1
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
2
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
3
|
Schekaleva O, Luneva O, Klimenko E, Shaliukhina S, Breygina M. Dynamics of ROS production, SOD, POD and CAT activity during stigma maturation and pollination in Nicotiana tabacum and Lilium longiflorum. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1240-1246. [PMID: 39316651 DOI: 10.1111/plb.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/20/2024] [Indexed: 09/26/2024]
Abstract
Reactive oxygen species (ROS) are a key regulator of physiological processes in pollen grains, and an essential component of stigma exudate. The mechanisms of this redox-based regulatory system and its features in different plant groups are still unclear. For two species from different families (tobacco and lily), the dynamics of total ROS, O• 2 - generation, and H2O2 concentration in stigma exudate were examined using EPR spectroscopy and quantitative colorimetric analysis. Dynamics of all major enzymes of redox homeostasis were analysed using native electrophoresis and zymography for four stages of stigma development, before and after pollination. There were completely different patterns of ROS production and interconversion in the two species. In tobacco, the initially high level of ROS generation decreased before pollination but remained high. There was no CAT activity in fresh stigma tissues, which apparently contribute to the high level of H2O2. Lilium had peak O• 2 - generation at the fertile stage and high activity of H2O2-reducing enzymes, including CAT, hence, H2O2 level remained relatively low. We suggest that Lilium pollen germination is largely controlled by the SOD radical, while in Nicotiana H2O2 is the main form of ROS in the stigma.
Collapse
Affiliation(s)
- O Schekaleva
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - O Luneva
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - E Klimenko
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - S Shaliukhina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - M Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Moser M, Groves NR, Meier I. The Arabidopsis KASH protein SINE3 is involved in male and female gametogenesis. PLANT REPRODUCTION 2024; 37:521-534. [PMID: 39285059 PMCID: PMC11511747 DOI: 10.1007/s00497-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
KEY MESSAGE The Arabidopsis KASH protein SINE3 is involved in male and female gametophyte development, likely affecting the first post-meiotic mitosis in both cases, and is required for full seed set. Linker of nucleoskeleton and cytoskeleton (LINC) complexes are protein complexes spanning the inner and outer membranes of the nuclear envelope (NE) and are key players in nuclear movement and positioning. Through their roles in nuclear movement and cytoskeletal reorganization, plant LINC complexes affect processes as diverse as pollen tube rupture and stomatal development and function. KASH proteins are the outer nuclear membrane component of the LINC complex, with conserved C-termini but divergent N-terminal cytoplasmic domains. Of the known Arabidopsis KASH proteins, SUN-INTERACTING NUCLEAR ENVELOPE PROTEIN 3 (SINE3) has not been functionally characterized. Here, we show that SINE3 is expressed at all stages of male and female gametophyte development. It is located at the NE in male and female gametophytes. Loss of SINE3 results in a female-derived seed set defect, with sine3 mutant ovules arresting at stage FG1. Pollen viability is also significantly reduced, with microspores arresting prior to pollen mitosis I. In addition, sine3 mutants have a minor male meiosis defect, with some tetrads containing more than four spores. Together, these results demonstrate that the KASH protein SINE3 plays a crucial role in male and female gametophyte development, likely affecting the first post-meiotic nuclear division in both cases.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Institute of Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Xiong H, Wang J, Gao X, Dong G, Zeng W, Wang W, Sun MX. Transcriptome and Metabolome Analyses Reveal a Complex Stigma Microenvironment for Pollen Tube Growth in Tobacco. Int J Mol Sci 2024; 25:12255. [PMID: 39596319 PMCID: PMC11594504 DOI: 10.3390/ijms252212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, the success of fertilization depends on the rapid polar extension of a pollen tube, which delivers sperm cells to the female gametophyte for fertilization. Numerous studies have shown that the microenvironment in planta is more conducive to the growth and development of pollen tubes than that in vitro. However, how stigma factors coordinate to regulate pollen tube growth is still poorly understood. Here, we demonstrate that in tobacco, mature stigma extract, but not immature stigma extract, facilitates pollen tube growth. Comparative transcriptomic and qRT-PCR analyses showed that the differentially expressed genes during stigma maturation were mainly enriched in the metabolism pathway. Through metabolome analyses, about 500 metabolites were identified to be differently accumulated; the significantly increased metabolites in the mature stigmas mainly belonged to alkaloids, flavonoids, and terpenoids, while the downregulated differential metabolites were related to lipids, amino acids, and their derivatives. Among the different kinds of plant hormones, the cis-form contents of zeatin were significantly increased, and more importantly, cis-zeatin riboside promoted pollen tube growth in vitro. Thus, our results reveal an overall landscape of gene expression and a detailed nutritional microenvironment established for pollen tube growth during the process of stigma maturation, which provides valuable clues for optimizing in vitro pollen growth and investigating the pollen-stigma interaction.
