1
|
Kang M, Liu Y, Weng Y, Wang H, Huang Y, Bai X. Trade-off strategies for driving the toxicity and metabolic remodeling of copper oxide nanoparticles and copper ions in Ipomoea aquatica. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136342. [PMID: 39488971 DOI: 10.1016/j.jhazmat.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The ecological safety of copper oxide nanoparticles (CuO NPs) in the environment determines the advancement of nano-agriculture owing to breakthroughs in nanotechnology; however, the release of Cu2+ is an uncontrollable factor. Currently, the trade-off mechanisms of CuO NPs and Cu2+ dominating the potential hazards of plant-nano systems remain unclear. This study proposed the trade-off strategy for reconstructing physiological responses and metabolic profiles and deciphered the differential regulation of dominant CuO NPs and Cu2+ in plants. The results showed that 100 and 500 mg/kg CuO NPs promoted root fresh weight but reduced shoot fresh weight, while 1000 mg/kg Cu2+ demonstrated the strongest inhibition on both roots and shoots. The net photosynthetic perturbation in photosynthetic disorders is accompanied by superoxide anion and hydrogen peroxide accumulation, which are severe under 1000 mg/kg CuO NPs and Cu2+ stress. Metabolomics revealed that CuO NPs significantly altered coumaric acid and derivatives, for example, down-regulating coumaroyl hexoside (isomers of 690 and 691) by 40.79 %. Additionally, Cu2+ treatment severely interfered with the dominant metabolic response, activating plant hormone signal transduction and α-linolenic acid metabolism. The trade-off strategies of galactose metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A (CoA) biosynthesis, and β-alanine metabolism as differential metabolism were confirmed by comparing the CuO NPs and Cu2+ exposure. Protein secondary structure analysis revealed specific regulation of protein conformation upon exposure to CuO NPs and Cu2+. These findings provide new insights into differential metabolism and environmental effects in plant-nano systems.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Tao Y, Wu L, Volodymyr V, Hu P, Hu H, Li C. Identification of the ribosomal protein L18 (RPL18) gene family reveals that TaRPL18-1 positively regulates powdery mildew resistance in wheat. Int J Biol Macromol 2024; 280:135730. [PMID: 39322125 DOI: 10.1016/j.ijbiomac.2024.135730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
The Ribosomal protein L18 (RPL18) protein gene family plays an important role in plant growth, development and stress response. Although the RPL18 genes have been identified in several plant species, the RPL18 gene family in wheat (Triticum aestivum) is still unexplored. This study found 8 TaRPL18 genes, each of which has a significantly different gene sequence length and is evenly distributed on the chromosome; Additionally, these proteins have similar physicochemical characteristics as well as secondary and tertiary structures. 17 RPL18 genes in 4 species (wheat, Arabidopsis, rice, and maize) were classified into 5 groups, and the TaRPL18 genes within the same group showed similar structures and conserved motifs. Analysis of the cis-acting elements in the TaRPL18 genes promoter regions revealed the presence of developmental and stress-responsive elements in the majority of the genes. Through yeast two-hybrid (Y2H) experiments, it was confirmed that the powdery mildew resistance protein TaPm46 physically interacts with the Class IV TaRPL18-1. Functional analysis indicated that TaRPL18-1-silenced wheat plants show reduced resistance to powdery mildew compared to the wild type (WT), with decreased expression levels of PAL and PPO genes, and increased expression levels of the PR gene. The findings of this study provide a basis for clarifying the function of the TaRPL18 genes and will be useful for the selection of disease-resistant varieties of wheat.
