1
|
Casal JJ, Murcia G, Bianchimano L. Plant Thermosensors. Annu Rev Genet 2024; 58:135-158. [PMID: 38986032 DOI: 10.1146/annurev-genet-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Plants are exposed to temperature conditions that fluctuate over different time scales, including those inherent to global warming. In the face of these variations, plants sense temperature to adjust their functions and minimize the negative consequences. Transcriptome responses underlie changes in growth, development, and biochemistry (thermomorphogenesis and acclimation to extreme temperatures). We are only beginning to understand temperature sensation by plants. Multiple thermosensors convey complementary temperature information to a given signaling network to control gene expression. Temperature-induced changes in protein or transcript structure and/or in the dynamics of biomolecular condensates are the core sensing mechanisms of known thermosensors, but temperature impinges on their activities via additional indirect pathways. The diversity of plant responses to temperature anticipates that many new thermosensors and eventually novel sensing mechanisms will be uncovered soon.
Collapse
Affiliation(s)
- Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina;
| | - Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
| | | |
Collapse
|
2
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
3
|
Iglesias MJ, Costigliolo Rojas C, Bianchimano L, Legris M, Schön J, Gergoff Grozeff GE, Bartoli CG, Blázquez MA, Alabadí D, Zurbriggen MD, Casal JJ. Shade-induced ROS/NO reinforce COP1-mediated diffuse cell growth. Proc Natl Acad Sci U S A 2024; 121:e2320187121. [PMID: 39382994 PMCID: PMC11494356 DOI: 10.1073/pnas.2320187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/08/2024] [Indexed: 10/11/2024] Open
Abstract
Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.
Collapse
Affiliation(s)
- María José Iglesias
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular and Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Cecilia Costigliolo Rojas
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Gustavo Esteban Gergoff Grozeff
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Carlos Guillermo Bartoli
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Jorge J. Casal
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires, Buenos Aires1417, Argentina
| |
Collapse
|
4
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
5
|
Ji MG, Khakurel D, Hwang JW, Nguyen CC, Nam B, Shin GI, Jeong SY, Ahn G, Cha JY, Lee SH, Park HJ, Kim MG, Yun DJ, Rubio V, Kim WY. The E3 ubiquitin ligase COP1 regulates salt tolerance via GIGANTEA degradation in roots. PLANT, CELL & ENVIRONMENT 2024; 47:3241-3252. [PMID: 38741272 DOI: 10.1111/pce.14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.
Collapse
Affiliation(s)
- Myung Geun Ji
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhruba Khakurel
- Department of Biology, Graduate School, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Won Hwang
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Cam Chau Nguyen
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Byoungwoo Nam
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Ho Lee
- Department of Biology, Graduate School, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Min Gab Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju, Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Vicente Rubio
- Plant Molecular Genetics Department, Centro Nacionalde Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
7
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
8
|
Krahmer J, Fankhauser C. Environmental Control of Hypocotyl Elongation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:489-519. [PMID: 38012051 DOI: 10.1146/annurev-arplant-062923-023852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
9
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
10
|
Chen Y, Vermeersch M, Van Leene J, De Jaeger G, Li Y, Vanhaeren H. A dynamic ubiquitination balance of cell proliferation and endoreduplication regulators determines plant organ size. SCIENCE ADVANCES 2024; 10:eadj2570. [PMID: 38478622 PMCID: PMC10936951 DOI: 10.1126/sciadv.adj2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Ubiquitination plays a crucial role throughout plant growth and development. The E3 ligase DA2 has been reported to activate the peptidase DA1 by ubiquitination, hereby limiting cell proliferation. However, the molecular mechanisms that regulate DA2 remain elusive. Here, we demonstrate that DA2 has a very high turnover and auto-ubiquitinates with K48-linkage polyubiquitin chains, which is counteracted by two deubiquitinating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13. Unexpectedly, we found that auto-ubiquitination of DA2 does not influence its stability but determines its E3 ligase activity. We also demonstrate that impairing the protease activity of DA1 abolishes the growth-reducing effect of DA2. Last, we show that synthetic, constitutively activated DA1-ubiquitin fusion proteins overrule this complex balance of ubiquitination and deubiquitination and strongly restrict growth and promote endoreduplication. Our findings highlight a nonproteolytic function of K48-linked polyubiquitination and reveal a mechanism by which DA2 auto-ubiquitination levels, in concert with UBP12 and UBP13, precisely monitor the activity of DA1 and fine-tune plant organ size.