Collapse
Affiliation(s)
- Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Junjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Xiaodi Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
6
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
7
|
Althiab-Almasaud R, Teyssier E, Chervin C, Johnson MA, Mollet JC. Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement. PLANT REPRODUCTION 2024; 37:273-293. [PMID: 37926761 DOI: 10.1007/s00497-023-00484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Eve Teyssier
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Christian Chervin
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jean-Claude Mollet
- Univ Rouen Normandie, GLYCOMEV UR4358, SFR NORVEGE, Fédération Internationale Normandie-Québec NORSEVE, Carnot I2C, RMT BESTIM, GDR Chemobiologie, IRIB, F-76000, Rouen, France.
| |
Collapse
|
8
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Gong W, Oubounyt M, Baumbach J, Dresselhaus T. Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility. iScience 2024; 27:110081. [PMID: 38979009 PMCID: PMC11228802 DOI: 10.1016/j.isci.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
The reproductive phase of plants is highly sensitive to ambient temperature stresses. To investigate sensitivity of female reproductive organs in grass crops during the pollination phase, we exposed the elongated stigma (silk) of maize to ambient environment at the silking stage. Moderate heat stress causes cell death of silk hair cells but did not affect early pollen tube growth inside the silk. Late pollen tube growth arrest was observed, leading to sterility. Heat stress causes elevated levels of reactive oxygen species (ROS) in silks, whose levels can be reduced by scavengers partly restoring pollen tube growth and fertility. A number of biological processes including hydrogen peroxide catabolic processes and bHLH transcription factor genes are downregulated by heat stress, while some NAC transcription factor genes are strongly upregulated. In conclusion, this study now provides a basis to select genes for engineering heat-stress-tolerant grass crops during the pollination phase.
Collapse
Affiliation(s)
- Wen Gong
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Mhaned Oubounyt
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Jan Baumbach
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Wang S, Yang S, Jakada BH, Qin H, Zhan Y, Lan X. Transcriptomics reveal the involvement of reactive oxygen species production and sequestration during stigma development and pollination in Fraxinus mandshurica. FORESTRY RESEARCH 2024; 4:e014. [PMID: 39524420 PMCID: PMC11524289 DOI: 10.48130/forres-0024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 11/16/2024]
Abstract
Stigma development and successful pollination are essential for the continuous existence of flowering plants. However, the specific mechanisms regulating these important processes are not well understood. In this study, we investigated the development of the stigma in Fraxinus mandshurica, dividing it into three stages: S1, S2, and S3. Transcriptome data were used to analyze the gene expression patterns across these developmental stages, and 6,402 genes were observed to exhibit variable expression levels. Our analysis revealed a significant enrichment of pathways related to reactive oxygen species (ROS) and flavonoids, as indicated by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the differentially expressed genes. Further examination by cluster analysis and quantitative polymerase chain reaction revealed that 58 genes were associated with ROS synthesis and seven genes were linked to flavonoid synthesis during the S2 and S3 stages. ROS accumulated during stigma development, which decreased rapidly upon pollen germination and pollen tube elongation, as confirmed by H2DCFDA staining. Moreover, ROS levels in mature stigmas were reduced by treatment with ROS scavengers, such as copper (II) chloride, sodium salicylate, and diphenyleneiodonium, an inhibitor of NADPH oxidases, which enhanced pollen adhesion and germination. These findings suggest that the balance between ROS production and sequestration plays a critical role in regulating stigma development and pollen germination in Fraxinus mandshurica.
Collapse
Affiliation(s)
- Shuqi Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shun Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hongtao Qin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
12
|
Liu H, Wu Z, Bao M, Gao F, Yang W, Abou-Elwafa SF, Liu Z, Ren Z, Zhu Y, Ku L, Su H, Chong L, Chen Y. ZmC2H2-149 negatively regulates drought tolerance by repressing ZmHSD1 in maize. PLANT, CELL & ENVIRONMENT 2024; 47:885-899. [PMID: 38164019 DOI: 10.1111/pce.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Drought is a major abiotic stress that limits maize production worldwide. Therefore, it is of great importance to improve drought tolerance in crop plants for sustainable agriculture. In this study, we examined the roles of Cys2 /His2 zinc-finger-proteins (C2H2-ZFPs) in maize's drought tolerance as C2H2-ZFPs have been implicated for plant stress tolerance. By subjecting 150 Ac/Ds mutant lines to drought stress, we successfully identified a Ds-insertion mutant, zmc2h2-149, which shows increased tolerance to drought stress. Overexpression of ZmC2H2-149 in maize led to a decrease in both drought tolerance and crop yield. DAP-Seq, RNA-Seq, Y1H and LUC assays additionally showed that ZmC2H2-149 directly suppresses the expression of a positive drought tolerance regulator, ZmHSD1 (hydroxysteroid dehydrogenase 1). Consistently, the zmhsd1 mutants exhibited decreased drought tolerance and grain yield under water deficit conditions compared to their respective wild-type plants. Our findings thus demonstrated that ZmC2H2-149 can regulate ZmHSD1 for drought stress tolerance in maize, offering valuable theoretical and genetic resources for maize breeding programmes that aim for improving drought tolerance.