Collapse
Affiliation(s)
- Ye Tao
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuliu Wu
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine
| | | | - Ping Hu
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Haiyan Hu
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chengwei Li
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Agricultural University, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Li M, Yang J, Li H, Wang Y, Cheng X, Han G, Bisseling T, Zhao J. Endophytic Bacillus velezensis XS142 is an efficient antagonist for Verticillium wilt of potato. Front Microbiol 2024; 15:1396044. [PMID: 39257618 PMCID: PMC11385860 DOI: 10.3389/fmicb.2024.1396044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Potato Verticillium wilt (PVW) caused by Verticillium dahliae is a vascular disease, that seriously affects potato (Solanum tuberosum L.) yield and quality worldwide. V. dahliae occupies the vascular bundle and therefore it cannot efficiently be treated with fungicides. Further, the application of these pesticides causes serious environmental problems. Therefore, it is of great importance to find environmentally friendly biological control methods. In this study, bacterial strains were isolated from agricultural lands on which potato had been cultured for 5 years. Five strains with a broad-spectrum antagonistic activity were selected. Among these five strains, Bacillus velezensis XS142 showed the highest antagonistic activity. To study the mechanism of XS142, by which this strain might confer tolerance to V. dahliae in potato, the genome of strain XS142 was sequenced. This showed that its genome has a high level of sequence identity with the model strain B. velezensis FZB42 as the OrthoANI (Average Nucleotide Identity by Orthology) value is 98%. The fungal suppressing mechanisms of this model strain are well studied. Based on the genome comparison it can be predicted that XS142 has the potential to suppress the growth of V. dahliae by production of bacillomycin D, fengycin, and chitinase. Further, the transcriptomes of potatoes treated with XS142 were analyzed and this showed that XS142 does not induce ISR, but the expression of genes encoding peptides with antifungal activity. Here we showed that XS142 is an endophyte. Further, it is isolated from a field where potato had been cultured for several years. These properties give it a high potential to be used, in the future, as a biocontrol agent of PVW in agriculture.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianfeng Yang
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoyu Li
- The Modern Agricultural and Animal Husbandry Development Center of Bayannur, Bayannur, China
| | - Yating Wang
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Xu Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guodong Han
- Key Lab of Grassland Resources of the Ministry of Education of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ton Bisseling
- Key Lab of Grassland Resources of the Ministry of Education of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Zhao
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Iqbal N, Czékus Z, Ördög A, Poór P. Fusaric acid-evoked oxidative stress affects plant defence system by inducing biochemical changes at subcellular level. PLANT CELL REPORTS 2023; 43:2. [PMID: 38108938 PMCID: PMC10728271 DOI: 10.1007/s00299-023-03084-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
Fusaric acid (FA) is one of the most harmful phytotoxins produced in various plant-pathogen interactions. Fusarium species produce FA as a secondary metabolite, which can infect many agronomic crops at all stages of development from seed to fruit, and FA production can further compromise plant survival because of its phytotoxic effects. FA exposure in plant species adversely affects plant growth, development and crop yield. FA exposure in plants leads to the generation of reactive oxygen species (ROS), which cause cellular damage and ultimately cell death. Therefore, FA-induced ROS accumulation in plants has been a topic of interest for many researchers to understand the plant-pathogen interactions and plant defence responses. In this study, we reviewed the FA-mediated oxidative stress and ROS-induced defence responses of antioxidants, as well as hormonal signalling in plants. The effects of FA phytotoxicity on lipid peroxidation, physiological changes and ultrastructural changes at cellular and subcellular levels were reported. Additionally, DNA damage, cell death and adverse effects on photosynthesis have been explained. Some possible approaches to overcome the harmful effects of FA in plants were also discussed. It is concluded that FA-induced ROS affect the enzymatic and non-enzymatic antioxidant system regulated by phytohormones. The effects of FA are also associated with other photosynthetic, ultrastructural and genotoxic modifications in plants.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
5
|
Li R, Ma XY, Zhang YJ, Zhang YJ, Zhu H, Shao SN, Zhang DD, Klosterman SJ, Dai XF, Subbarao KV, Chen JY. Genome-wide identification and analysis of a cotton secretome reveals its role in resistance against Verticillium dahliae. BMC Biol 2023; 21:166. [PMID: 37542270 PMCID: PMC10403859 DOI: 10.1186/s12915-023-01650-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xi-Yue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye-Jing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhu
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Sheng-Nan Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
6
|
Hafiz FB, Geistlinger J, Al Mamun A, Schellenberg I, Neumann G, Rozhon W. Tissue-Specific Hormone Signalling and Defence Gene Induction in an In Vitro Assembly of the Rapeseed Verticillium Pathosystem. Int J Mol Sci 2023; 24:10489. [PMID: 37445666 DOI: 10.3390/ijms241310489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Priming plants with beneficial microbes can establish rapid and robust resistance against numerous pathogens. Here, compelling evidence is provided that the treatment of rapeseed plants with Trichoderma harzianum OMG16 and Bacillus velezensis FZB42 induces defence activation against Verticillium longisporum infection. The relative expressions of the JA biosynthesis genes LOX2 and OPR3, the ET biosynthesis genes ACS2 and ACO4 and the SA biosynthesis and signalling genes ICS1 and PR1 were analysed separately in leaf, stem and root tissues using qRT-PCR. To successfully colonize rapeseed roots, the V. longisporum strain 43 pathogen suppressed the biosynthesis of JA, ET and SA hormones in non-primed plants. Priming led to fast and strong systemic responses of JA, ET and SA biosynthesis and signalling gene expression in each leaf, stem and root tissue. Moreover, the quantification of plant hormones via UHPLC-MS analysis revealed a 1.7- and 2.6-fold increase in endogenous JA and SA in shoots of primed plants, respectively. In roots, endogenous JA and SA levels increased up to 3.9- and 2.3-fold in Vl43-infected primed plants compared to non-primed plants, respectively. Taken together, these data indicate that microbial priming stimulates rapeseed defence responses against Verticillium infection and presumably transduces defence signals from the root to the upper parts of the plant via phytohormone signalling.