Collapse
Affiliation(s)
- Ying Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Jelle Van Leene
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hannes Vanhaeren
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Wang W, Kim J, Martinez TS, Huq E, Sung S. COP1 controls light-dependent chromatin remodeling. Proc Natl Acad Sci U S A 2024; 121:e2312853121. [PMID: 38349881 PMCID: PMC10895365 DOI: 10.1073/pnas.2312853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Teresa S. Martinez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
13
|
Mahapatra K, Mukherjee A, Suyal S, Dar MA, Bhagavatula L, Datta S. Regulation of chloroplast biogenesis, development, and signaling by endogenous and exogenous cues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:167-183. [PMID: 38623168 PMCID: PMC11016055 DOI: 10.1007/s12298-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Arpan Mukherjee
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Shikha Suyal
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Mansoor Ali Dar
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | | | - Sourav Datta
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
14
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
15
|
Wang X, Hao Y, Altaf MA, Shu H, Cheng S, Wang Z, Zhu G. Evolution and Dynamic Transcriptome of Key Genes of Photoperiodic Flowering Pathway in Water Spinach ( Ipomoea aquatica). Int J Mol Sci 2024; 25:1420. [PMID: 38338699 PMCID: PMC10855745 DOI: 10.3390/ijms25031420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
16
|
Kwon Y, Kim C, Choi G. Isolation of Phytochrome B Photobodies. Methods Mol Biol 2024; 2795:113-122. [PMID: 38594533 DOI: 10.1007/978-1-0716-3814-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Phytochrome B (phyB), a plant photoreceptor, forms a membraneless organelle known as a photobody. Here, we present a protocol for the isolation of phyB photobodies through fluorescence-activated particle sorting from mature transgenic Arabidopsis leaves expressing phyB-GFP. This protocol involves the isolation of nuclei from frozen ground leaves using sucrose gradient centrifugation, the disruption of nuclear envelopes by sonication, and the subsequent isolation of phyB photobodies through fluorescence-activated particle sorting. We include experimental tips and notes for each step.
Collapse
Affiliation(s)
- Yongmin Kwon
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Chanhee Kim
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, South Korea.
| |
Collapse
|
17
|
Huang X, Lyu T, Li Z, Lyu Y. Hydrangea arborescens 'Annabelle' Flower Formation and Flowering in the Current Year. PLANTS (BASEL, SWITZERLAND) 2023; 12:4103. [PMID: 38140430 PMCID: PMC10748224 DOI: 10.3390/plants12244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
The perennial woody plant Hydrangea arborescens 'Annabelle' is of great research value due to its unique mechanism of flower development that occurs in the current year, resulting in decorative flowers that can be enjoyed for a relatively long period of time. However, the mechanisms underlying the regulation of current-year flower development in H. arborescens 'Annabelle' are still not fully understood. In this study, we conducted an associated analysis to explore the core regulating network in H. arborescens 'Annabelle' by combining phenological observations, physiological assays, and transcriptome comparisons across seven flower developmental stages. Through this analysis, we constructed a gene co-expression network (GCN) based on the highest reciprocal rank (HRR), using 509 differentially expressed genes (DEGs) identified from seven flowering-related pathways, as well as the biosynthesis of eight flowering-related phytohormones and signal transduction in the transcriptomic analysis. According to the analysis of the GCN, we identified 14 key genes with the highest functional connectivity that played critical roles in specific development stages. We confirmed that 135 transcription factors (AP2/ERF, bHLH, CO-like, GRAS, MIKC, SBP, WRKY) were highly co-expressed with the 14 key genes, indicating their close associations with the development of current-year flowers. We further proposed a hypothetical model of a gene regulatory network for the development of the whole flower. This model suggested that the photoperiod, aging, and gibberellin pathways, along with the phytohormones abscisic acid (ABA), gibberellin (GA), brassinosteroid (BR), and jasmonic acid (JA), work synergistically to promote the floral transition. Additionally, auxin, GA, JA, ABA, and salicylic acid (SA) regulated the blooming process by involving the circadian clock. Cytokinin (CTK), ethylene (ETH), and SA were key regulators that affected flower senescence. Additionally, several floral integrators (HaLFY, HaSOC1-2, HaAP1, HaFULL, HaAGL24, HaFLC, etc.) were dominant contributors to the development of H. arborescens flowers. Overall, this research provides a comprehensive understanding of the dynamic mechanism underlying the entire process of current-year flower development, thereby offering valuable insights for further studies on the flower development of H. arborescens 'Annabelle'.
Collapse
Affiliation(s)
- Xiaoxu Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Garden, Beijing 100093, China
| | - Zheng Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
19
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
20
|
Lantican DV, Nocum JDL, Manohar ANC, Mendoza JVS, Gardoce RR, Lachica GC, Gueco LS, Dela Cueva FM. Comparative RNA-seq analysis of resistant and susceptible banana genotypes reveals molecular mechanisms in response to banana bunchy top virus (BBTV) infection. Sci Rep 2023; 13:18719. [PMID: 37907581 PMCID: PMC10618458 DOI: 10.1038/s41598-023-45937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Bananas hold significant economic importance as an agricultural commodity, serving as a primary livelihood source, a favorite fruit, and a staple crop in various regions across the world. However, Banana bunchy top disease (BBTD), which is caused by banana bunchy top virus (BBTV), poses a considerable threat to banana cultivation. To understand the resistance mechanism and the interplay of host suitability factors in the presence of BBTV, we conducted RNA-seq-based comparative transcriptomics analysis on mock-inoculated and BBTV-inoculated samples from resistant (wild Musa balbisiana) and susceptible (Musa acuminata 'Lakatan') genotypes. We observed common patterns of expression for 62 differentially expressed genes (DEGs) in both genotypes, which represent the typical defense response of bananas to BBTV. Furthermore, we identified 99 DEGs exclusive to the 'Lakatan' banana cultivar, offering insights into the host factors and susceptibility mechanisms that facilitate successful BBTV infection. In parallel, we identified 151 DEGs unique to the wild M. balbisiana, shedding light on the multifaceted mechanisms of BBTV resistance, involving processes such as secondary metabolite biosynthesis, cell wall modification, and pathogen perception. Notably, our validation efforts via RT-qPCR confirmed the up-regulation of the glucuronoxylan 4-O-methyltransferase gene (14.28 fold-change increase), implicated in xylan modification and degradation. Furthermore, our experiments highlighted the potential recruitment of host's substrate adaptor ADO (30.31 fold-change increase) by BBTV, which may play a role in enhancing banana susceptibility to the viral pathogen. The DEGs identified in this work can be used as basis in designing associated gene markers for the precise integration of resistance genes in marker-assisted breeding programs. Furthermore, the findings can be applied to develop genome-edited banana cultivars targeting the resistance and susceptibility genes, thus developing novel cultivars that are resilient to important diseases.