Collapse
Affiliation(s)
- Huafeng Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhendong Wu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Miaomiao Bao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fengran Gao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | | | - Zhixue Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Leelyn Chong
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Stephan OOH. Bio-positive effects of ionizing radiation on pollen: The role of ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14163. [PMID: 39141204 DOI: 10.1111/ppl.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 08/15/2024]
Abstract
The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
14
|
Ma W, Du J, Yu X, Chen K, Ming Y, Jiang L, Chen T, Ji D. Genome-Wide Identification and Analysis of Catharanthus roseus Receptor-like Kinase 1-like Proteins in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:3379. [PMID: 37836119 PMCID: PMC10574150 DOI: 10.3390/plants12193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
As an important member of the plant receptor-like kinases, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) plays vital roles in plant growth and development, as well as biotic and abiotic stress response. Numerous CrRLK1Ls have been identified and analyzed in various plant species, while our knowledge about eggplant (Solanum melongena L.) CrRLK1Ls is still scarce. Utilizing state-of-the-art genomic data, we conducted the first genome-wide identification and analysis of CrRLK1L proteins in eggplant. In this study, 32 CrRLK1L proteins were identified and analyzed in eggplant. A subsequent gene structure and protein domain analysis showed that the identified eggplant CrRLK1Ls possessed typical features of CrRLK1Ls. A subcellular localization prediction demonstrated that these proteins mostly localized on the plasma membrane. A collinearity analysis showed that some eggplant CrRLK1L genes had predicted intraspecies or interspecies evolutionary duplication events. Promoter analysis suggests that eggplant CrRLK1Ls may be involved in plant hormone signaling, host-pathogen interactions, and environmental responses. Based on transcriptomic gene expression analysis, it is indicated that eggplant CrRLK1Ls may be involved in the resistance response of eggplant to Botrytis cinerea. Together, these results will give us a theoretical foundation and guidance for elaborating the biological functions of CrRLK1Ls in eggplant growth, development, and resistance response.
Collapse
Affiliation(s)
- Wenpeng Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Juan Du
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinlong Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Kai Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yucheng Ming
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
15
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
16
|
Zhang MJ, Cui JJ, Wang ZM, Dong YX, Gao XQ. GR1 and NTRA involved in pollen tube growth in the stigma of Arabidopsis. PLANTA 2023; 258:1. [PMID: 37208536 DOI: 10.1007/s00425-023-04161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Arabidopsis GR1 and NTRA function in pollen tube penetrating the stigma into the transmitting tract during pollination. During pollination, recognition between pollen (tube) and stigma mediates the hydration and germination of pollen, as well as the growth of the pollen tube on the stigma. Arabidopsis glutathione reductase 1 (GR1) and NADPH-dependent thioredoxin reductase A (NTRA) are involved in regulating cell redox hemostasis. Both GR1 and NTRA are expressed in pollen, but their roles in pollen germination and the growth of the pollen tube need further investigation. In this study, we performed pollination experiments and found that the Arabidopsis gr1/ + ntra/- and gr1/- ntra/ + double mutation compromised the transmission of male gametophytes. Pollen morphology and viability of the mutants did not show obvious abnormalities. Additionally, the pollen hydration and germination of the double mutants on solid pollen germination medium were comparable to those of the wild type. However, the pollen tubes with gr1 ntra double mutation were unable to penetrate the stigma and enter the transmitting tract when they grew on the surface of the stigma. Our results indicate that GR1 and NTRA play a role in regulating the interaction between the pollen tube and the stigma during pollination.
Collapse
Affiliation(s)
- Ming Jun Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing Jing Cui
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zi Ming Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
17
|
Tang Y, Zhang J, Wang L, Wang H, Long H, Yang L, Li G, Guo J, Wang Y, Li Y, Yang Q, Shi W, Shao R. Water deficit aggravated the inhibition of photosynthetic performance of maize under mercury stress but is alleviated by brassinosteroids. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130365. [PMID: 36444077 DOI: 10.1016/j.jhazmat.2022.130365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg) significantly inhibits maize (Zea mays L.) production, which could be aggravated by water deficit (WD) due to climate change. However, there is no report on the maize in response to combined their stresses. This work was conducted for assessing the response and adaptive mechanism of maize to combined Hg and WD stress using two maize cultivars, Xianyu (XY) 335 and Yudan (YD) 132. The analysis was based on plant growth, physiological function, and transcriptomic data. Compared with the single Hg stress, Hg accumulation in whole plant and translocation factor (TF) under Hg+WD were increased by 64.51 % (1.44 mg kg-1) and 260.00 %, respectively, for XY 335; and 50.32 % (0.62 mg kg-1) and 220.02 %, respectively, for YD 132. Combined Hg and WD stress further increased the reactive oxygen species accumulation, aggravated the damage of the thylakoid membrane, and decreased chlorophyll content compared with single stress. For example, Chl a and Chl b contents of XY 335 were significantly decreased by 48.67 % and 28.08 %, respectively at 48 h after Hg+WD treatment compared with Hg stress. Furthermore, transcriptome analysis revealed that most of down-regulated genes were enriched in photosynthetic-antenna proteins, photosynthesis, chlorophyll and porphyrin metabolism pathways (PsbS1, PSBQ1 and FDX1 etc.) under combined stress, reducing light energy capture and electron transport. However, most genes related to the brassinosteroids (BRs) signaling pathway were up-regulated under Hg+WD stress. Correspondingly, exogenous BRs significantly enhanced the maize tolerance to stress by decreasing Hg accumulation and TF, and raising activities of antioxidant enzyme, the content of chlorophyll and photosynthetic performance. The PI, Fv/Fm and Fv/Fo of Hg+WD+BR treatment were increased by 29.88 %, 32.06 %, and 14.56 %, respectively, for XY 335 compared to Hg+WD. Overall, combined Hg and WD stress decreased photosynthetic efficiency by adversely affecting light absorption and electron transport, especially in stress-sensitive variety, but BRs could alleviate the inhibition of photosynthesis, providing a novel strategy for enhancing crop Hg and WD tolerance and food safety.