Collapse
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Abdullah Al Mamun
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Günter Neumann
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
7
|
Ji Y, Mou M, Zhang H, Wang R, Wu S, Jing Y, Zhang H, Li L, Li Z, Chen L. GhWRKY33 negatively regulates jasmonate-mediated plant defense to Verticillium dahliae. PLANT DIVERSITY 2023; 45:337-346. [PMID: 37397600 PMCID: PMC10311097 DOI: 10.1016/j.pld.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 07/04/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, seriously restricts the yield and quality improvement of cotton. Previous studies have revealed the involvement of WRKY members in plant defense against V. dahliae, but the underlying mechanisms involved need to be further elucidated. Here, we demonstrated that Gossypium hirsutum WRKY DNA-binding protein 33 (GhWRKY33) functions as a negative regulator in plant defense against V. dahliae. GhWRKY33 expression is induced rapidly by V. dahliae and methyl jasmonate, and overexpression of GhWRKY33 reduces plant tolerance to V. dahliae in Arabidopsis. Quantitative RT-PCR analysis revealed that expression of several JA-associated genes was significantly repressed in GhWRKY33 overexpressing transgenic plants. Yeast one-hybrid analysis revealed that GhWRKY33 may repress the transcription of both AtERF1 and GhERF2 through its binding to their promoters. Protein-protein interaction analysis suggested that GhWRKY33 interacts with G. hirsutum JASMONATE ZIM-domain protein 3 (GhJAZ3). Similarly, overexpression of GhJAZ3 also decreases plant tolerance to V. dahliae. Furthermore, GhJAZ3 acts synergistically with GhWRKY33 to suppress both AtERF1 and GhERF2 expression. Our results imply that GhWRKY33 may negatively regulate plant tolerance to V. dahliae via the JA-mediated signaling pathway.
Collapse
Affiliation(s)
- Yunrui Ji
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Mou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Songguo Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yifen Jing
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
8
|
Verticillium dahliae Effector VdCE11 Contributes to Virulence by Promoting Accumulation and Activity of the Aspartic Protease GhAP1 from Cotton. Microbiol Spectr 2023; 11:e0354722. [PMID: 36656049 PMCID: PMC9927275 DOI: 10.1128/spectrum.03547-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Verticillium dahliae is a soilborne plant fungal pathogen that causes Verticillium wilt, a disease that reduces the yields of many economically important crops. Despite its worldwide distribution and harmful impacts, much remains unknown regarding how the numerous effectors of V. dahliae modulate plant immunity. Here, we identified the intracellular effector VdCE11 that induces cell death and defense responses in Nicotiana benthamiana to counter leaf pathogens such as Sclerotinia sclerotiorum and Botrytis cinerea. VdCE11 also contributes to the virulence of V. dahliae in cotton and Arabidopsis. Yeast two-hybrid library screening and immunoprecipitation revealed that VdCE11 interacts physically with the cotton aspartic protease GhAP1. GhAP1 and its Arabidopsis homolog AtAP1 are negative regulators of plant immunity, since disruption of either increased the resistance of cotton or Arabidopsis to V. dahliae. Further, VdCE11 plays a role in promoting the accumulation of the AP1 proteins and increasing its hydrolase activity. Taken together, these results indicate a novel mechanism regulating virulence whereby the secreted effector VdCE11 increases cotton susceptibility to V. dahliae by promoting the accumulation and activity of GhAP1. IMPORTANCE Verticclium dahliae is a plant fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, we identified a V. dahliae effector VdCE11 that induces cell death and defense responses in Nicotiana benthamiana. Meanwhile, VdCE11 contributes to the virulence of V. dahliae in cotton and Arabidopsis. Yeast two-hybrid library screening and immunoprecipitation revealed that VdCE11 interacts physically with the cotton aspartic protease GhAP1. GhAP1 and its Arabidopsis homolog AtAP1 are negative regulators of plant immunity since disruption of either increased the resistance of cotton or Arabidopsis to V. dahliae. Further research showed that VdCE11 plays a role in promoting the accumulation of the AP1 proteins and increasing its hydrolase activity. These results suggested that a novel mechanism regulating virulence whereby VdCE11 increases susceptibility to V. dahliae by promoting the accumulation and activity of GhAP1 in the host.