Collapse
Affiliation(s)
- Darlon V Lantican
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines.
| | - Jen Daine L Nocum
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Anand Noel C Manohar
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Jay-Vee S Mendoza
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Roanne R Gardoce
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Grace C Lachica
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries, Forestry, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Lavernee S Gueco
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Fe M Dela Cueva
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| |
Collapse
|
21
|
Qin C, Li YH, Li D, Zhang X, Kong L, Zhou Y, Lyu X, Ji R, Wei X, Cheng Q, Jia Z, Li X, Wang Q, Wang Y, Huang W, Yang C, Liu L, Wang X, Xing G, Hu G, Shan Z, Wang R, Li H, Li H, Zhao T, Liu J, Lu Y, Hu X, Kong F, Qiu LJ, Liu B. PH13 improves soybean shade traits and enhances yield for high-density planting at high latitudes. Nat Commun 2023; 14:6813. [PMID: 37884530 PMCID: PMC10603158 DOI: 10.1038/s41467-023-42608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Shading in combination with extended photoperiods can cause exaggerated stem elongation (ESE) in soybean, leading to lodging and reduced yields when planted at high-density in high-latitude regions. However, the genetic basis of plant height in adaptation to these regions remains unclear. Here, through a genome-wide association study, we identify a plant height regulating gene on chromosome 13 (PH13) encoding a WD40 protein with three main haplotypes in natural populations. We find that an insertion of a Ty1/Copia-like retrotransposon in the haplotype 3 leads to a truncated PH13H3 with reduced interaction with GmCOP1s, resulting in accumulation of STF1/2, and reduced plant height. In addition, PH13H3 allele has been strongly selected for genetic improvement at high latitudes. Deletion of both PH13 and its paralogue PHP can prevent shade-induced ESE and allow high-density planting. This study provides insights into the mechanism of shade-resistance and offers potential solutions for breeding high-yielding soybean cultivar for high-latitude regions.
Collapse
Affiliation(s)
- Chao Qin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying-Hui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Delin Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueru Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ronghuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuzhi Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qican Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiwei Jia
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Xiaojiao Li
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Qiang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, China
| | - Yueqiang Wang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, 130033, China
| | - Wen Huang
- Tonghua Academy of Agricultural Sciences, Tonghua, Jilin, 135007, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050035, China
| | - Like Liu
- Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, Jiangsu, 221131, China
| | - Guangnan Xing
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guoyu Hu
- Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Zhihui Shan
- Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, Hubei, 430062, China
| | - Ruizhen Wang
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Lu
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Xiping Hu
- Beidahuang KenFeng Seed Co., Ltd, Binxi Economic Development Zone, Harbin, Heilongjiang, 150090, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Li-Juan Qiu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
22
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
23
|
Xiong H, Lu D, Li Z, Wu J, Ning X, Lin W, Bai Z, Zheng C, Sun Y, Chi W, Zhang L, Xu X. The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. PLANT COMMUNICATIONS 2023; 4:100597. [PMID: 37002603 PMCID: PMC10504559 DOI: 10.1016/j.xplc.2023.100597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/29/2023]
Abstract
Plant growth is coordinately controlled by various environmental and hormonal signals, of which light and gibberellin (GA) signals are two critical factors with opposite effects on hypocotyl elongation. Although interactions between the light and GA signaling pathways have been studied extensively, the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified. Previously, we reported that ABA INSENSITIVE 4 (ABI4) controls hypocotyl elongation through its regulation of cell-elongation-related genes, but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown. In this study, we show that promotion of hypocotyl elongation by GA is dependent on ABI4 activation. DELLAs interact directly with ABI4 and inhibit its DNA-binding activity. In turn, ABI4 combined with ELONGATED HYPOCOTYL 5 (HY5), a key positive factor in light signaling, feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels. Taken together, our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.
Collapse
Affiliation(s)
- Haibo Xiong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Zhiyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Xin Ning
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Weijun Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Zechen Bai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Yang Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China.