Collapse
Affiliation(s)
- Yulou Tang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Junjie Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Lijuan Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Haochi Long
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Liuyang Yang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Gengwei Li
- Xinxiang Grain, Oil and Feed Product Quality Supervision and Inspection Institute, Xinxiang 453000, China
| | - Jiameng Guo
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yuling Li
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Weiyu Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
18
|
Yi N, Mi Y, Xu X, Li N, Chen B, Yan K, Tan K, Zhang B, Wang L, Kuang G, Lu M. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. Int Immunopharmacol 2022; 113:109349. [DOI: 10.1016/j.intimp.2022.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
19
|
Sinha R, Zandalinas SI, Fichman Y, Sen S, Zeng S, Gómez-Cadenas A, Joshi T, Fritschi FB, Mittler R. Differential regulation of flower transpiration during abiotic stress in annual plants. THE NEW PHYTOLOGIST 2022; 235:611-629. [PMID: 35441705 PMCID: PMC9323482 DOI: 10.1111/nph.18162] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 05/10/2023]
Abstract
Heat waves occurring during droughts can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security. Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, sepal stomatal aperture, hormone concentrations and transcriptomic response of closed soybean flowers developing on plants subjected to a combination of drought and heat stress. Here, we report that, during a combination of drought and heat stress, soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed 'differential transpiration', lowers flower inner temperature by about 2-3°C, protecting reproductive processes at the expense of vegetative tissues. Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sara I Zandalinas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sidharth Sen
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Trupti Joshi
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
20
|
Li X, Guo C, Wang Q, Li Z, Cai J, Wu D, Li Y, Yang A, Guo Y, Gao J, Wen L, Pu W. Systematic Analysis of Tobacco CrRLK1L Family Genes and Functional Identification of NtCrRLK1L47 in Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:838857. [PMID: 35783983 PMCID: PMC9247620 DOI: 10.3389/fpls.2022.838857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The Catharanthus roseus RLK1-like (CrRLK1L) family is involved in the regulation of plant reproduction, growth and development, cell wall integrity sensing, as well as responses to both biotic and abiotic stress conditions. Extraordinary progress has been made in elucidating the CrRLK1L family receptor kinases-mediated signaling pathway, while limited research addressed the functions of CrRLK1L proteins in tobacco. In this study, we identified and analyzed 48 NtCrRLK1L members from the tobacco genome. The newly identified NtCrRLK1L members were divided into seven groups together with the Arabidopsis CrRLK1L members. The syntenic analysis revealed that four pairs of NtCrRLK1L genes were predicted to have arisen from segmental duplication events. Expression profiling showed that the NtCrRLK1L genes were expressed in various tissues, and most NtCrRLK1L genes were induced by salt and drought stress conditions. Notably, NtCrRLK1L47 was upregulated under drought and salinity stresses, and the NtCrRLK1L47-GFP fusion protein was located in the cell membrane. Furthermore, overexpression of the NtCrRLK1L47 gene enhanced the salt tolerance in tobacco seedlings.