Collapse
|
9
|
Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2023; 14:1174281. [PMID: 37152175 PMCID: PMC10161258 DOI: 10.3389/fpls.2023.1174281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Cotton is widely grown in many countries around the world due to the huge economic value of the total natural fiber. Verticillium wilt, caused by the soil-borne pathogen Verticillium dahliae, is the most devastating disease that led to extensive yield losses and fiber quality reduction in cotton crops. Developing resistant cotton varieties through genetic engineering is an effective, economical, and durable strategy to control Verticillium wilt. However, there are few resistance gene resources in the currently planted cotton varieties, which has brought great challenges and difficulties for breeding through genetic engineering. Further revealing the molecular mechanism between V. dahliae and cotton interaction is crucial to discovering genes related to disease resistance. In this review, we elaborated on the pathogenic mechanism of V. dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae has evolved complex mechanisms to achieve pathogenicity in cotton, mainly including five aspects: (1) germination and growth of microsclerotia; (2) infection and successful colonization; (3) adaptation to the nutrient-deficient environment and competition of nutrients; (4) suppression and manipulation of cotton immune responses; (5) rapid reproduction and secretion of toxins. Cotton has evolved multiple physiological and biochemical responses to cope with V. dahliae infection, including modification of tissue structures, accumulation of antifungal substances, homeostasis of reactive oxygen species (ROS), induction of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades, hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI). This review will provide an important reference for the breeding of new cotton germplasm resistant to Verticillium wilt through genetic engineering.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dongxiao Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yanpeng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| |
Collapse
|
10
|
Zhou H, Hua J, Zhang J, Luo S. Negative Interactions Balance Growth and Defense in Plants Confronted with Herbivores or Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12723-12732. [PMID: 36165611 DOI: 10.1021/acs.jafc.2c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have evolved a series of defensive mechanisms against pathogens and herbivores, but the defense response always leads to decreases in growth or reproduction, which has serious implications for agricultural production. Growth and defense are negatively regulated not only through metabolic consumption but also through the antagonism of different phytohormones, such as jasmonic acid (JA) and salicylic acid (SA). Meanwhile, plants can limit the expression of defensive metabolites to reduce the costs of defense by producing constitutive defenses such as glandular trichomes or latex and accumulating specific metabolites, determining the activation of plant defense or the maintenance of plant growth. Interestingly, plant defense pathways might be prepared in advance which may be transmitted to descendants. Plants can also use external organisms to protect themselves, thus minimizing the costs of defense. In addition, plant relatives exhibit cooperation to deal with pathogens and herbivores, which is also a way to regulate growth and defense.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
11
|
Jia MZ, Li ZF, Han S, Wang S, Jiang J. Effect of 1-aminocyclopropane-1-carboxylic acid accumulation on Verticillium dahliae infection of upland cotton. BMC PLANT BIOLOGY 2022; 22:386. [PMID: 35918649 PMCID: PMC9347136 DOI: 10.1186/s12870-022-03774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/22/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Verticillium wilt of cotton is a serious disease caused by the infection of soil borne fungus Verticillium dahliae Kleb, and the infection mechanisms may involve the regulation of phytohormone ethylene. The precursor of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylic acid (ACC), whose biosynthesis in vivo depends on activation of ACC synthase (ACS). Here, we investigated how ACS activation and ACC accumulation affected the infection of V. dahliae strain Vd991 on cotton (Gossypium hirsutum L.) cultivar YZ1. RESULTS Preliminary observations indicated that ACC applications reduced the disease incidence, disease index and stem vascular browning by impeding fungal biomass accumulation. Transcriptome and qRT-PCR data disclosed that Vd991 induced GhACS2 and GhACS6 expression. GhACS2- or GhACS6-overexpressing transgenic YZ1 lines were generated, respectively. In a Verticillium disease nursery with about 50 microsclerotia per gram of soil, these ACC-accumulated plants showed decreased disease indexes, stem fungal biomasses and vascular browning. More importantly, these transgenic plants decreased the green fluorescent protein-marked Vd991 colonization and diffusion in root tissues. Further, either ACC treatment or ACC-accumulating cotton plants activated salicylic acid (SA)-dependent resistance responses. CONCLUSIONS The GhACS2- and GhACS6-dependent ACC accumulations enhanced the resistance of cotton to V. dahliae in a SA-dependent manner, and this lays a foundation for cotton resistance breeding.
Collapse
Affiliation(s)
- Ming-Zhu Jia
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan Province, China
| | - Zhi-Fang Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan Province, China
| | - Shuan Han
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan Province, China
| | - Song Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan Province, China
| | - Jing Jiang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan Province, China.
| |
Collapse
|
12
|
Zhu Y, Hu X, Wang P, Wang H, Ge X, Li F, Hou Y. The phospholipase D gene GhPLDδ confers resistance to Verticillium dahliae and improves tolerance to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111322. [PMID: 35696922 DOI: 10.1016/j.plantsci.2022.111322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Plant phospholipase D (PLD) and its product phosphatidic acid (PA) function in both abiotic and biotic stress signaling. However, to date, a PLD gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we isolated and identified a PLD gene GhPLDδ from cotton (Gossypium hirsutum), which functions in Verticillium wilt resistance and salt tolerance. GhPLDδ was highly induced by salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen peroxide, PEG 6000, NaCl, and Verticillium dahliae in cotton plants. The positive role of GhPLDδ in regulating plant resistance to V. dahliae was confirmed by loss- and gain-of-function analyses. Upon chitin treatment, accumulation of PA, hydrogen peroxide, JA, SA, and the expression of genes involved in MAPK cascades, JA- and SA-related defense responses were positively related to the level of GhPLDδ in plants. The treatment by exogenous PA could activate the expression of genes related to MAPK, SA, and JA signaling pathways. Moreover, GhPLDδ overexpression enhanced salt tolerance in Arabidopsis as demonstrated by the increased germination rate, longer seedling root, higher chlorophyll content, larger fresh weight, lower malondialdehyde content, and fully expand rosette leaves. Additionally, the PA content and the expression of the genes of the MAPK cascades regulated by PA were increased in GhPLDδ-overexpressed Arabidopsis under salt stress. Taken together, these findings suggest that GhPLDδ and PA are involved in regulating plant defense against both V. dahliae infection and salt stress.