| |
Collapse
|
24
|
Abramova A, Vereshchagin M, Kulkov L, Kreslavski VD, Kuznetsov VV, Pashkovskiy P. Potential Role of Phytochromes A and B and Cryptochrome 1 in the Adaptation of Solanum lycopersicum to UV-B Radiation. Int J Mol Sci 2023; 24:13142. [PMID: 37685948 PMCID: PMC10488226 DOI: 10.3390/ijms241713142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
UV-B causes both damage to the photosynthetic apparatus (PA) and the activation of specific mechanisms that protect the PA from excess energy and trigger a cascade of regulatory interactions with different photoreceptors, including phytochromes (PHYs) and cryptochromes (CRYs). However, the role of photoreceptors in plants' responses to UV-B radiation remains undiscovered. This study explores some of these responses using tomato photoreceptor mutants (phya, phyb1, phyab2, cry1). The effects of UV-B exposure (12.3 µmol (photons) m-2 s-1) on photosynthetic rates and PSII photochemical activity, the contents of photosynthetic and UV-absorbing pigments and anthocyanins, and the nonenzymatic antioxidant capacity (TEAC) were studied. The expression of key light-signaling genes, including UV-B signaling and genes associated with the biosynthesis of chlorophylls, carotenoids, anthocyanins, and flavonoids, was also determined. Under UV-B, phyab2 and cry1 mutants demonstrated a reduction in the PSII effective quantum yield and photosynthetic rate, as well as a reduced value of TEAC. At the same time, UV-B irradiation led to a noticeable decrease in the expression of the ultraviolet-B receptor (UVR8), repressor of UV-B photomorphogenesis 2 (RUP2), cullin 4 (CUL4), anthocyanidin synthase (ANT), phenylalanine ammonia-lease (PAL), and phytochrome B2 (PHYB2) genes in phyab2 and RUP2, CUL4, ANT, PAL, and elongated hypocotyl 5 (HY5) genes in the cry1 mutant. The results indicate the mutual regulation of UVR8, PHYB2, and CRY1 photoreceptors, but not PHYB1 and PHYA, in the process of forming a response to UV-B irradiation in tomato.
Collapse
Affiliation(s)
- Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Leonid Kulkov
- Department of Technologies for the Production of Vegetable, Medicinal and Essential Oils, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127550, Russia;
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| |
Collapse
|
25
|
Wei Y, Wang S, Yu D. The Role of Light Quality in Regulating Early Seedling Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2746. [PMID: 37514360 PMCID: PMC10383958 DOI: 10.3390/plants12142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
It is well-established that plants are sessile and photoautotrophic organisms that rely on light throughout their entire life cycle. Light quality (spectral composition) is especially important as it provides energy for photosynthesis and influences signaling pathways that regulate plant development in the complex process of photomorphogenesis. During previous years, significant progress has been made in light quality's physiological and biochemical effects on crops. However, understanding how light quality modulates plant growth and development remains a complex challenge. In this review, we provide an overview of the role of light quality in regulating the early development of plants, encompassing processes such as seed germination, seedling de-etiolation, and seedling establishment. These insights can be harnessed to improve production planning and crop quality by producing high-quality seedlings in plant factories and improving the theoretical framework for modern agriculture.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
George M, Masamba P, Iwalokun BA, Kappo AP. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. Am J Cancer Res 2023; 13:2773-2789. [PMID: 37559981 PMCID: PMC10408477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
Cancer is one of the most common and widely diagnosed diseases worldwide. With an increase in prevalence and incidence, many studies in cancer biology have been looking at the role pro-cancer proteins play. One of these proteins is the Really Interesting New Gene (RING), which has been studied extensively due to its structure and functions such as apoptosis, neddylation, and its role in ubiquitination. The RING domain is a cysteine-rich domain known to bind Cysteine and Histidine residues. It also binds two zinc ions that help stabilize the protein in various patterns, often with a 'cross-brace' topology. Different RING finger proteins have been studied and found to have suitable targets for developing anti-cancer therapeutics. These identified candidate proteins include Parkin, COP1, MDM2, BARD1, BRCA-1, PIRH2, c-CBL, SIAH1, RBX1 and RNF8. Inhibiting these candidate proteins provides opportunities for shutting down pathways associated with tumour development and metastasis.
Collapse
Affiliation(s)
- Mary George
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| | - Bamidele Abiodun Iwalokun
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research (NIMR)Yaba, Lagos, Nigeria
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway CampusAuckland Park, Johannesburg, South Africa
| |
Collapse
|
27
|
Fraikin GY, Belenikina NS, Rubin AB. Molecular Bases of Signaling Processes Regulated by Cryptochrome Sensory Photoreceptors in Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:770-782. [PMID: 37748873 DOI: 10.1134/s0006297923060056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The blue-light sensors, cryptochromes, compose the extensive class of flavoprotein photoreceptors, regulating signaling processes in plants underlying their development, growth, and metabolism. In several algae, cryptochromes may act not only as sensory photoreceptors but also as photolyases, catalyzing repair of the UV-induced DNA lesions. Cryptochromes bind FAD as the chromophore at the photolyase homologous region (PHR) domain and contain the cryptochrome C-terminal extension (CCE), which is absent in photolyases. Photosensory process in cryptochrome is initiated by photochemical chromophore conversions, including formation of the FAD redox forms. In the state with the chromophore reduced to neutral radical (FADH×), the photoreceptor protein undergoes phosphorylation, conformational changes, and disengagement from the PHR domain and CCE with subsequent formation of oligomers of cryptochrome molecules. Photooligomerization is a structural basis of the functional activities of cryptochromes, since it ensures formation of their complexes with a variety of signaling proteins, including transcriptional factors and regulators of transcription. Interactions in such complexes change the protein signaling activities, leading to regulation of gene expression and plant photomorphogenesis. In recent years, multiple papers, reporting novel, more detailed information about the molecular mechanisms of above-mentioned processes were published. The present review mainly focuses on analysis of the data contained in these publications, particularly regarding structural aspects of the cryptochrome transitions into photoactivated states and regulatory signaling processes mediated by the cryptochrome photoreceptors in plants.
