon heat stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1076331. [PMID: 36760629 PMCID: PMC9905699 DOI: 10.3389/fpls.2023.1076331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plant's perception of heat stress involves several pathways and signaling molecules, such as phosphoinositide, which is derived from structural membrane lipids phosphatidylinositol. Phospholipase C (PLC) is a well-known signaling enzyme containing many isoforms in different organisms. In the present study, Phospholipase C Isoform 5 (PLC5) was investigated for its role in thermotolerance in Arabidopsis thaliana. Two over-expressing lines and one knock-down mutant of PLC5 were first treated at a moderate temperature (37 °C) and left for recovery. Then again exposed to a high temperature (45 °C) to check the seedling viability and chlorophyll contents. Root behavior and changes in 32Pi labeled phospholipids were investigated after their exposure to high temperatures. Over-expression of PLC5 (PLC5 OE) exhibited quick and better phenotypic recovery with bigger and greener leaves followed by chlorophyll contents as compared to wild-type (Col-0) and PLC5 knock-down mutant in which seedling recovery was compromised. PLC5 knock-down mutant illustrated well-developed root architecture under controlled conditions but stunted secondary roots under heat stress as compared to over-expressing PLC5 lines. Around 2.3-fold increase in phosphatidylinositol 4,5-bisphosphate level was observed in PLC5 OE lines upon heat stress compared to wild-type and PLC5 knock-down mutant lines. A significant increase in phosphatidylglycerol was also observed in PLC5 OE lines as compared to Col-0 and PLC5 knock-down mutant lines. The results of the present study demonstrated that PLC5 over-expression contributes to heat stress tolerance while maintaining its photosynthetic activity and is also observed to be associated with primary and secondary root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Nazish Annum
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zahid Mukhtar
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Nasir Ahmad Saeed
- Wheat Biotechnology Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Constituent College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
40
|
Atmospheric Pressure Plasma Polymerisation of D-Limonene and Its Antimicrobial Activity. Polymers (Basel) 2023; 15:polym15020307. [PMID: 36679188 PMCID: PMC9861354 DOI: 10.3390/polym15020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Antibacterial coating is necessary to prevent biofilm-forming bacteria from colonising medical tools causing infection and sepsis in patients. The recent coating strategies such as immobilisation of antimicrobial materials and low-pressure plasma polymerisation may require multiple processing steps involving a high-vacuum system and time-consuming process. Some of those have limited efficacy and durability. Here, we report a rapid and one-step atmospheric pressure plasma polymerisation (APPP) of D-limonene to produce nano-thin films with hydrophobic-like properties for antibacterial applications. The influence of plasma polymerisation time on the thickness, surface characteristic, and chemical composition of the plasma-polymerised films was systematically investigated. Results showed that the nano-thin films deposited at 1 min on glass substrate are optically transparent and homogenous, with a thickness of 44.3 ± 4.8 nm, a smooth surface with an average roughness of 0.23 ± 0.02 nm. For its antimicrobial activity, the biofilm assay evaluation revealed a significant 94% decrease in the number of Escherichia coli (E. coli) compared to the control sample. More importantly, the resultant nano-thin films exhibited a potent bactericidal effect that can distort and rupture the membrane of the treated bacteria. These findings provide important insights into the development of bacteria-resistant and biocompatible coatings on the arbitrary substrate in a straightforward and cost-effective route at atmospheric pressure.
Collapse
|
41
|
Arefian M, Prasad TSK. Susceptibility of Rice Crop to Salt Threat: Proteomic, Metabolomic, and Physiological Inspections. J Proteome Res 2023; 22:152-169. [PMID: 36417662 DOI: 10.1021/acs.jproteome.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rice is a staple food crop worldwide; however, salinity stress is estimated to reduce its global production by 50%. Knowledge about initial molecular signaling and proteins associated with sensing salinity among crop plants is limited. We characterized early salt effects on the proteome and metabolome of rice tissues. Omics results were validated by western blotting and multiple reaction monitoring assays and integrated with physiological changes. We identified 8160 proteins and 2045 metabolites in rice tissues. Numerous signaling pathways were induced rapidly or partially by salinity. Combined data showed the most susceptible proteins or metabolites in each pathway that likely affected the sensitivity of rice to salinity, such as PLA1, BON3 (involved in sensing stress), SnRK2, pro-resilin, GDT1, G-proteins, calmodulin activators (Ca2+ and abscisic acid signaling), MAPK3/5, MAPKK1/3 (MAPK pathway), SOS1, ABC F/D, PIP2-7, and K+ transporter-23 (transporters), OPR1, JAR1, COL1, ABA2, and MAPKK3 (phytohormones). Additionally, our results expanded the stress-sensing function of receptor-like kinases, phosphatidylinositols, and Na+ sensing proteins (IPUT1). Combined analyses revealed the most sensitive components of signaling pathways causing salt-susceptibility in rice and suggested potential targets for crop improvement.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Mangalore 575018, India
| | | |
Collapse
|
42
|
Unique and Shared Proteome Responses of Rice Plants ( Oryza sativa) to Individual Abiotic Stresses. Int J Mol Sci 2022; 23:ijms232415552. [PMID: 36555193 PMCID: PMC9778788 DOI: 10.3390/ijms232415552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization.