Collapse
Affiliation(s)
- Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liuying Wen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
21
|
Breygina M, Schekaleva O, Klimenko E, Luneva O. The Balance between Different ROS on Tobacco Stigma during Flowering and Its Role in Pollen Germination. PLANTS 2022; 11:plants11070993. [PMID: 35406973 PMCID: PMC9003529 DOI: 10.3390/plants11070993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
The concept of ROS as an important factor controlling pollen germination and tube growth has become generally accepted in the last decade. However, the relationship between various ROS and their significance for the success of in vivo germination and fertilization remained unexplored. For the present study, we collected Nicotiana tabacum stigma exudate on different stages of stigma maturity before and after pollination. Electron paramagnetic resonance (EPR) and colorimetric analysis were used to assess levels of O•2− and H2O2 on stigma. Superoxide dismutase activity in the stigma tissues at each stage was evaluated zymographically. As the pistil matured, the level of both ROS decreased markedly, while the activity of SOD increased, and, starting from the second stage, the enzyme was represented by two isozymes: Fe SOD and Cu/Zn SOD, which was demonstrated by the in-gel inhibitory analysis. Selective suppression of Cu/Zn SOD activity shifted the ROS balance, which was confirmed by EPR. This shift markedly reduced the rate of pollen germination in vivo and the fertilization efficiency, which was estimated by the seed set. This result showed that hydrogen peroxide is a necessary component of stigma exudate, accelerates germination and ensures successful reproduction. A decrease in O•2− production due to NADPH oxidase inhibition, although it slowed down germination, did not lead to a noticeable decrease in the seed set. Thus, the role of the superoxide radical can be characterized as less important.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia; (O.S.); (E.K.)
- Correspondence: ; Tel.: +7-499-939-1209
| | - Olga Schekaleva
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia; (O.S.); (E.K.)
| | - Ekaterina Klimenko
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia; (O.S.); (E.K.)
| | - Oksana Luneva
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1-24, 119991 Moscow, Russia;
| |
Collapse
|
22
|
A Decade of Pollen Phosphoproteomics. Int J Mol Sci 2021; 22:ijms222212212. [PMID: 34830092 PMCID: PMC8619407 DOI: 10.3390/ijms222212212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.
Collapse
|
23
|
Rattanawong K, Koiso N, Toda E, Kinoshita A, Tanaka M, Tsuji H, Okamoto T. Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1097-1115. [PMID: 34538012 PMCID: PMC9293154 DOI: 10.1111/tpj.15497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) play essential roles in plant development and environmental stress responses. In this study, ROS dynamics, the glutathione redox status, the expression and subcellular localization of glutathione peroxidases (GPXs), and the effects of inhibitors of ROS-mediated metabolism were investigated along with fertilization and early zygotic embryogenesis in rice (Oryza sativa). Zygotes and early embryos exhibited developmental arrest upon inhibition of ROS production. Egg cells accumulated high ROS levels, and, after fertilization, intracellular ROS levels progressively declined in zygotes in which de novo expression of GPX1 and 3 was observed through upregulation of the genes. In addition to inhibition of GPX activity, depletion of glutathione impeded early embryonic development and led to failure of the zygote to appropriately decrease H2 O2 levels. Moreover, through monitoring of the glutathione redox status, the developing zygotes exhibited a progressive glutathione oxidation, which became extremely delayed under inhibited GPX activity. Our results provide insights into the importance of ROS dynamics, GPX antioxidant activity, and glutathione redox metabolism during zygotic/embryonic development.
Collapse
Affiliation(s)
- Kasidit Rattanawong
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Narumi Koiso
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Erika Toda
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Atsuko Kinoshita
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Mari Tanaka
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokachoTotsuka‐kuYokohamaKanagawaJapan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokachoTotsuka‐kuYokohamaKanagawaJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| |
Collapse
|
24
|
Zhou LZ, Qu LJ, Dresselhaus T. Stigmatic ROS: regulator of compatible pollen tube perception? TRENDS IN PLANT SCIENCE 2021; 26:993-995. [PMID: 34246552 DOI: 10.1016/j.tplants.2021.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Accurate communication at the stigma surface is required to promote plants' own pollen and reject foreign pollen. Liu et al. have now discovered an autocrine signaling pathway at the surface of arabidopsis stigmatic papillae, accumulating ROS. Downregulation of ROS production via an antagonistic peptide from the pollen coat promotes pollen hydration and germination.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
25
|
Kiyono H, Katano K, Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. PLANTS 2021; 10:plants10081652. [PMID: 34451697 PMCID: PMC8401158 DOI: 10.3390/plants10081652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022]
Abstract
To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.
Collapse
Affiliation(s)
- Hanako Kiyono
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
| | - Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Correspondence: ; Tel.: +81-3-3238-3884
| |
Collapse
|
26
|
Mkhize P, Mashilo J, Shimelis H. Progress on Genetic Improvement and Analysis of Bottle Gourd [Lagenaria siceraria (Molina) Standl.] for Agronomic Traits, Nutrient Compositions, and Stress Tolerance: A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.683635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bottle gourd [Lagenaria siceraria (Molina) Standl.] is an important multi-purpose cucurbit crop grown for its leaf, fruit, and seed. It is widely cultivated and used for human consumption in sub-Saharan Africa (SSA) providing vital human nutrition and serving as food security crop. There is wide genetic variation among bottle gourd genetic resources in Africa for diverse qualitative and quantitative attributes for effective variety design, product development, and marketing. However, the crop is under- researched and -utilized, and improved varieties are yet to be developed and commercialized in the region. Therefore, the objective of this review is to provide the progress on bottle gourd genetic improvement and genetic analysis targeting agronomic and horticultural attributes, nutritional composition, biotic, and abiotic stress tolerance to guide current and future cultivar development, germplasm access, and conservation in SSA. The first section of the paper presents progress on breeding of bottle gourd for horticultural traits, agronomic performance, nutritional and anti-nutritional composition, and biotic and abiotic stress tolerance. This is followed by important highlights on key genetic resources of cultivated and wild bottle gourd for demand driven breeding. Lastly, the review summaries advances in bottle gourd genomics, genetic engineering and genome editing. Information presented in this paper should aid bottle gourd breeders and agronomists to develop and deploy new generation and promising varieties with farmer- and market -preferred attributes.