Collapse
Affiliation(s)
| | | | - Andrey B Rubin
- Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
28
|
Liu Y, Wang Q, Abbas F, Zhou Y, He J, Fan Y, Yu R. Light Regulation of LoCOP1 and Its Role in Floral Scent Biosynthesis in Lilium 'Siberia'. PLANTS (BASEL, SWITZERLAND) 2023; 12:2004. [PMID: 37653921 PMCID: PMC10223427 DOI: 10.3390/plants12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 09/02/2023]
Abstract
Light is an important environmental signal that governs plant growth, development, and metabolism. Constitutive photomorphogenic 1 (COP1) is a light signaling component that plays a vital role in plant light responses. We isolated the COP1 gene (LoCOP1) from the petals of Lilium 'Siberia' and investigated its function. The LoCOP1 protein was found to be the most similar to Apostasia shenzhenica COP1. LoCOP1 was found to be an important factor located in the nucleus and played a negative regulatory role in floral scent production and emission using the virus-induced gene silencing (VIGS) approach. The yeast two-hybrid, β-galactosidase, and bimolecular fluorescence complementation (BiFC) assays revealed that LoCOP1 interacts with LoMYB1 and LoMYB3. Furthermore, light modified both the subcellular distribution of LoCOP1 and its interactions with LoMYB1 and MYB3 in onion cells. The findings highlighted an important regulatory mechanism in the light signaling system that governs scent emission in Lilium 'Siberia' by the ubiquitination and degradation of transcription factors via the proteasome pathway.
Collapse
Affiliation(s)
- Yang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Qin Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Jingjuan He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Li L, Wang K, Zhou Y, Liu X. Review: A silent concert in developing plants: Dynamic assembly of cullin-RING ubiquitin ligases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111662. [PMID: 36822503 PMCID: PMC10065934 DOI: 10.1016/j.plantsci.2023.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plants appear quiet: quietly, they break the ground, expand leaves, search for resources, alert each other to invaders, and heal their own wounds. In contrast to the stationary appearance, the inside world of a plant is full of movements: cells divide to increase the body mass and form new organs; signaling molecules migrate among cells and tissues to drive transcriptional cascades and developmental programs; macromolecules, such as RNAs and proteins, collaborate with different partners to maintain optimal organismal function under changing cellular and environmental conditions. All these activities require a dynamic yet appropriately controlled molecular network in plant cells. In this short review, we used the regulation of cullin-RING ubiquitin ligases (CRLs) as an example to discuss how dynamic biochemical processes contribute to plant development. CRLs comprise a large family of modular multi-unit enzymes that determine the activity and stability of diverse regulatory proteins playing crucial roles in plant growth and development. The mechanism governing the dynamic assembly of CRLs is essential for CRL activity and biological function, and it may provide insights and implications for the regulation of other dynamic multi-unit complexes involved in fundamental processes such as transcription, translation, and protein sorting in plants.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
30
|
Sorkin ML, Tzeng SC, King S, Romanowski A, Kahle N, Bindbeutel R, Hiltbrunner A, Yanovsky MJ, Evans BS, Nusinow DA. COLD REGULATED GENE 27 and 28 Antagonize the Transcriptional Activity of the RVE8/LNK1/LNK2 Circadian Complex. PLANT PHYSIOLOGY 2023:kiad210. [PMID: 37017001 DOI: 10.1093/plphys/kiad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Many molecular and physiological processes in plants occur at a specific time of day. These daily rhythms are coordinated in part by the circadian clock, a timekeeper that uses daylength and temperature to maintain rhythms of approximately 24 hours in various clock-regulated phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its transcriptional coactivators NIGHT LIGHT INDUCIBLE AND CLOCK REGULATED 1 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance factors. While genetic approaches have commonly been used to discover connections within the clock and between clock elements and other pathways, here we used affinity purification coupled with mass spectrometry to identify time-of-day-specific protein interactors of the RVE8-LNK1/LNK2 complex in Arabidopsis (Arabidopsis thaliana). Among the interactors of RVE8/LNK1/LNK2 were COLD REGULATED GENE 27 (COR27) and COR28, which coprecipitated in an evening-specific manner. In addition to COR27 and COR28, we found an enrichment of temperature-related interactors that led us to establish a previously uncharacterized role for LNK1 and LNK2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either COR27 or COR28 form a tripartite complex in yeast (Saccharomyces cerevisiae) and that the effect of this interaction in planta serves to antagonize transcriptional activation of RVE8 target genes, potentially through mediating RVE8 protein degradation in the evening. Together, these results illustrate how a proteomic approach can be used to identify time-of-day-specific protein interactions. Discovery of the RVE8-LNK-COR protein complex indicates a previously unknown regulatory mechanism for circadian and temperature signaling pathways.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Stefanie King
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nikolai Kahle
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
31
|
Kreiss M, Haas FB, Hansen M, Rensing SA, Hoecker U. Co-action of COP1, SPA and cryptochrome in light signal transduction and photomorphogenesis of the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:159-175. [PMID: 36710658 DOI: 10.1111/tpj.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.