Collapse
|
43
|
Wei P, Yu X, Yang Y, Chen Z, Zhao S, Li X, Zhang W, Liu C, Li X, Liu X. Biased gene expression reveals the contribution of subgenome to altitude adaptation in allopolyploid Isoetes sinensis. Ecol Evol 2022; 12:e9677. [PMID: 36619709 PMCID: PMC9797765 DOI: 10.1002/ece3.9677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Allopolyploids are believed to inherit the genetic characteristics of its progenitors and exhibit stronger adaptability and vigor. The allotetraploid Isoetes sinensis was formed by the natural hybridization and polyploidization of two diploid progenitors, Isoetes taiwanensis and Isoetes yunguiensis, and was believed to have the potential to adapt to plateau environments. To explore the expression pattern of homoeologous genes and their contributions to altitude adaptation, we transplanted natural allotetraploid I. sinensis (TnTnYnYn) along the altitude gradient for a long-term, and harvested them in summer and winter, respectively. One year after transplanting, it still lived well, even in the extreme environment of the Qinghai-Tibet Plateau. Then, we performed high-throughput RNA sequencing to measure their gene expression level. A total of 7801 homoeologous genes were expressed, among which 5786 were identified as shared expression in different altitudes and seasons. We further found that altitude variations could change the subgenome bias trend of I. sinensis, but season could not. Moreover, the functions of uniquely expressed genes indicated that temperature might be an important restrictive factor during the adaptation process. Through the analysis of DEGs and uniquely expressed genes, we found that Y subgenome provided more contributions to high altitude adaptation than T subgenome. These adaptive traits to high altitude may be inherited from its plateau progenitor I. yunguiensis. Through weighted gene co-expression network analysis, pentatricopeptide repeats gene family and glycerophospholipid metabolism pathway were considered to play important roles in high-altitude adaptation. Totally, this study will enrich our understanding of allopolyploid in environmental adaptation.
Collapse
Affiliation(s)
- Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐lei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu‐jiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhu‐yifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Shu‐qi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xin‐zhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Wen‐cai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Chen‐lai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐yan Li
- Biology Experimental Teaching Center, School of Life ScienceWuhan UniversityWuhanChina
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| |
Collapse
|
44
|
Polińska W, Piotrowska-Niczyporuk A, Karpińska J, Struk-Sokołowska J, Kotowska U. Mechanisms, toxicity and optimal conditions - research on the removal of benzotriazoles from water using Wolffia arrhiza. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157571. [PMID: 35882328 DOI: 10.1016/j.scitotenv.2022.157571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the presented work, phytoremediation with the use of floating plant Wolffia arrhiza (L.) Horkel ex Wimm. was proposed as a method of removing the selected benzotriazoles (BTRs): 1H-benzotriazole (1H-BTR), 4-methyl-1H-benzotriazole (4M-BTR), 5-methyl-1H-benzotriazole (5M-BTR) and 5-chlorobenzotriazole (5Cl-BTR) from water. The efficiency of phytoremediation depends on three factors: daily time of exposure to light, pH of the model solution, and the amount of plans. Using a design of experiment (DoE) methods the following optimal values were selected: plant amount 1.8 g, light exposure 13 h and pH 7 per 100 mL of the model solution. It was found that the loss of BTRs in optimal conditions ranged from 92 to 100 % except for 4M-BTR, for which only 23 % of removal was achieved after 14 days of cultivation of W. arrhiza. The half-life values for studied compounds ranged from 0.98 days for 5Cl-BTR to 36.19 for 4M-BTR. The observed rapid vanishing of 5M-BTR is supposed by the simultaneous transformation of 5M-BTR into 4M-BTR. The detailed study of BTRs degradation pointed that the plant uptake is mainly responsible for the benzotriazoles concentration decrease. Toxicity tests showed that the tested organic compounds induce oxidative stress in W. arrhiza, which manifested among others, in reduced levels of chlorophyll in cultures with benzotriazoles compared to control.
