1
|
Pitann B, Mühling KH. Oat-an alternative crop under waterlogging stress? FRONTIERS IN PLANT SCIENCE 2024; 15:1386039. [PMID: 38919823 PMCID: PMC11196775 DOI: 10.3389/fpls.2024.1386039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Introduction Waterlogging is one vast environmental constraint that limits crop growth and yield worldwide. Most major crop species are very sensitive to waterlogging, leading to enormous yield losses every year. Much is already known about wheat, barley or maize; however, hardly any data exist on oat and its tolerance against waterlogging. Thus, this study aimed to investigate if oats can be an adequate alternative in crop rotation under conditions of temporal submergence and if cultivar differences exist. Furthermore, this study was to test (1) whether yield was differently affected when stress is applied at different developmental stages (BBCH 31 and 51), and (2) nutrient imbalances are the reason for growth restrictions. Methods In a large-scale container experiment, three different oat varieties were cultivated and exposed to 14 consecutive days of waterlogging stress at two developmental stages. Results Even though vegetative growth was impaired after early waterlogging and which persists till maturity, mainly due to transient nutrient deficiencies, growth performance after late waterlogging and grain yield of all three oat varieties at maturity was not affected. A high tolerance was also confirmed after late waterlogging in the beginning generative stage: grain yield was even increased. Discussion Overall, all oat varieties performed well under both stress treatments, even though transient nutrient imbalances occurred, but which were ineffective on grain yield. Based on these results, we conclude that oats, independently of the cultivar, should be considered a good alternative in crop production, especially when waterlogging is to be expected during the cultivation phase.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Martins TS, Da-Silva CJ, Shabala S, Striker GG, Carvalho IR, de Oliveira ACB, do Amarante L. Understanding plant responses to saline waterlogging: insights from halophytes and implications for crop tolerance. PLANTA 2023; 259:24. [PMID: 38108902 DOI: 10.1007/s00425-023-04275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
MAIN CONCLUSION Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stresses that have a major negative impact on crop growth and yield. These conditions cause osmotic, ionic, and oxidative stress, as well as energy deprivation, thus impairing plant growth and development. Although few crop species can tolerate the combination of salinity and waterlogging, halophytes are plant species that exhibit high tolerance to these conditions due to their morphological, anatomical, and metabolic adaptations. In this review, we discuss the main mechanisms employed by plants exposed to saline waterlogging, intending to understand the mechanistic basis of their ion homeostasis. We summarize the knowledge of transporters and channels involved in ion accumulation and exclusion, and how they are modulated to prevent cytosolic toxicity. In addition, we discuss how reactive oxygen species production and cell signaling enhance ion transport and aerenchyma formation, and how plants exposed to saline waterlogging can control oxidative stress. We also address the morphological and anatomical modifications that plants undergo in response to combined stress, including aerenchyma formation, root porosity, and other traits that help to mitigate stress. Furthermore, we discuss the peculiarities of halophyte plants and their features that can be leveraged to improve crop yields in areas prone to saline waterlogging. This review provides valuable insights into the mechanisms of plant adaptation to saline waterlogging thus paving the path for future research on crop breeding and management strategies.