Collapse
Affiliation(s)
- Yutao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoqian Hu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongwei Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuxia Hou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Li F, Chen X, Yang B, Guang Y, Wu D, Shi Z, Li Y. Transcriptome Analysis Revealed the Molecular Response Mechanism of High-Resistant and Low-Resistant Alfalfa Varieties to Verticillium Wilt. FRONTIERS IN PLANT SCIENCE 2022; 13:931001. [PMID: 35783960 PMCID: PMC9243768 DOI: 10.3389/fpls.2022.931001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 05/17/2023]
Abstract
Following infestation by Verticillium wilt, alfalfa (Medicago sativa L.) often shows symptoms such as disease spots, leaf loss, stem, and leaf yellowing, resulting in the decline of alfalfa yield and quality and causing significant losses to the alfalfa industry. The popularization and planting of disease-resistant varieties is the most effective method to prevent and control Verticillium wilt of alfalfa. Therefore, it is particularly important to reveal the resistance mechanism of Verticillium wilt resistant varieties of alfalfa. In this study, the physiological and biochemical indexes were measured on days 7, 14, 21, and 28 after inoculation with Verticillium alfalfae for investigating the response mechanisms of two alfalfa varieties, high-resistant WL343HQ, and low-resistant Dryland. Transcriptome sequencing of alfalfa samples infected with V. alfalfae and uninfected alfalfa samples was performed to analyze the potential functions and signaling pathways of differentially expressed genes (DEGs) by GO classification and KEGG enrichment analysis. Meanwhile, weighted gene co-correlation network analysis (WGCNA) algorithm was used to construct a co-expression network of DEGs. Inoculation with V. alfalfae significantly affected net photosynthetic rate, stomatal conductance, chlorophyll content, MDA content, JA and SA concentrations, and NO and H2O2 contents in both WL343HQ and Dryland inoculated with V. alfalfae. Most of the transcription factors in plants were classified in the WRKY, NAC, and bHLH families. WGCNA analysis showed that the number of transcription factors related to plant growth and disease resistance was higher in the corresponding modules of WL343HQ disease groups on days 7 and 28 (WVa) and (WVd) than in the corresponding modules of Dryland disease groups on days 7 and 21 (HVa) and (HVc). These findings provide data for further gene function validation and also provide a reference for in-depth studies on interactions between plants and pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Zunji Shi
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
15
|
Ali M, Ahmad H, Amin B, Atif MJ, Cheng Z. Induce defense response of DADS in eggplants during the biotrophic phase of Verticillium dahliae. BMC PLANT BIOLOGY 2022; 22:172. [PMID: 35379184 PMCID: PMC8981950 DOI: 10.1186/s12870-022-03527-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE Verticillium wilt is a destructive vascular disease in eggplants. The complex defensive mechanisms of eggplant against this disease are very limited. METHODS Our work examined the bioactive properties of garlic allelochemical diallyl disulfide (DADS) as potential biostimulants for defense against V. dahliae in eggplant seedlings. We, therefore, foliar sprayed DADS on eggplants to study the defense response during the early biotrophic phase of V. dahliae (a hemibiotroph). RESULTS DADS application significantly increased root peroxidase (POD), phenylalanine-ammonia lyase (PAL) enzyme activity, and reduced H2O2 levels after 24 h of fungal inoculation. Salicylic acid (SA) in leaves and roots was significantly increased while, the jasmonic acid (JA), indole acetic acid (IAA), and abscisic acid (ABA) levels were decreased. The microscopic examinations of V. dahliae infection in roots displayed that the progression of infection was restricted in DADS-treated plants. Depositions of lignin and phenolic compounds such as ferulic acid, p-coumaric acid, and caffeic acid content were significantly higher in DADS-treated plants at 48 h post-inoculation. Similarly, the DADS application up-regulated pathogenesis-related (PR1, PR2, and PR5), mitogen-activated protein kinase (MPK1), and lipoxygenase (LOX) genes. Furthermore, DADS-treated plants exhibited a lower disease severity index (23.3% vs. 57.0% in controls), indicating successful defense against V. dahliae. CONCLUSIONS Our findings concluded that the biological function of garlic allelochemical DADS has a prominent role in the higher defense resistance of eggplants during the early infection of V. dahliae.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Husain Ahmad
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Zhu Y, Hu X, Wang P, Wang H, Ge X, Li F, Hou Y. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. Int J Biol Macromol 2022; 201:580-591. [DOI: 10.1016/j.ijbiomac.2022.01.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
|
17
|