Collapse
Affiliation(s)
- Melanie Kreiss
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| |
Collapse
|
32
|
Casal JJ, Fankhauser C. Shade avoidance in the context of climate change. PLANT PHYSIOLOGY 2023; 191:1475-1491. [PMID: 36617439 PMCID: PMC10022646 DOI: 10.1093/plphys/kiad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/13/2023]
Abstract
When exposed to changes in the light environment caused by neighboring vegetation, shade-avoiding plants modify their growth and/or developmental patterns to access more sunlight. In Arabidopsis (Arabidopsis thaliana), neighbor cues reduce the activity of the photosensory receptors phytochrome B (phyB) and cryptochrome 1, releasing photoreceptor repression imposed on PHYTOCHROME INTERACTING FACTORs (PIFs) and leading to transcriptional reprogramming. The phyB-PIF hub is at the core of all shade-avoidance responses, whilst other photosensory receptors and transcription factors contribute in a context-specific manner. CONSTITUTIVELY PHOTOMORPHOGENIC1 is a master regulator of this hub, indirectly stabilizing PIFs and targeting negative regulators of shade avoidance for degradation. Warm temperatures reduce the activity of phyB, which operates as a temperature sensor and further increases the activities of PIF4 and PIF7 by independent temperature sensing mechanisms. The signaling network controlling shade avoidance is not buffered against climate change; rather, it integrates information about shade, temperature, salinity, drought, and likely flooding. We, therefore, predict that climate change will exacerbate shade-induced growth responses in some regions of the planet while limiting the growth potential in others.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, 1417 Buenos Aires, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Zhang L, Zhang Y, Liu J, Li H, Liu B, Zhao T. N6-methyladenosine mRNA methylation is important for the light response in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1153840. [PMID: 37082338 PMCID: PMC10110966 DOI: 10.3389/fpls.2023.1153840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is the most prevalent and abundant modification in eukaryotic mRNA and posttranscriptionally modulates the transcriptome at almost all stages of mRNA metabolism. In plants, m6A is crucial for embryonic-phase growth, flowering time control, microspore generation and fruit maturation. However, the role of m6A in plant responses to light, the most important environmental stimulus, remains unexplored. Here, we profile the m6A transcriptome of Williams 82, a soybean cultivar, and reveal that m6A is highly conserved and plays an important role in the response to light stimuli in soybean. Similar to the case in Arabidopsis, m6A in soybean is enriched not only around the stop codon and within the 3'UTR but also around the start codon. Moreover, genes with methylation occurring in the 3'UTR have higher expression levels and are more prone to alternative splicing. The core genes in the light signaling pathway, GmSPA1a, GmPRR5e and GmBIC2b, undergo changes in methylation modification and transcription levels in response to light. KEGG pathway analysis revealed that differentially expressed genes with differential m6A peaks were involved in the "photosynthesis" and "circadian rhythm" pathways. Our results highlight the important role played by epitranscriptomic mRNA methylation in the light response in soybean and provide a solid basis for determining the functional role of light on RNA m6A modification in this plant.
Collapse
|
34
|
Stafen CF, Kleine-Vehn J, Maraschin FDS. Signaling events for photomorphogenic root development. TRENDS IN PLANT SCIENCE 2022; 27:1266-1282. [PMID: 36057533 DOI: 10.1016/j.tplants.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.
Collapse
Affiliation(s)
- Cássia Fernanda Stafen
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, Freiburg, Germany; Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Rees H, Rusholme-Pilcher R, Bailey P, Colmer J, White B, Reynolds C, Ward SJ, Coombes B, Graham CA, de Barros Dantas LL, Dodd AN, Hall A. Circadian regulation of the transcriptome in a complex polyploid crop. PLoS Biol 2022; 20:e3001802. [PMID: 36227835 PMCID: PMC9560141 DOI: 10.1371/journal.pbio.3001802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.
Collapse
Affiliation(s)
- Hannah Rees
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Paul Bailey
- Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
| | - Joshua Colmer
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Benjamen White
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Connor Reynolds
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Calum A. Graham
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Kang H, Zhang TT, Li YY, Lin-Wang K, Espley RV, Du YP, Guan QM, Ma FW, Hao YJ, You CX, Wang XF. The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis. PLANT PHYSIOLOGY 2022; 190:305-318. [PMID: 35674376 PMCID: PMC9434159 DOI: 10.1093/plphys/kiac279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Hui Kang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert, Auckland 92169, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert, Auckland 92169, New Zealand
| | - Yuan-Peng Du
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | - Feng-Wang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | | | | | | |
Collapse
|
37
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
38
|
Ponnu J. B-BOXing against UV rays: The BBX11-HY5 feedback loop regulates plant ultraviolet B tolerance. PLANT PHYSIOLOGY 2022; 189:1904-1905. [PMID: 35639739 PMCID: PMC9343007 DOI: 10.1093/plphys/kiac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 05/28/2023]
|
39
|
Delker C, Quint M, Wigge PA. Recent advances in understanding thermomorphogenesis signaling. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102231. [PMID: 35636376 DOI: 10.1016/j.pbi.2022.102231] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 05/26/2023]
Abstract
Plants show remarkable phenotypic plasticity and are able to adjust their morphology and development to diverse environmental stimuli. Morphological acclimation responses to elevated ambient temperatures are collectively termed thermomorphogenesis. In Arabidopsis thaliana, morphological changes are coordinated to a large extent by the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which in turn is regulated by several thermosensing mechanisms and modulators. Here, we review recent advances in the identification of factors that regulate thermomorphogenesis of Arabidopsis seedlings by affecting PIF4 expression and PIF4 activity. We summarize newly identified thermosensing mechanisms and highlight work on the emerging topic of organ- and tissue-specificity in the regulation of thermomorphogenesis.
Collapse
Affiliation(s)
- Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany.
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
40
|
Costigliolo Rojas C, Bianchimano L, Oh J, Romero Montepaone S, Tarkowská D, Minguet EG, Schön J, García Hourquet M, Flugel T, Blázquez MA, Choi G, Strnad M, Mora-García S, Alabadi D, Zurbriggen MD, Casal JJ. Organ-specific COP1 control of BES1 stability adjusts plant growth patterns under shade or warmth. Dev Cell 2022; 57:2009-2025.e6. [PMID: 35901789 DOI: 10.1016/j.devcel.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.