Collapse
Affiliation(s)
- Tamires S Martins
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Cristiane J Da-Silva
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Department of Horticultural Science, NC State University, Raleigh, USA.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Perth, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Ivan R Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| |
Collapse
|
3
|
Moreno S, Bedada G, Rahimi Y, Ingvarsson PK, Westerbergh A, Lundquist PO. Response to Waterlogging Stress in Wild and Domesticated Accessions of Timothy ( Phleum pratense) and Its Relatives P. alpinum and P. nodosum. PLANTS (BASEL, SWITZERLAND) 2023; 12:4033. [PMID: 38068669 PMCID: PMC10708118 DOI: 10.3390/plants12234033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2024]
Abstract
Timothy (Phleum pratense) is a cool-season perennial forage grass widely grown for silage and hay production in northern regions. Climate change scenarios predict an increase in extreme weather events with fluctuating periods of high rainfall, requiring new varieties adapted to waterlogging (WL). Wild accessions could serve as germplasm for breeding, and we evaluated the responses of 11 wild and 8 domesticated accessions of timothy, P. nodosum and P. alpinum from different locations in northern Europe. Young plants at tillering stage were exposed to WL for 21 days in a greenhouse, and responses in growth allocation and root anatomy were studied. All accessions produced adventitious roots and changed allocation of growth between shoot and root as a response to WL, but the magnitude of these responses varied among species and among accessions. P. pratense responded less in these traits in response to WL than the other two species. The ability to form aerenchyma in the root cortex in response to WL was found for all species and also varied among species and among accessions, with the highest induction in P. pratense. Interestingly, some accessions were able to maintain and even increase root growth, producing more leaves and tillers, while others showed a reduction in the root system. Shoot dry weight (SDW) was not significantly affected by WL, but some accessions showed different and significant responses in the rate of production of leaves and tillers. Overall correlations between SDW and aerenchyma and between SDW and adventitious root formation were found. This study identified two wild timothy accessions and one wild P. nodosum accession based on shoot and root system growth, aerenchyma formation and having a root anatomy considered to be favorable for WL tolerance. These accessions are interesting genetic resources and candidates for development of climate-resilient timothy varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Per-Olof Lundquist
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (S.M.); (G.B.); (Y.R.); (P.K.I.); (A.W.)
| |
Collapse
|
4
|
Huang L, Zhang Y, Guo J, Peng Q, Zhou Z, Duan X, Tanveer M, Guo Y. High-throughput root phenotyping of crop cultivars tolerant to low N in waterlogged soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1271539. [PMID: 37780519 PMCID: PMC10533935 DOI: 10.3389/fpls.2023.1271539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd., Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd., Foshan, China
| | - Jieru Guo
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd., Foshan, China
| | - Qianlan Peng
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Zhaoyang Zhou
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xiaosong Duan
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Yongjun Guo
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd., Foshan, China
| |
Collapse
|
5
|
Zinati Z, Nazari L. Deciphering the molecular basis of abiotic stress response in cucumber (Cucumis sativus L.) using RNA-Seq meta-analysis, systems biology, and machine learning approaches. Sci Rep 2023; 13:12942. [PMID: 37558755 PMCID: PMC10412635 DOI: 10.1038/s41598-023-40189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Abiotic stress in cucumber (Cucumis sativus L.) may trigger distinct transcriptome responses, resulting in significant yield loss. More insight into the molecular underpinnings of the stress response can be gained by combining RNA-Seq meta-analysis with systems biology and machine learning. This can help pinpoint possible targets for engineering abiotic tolerance by revealing functional modules and key genes essential for the stress response. Therefore, to investigate the regulatory mechanism and key genes, a combination of these approaches was utilized in cucumber subjected to various abiotic stresses. Three significant abiotic stress-related modules were identified by gene co-expression network analysis (WGCNA). Three hub genes (RPL18, δ-COP, and EXLA2), ten transcription factors (TFs), one transcription regulator, and 12 protein kinases (PKs) were introduced as key genes. The results suggest that the identified PKs probably govern the coordination of cellular responses to abiotic stress in cucumber. Moreover, the C2H2 TF family may play a significant role in cucumber response to abiotic stress. Several C2H2 TF target stress-related genes were identified through co-expression and promoter analyses. Evaluation of the key identified genes using Random Forest, with an area under the curve of ROC (AUC) of 0.974 and an accuracy rate of 88.5%, demonstrates their prominent contributions in the cucumber response to abiotic stresses. These findings provide novel insights into the regulatory mechanism underlying abiotic stress response in cucumber and pave the way for cucumber genetic engineering toward improving tolerance ability under abiotic stress.