Collapse
|
27
|
Breygina M, Klimenko E, Schekaleva O. Pollen Germination and Pollen Tube Growth in Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2021; 10:1301. [PMID: 34206892 PMCID: PMC8309077 DOI: 10.3390/plants10071301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
Pollen germination and pollen tube growth are common to all seed plants, but these processes first developed in gymnosperms and still serve for their successful sexual reproduction. The main body of data on the reproductive physiology, however, was obtained on flowering plants, and one should be careful to extrapolate the discovered patterns to gymnosperms. In recent years, physiological studies of coniferous pollen have been increasing, and both the features of this group and the similarities with flowering plants have already been identified. The main part of the review is devoted to physiological studies carried out on conifer pollen. The main properties and diversity of pollen grains and pollination strategies in gymnosperms are described.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.K.); (O.S.)
| | | | | |
Collapse
|
28
|
Lara-Mondragón CM, MacAlister CA. Arabinogalactan glycoprotein dynamics during the progamic phase in the tomato pistil. PLANT REPRODUCTION 2021; 34:131-148. [PMID: 33860833 DOI: 10.1007/s00497-021-00408-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pistil AGPs display dynamic localization patterns in response to fertilization in tomato. SlyFLA9 (Solyc07g065540.1) is a chimeric Fasciclin-like AGP with enriched expression in the ovary, suggesting a potential function during pollen-pistil interaction. During fertilization, the male gametes are delivered by pollen tubes to receptive ovules, deeply embedded in the sporophytic tissues of the pistil. Arabinogalactan glycoproteins (AGPs) are a diverse family of highly glycosylated, secreted proteins which have been widely implicated in plant reproduction, particularly within the pistil. Though tomato (Solanum lycopersicum) is an important crop requiring successful fertilization for production, the molecular basis of this event remains understudied. Here we explore the spatiotemporal localization of AGPs in the mature tomato pistil before and after fertilization. Using histological techniques to detect AGP sugar moieties, we found that accumulation of AGPs correlated with the maturation of the stigma and we identified an AGP subpopulation restricted to the micropyle that was no longer visible upon fertilization. To identify candidate pistil AGP genes, we used an RNA-sequencing approach to catalog gene expression in functionally distinct subsections of the mature tomato pistil (the stigma, apical and basal style and ovary) as well as pollen and pollen tubes. Of 161 predicted AGP and AGP-like proteins encoded in the tomato genome, we identified four genes with specifically enriched expression in reproductive tissues. We further validated expression of two of these, a Fasciclin-like AGP (SlyFLA9, Solyc07g065540.1) and a novel hybrid AGP (SlyHAE, Solyc09g075580.1). Using in situ hybridization, we also found SlyFLA9 was expressed in the integuments of the ovule and the pericarp. Additionally, differential expression analyses of the pistil transcriptome revealed previously unreported genes with enriched expression in each subsection of the mature pistil, setting the foundation for future functional studies.
Collapse
Affiliation(s)
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Zhang L, Huang J, Su S, Wei X, Yang L, Zhao H, Yu J, Wang J, Hui J, Hao S, Song S, Cao Y, Wang M, Zhang X, Zhao Y, Wang Z, Zeng W, Wu HM, Yuan Y, Zhang X, Cheung AY, Duan Q. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Curr Biol 2021; 31:3004-3016.e4. [PMID: 34015250 DOI: 10.1016/j.cub.2021.04.060] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Most plants in the Brassicaceae evolve self-incompatibility (SI) to avoid inbreeding and generate hybrid vigor. Self-pollen is recognized by the S-haplotype-specific interaction of the pollen ligand S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein [SCR]) and its stigma-specific S-locus receptor kinase (SRK). However, mechanistically much remains unknown about the signaling events that culminate in self-pollen rejection. Here, we show that self-pollen triggers high levels of reactive oxygen species (ROS) in stigma papilla cells to mediate SI in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). We found that stigmatic ROS increased after self-pollination but decreased after compatible(CP)- pollination. Reducing stigmatic ROS by scavengers or suppressing the expression of respiratory burst oxidase homologs (Rbohs), which encode plant NADPH oxidases that produce ROS, both broke down SI. On the other hand, increasing the level of ROS inhibited the germination and penetration of compatible pollen on the stigma, mimicking an incompatible response. Furthermore, suppressing a B. rapa FERONIA (FER) receptor kinase homolog or Rac/Rop guanosine triphosphatase (GTPase) signaling effectively reduced stigmatic ROS and interfered with SI. Our results suggest that FER-Rac/Rop signaling-regulated, NADPH oxidase-produced ROS is an essential SI response leading to self-pollen rejection.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jiabao Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
| | - Shiqi Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Lin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Huanhuan Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jianqiang Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jie Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jiyun Hui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Shiya Hao
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Shanshan Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Yanyan Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Maoshuai Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | | | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China.