Functional Genomics and Comparative Lineage-Specific Region Analyses Reveal Novel Insights into Race Divergence in Verticillium dahliae. Microbiol Spectr 2021; 9:e0111821. [PMID: 34937170 PMCID: PMC8694104 DOI: 10.1128/spectrum.01118-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Verticillium dahliae is a widespread soilborne fungus that causes Verticillium wilt on numerous economically important plant species. In tomato, until now, three races have been characterized based on the response of differential cultivars to V. dahliae, but the genetic basis of race divergence in V. dahliae remains undetermined. To investigate the genetic basis of race divergence, we sequenced the genomes of two race 2 strains and four race 3 strains for comparative analyses with two known race 1 genomes. The genetic basis of race divergence was described by the pathogenicity-related genes among the three races, orthologue analyses, and genomic structural variations. Global comparative genomics showed that chromosomal rearrangements are not the only source of race divergence and that race 3 should be split into two genotypes based on orthologue clustering. Lineage-specific regions (LSRs), frequently observed between genomes of the three races, encode several predicted secreted proteins that potentially function as suppressors of immunity triggered by known effectors. These likely contribute to the virulence of the three races. Two genes in particular that can act as markers for race 2 and race 3 (VdR2e and VdR3e, respectively) contribute to virulence on tomato, and the latter acts as an avirulence factor of race 3. We elucidated the genetic basis of race divergence through global comparative genomics and identified secreted proteins in LSRs that could potentially play critical roles in the differential virulence among the races in V. dahliae. IMPORTANCE Deciphering the gene-for-gene relationships during host-pathogen interactions is the basis of modern plant resistance breeding. In the Verticillium dahliae-tomato pathosystem, two races (races 1 and 2) and their corresponding avirulence (Avr) genes have been identified, but strains that lack these two Avr genes exist in nature. In this system, race 3 has been described, but the corresponding Avr gene has not been identified. We de novo-sequenced genomes of six strains and identified secreted proteins within the lineage-specific regions (LSRs) distributed among the genomes of the three races that could potentially function as manipulators of host immunity. One of the LSR genes, VdR3e, was confirmed as the Avr gene for race 3. The results indicate that differences in transcriptional regulation may contribute to race differentiation. This is the first study to describe these differences and elucidate roles of secreted proteins in LSRs that play roles in race differentiation.
Collapse
|
18
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 PMCID: PMC8593000 DOI: 10.3389/fpls.2021.749630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 DOI: 10.21203/rs.3.rs-388437/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Transcriptome Analysis of a Cotton Cultivar Provides Insights into the Differentially Expressed Genes Underlying Heightened Resistance to the Devastating Verticillium Wilt. Cells 2021; 10:cells10112961. [PMID: 34831184 PMCID: PMC8616101 DOI: 10.3390/cells10112961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Cotton is an important economic crop worldwide. Verticillium wilt (VW) caused by Verticillium dahliae (V. dahliae) is a serious disease in cotton, resulting in massive yield losses and decline of fiber quality. Breeding resistant cotton cultivars is an efficient but elaborate method to improve the resistance of cotton against V. dahliae infection. However, the functional mechanism of several excellent VW resistant cotton cultivars is poorly understood at present. In our current study, we carried out RNA-seq to discover the differentially expressed genes (DEGs) in the roots of susceptible cotton Gossypium hirsutum cultivar Junmian 1 (J1) and resistant cotton G.hirsutum cultivar Liaomian 38 (L38) upon Vd991 inoculation at two time points compared with the mock inoculated control plants. The potential function of DEGs uniquely expressed in J1 and L38 was also analyzed by GO enrichment and KEGG pathway associations. Most DEGs were assigned to resistance-related functions. In addition, resistance gene analogues (RGAs) were identified and analyzed for their role in the heightened resistance of the L38 cultivar against the devastating Vd991. In summary, we analyzed the regulatory network of genes in the resistant cotton cultivar L38 during V. dahliae infection, providing a novel and comprehensive insight into VW resistance in cotton.
Collapse
|
21
|
Ye HT, Luo SQ, Yang ZN, Wang YS, Ding Q, Wang KF, Yang SX, Wang Y. Endophytic fungi stimulate the concentration of medicinal secondary metabolites in houttuynia cordata thunb. PLANT SIGNALING & BEHAVIOR 2021; 16:1929731. [PMID: 34092178 PMCID: PMC8280886 DOI: 10.1080/15592324.2021.1929731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Endophytic fungi usually establish a symbiotic relationship with the host plant and affect its growth. In order to evaluate the impact of endophytic fungi on the Chinese herbal medicinal plant Houttuynia cordata Thunb., three endophytes isolated from the rhizomes of H. cordata, namely Ilyonectria liriodendra (IL), unidentified fungal sp. (UF), and Penicillium citrinum (PC), were co-cultured individually with H. cordata in sterile soil for 60 days. Analysis of the results showed that the endophytes stimulated the host plant in different ways: IL increased the growth of rhizomes and the accumulation of most of the phenolics and volatiles, UF promoted the accumulation of the medicinal compounds afzelin, decanal, 2-undecanone, and borneol without influencing host plant growth, and PC increased the fresh weight, total leaf area and height of the plants, as well as the growth of the rhizomes, but had only a small effect on the concentration of major secondary metabolites. Our results proved that the endophytic fungi had potential practical value in terms of the production of Chinese herbal medicines, having the ability to improve the yield and accumulation of medicinal metabolites.