Collapse
Affiliation(s)
- Zahra Zinati
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran.
| | - Leyla Nazari
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| |
Collapse
|
6
|
Dostalíková L, Hlásná Čepková P, Janovská D, Svoboda P, Jágr M, Dvořáček V, Viehmannová I. Nutritional Evaluation of Quinoa Genetic Resources Growing in the Climatic Conditions of Central Europe. Foods 2023; 12:foods12071440. [PMID: 37048261 PMCID: PMC10093933 DOI: 10.3390/foods12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Quinoa displays huge genetic variability and adaptability to distinct climatic conditions. Quinoa seeds are a good source of nutrients; however, the overall nutritional composition and nutrient content is influenced by numerous factors. This study focused on the nutritional and morphologic evaluation of various quinoa genotypes grown in the Czech Republic. Significant differences between years were observed for morphological traits (plant height, inflorescence length, weight of thousand seeds). The weather conditions in the year 2018 were favorable for all the morphological traits. The protein content of quinoa accessions ranged between 13.44 and 20.01% and it was positively correlated to mauritianin. Total phenolic content varied greatly from year to year, while the antioxidant activity remained relatively stable. The most abundant phenolic compounds were the flavonoids miquelianin, rutin, and isoquercetin. Isoquercetin, quercetin, and N-feruoloyl octopamine showed the highest stability under variable weather conditions in the analyzed years. A total of six compounds were detected and quantified in quinoa for the first time. Most varieties performed well under Central European conditions and can be considered a good source of nutrients and bioactive compounds. These data can be used as a source of information for plant breeders aiming to improve the quality traits of quinoa.
Collapse
Affiliation(s)
- Lucie Dostalíková
- Department of Crop Sciences and Agroforestry, Faculty of Tropical Agrisciences, Kamýcká 129, 16 500 Prague, Czech Republic
| | - Petra Hlásná Čepková
- Gene Bank, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
- Correspondence:
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Pavel Svoboda
- Molecular Genetics, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Michal Jágr
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Václav Dvořáček
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Iva Viehmannová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical Agrisciences, Kamýcká 129, 16 500 Prague, Czech Republic
| |
Collapse
|
7
|
Regassa H, Elias E. Dry matter production, nitrogen yield and estimation of nitrogen fixation of legumes on vertisols of the Ethiopian highlands. Heliyon 2022; 8:e12523. [PMID: 36593861 PMCID: PMC9803842 DOI: 10.1016/j.heliyon.2022.e12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/31/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Traditional land management techniques on vertisols frequently lead to soil fertility loss and land degradation. The objective of this study was to evaluate the impact of improved land preparation methods on the dry biomass and nitrogen (N) content of two legume species grown under two phosphorus fertilizer applications. The experimental design employed for these experiments was a randomized complete block design, with six treatments and four replications. Land preparation methods and phosphorus application significantly (P < 0.05) increased biomass production and N content in legumes. Over years and land preparation methods, vetch N accumulation was superior (P < 0.05) to clover and teff (Eragrostis teff). Such a large amount of N accumulation may have a positive contribution to subsequent crops when incorporated into the soil. Land preparation methods and years influenced soil mineral N accumulation, particularly under legumes. The N balance values indicated that it differed among species, land preparation methods, and P treatments over the year. The N balance of vetch +P ranged from 67.1 to 185.9 kg N ha-1 over years and land preparation methods, whereas the comparable figure for vetch-P was 40.3-141.9 kg N ha-1. Similarly, the N balance in clover-P ranged from 13.0 to 67.2 kg N ha-1, and in clover +P from 13.8 to 98.6 kg N ha-1. Teff's N balance has never exceeded 35 kg ha-1 over the years.
Collapse
|
8
|
Genome-Wide Analysis of AP2/ERF Gene Superfamily in Ramie ( Boehmeria nivea L.) Revealed Their Synergistic Roles in Regulating Abiotic Stress Resistance and Ramet Development. Int J Mol Sci 2022; 23:ijms232315117. [PMID: 36499437 PMCID: PMC9736067 DOI: 10.3390/ijms232315117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield.