Collapse
Affiliation(s)
- Cecilia Costigliolo Rojas
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Luciana Bianchimano
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Jeonghwa Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sofía Romero Montepaone
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Dana Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Eugenio G Minguet
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariano García Hourquet
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Timo Flugel
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Santiago Mora-García
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - David Alabadi
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Jorge J Casal
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina; Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina.
| |
Collapse
|
41
|
Ponnu J. Repressing a repressor: E3 ligase COP1/SPA promotes seed germination by targeting the DELLA protein RGL2. PLANT PHYSIOLOGY 2022; 189:1192-1193. [PMID: 35325226 PMCID: PMC9237701 DOI: 10.1093/plphys/kiac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
|
42
|
Ubiquitin ligases at the nexus of plant responses to biotic and abiotic stresses. Essays Biochem 2022; 66:123-133. [PMID: 35704617 DOI: 10.1042/ebc20210070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/15/2023]
Abstract
Plants must cope with an ever-changing environment, including concurrent biotic and abiotic stresses. The ubiquitin-proteasome system (UPS) is intricately involved in regulating signaling events that facilitate cellular changes required to mitigate the detrimental effects of environmental stress. A key component of the UPS are ubiquitin ligases (or E3s) that catalyze the attachment of ubiquitin molecules to select substrate proteins, which are then recognized by the 26S proteasome for degradation. With the identification of substrate proteins, a growing number of E3s are shown to differentially regulate responses to abiotic as well as bioitic stresses. The review discusses select E3s to illustrate the role of ubiquitin ligases as negative and/or positive regulators of responses to both biotic and abiotic stresses.
Collapse
|
43
|
Abstract
Cryptochrome 1 (CRY1), a main blue light receptor protein, plays a significant role in several biological processes. However, the expression patterns and function of CRY1 in strawberry have not been identified. Here, the expression profile of CRY1 in different tissues and developmental stages of strawberry fruit, and expression patterns response to abiotic stresses (low temperature, salt and drought) were analyzed. Its subcellular localization, interaction proteins and heterologous overexpression in tobacco were also investigated. The results showed that CRY1 was mainly expressed in leaves and fruits with an expression peak at the initial red stage in strawberry fruit. Abiotic stresses could significantly induce the expression of CRY1. The CRY1 protein was located in both nucleus and cytoplasm. Five proteins (CSN5a-like, JAZ5, eIF3G. NF-YC9, and NDUFB9) interacting with CRY1 were discovered. Genes related flowering times, such as HY5 and CO, in three overexpressed FaCRY1 tobacco lines, were significantly upregulated. Taken together, our results suggested CRY1 have a broad role in biological processes in strawberry.
Collapse
|
44
|
Trimborn L, Hoecker U, Ponnu J. A Simple Quantitative Assay for Measuring β-Galactosidase Activity Using X-Gal in Yeast-Based Interaction Analyses. Curr Protoc 2022; 2:e421. [PMID: 35567769 DOI: 10.1002/cpz1.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Yeast-based interaction assays to determine protein-protein and protein-nucleic acid interactions commonly rely on the reconstitution of chimeric transcription factors that activate the expression of target reporter genes. The enzyme β-galactosidase (β-gal), coded by the LacZ gene of Escherichia coli, is a widely used reporter in yeast systems, and its expression is commonly assessed by evaluating its activity. X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) is an inexpensive and sensitive substrate of β-gal, whose hydrolysis results in an intensely blue colored and easily detectable end product, 5,5'-dibromo-4,4'-dichloro-indigo. The insoluble nature of this end product, however, makes X-gal-based assays unsuitable for direct spectrophotometric absorbance quantification. As such, the use of X-gal is mostly restricted to solid-support approaches, such as colony lift or agar plate assays, which often only provide a qualitative readout. In this article, we describe a quantitative solid-phase X-gal assay to measure protein-protein interaction strength in yeast cells using a simple and low-cost experimental setup. We have optimized multiple aspects of the assay, namely sample preparation, reaction time, and quantification method, for speed and consistency. By integrating the use of a freely available ImageJ-based plugin, we have further standardized the assay for reliability and reproducibility. This improved quantitative X-gal assay can be performed in a standard molecular biology lab without the need for any specialized equipment other than an inexpensive and widely accessible smartphone camera. To exemplify the protocol, we provide detailed step-by-step instructions to perform a quantitative X-gal assay to assess the interaction between two Arabidopsis thaliana proteins, SUPPRESSOR OF PHYA-105 1 (SPA1) and PRODUCTION OF ANTHOCYANIN PIGMENT 2 (PAP2). To demonstrate the sensitivity of our assay in detecting weaker interactions, we also compare the results with a liquid-phase assay that uses ONPG (ortho-nitrophenyl-β-galactopyranoside) as a substrate for β-gal. The quantitative X-gal assay described here can easily be adapted for high-throughout interaction studies and protein domain mapping, even in yeast strains with low levels of LacZ expression. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of competent yeast cells and transformation Alternate Protocol 1: In-house preparation of yeast competent cells for use in lithium acetate (LiAc)-mediated yeast transformation Support Protocol: Long-term storage and revival of frozen yeast strain stocks Basic Protocol 2: Measuring β-galactosidase activity via the quantitative X-gal assay Alternate Protocol 2: Quantification of interaction strength using liquid ONPG assay.