Collapse
Affiliation(s)
- Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| | - Joanna Struk-Sokołowska
- Department of Environmental Engineering Technology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| |
Collapse
|
45
|
Kosová K, Vítámvás P, Skuhrovec J, Vítámvás J, Planchon S, Renaut J, Saska P. Proteomic responses of two spring wheat cultivars to the combined water deficit and aphid ( Metopolophium dirhodum) treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1005755. [PMID: 36452089 PMCID: PMC9704420 DOI: 10.3389/fpls.2022.1005755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
In the field, plants usually have to face the combined effects of abiotic and biotic stresses. In our study, two spring wheat cultivars-Septima and Quintus-were subjected to three water regimes [70%, 50%, and 40% soil water capacity (SWC)], aphid (Metopolophium dirhodum) infestation, or the combination of both stresses, i.e., water deficit (50%, 40% SWC) and aphids. The study has a 2 × 3 × 2 factorial design with three biological replicates. In the present study, the results of proteomic analysis using 2D-DIGE followed by MALDI-TOF/TOF protein identification are presented. Water deficit but also aphid infestation led to alterations in 113 protein spots including proteins assigned to a variety of biological processes ranging from signaling via energy metabolism, redox regulation, and stress and defense responses to secondary metabolism indicating a long-term adaptation to adverse conditions. The absence of specific proteins involved in plant response to herbivorous insects indicates a loss of resistance to aphids in modern wheat cultivars during the breeding process and is in accordance with the "plant vigor hypothesis." Septima revealed enhanced tolerance with respect to Quintus as indicated by higher values of morphophysiological characteristics (fresh aboveground biomass, leaf length, osmotic potential per full water saturation) and relative abundance of proteins involved in mitochondrial respiration and ATP biosynthesis.
Collapse
Affiliation(s)
- Klára Kosová
- Plant Stress Biology and Biotechnology Group, Department of Plant Genetics and Breeding, Crop Research Institute, Prague, Czechia
| | - Pavel Vítámvás
- Plant Stress Biology and Biotechnology Group, Department of Plant Genetics and Breeding, Crop Research Institute, Prague, Czechia
| | - Jiří Skuhrovec
- Functional Diversity Group, Department of Plant Protection, Crop Research Institute, Prague, Czechia
| | - Jan Vítámvás
- Plant Stress Biology and Biotechnology Group, Department of Plant Genetics and Breeding, Crop Research Institute, Prague, Czechia
- Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czechia
| | - Sébastien Planchon
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Pavel Saska
- Functional Diversity Group, Department of Plant Protection, Crop Research Institute, Prague, Czechia
| |
Collapse
|
46
|
Chen Z, Qiu S, Li M, Xu S, Ge S. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. WATER RESEARCH 2022; 226:119305. [PMID: 36332297 DOI: 10.1016/j.watres.2022.119305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The unstable microbial activity and unsatisfactory settling performance impede the development and implementation of microalgal wastewater treatment, especially in high-ammonium wastewater in the presence of free ammonia (FA). The shock of FA due to the nutrient fluctuation in wastewater was demonstrated as the primary stress factor suppressing microalgal activities. Recent study has clearly revealed the inhibition mechanism of FA at a specific high level (110.97 mg/L) by inhibiting the genetic information processing, photosynthesis, and nutrient metabolism. However, the effects of various FA shock concentrations on microalgal activities and settling performance remain unknown, limiting the wastewater bioremediation efficiencies improvement and the process development. Herein, a concentration-dependent shock FA (that was employed on microalgae during their exponential growth stages) effect on microalgal growth and photosynthesis was observed. Results showed that the studied five FA shock concentrations ranging from 25 to 125 mg/L significantly inhibited biomass production by 14.7-57.0%, but sharp reductions in photosynthesis with the 36.0-49.0% decreased Fv/Fm values were only observed when FA concentration was above 75.0 mg/L. On the other hand, FA shock enhanced microalgal settling efficiency by 12.8-fold, which was believed to be due to the stimulated intra- and extracellular protein contents and thereby the enhanced extracellular polymer substances (EPS) secretion. Specifically, FA shock induced 40.2 ± 2.3% higher cellular protein content at the cost of the decreased carbohydrates (22.6 ± 1.3%) and fatty acid (39.0 ± 0.8%) contents, further improving the protein secretion by 1.21-fold and the EPS production by 40.2 ± 2.3%. These FA shock-induced variations in intra- and extracellular biomolecules were supported by the up-regulated protein processing and export at the assistance of excessive energy generated from fatty acid degradation and carbohydrates consumption. In addition, FA shock significantly decreased the biomass nutritional value as indicated by the 1.86-fold lower essential amino acid score and nearly 50% reduced essential to non-essential amino acids ratio, while slightly decreased the biodiesel quality. This study is expected to enrich the knowledge of microalgal activities and settling performance in response to fluctuant ammonium concentrations in wastewater and to promote the development of microalgal wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