Collapse
|
9
|
Olorunwa OJ, Adhikari B, Brazel S, Shi A, Popescu SC, Popescu GV, Barickman TC. Growth and Photosynthetic Responses of Cowpea Genotypes under Waterlogging at the Reproductive Stage. PLANTS 2022; 11:plants11172315. [PMID: 36079697 PMCID: PMC9460712 DOI: 10.3390/plants11172315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Waterlogging is an important environmental stress limiting the productivity of crops worldwide. Cowpea (Vigna unguiculata L.) is particularly sensitive to waterlogging stress during the reproductive stage, with a consequent decline in pod formation and yield. However, little is known about the critical processes underlying cowpea’s responses to waterlogging during the reproductive stage. Thus, we investigated the key parameters influencing carbon fixation, including stomatal conductance (gs), intercellular CO2 concentration, chlorophyll content, and chlorophyll fluorescence, of two cowpea genotypes with contrasting waterlogging tolerance. These closely related genotypes have starkly contrasting responses to waterlogging during and after 7 days of waterlogging stress (DOW). In the intolerant genotype (‘EpicSelect.4’), waterlogging resulted in a gradual loss of pigment and decreased photosynthetic capacity as a consequent decline in shoot biomass. On the other hand, the waterlogging-tolerant genotype (‘UCR 369’) maintained CO2 assimilation rate (A), stomatal conductance (gs), biomass, and chlorophyll content until 5 DOW. Moreover, there was a highly specific downregulation of the mesophyll conductance (gm), maximum rate of Rubisco (Vcmax), and photosynthetic electron transport rate (Jmax) as non-stomatal limiting factors decreasing A in EpicSelect.4. Exposure of EpicSelect.4 to 2 DOW resulted in the loss of PSII photochemistry by downregulating the PSII quantum yield (Fv/Fm), photochemical efficiency (ΦPSII), and photochemical quenching (qP). In contrast, we found no substantial change in the photosynthesis and chlorophyll fluorescence of UCR 369 in the first 5 DOW. Instead, UCR 369 maintained biomass accumulation, chlorophyll content, and Rubisco activity, enabling the genotype to maintain nutrient absorption and photosynthesis during the early period of waterlogging. However, compared to the control, both cowpea genotypes could not fully recover their photosynthetic capacity after 7 DOW, with a more significant decline in EpicSelect.4. Overall, our findings suggest that the tolerant UCR 369 genotype maintains higher photosynthesis under waterlogging stress attributable to higher photochemical efficiency, Rubisco activity, and less stomatal restriction. After recovery, the incomplete recovery of A can be attributed to the reduced gs caused by severe waterlogging damage in both genotypes. Thus, promoting the rapid recovery of stomata from waterlogging stress may be crucial for the complete restoration of carbon fixation in cowpeas during the reproductive stage.
Collapse
Affiliation(s)
- Omolayo J. Olorunwa
- North Mississippi Research and Extension Center, Department of Plant and Soil Sciences, Mississippi State University, Verona, MS 38879, USA
| | - Bikash Adhikari
- North Mississippi Research and Extension Center, Department of Plant and Soil Sciences, Mississippi State University, Verona, MS 38879, USA
| | - Skyler Brazel
- North Mississippi Research and Extension Center, Department of Plant and Soil Sciences, Mississippi State University, Verona, MS 38879, USA
| | - Ainong Shi
- Department of Horticulture, PTSC 316, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - T. Casey Barickman
- North Mississippi Research and Extension Center, Department of Plant and Soil Sciences, Mississippi State University, Verona, MS 38879, USA
- Correspondence: ; Tel.: +1662-566-2201
| |
Collapse
|
10
|
Langan P, Bernád V, Walsh J, Henchy J, Khodaeiaminjan M, Mangina E, Negrão S. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5149-5169. [PMID: 35642593 PMCID: PMC9440438 DOI: 10.1093/jxb/erac243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Yield losses to waterlogging are expected to become an increasingly costly and frequent issue in some regions of the world. Despite the extensive work that has been carried out examining the molecular and physiological responses to waterlogging, phenotyping for waterlogging tolerance has proven difficult. This difficulty is largely due to the high variability of waterlogging conditions such as duration, temperature, soil type, and growth stage of the crop. In this review, we highlight use of phenotyping to assess and improve waterlogging tolerance in temperate crop species. We start by outlining the experimental methods that have been utilized to impose waterlogging stress, ranging from highly controlled conditions of hydroponic systems to large-scale screenings in the field. We also describe the phenotyping traits used to assess tolerance ranging from survival rates and visual scoring to precise photosynthetic measurements. Finally, we present an overview of the challenges faced in attempting to improve waterlogging tolerance, the trade-offs associated with phenotyping in controlled conditions, limitations of classic phenotyping methods, and future trends using plant-imaging methods. If effectively utilized to increase crop resilience to changing climates, crop phenotyping has a major role to play in global food security.