Collapse
Affiliation(s)
- Hai-Tao Ye
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Shi-Qiong Luo
- School of Life Science, Guizhou Normal University, Guiyang Guizhou, China
| | - Zhan-Nan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
- CONTACT Zhan-Nan Yang Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, 550001, China
| | - Yuan-Shuai Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Qian Ding
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Kai-Feng Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Shun-Xing Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Yu Wang
- School of Life Science, Guizhou Normal University, Guiyang Guizhou, China
| |
Collapse
|
22
|
The Non-Pathogenic Fusarium oxysporum Fo47 Induces Distinct Responses in Two Closely Related Solanaceae Plants against the Pathogen Verticillium dahliae. J Fungi (Basel) 2021; 7:jof7050344. [PMID: 33925134 PMCID: PMC8146752 DOI: 10.3390/jof7050344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper) but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene related genes were present among the DE genes in both plants, and the up-regulation of ethylene biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47. The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47, but its role depends on the host species.
Collapse
|
23
|
Ramírez-Tejero JA, Jiménez-Ruiz J, Serrano A, Belaj A, León L, de la Rosa R, Mercado-Blanco J, Luque F. Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics 2021; 22:229. [PMID: 33794765 PMCID: PMC8017696 DOI: 10.1186/s12864-021-07545-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Olive orchards are threatened by a wide range of pathogens. Of these, Verticillium dahliae has been in the spotlight for its high incidence, the difficulty to control it and the few cultivars that has increased tolerance to the pathogen. Disease resistance not only depends on detection of pathogen invasion and induction of responses by the plant, but also on barriers to avoid the invasion and active resistance mechanisms constitutively expressed in the absence of the pathogen. In a previous work we found that two healthy non-infected plants from cultivars that differ in V. dahliae resistance such as 'Frantoio' (resistant) and 'Picual' (susceptible) had a different root morphology and gene expression pattern. In this work, we have addressed the issue of basal differences in the roots between Resistant and Susceptible cultivars. RESULTS The gene expression pattern of roots from 29 olive cultivars with different degree of resistance/susceptibility to V. dahliae was analyzed by RNA-Seq. However, only the Highly Resistant and Extremely Susceptible cultivars showed significant differences in gene expression among various groups of cultivars. A set of 421 genes showing an inverse differential expression level between the Highly Resistant to Extremely Susceptible cultivars was found and analyzed. The main differences involved higher expression of a series of transcription factors and genes involved in processes of molecules importation to nucleus, plant defense genes and lower expression of root growth and development genes in Highly Resistant cultivars, while a reverse pattern in Moderately Susceptible and more pronounced in Extremely Susceptible cultivars were observed. CONCLUSION According to the different gene expression patterns, it seems that the roots of the Extremely Susceptible cultivars focus more on growth and development, while some other functions, such as defense against pathogens, have a higher expression level in roots of Highly Resistant cultivars. Therefore, it seems that there are constitutive differences in the roots between Resistant and Susceptible cultivars, and that susceptible roots seem to provide a more suitable environment for the pathogen than the resistant ones.
Collapse
Affiliation(s)
- Jorge A Ramírez-Tejero
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071, Jaén, Spain.