47
|
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212877. [PMID: 36365330 PMCID: PMC9657731 DOI: 10.3390/plants11212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 06/09/2023]
Abstract
Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
48
|
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, Satish L, Ceasar SA, Sohn SI, Ramesh M. Conventional and Omics Approaches for Understanding the Abiotic Stress Response in Cereal Crops-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:2852. [PMID: 36365305 PMCID: PMC9655223 DOI: 10.3390/plants11212852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/22/2023]
Abstract
Cereals have evolved various tolerance mechanisms to cope with abiotic stress. Understanding the abiotic stress response mechanism of cereal crops at the molecular level offers a path to high-yielding and stress-tolerant cultivars to sustain food and nutritional security. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. Omics approaches generate a massive amount of data, and adequate advancements in computational tools have been achieved for effective analysis. The combination of integrated omics and bioinformatics approaches has been recognized as vital to generating insights into genome-wide stress-regulation mechanisms. In this review, we have described the self-driven drought, heat, and salt stress-responsive mechanisms that are highlighted by the integration of stress-manipulating components, including transcription factors, co-expressed genes, proteins, etc. This review also provides a comprehensive catalog of available online omics resources for cereal crops and their effective utilization. Thus, the details provided in the review will enable us to choose the appropriate tools and techniques to reduce the negative impacts and limit the failures in the intensive crop improvement study.
Collapse
Affiliation(s)
- Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, Mandapam Camp, CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 623519, Tamil Nadu, India
| | | | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
49
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
50
|
Tas T. Physiological and biochemical responses of hybrid maize ( Zea mays L.) varieties grown under heat stress conditions. PeerJ 2022; 10:e14141. [PMID: 36164605 PMCID: PMC9508888 DOI: 10.7717/peerj.14141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Maize (Zea mays L.) is the second most commonly produced and consumed crop after wheat globally and is adversely affected by high heat, which is a significant abiotic stress factor. This study was carried out to determine the physiological and biochemical responses of hybrid corn varieties under heat stress ('HS') compared to control ('C') conditions during the 2020 and 2021 growing seasons. The experiment was conducted under natural conditions in the Southeastern region of Turkey, where the most intense temperatures are experienced. This experiment used split plots in randomized blocks with three replications, with 'HS' and 'C' growing conditions applied to the main plots and the different hybrid corn varieties (FAO 650) planted on the sub plots. Mean values of days to 50% tasseling (DT, day), grain yield (GY, kg ha-1), leaf water potential (LWP, %), chlorophyll-a (Chl-a, mg g-1), cell membrane damage (CMD, %), and total phenol content (TPC, μg g-1) were significantly different between years, growing conditions, and hybrid corn varieties. Changes in the climate played a significant role in the differences between the years and growing conditions (GC), while the genetic characteristics of the different corn varieties explained the differences in outcomes between them. The values of DT, GY, LWP, Chl-a, CMD, and TPC ranged from 49.06-53.15 days, 9,173.0-10,807.2 kg ha-1, 78.62-83.57%, 6.47-8.62 mg g-1, 9.61-13.54%, and 232.36-247.01 μg g-1, respectively. Significant correlations were recorded between all the parameters. Positive correlations were observed between all the variables except for CMD. The increased damage to cell membranes under 'HS' caused a decrease in the other measured variables, especially GY. In contrast, the GY increased with decreased CMD. CMD was important in determining the stress and tolerance level of corn varieties under 'HS' conditions. The GY and other physiological parameters of ADA 17.4 and SYM-307 candidate corn varieties surpassed the control hybrid corn cultivars. The results revealed that the ADA 17.4 and SYM-307 cultivars might have 'HS'-tolerate genes.
Collapse
|