Collapse
Affiliation(s)
- Patrick Langan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Villő Bernád
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jason Walsh
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- School of Computer Science and UCD Energy Institute, University College Dublin, Dublin, Ireland
| | - Joey Henchy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Eleni Mangina
- School of Computer Science and UCD Energy Institute, University College Dublin, Dublin, Ireland
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Olorunwa OJ, Adhikari B, Brazel S, Popescu SC, Popescu GV, Barickman TC. Short waterlogging events differently affect morphology and photosynthesis of two cucumber ( Cucumis sativus L.) cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:896244. [PMID: 35937378 PMCID: PMC9355484 DOI: 10.3389/fpls.2022.896244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Waterlogging induces growth and developmental changes in sensitive crops such as cucumber (Cucumis sativus L.) during early plant development. However, information on the physiological mechanisms underpinning the response of cucumber plants to waterlogging conditions is limited. Here, we investigated the effects of 10-day waterlogging stress on the morphology, photosynthesis, and chlorophyll fluorescence parameters in two cultivars of cucumber seedlings. Waterlogging stress hampered cultivars' growth, biomass accumulation, and photosynthetic capacity. Both cultivars also developed adventitious roots (ARs) after 10 days of waterlogging (DOW). We observed differential responses in the light- and carbon-dependent reactions of photosynthesis, with an increase in light-dependent reactions. At the same time, carbon assimilation was considerably inhibited by waterlogging. Specifically, the CO2 assimilation rate (A) in leaves was significantly reduced and was caused by a corresponding decrease in stomatal conductance (gs). The downregulation of the maximum rate of Rubisco efficiency (Vcmax) and the maximum rate of photosynthetic electron transport (Jmax) were non-stomatal limiting factors contributing to A reduction. Exposure of cucumber to 10 DOW affected the PSII photochemistry by downregulating the PSII quantum yield (ΦPSII). The redox state of the primary quinone acceptor in the lake model (1-qL), a measure of the regulatory balance of the light reactions, became more oxidized after 10 DOW, indicating enhanced electron sink capacity despite a reduced A. Overall, the results suggest that waterlogging induces alterations in the photochemical apparatus efficiency of cucumber. Thus, developing cultivars that resist inhibition of PSII photochemistry while maintaining carbon metabolism is a potential approach for increasing crops' tolerance to waterlogged environments.
Collapse
Affiliation(s)
- Omolayo J. Olorunwa
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| | - Bikash Adhikari
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| | - Skyler Brazel
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, MS, United States
| | - T. Casey Barickman
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
12
|
Olorunwa OJ, Adhikari B, Shi A, Barickman TC. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111136. [PMID: 35067306 DOI: 10.1016/j.plantsci.2021.111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The majority of cowpea (Vigna unguiculata (L.) Walp.) produced in the U.S. is planted shortly after the summer rains and subsequently depends on rain or artificial irrigation. Therefore, excessive precipitation and poor soil drainage will cause cowpea plants to suffer temporary waterlogging, reducing the submerged tissue's oxygen level. Although cowpea is sensitive to waterlogging, excessive moisture can induce several morpho-physiological changes with adverse impacts on yield in its early stages of development. The current study subjected 30 cowpea genotypes to 10-days of waterlogging at the seedling stage under a controlled environment. The dynamic changes of 24 morpho-physiological parameters under waterlogging and optimal water conditions were analyzed to understand cowpea's response to waterlogging. Significant waterlogging treatment, cowpea genotypes, and their interactions (P < 0.001) were observed for most of the measured parameters. The results indicated that plant height (PH), leaf area (LA), fresh (FW) and dry weight (DW) of cowpea genotypes were significantly decreased under waterlogging compared to the control treatments. Similar results were obtained for net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E). However, the water use efficiency (WUE) and adventitious roots (ARs) increased linearly under waterlogging conditions. Waterlogging also declined chlorophyll fluorescence parameters except non-photochemical quenching (qN), which increased with excess soil moisture. In addition, waterlogging tolerance coefficient (WTC) and multivariate analysis (MCA) methods were used to characterize cowpea genotypes for waterlogging tolerance. Accordingly, the cowpea genotype Dagupan Pangasinan, UCR 369, and Negro were classified as waterlogging tolerant, while EpicSelect.4 and ICARDA 140071, as the most waterlogging sensitive. The cowpea genotypes and morpho-physiological traits determined from this study may be useful for genetic engineering and breeding programs that integrate cowpea waterlogging tolerance.