| | - Jaime Jiménez-Ruiz
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071, Jaén, Spain
| | - Alicia Serrano
- Institute of Agricultural and Fishery Research and Training (IFAPA), Alameda del Obispo' Center, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Angjelina Belaj
- Institute of Agricultural and Fishery Research and Training (IFAPA), Alameda del Obispo' Center, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Lorenzo León
- Institute of Agricultural and Fishery Research and Training (IFAPA), Alameda del Obispo' Center, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Raúl de la Rosa
- Institute of Agricultural and Fishery Research and Training (IFAPA), Alameda del Obispo' Center, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| | - Francisco Luque
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071, Jaén, Spain
| |
Collapse
|
24
|
Montesinos L, Gascón B, Ruz L, Badosa E, Planas M, Feliu L, Montesinos E. A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. FRONTIERS IN PLANT SCIENCE 2021; 12:756357. [PMID: 34733307 PMCID: PMC8558481 DOI: 10.3389/fpls.2021.756357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
The hybrid peptide BP178 (KKLFKKILKYLAGPAGIGKFLHSAKKDEL-OH), derived from BP100 (KKLFKKILKYL) and magainin (1-10), and engineered for plant expression, had a strong bactericidal activity but not fungicidal. Moreover, the preventive spray of tomato plants with BP178 controlled infections by the plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, as well as the fungus Botrytis cinerea. The treatment of tomato plants with BP178 induced the expression of several genes according to microarray and RT-qPCR analysis. Upregulated genes coded for several pathogenesis-related proteins, including PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR9, PR10, and PR14, as well as transcription factors like ethylene transcription factors, WRKY, NAC and MYB, involved in the salicylic acid, jasmonic acid, and ethylene-signaling pathways. BP178 induced a similar gene expression pattern to flg15 according to RT-qPCR analysis, whereas the parent peptide BP100 did not trigger such as a strong plant defense response. It was concluded that BP178 was a bifunctional peptide protecting the plant against pathogen infection through a dual mechanism of action consisting of antimicrobial activity against bacterial pathogens and plant defense elicitation on plant host.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Beatriz Gascón
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Lidia Ruz
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
- *Correspondence: Emilio Montesinos
| |
Collapse
|
25
|
Li T, Zhang Q, Jiang X, Li R, Dhar N. Cotton CC-NBS-LRR Gene GbCNL130 Confers Resistance to Verticillium Wilt Across Different Species. FRONTIERS IN PLANT SCIENCE 2021; 12:695691. [PMID: 34567025 PMCID: PMC8456104 DOI: 10.3389/fpls.2021.695691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Verticillium wilt (VW) is a destructive disease in cotton caused by Verticillium dahliae and has a significant impact on yield and quality. In the absence of safe and effective chemical control, VW is difficult to manage. Thus, at present, developing resistant varieties is the most economical and effective method of controlling Verticillium wilt of cotton. The CC-NBS-LRR (CNL) gene family is an important class of plant genes involved in disease resistance. This study identified 141 GbCNLs in Gossypium barbadense genome, with 37.5% (53 genes) GbCNLs enriched in 12 gene clusters (GC01-GC12) based on gene distribution in the chromosomes. Especially, seven GbCNLs from two largest clusters (GC11 and GC12) were significantly upregulated in the resistant cultivar (Hai No. 7124) and the susceptible (Giza No. 57). Virus-induced gene silencing of GbCNL130 in G. barbadense, one typical gene in the gene cluster 12 (GC12), significantly altered the response to VW, compromising plant resistance to V. dahliae. In contrast, GbCNL130 overexpression significantly increased the resistance to VW in the wild-type Arabidopsis thaliana. Based on our research findings presented here, we conclude that GbCNL130 promotes resistance to VW by activating the salicylic acid (SA)-dependent defense response pathway resulting in strong accumulation of reactive oxygen species and upregulation of pathogenesis-related (PR) genes. In conclusion, our study resulted in the discovery of a new CNL resistance gene in cotton, GbCNL130, that confers resistance to VW across different hosts.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Tinggang Li,
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Li
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| |
Collapse
|
26
|
Xiong XP, Sun SC, Zhu QH, Zhang XY, Liu F, Li YJ, Xue F, Sun J. Transcriptome Analysis and RNA Interference Reveal GhGDH2 Regulating Cotton Resistance to Verticillium Wilt by JA and SA Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:654676. [PMID: 34177978 PMCID: PMC8226099 DOI: 10.3389/fpls.2021.654676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, is one of the most damaging and widespread soil-borne cotton diseases. The molecular mechanisms underlying the cotton defense against V. dahliae remain largely elusive. Here, we compared the transcriptional differences between Upland cotton cultivars: one highly resistant (HR; Shidalukang 1) and one highly susceptible (HS; Junmian 1). This was done at multiple time points after V. dahliae inoculation, which identified 2010 and 1275 differentially expressed genes (DEGs) in HR and HS, respectively. Plant hormone signal transduction-related genes were enriched in HR, whereas genes related to lignin biosynthesis were enriched in both HR and HS. Weighted gene co-expression network analysis (WGCNA) using the 2868 non-redundant genes differentially expressed between the V. dahliae infected and uninfected samples in HR or HS identified 10 different gene network modules and 22 hub genes with a potential role in regulating cotton defense against V. dahliae infection. GhGDH2, encoding glutamate dehydrogenase (GDH), was selected for functional characterization. Suppressing the expression level of GhGDH2 by virus-induced gene silencing (VIGS) in HS led to inhibition of the salicylic acid (SA) biosynthesis/signaling pathways and activation of the jasmonic acid (JA) biosynthesis/signaling pathways, which resulted in an increase of 42.1% JA content and a reduction of 78.9% SA content in cotton roots, and consequently enhanced V. dahliae resistance. Our finding provides new insights on the molecular mechanisms of cotton resistance to V. dahliae infection and candidate genes for breeding V. dahliae resistance cotton cultivars by genetic modification.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Fei Xue,
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Jie Sun,
| |
Collapse
|