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA 01003, USA
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
| |
Collapse
|
30
|
Lodde V, Morandini P, Costa A, Murgia I, Ezquer I. cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes (Basel) 2021; 12:525. [PMID: 33916807 PMCID: PMC8067062 DOI: 10.3390/genes12040525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.
Collapse
Affiliation(s)
- Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, 20133 Milan, Italy;
| | - Piero Morandini
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Alex Costa
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Irene Murgia
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| |
Collapse
|
31
|
Medina E, Kim SH, Yun M, Choi WG. Recapitulation of the Function and Role of ROS Generated in Response to Heat Stress in Plants. PLANTS 2021; 10:plants10020371. [PMID: 33671904 PMCID: PMC7918971 DOI: 10.3390/plants10020371] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants' growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.
Collapse
Affiliation(s)
- Emily Medina
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA; (E.M.); (S.-H.K.)
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA; (E.M.); (S.-H.K.)
| | - Miriam Yun
- Biology and Psychology Department, University of Nevada, Reno, NV 89557, USA;
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA; (E.M.); (S.-H.K.)
- Correspondence:
| |
Collapse
|
32
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
33
|
Breygina M, Klimenko E. ROS and Ions in Cell Signaling during Sexual Plant Reproduction. Int J Mol Sci 2020; 21:E9476. [PMID: 33322128 PMCID: PMC7764562 DOI: 10.3390/ijms21249476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Pollen grain is a unique haploid organism characterized by two key physiological processes: activation of metabolism upon exiting dormancy and polar tube growth. In gymnosperms and flowering plants, these processes occur in different time frames and exhibit important features; identification of similarities and differences is still in the active phase. In angiosperms, the growth of male gametophyte is directed and controlled by its microenvironment, while in gymnosperms it is relatively autonomous. Recent reviews have detailed aspects of interaction between angiosperm female tissues and pollen such as interactions between peptides and their receptors; however, accumulated evidence suggests low-molecular communication, in particular, through ion exchange and ROS production, equally important for polar growth as well as for pollen germination. Recently, it became clear that ROS and ionic currents form a single regulatory module, since ROS production and the activity of ion transport systems are closely interrelated and form a feedback loop.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
34
|
Cascallares M, Setzes N, Marchetti F, López GA, Distéfano AM, Cainzos M, Zabaleta E, Pagnussat GC. A Complex Journey: Cell Wall Remodeling, Interactions, and Integrity During Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:599247. [PMID: 33329663 PMCID: PMC7733995 DOI: 10.3389/fpls.2020.599247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/05/2023]
Abstract
In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
35
|
Xue JS, Zhang B, Zhan H, Lv YL, Jia XL, Wang T, Yang NY, Lou YX, Zhang ZB, Hu WJ, Gui J, Cao J, Xu P, Zhou Y, Hu JF, Li L, Yang ZN. Phenylpropanoid Derivatives Are Essential Components of Sporopollenin in Vascular Plants. MOLECULAR PLANT 2020; 13:1644-1653. [PMID: 32810599 DOI: 10.1016/j.molp.2020.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 05/22/2023]
Abstract
The outer wall of pollen and spores, namely the exine, is composed of sporopollenin, which is highly resistant to chemical reagents and enzymes. In this study, we demonstrated that phenylpropanoid pathway derivatives are essential components of sporopollenin in seed plants. Spectral analyses showed that the autofluorescence of Lilium and Arabidopsis sporopollenin is similar to that of lignin. Thioacidolysis and NMR analyses of pollen from Lilium and Cryptomeria further revealed that the sporopollenin of seed plants contains phenylpropanoid derivatives, including p-hydroxybenzoate (p-BA), p-coumarate (p-CA), ferulate (FA), and lignin guaiacyl (G) units. The phenylpropanoid pathway is expressed in the tapetum in Arabidopsis, consistent with the fact that the sporopollenin precursor originates from the tapetum. Further germination and comet assays showed that this pathway plays an important role in protection of pollen against UV radiation. In the pteridophyte plant species Ophioglossum vulgatum and Lycopodium clavata, phenylpropanoid derivatives including p-BA and p-CA were also detected, but G units were not. Taken together, our results indicate that phenylpropanoid derivatives are essential for sporopollenin synthesis in vascular plants. In addition, sporopollenin autofluorescence spectra of bryophytes, such as Physcomitrella and Haplocladium, exhibit distinct characteristics compared with those of vascular plants, indicating the diversity of sporopollenin among land plants.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - HuaDong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Lin Lv
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xin-Lei Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - TianHua Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Ying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu-Xia Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wen-Jing Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics & CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Beijing 200032, China
| | - Jianguo Cao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics & CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Beijing 200032, China.