Collapse
Affiliation(s)
- Omolayo J Olorunwa
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA
| | - Bikash Adhikari
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA
| | - Ainong Shi
- Department of Horticulture, PTSC 316, University of Arkansas, Fayetteville, AR, 72701, USA
| | - T Casey Barickman
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA.
| |
Collapse
|
13
|
Proteomic Studies of Roots in Hypoxia-Sensitive and -Tolerant Tomato Accessions Reveal Candidate Proteins Associated with Stress Priming. Cells 2022; 11:cells11030500. [PMID: 35159309 PMCID: PMC8834170 DOI: 10.3390/cells11030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) is a vegetable frequently exposed to hypoxia stress induced either by being submerged, flooded or provided with limited oxygen in hydroponic cultivation systems. The purpose of the study was to establish the metabolic mechanisms responsible for overcoming hypoxia in two tomato accessions with different tolerance to this stress, selected based on morphological and physiological parameters. For this purpose, 3-week-old plants (plants at the juvenile stage) of waterlogging-tolerant (WL-T), i.e., POL 7/15, and waterlogging-sensitive (WL-S), i.e., PZ 215, accessions were exposed to hypoxia stress (waterlogging) for 7 days, then the plants were allowed to recover for 14 days, after which another 7 days of hypoxia treatment was applied. Root samples were collected at the end of each time-point and 2D-DIGE with MALDI TOF/TOF, and expression analyses of gene and protein-encoded alcohol dehydrogenase (ADH2) and immunolabelling of ADH were conducted. After collating the obtained results, the different responses to hypoxia stress in the selected tomato accessions were observed. Both the WL-S and WL-T tomato accessions revealed a high amount of ADH2, which indicates an intensive alcohol fermentation pathway during the first exposure to hypoxia. In comparison to the tolerant one, the expression of the adh2 gene was about two times higher for the sensitive tomato. Immunohistochemical analysis confirmed the presence of ADH in the parenchyma cells of the cortex and vascular tissue. During the second hypoxia stress, the sensitive accession showed a decreased accumulation of ADH protein and similar expression of the adh2 gene in comparison to the tolerant accession. Additionally, the proteome showed a greater protein abundance of glyceraldehyde-3-phosphate dehydrogenase in primed WL-S tomato. This could suggest that the sensitive tomato overcomes the oxygen limitation and adapts by reducing alcohol fermentation, which is toxic to plants because of the production of ethanol, and by enhancing glycolysis. Proteins detected in abundance in the sensitive accession are proposed as crucial factors for hypoxia stress priming and their function in hypoxia tolerance is discussed.
Collapse
|
14
|
Zeng R, Cao J, Li X, Wang X, Wang Y, Yao S, Gao Y, Hu J, Luo M, Zhang L, Chen T. Waterlogging tolerance and recovery capability screening in peanut: a comparative analysis of waterlogging effects on physiological traits and yield. PeerJ 2022; 10:e12741. [PMID: 35070503 PMCID: PMC8760856 DOI: 10.7717/peerj.12741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (Φ PS II ), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. Φ PS II , Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.