Collapse
Affiliation(s)
- Laura Trimborn
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Chen Q, Wang W, Zhang Y, Zhan Q, Liu K, Botella JR, Bai L, Song C. Abscisic acid-induced cytoplasmic translocation of constitutive photomorphogenic 1 enhances reactive oxygen species accumulation through the HY5-ABI5 pathway to modulate seed germination. PLANT, CELL & ENVIRONMENT 2022; 45:1474-1489. [PMID: 35199338 PMCID: PMC9311139 DOI: 10.1111/pce.14298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/05/2022] [Indexed: 05/13/2023]
Abstract
Seed germination is a physiological process regulated by multiple factors. Abscisic acid (ABA) can inhibit seed germination to improve seedling survival under conditions of abiotic stress, and this process is often regulated by light signals. Constitutive photomorphogenic 1 (COP1) is an upstream core repressor of light signals and is involved in several ABA responses. Here, we demonstrate that COP1 is a negative regulator of the ABA-mediated inhibition of seed germination. Disruption of COP1 enhanced Arabidopsis seed sensitivity to ABA and increased reactive oxygen species (ROS) levels. In seeds, ABA induced the translocation of COP1 to the cytoplasm, resulting in enhanced ABA-induced ROS levels. Genetic evidence indicated that HY5 and ABI5 act downstream of COP1 in the ABA-mediated inhibition of seed germination. ABA-induced COP1 cytoplasmic localization increased HY5 and ABI5 protein levels in the nucleus, leading to increased expression of ABI5 target genes and ROS levels in seeds. Together, our results reveal that ABA-induced cytoplasmic translocation of COP1 activates the HY5-ABI5 pathway to promote the expression of ABA-responsive genes and the accumulation of ROS during ABA-mediated inhibition of seed germination. These findings enhance the role of COP1 in the ABA signal transduction pathway.
Collapse
Affiliation(s)
- Qing‐Bin Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Jing Wang
- Department of Biology and Food ScienceShangqiu Normal UniversityShangqiuChina
| | - Yue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Qi‐Di Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Kang Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
46
|
Wang Y, Wang L, Guan Z, Chang H, Ma L, Shen C, Qiu L, Yan J, Zhang D, Li J, Deng XW, Yin P. Structural insight into UV-B-activated UVR8 bound to COP1. SCIENCE ADVANCES 2022; 8:eabn3337. [PMID: 35442727 PMCID: PMC9020657 DOI: 10.1126/sciadv.abn3337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 (COP1-SPA) complex is a central repressor of photomorphogenesis. This complex acts as an E3 ubiquitin ligase downstream of various light signaling transduced from multiple photoreceptors in plants. How the COP1-SPA activity is regulated by divergent light-signaling pathways remains largely elusive. Here, we reproduced the regulation pathway of COP1-SPA in ultraviolet-B (UV-B) signaling in vitro and determined the cryo-electron microscopy structure of UV-B receptor UVR8 in complex with COP1. The complex formation is mediated by two-interface interactions between UV-B-activated UVR8 and COP1. Both interfaces are essential for the competitive binding of UVR8 against the signaling hub component HY5 to the COP1-SPA complex. We also show that RUP2 dissociates UVR8 from the COP1-SPA41-464-UVR8 complex and facilitates its redimerization. Our results support a UV-B signaling model that the COP1-SPA activity is repressed by UV-B-activated UVR8 and derepressed by RUP2, owing to competitive binding, and provide a framework for studying the regulatory roles of distinct photoreceptors on photomorphogenesis.
Collapse
Affiliation(s)
- Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
47
|
Ponnu J, Hoecker U. Signaling Mechanisms by Arabidopsis Cryptochromes. FRONTIERS IN PLANT SCIENCE 2022; 13:844714. [PMID: 35295637 PMCID: PMC8918993 DOI: 10.3389/fpls.2022.844714] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 05/29/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that regulate growth, development, and metabolism in plants. In Arabidopsis thaliana (Arabidopsis), CRY1 and CRY2 possess partially redundant and overlapping functions. Upon exposure to blue light, the monomeric inactive CRYs undergo phosphorylation and oligomerization, which are crucial to CRY function. Both the N- and C-terminal domains of CRYs participate in light-induced interaction with multiple signaling proteins. These include the COP1/SPA E3 ubiquitin ligase, several transcription factors, hormone signaling intermediates and proteins involved in chromatin-remodeling and RNA N6 adenosine methylation. In this review, we discuss the mechanisms of Arabidopsis CRY signaling in photomorphogenesis and the recent breakthroughs in Arabidopsis CRY research.
Collapse
Affiliation(s)
| | - Ute Hoecker
- *Correspondence: Ute Hoecker, , orcid.org/0000-0002-5636-9777
| |
Collapse
|
48
|
Ponnu J. Shouldering the stress: ubiquitin-mediated degradation of a B-box protein regulates drought responses in apple. PLANT PHYSIOLOGY 2022; 188:32-34. [PMID: 34718784 PMCID: PMC8774825 DOI: 10.1093/plphys/kiab506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jathish Ponnu
- AG Hoecker, Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
49
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Xiao Y, Liu H, Li H, Liu Q, Lu Q, Varshney RK, Chen X, Hong Y. Widely targeted metabolomics characterizes the dynamic changes of chemical profile in postharvest peanut sprouts grown under the dark and light conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|