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
36
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
37
|
Zhang Q, Hou C, Tian Y, Tang M, Feng C, Ren Z, Song J, Wang X, Li T, Li M, Tian W, Qiu J, Liu L, Li L. Interaction Between AtCML9 and AtMLO10 Regulates Pollen Tube Development and Seed Setting. FRONTIERS IN PLANT SCIENCE 2020; 11:1119. [PMID: 32793269 PMCID: PMC7394235 DOI: 10.3389/fpls.2020.01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
In higher-plant reproduction, the compatibility of pollen tube germination in the pistil is essential for successful double fertilization. It has been reported that Mildew Locus O (MLO) family gene NTA (MLO7), expressing in synergid cells, can correctly guide pollen tubes. However, the molecular mechanism underlying the interacting partners to MLOs in the fertilization is still unknown. In our study, we identified the direct protein interaction between CML9 and MLO10 within a non-canonical CaMBD. In GUS reporter assays, CML9 expresses in a high level in pollens, whereas MLO10 can be specifically detected in stigma which reaches up to a peaking level before fertilization. Therefore, the spatio-temporal expression patterns of MLO10 and CML9 are required for the time-window of pollination. When we observed the pollen germination in vitro, two cml9 mutant alleles dramatically reduced germination rate by 15% compared to wild-type. Consistently, the elongation rate of pollen tubes in planta was obviously slow while manually pollinating cml9-1 pollens to mlo10-1 stigmas. Additionally, cml9-1 mlo10-1 double mutant alleles had relatively lower rate of seed setting. Taken together, protein interaction between MLO10 and CML9 is supposed to affect pollen tube elongation and further affect seed development.
Collapse
Affiliation(s)
- Qian Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yudan Tian
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Mitianguo Tang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Xiaohan Wang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Tiange Li
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Mengou Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wang Tian
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| |
Collapse
|
38
|
Sankaranarayanan S, Ju Y, Kessler SA. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1199. [PMID: 32849744 PMCID: PMC7419745 DOI: 10.3389/fpls.2020.01199] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) are toxic by-products of aerobic metabolism. In plants, they also function as important signaling molecules that regulate biotic and abiotic stress responses as well as plant growth and development. Recent studies have implicated ROS in various aspects of plant reproduction. In male gametophytes, ROS are associated with germline development as well as the developmentally associated programmed cell death of tapetal cells necessary for microspore development. ROS have a role in regulation of female gametophyte patterning and maintenance of embryo sac polarity. During pollination, ROS play roles in the generation of self-incompatibility response during pollen-pistil interaction, pollen tube growth, pollen tube burst for sperm release and fertilization. In this mini review, we provide an overview of ROS production and signaling in the context of plant reproductive development, from female and male gametophyte development to fertilization.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| | - Yan Ju
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Sharon A. Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| |
Collapse
|
39
|
Huang J, Su S, Dai H, Liu C, Wei X, Zhao Y, Wang Z, Zhang X, Yuan Y, Yu X, Zhang C, Li Y, Zeng W, Wu HM, Cheung AY, Wang S, Duan Q. Programmed Cell Death in Stigmatic Papilla Cells Is Associated With Senescence-Induced Self-Incompatibility Breakdown in Chinese Cabbage and Radish. FRONTIERS IN PLANT SCIENCE 2020; 11:586901. [PMID: 33365040 PMCID: PMC7750362 DOI: 10.3389/fpls.2020.586901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/02/2020] [Indexed: 05/02/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism flowering plants adopted to reject self-pollen and promote outcrossing. In the Brassicaceae family plants, the stigma tissue plays a key role in self-pollen recognition and rejection. We reported earlier in Chinese cabbage (Brassica rapa) that stigma tissue showed upregulated ethylene responses and programmed cell death (PCD) upon compatible pollination, but not in SI responses. Here, we show that SI is significantly compromised or completely lost in senescent flowers and young flowers of senescent plants. Senescence upregulates senescence-associated genes in B. rapa. Suppressing their expression in young stigmas by antisense oligodeoxyribonucleotide abolishes compatible pollination-triggered PCD and inhibits the growth of compatible pollen tubes. Furthermore, ethylene biosynthesis genes and response genes are upregulated in senescent stigmas, and increasing the level of ethylene or inhibiting its response increases or decreases the expression of senescence-associated genes, respectively. Our results show that senescence causes PCD in stigmatic papilla cells and is associated with the breakdown of SI in Chinese cabbage and in radish.
Collapse
Affiliation(s)
- Jiabao Huang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Shiqi Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Huamin Dai
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Chen Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaolin Yu
- Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Changwei Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiqing Zeng
- Trait Discovery, Corteva Agriscience, Johnston, IA, United States
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Shufen Wang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Shufen Wang,
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiaohong Duan,
| |
Collapse
|