Collapse
Affiliation(s)
- Ruier Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Cao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xi Li
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinyue Wang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying Wang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Suzhe Yao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu Gao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Hu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingzhu Luo
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingting Chen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Gedam PA, Shirsat DV, Arunachalam T, Ghosh S, Gawande SJ, Mahajan V, Gupta AJ, Singh M. Screening of Onion ( Allium cepa L.) Genotypes for Waterlogging Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 12:727262. [PMID: 35069612 PMCID: PMC8766973 DOI: 10.3389/fpls.2021.727262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Onion production is severely affected by waterlogging conditions, which are created due to heavy rainfall. Hence, the identification of waterlogging-tolerant onion genotypes is crucial for increasing onion production. In the present study, 100 distinct onion genotypes were screened for waterlogging tolerance under artificial conditions by using the phenotypic approach in the monsoon season of 2017. Based on plant survival and recovery and changes in bulb weight, we identified 19 tolerant, 27 intermediate tolerant, and 54 highly sensitive onion genotypes. The tolerant genotypes exhibited higher plant survival and better recovery and bulb size, whereas sensitive genotypes exhibited higher plant mortality, poor recovery, and small bulb size under waterlogging conditions. Furthermore, a subset of 12 contrasting genotypes was selected for field trials during monsoon seasons 2018 and 2019. Results revealed that considerable variation in the morphological, physiological, and yield characteristics were observed across the genotypes under stress conditions. Waterlogging-tolerant genotypes, namely, Acc. 1666, Acc. 1622, W-355, W-208, KH-M-2, and RGP-5, exhibited higher plant height, leaf number, leaf area, leaf length, chlorophyll content, membrane stability index (MSI), pyruvic acid, antioxidant content, and bulb yield than sensitive genotypes under stress conditions. Furthermore, the principal component analysis biplot revealed a strong association of leaf number, leaf area, chlorophyll content, MSI, and bulb yield with tolerant genotypes under stress conditions. The study indicates that the waterlogging-tolerant onion genotypes with promising stress-adaptive traits can be used in plant breeding programs for developing waterlogging-tolerant onion varieties.
Collapse
|
16
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
17
|
Cotrozzi L, Lorenzini G, Nali C, Pisuttu C, Pampana S, Pellegrini E. Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112357. [PMID: 34834720 PMCID: PMC8625979 DOI: 10.3390/plants10112357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/17/2023]
Abstract
Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this crop to waterlogging. The present study provides a comprehensive evaluation of the effects of two waterlogging durations (i.e., 14 and 35 days) on two durum wheat cultivars (i.e., Svevo and Emilio Lepido). An integrated analysis of an array of physiological, biochemical, biometric, and yield parameters was performed at the end of the waterlogging events, during recovery, and at physiological maturity. Results established that effects on durum wheat varied depending on waterlogging duration. This stress imposed at tillering impaired photosynthetic activity of leaves and determined oxidative injury of the roots. The physiological damages could not be fully recovered, subsequently slowing down tiller formation and crop growth, and depressing the final grain yield. Furthermore, differences in waterlogging tolerance between cultivars were discovered. Our results demonstrate that in durum wheat, the energy maintenance, the cytosolic ion homeostasis, and the ROS control and detoxification can be useful physiological and biochemical parameters to consider for the waterlogging tolerance of genotypes, with regard to sustaining biomass production and grain yield.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
| | - Silvia Pampana
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- Correspondence: ; Tel.: +39-050-221-8941
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
18
|
Liu K, Harrison MT, Ibrahim A, Manik SMN, Johnson P, Tian X, Meinke H, Zhou M. Genetic factors increasing barley grain yields under soil waterlogging. Food Energy Secur 2020. [DOI: 10.1002/fes3.238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ke Liu
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture Yangtze University Jingzhou China
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Ahmed Ibrahim
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | | | - Peter Johnson
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture Yangtze University Jingzhou China
| | - Holger Meinke
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| | - Meixue Zhou
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture Yangtze University Jingzhou China
- Tasmanian Institute of Agriculture University of Tasmania Launceston TAS Australia
| |
Collapse
|
19
|
Song JS, Kim SB, Ryu S, Oh J, Kim DS. Emerging Plasma Technology That Alleviates Crop Stress During the Early Growth Stages of Plants: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:988. [PMID: 32760412 PMCID: PMC7373780 DOI: 10.3389/fpls.2020.00988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/17/2020] [Indexed: 05/21/2023]
Abstract
Crops during their early growth stages are vulnerable to a wide range of environmental stressors; thus, earlier seed invigoration and seedling establishment are essential in crop production. As an alternative to synthetic chemical treatments, plasma technology could be one of the emerging technologies to enhance seed germination and seedling vigor by managing environmental stressors. Recent studies have shown its beneficial effects in various stress conditions, suggesting that plasma treatment can be used for early crop stress management. This paper reviewed the effects of different types of plasma treatments on plant responses in terms of the seed surface environment (seed scarification and pathogen inactivation) and physiological processes (an enhanced antioxidant system and activated defense response) during the early growth stages of plants. As a result, plasma treatment can enhance seed invigoration and seedling establishment by alleviating the adverse effects of environmental stressors such as drought, salinity, and pathogen infection. More information on plasma applications and their mechanisms against a broad range of stressors is required to establish a better plasma technology for early crop stress management.
Collapse
Affiliation(s)
- Jong-Seok Song
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, South Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, South Korea
| | - Seungmin Ryu
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, South Korea
| | - Jaesung Oh
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, South Korea
| | - Do-Soon Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Zeng B, Zhang Y, Zhang A, Qiao D, Ren J, Li M, Cai K, Zhang J, Huang L. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress. PHYTOCHEMISTRY 2020; 175:112378. [PMID: 32315838 DOI: 10.1016/j.phytochem.2020.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Submergence is one of the environmental stresses that limit plant growth and development. Dactylis glomerata L. is an important cool-season forage grass globally. To investigate the genes related to submergence response and the molecular mechanism associated with submergence tolerance, the transcriptome of D. glomerata in response to waterlogging treatment was analyzed. RNA-sequencing was performed in two D. glomerata cultivars, submergence tolerant 'Dianbei' and submergence sensitive 'Anba'. A total of 50,045 unique genes matched the known proteins in the NCBI nr database by BLAST searches and 60.8% (30,418) of these genes were annotated with GO terms. Among these, 1395 genes only differentially expressed in 'Dianbei' and 18 genes shown different expression all the time were detected between the submergence tolerant 'Dianbei' and sensitive 'Anba'. Gene ontology (GO) and KEGG pathway enrichment analyses demonstrated that the DEGs were mainly implicated in oxidation-reduction system, nucleic acid binding transcription factor activity, and glycerol kinase activity. The D. glomerata assembled transcriptome provided substantial molecular resource for further genomic analysis of forage grasses in response to submergence stress. The significant difference in expression of specific unigenes may account for waterlogging tolerance or acclimation in the two different D. glomerata cultivars. This study provided new insights into the molecular basis of submergence tolerance in D. glomerata.
Collapse
Affiliation(s)
- Bing Zeng
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Yajie Zhang
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Ailing Zhang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Qiao
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Juncai Ren
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Mingyang Li
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Kai Cai
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Jinhua Zhang
- Guizhou animal Husbandry and Veterinary Institute, Guiyang, 550005, China.
| | - Linkai Huang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
21
|
Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci Rep 2020; 10:10201. [PMID: 32576948 PMCID: PMC7311487 DOI: 10.1038/s41598-020-67260-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Waterlogging stress is a common limiting factor for winter rapeseed, which greatly affects the growth and potential production. The present study was conducted to investigate the effects of waterlogging with different durations (0day (D0), 6days (D6) and 9days (D9)) and supplemental nitrogen fertilization (N1, 0 kg ha-1; N2, 30 kg ha-1; N3, 60 kg ha-1 and N4, 90 kg ha-1) on the physiological characteristics, dry matter and nitrogen accumulation in winter rapeseed (Chuanyou36). The results showed that the supplementary application of nitrogen fertilizer could effectively improve the physiological indexes of winter rapeseed in both pot and field experiments. The supplemental nitrogen increased the chlorophyll content in leaves, enhanced the activities of SOD, CAT, and POD, and decreased the MDA content in leaves and roots of rapeseed. The chlorophyll contents, the antioxidant enzyme activity of leaves and roots significantly increased under D6N3 and D9N4 conditions in both (pot and field) experiments. However, MDA contents significantly decreased compared with waterlogging without nitrogen application. Moreover, the application of nitrogen fertilizer after waterlogging increased the accumulation of dry matter and nitrogen in rapeseed at different growth stages. Therefore, waterlogging stress significantly inhibited the growth and development of rapeseed, but the application of nitrogen fertilizer could effectively reduce the damage of waterlogging. The N-induced increase in waterlogging tolerance of rapeseed might be attributed to the strong antioxidant defense system, maintenance of photosynthetic pigments and the nutrient balance.
Collapse
|