1
|
Yu P, Shinde H, Dudhate A, Kamiya T, Gupta SK, Liu S, Takano T, Tsugama D. A pearl millet plasma membrane protein, PgPM19, facilitates seed germination through the negative regulation of abscisic acid-associated genes under salinity stress in Arabidopsis thaliana. PLANTA 2024; 260:131. [PMID: 39488664 DOI: 10.1007/s00425-024-04564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
MAIN CONCLUSION The pearl millet gene PgPM19 inhibits seed dormancy by negatively regulating the ABA biosynthesis and ABA signaling pathways in response to salinity stress in Arabidopsis. Abscisic acid (ABA) plays a pivotal role in orchestrating plant stress responses and development. However, how the ABA signal is transmitted in response to stresses remains primarily uncertain, particularly in monocotyledonous plants. In this study, PgPM19, a gene whose expression is induced by drought, salinity, heat, and ABA in both leaf and root tissues, was isolated from pearl millet. The expression of PgPM19 in yeast cells did not influence their growth when subjected to mannitol, sorbitol, or NaCl stress. However, Arabidopsis plants overexpressing PgPM19 (PgPM19_OE plants) exhibited increased germination rates, greater fresh weights and longer roots under salinity stress during germination, compared to wild-type (WT) plants. Conversely, the pm19L1 (SALK_075435) mutant, featuring a transfer DNA insertion in a closely related PgPM19 homolog (AT1G04560) in Arabidopsis, demonstrated reduced germination rates and smaller fresh weights under salinity-stressed condition than did WT and PgPM19_OE plants. A pivotal ABA biosynthesis gene, NCED3, ABA signaling pathway genes, such as PYL6 and SnRK2.7, alongside downstream ABI genes and stress-responsive genes RAB28 and RD29, were downregulated in PgPM19_OE plants, as evidenced by both transcriptome analysis and quantitative reverse transcription-PCR. These findings raise the possibility that PgPM19 is involved in regulating seed germination by mediating ABA biosynthesis and signaling pathway in response to salinity stress in Arabidopsis. This study contributes to a better understanding of PgPM19 in response to salinity stress and establishes a foundation for unraveling the crosstalk of stress responses and ABA in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, China.
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), The University of Tokyo, Nishitokyo, Japan.
| | - Harshraj Shinde
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ambika Dudhate
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shashi Kumar Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), The University of Tokyo, Nishitokyo, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), The University of Tokyo, Nishitokyo, Japan
| |
Collapse
|
2
|
Kaushik R, Goel A, Rout PK. Gene expression analysis of Aquaporin genes in ruminants during growth phase in response to heat stress. Int J Biol Macromol 2024; 281:136262. [PMID: 39366612 DOI: 10.1016/j.ijbiomac.2024.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Aquaporins (AQPs) are trans-membrane protein involved in water transport and different cellular functions such as cell adhesion, signalling and proliferation. These membrane proteins are essential for key physiological functions such as organ development, osmoregulation, tissue regeneration and metabolism. The regulation of AQP5 gene expression in ruminants during growth phase has not been analysed in-vivo. Therefore, the gene expression pattern was analysed in Jamunapari goats during 3 months to 12 month of age and adult age group in response to heat stress. The genotyping of the AQP5 gene was carried out by High-Resolution Melting (HRM) in four different goat breeds, which indicated four distinct genotypes in the population. The nucleotide diversity for the AQP5 gene ranged from 0.315 and 0.524 across the breeds. Additionally, a close evolutionary relationship between AQP5 and the HSP70 gene was observed, indicating a shared pathway for heat stress regulation. The m-RNA expression level of AQP5 at 3, 9, 12 month and adult age group exhibited 47.24, 1140, 43.17 and 12.55-fold higher expression than control. The m-RNA expression level of the AQP5 gene was up-regulated and significantly higher (P < 0.05) at 9-month age as compared to the other age groups. Heat stress phenotypes were classified based on respiration rate and heart rate, and the m-RNA expression of AQP5 was higher in heat stress-susceptible (HSS) individuals than heat stress-tolerant (HST) individuals at 3, 9, and 12 months of age. The AQP5 plays a significant role in thermoregulation during growth phases in response to heat stress in goats, however, it is required to understand the role of aquaporins at cellular level as well as to establish the association with production performance in ruminant system in-vivo.
Collapse
Affiliation(s)
- Rakesh Kaushik
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura 281122, U.P., India; Department of Biotechnology, GLA University, Chaumuhan, Mathura 281406, U.P., India.
| | - Anjana Goel
- Department of Biotechnology, GLA University, Chaumuhan, Mathura 281406, U.P., India
| | - P K Rout
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura 281122, U.P., India.
| |
Collapse
|
3
|
Gupta S, Kaur R, Upadhyay A, Chauhan A, Tripathi V. Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights. 3 Biotech 2024; 14:252. [PMID: 39345964 PMCID: PMC11427653 DOI: 10.1007/s13205-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Anshu Upadhyay
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand India
| |
Collapse
|
4
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
5
|
Daduwal HS, Bhardwaj R, Srivastava RK. Pearl millet a promising fodder crop for changing climate: a review. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:169. [PMID: 38913173 DOI: 10.1007/s00122-024-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The agricultural sector faces colossal challenges amid environmental changes and a burgeoning human population. In this context, crops must adapt to evolving climatic conditions while meeting increasing production demands. The dairy industry is anticipated to hold the highest value in the agriculture sector in future. The rise in the livestock population is expected to result in an increased demand for fodder feed. Consequently, it is crucial to seek alternative options, as crops demand fewer resources and are resilient to climate change. Pearl millet offers an apposite key to these bottlenecks, as it is a promising climate resilience crop with significantly low energy, water and carbon footprints compared to other crops. Numerous studies have explored its potential as a fodder crop, revealing promising performance. Despite its capabilities, pearl millet has often been overlooked. To date, few efforts have been made to document molecular aspects of fodder-related traits. However, several QTLs and candidate genes related to forage quality have been identified in other fodder crops, which can be harnessed to enhance the forage quality of pearl millet. Lately, excellent genomic resources have been developed in pearl millet allowing deployment of cutting-edge genomics-assisted breeding for achieving a higher rate of genetic gains. This review would facilitate a deeper understanding of various aspects of fodder pearl millet in retrospect along with the future challenges and their solution. This knowledge may pave the way for designing efficient breeding strategies in pearl millet thereby supporting sustainable agriculture and livestock production in a changing world.
Collapse
Affiliation(s)
- Harmanpreet Singh Daduwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Ruchika Bhardwaj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.
| |
Collapse
|
6
|
Borlay AJ, Mweu CM, Nyanjom SG, Omolo KM, Naitchede LHS. De novo transcriptomic analysis of Doum Palm (Hyphaene compressa) revealed an insight into its potential drought tolerance. PLoS One 2024; 19:e0292543. [PMID: 38470884 DOI: 10.1371/journal.pone.0292543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/24/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Doum palms (Hyphaene compressa) perform a crucial starring role in the lives of Kenya's arid and semi-arid people for empowerment and sustenance. Despite the crop's potential for economic gain, there is a lack of genetic resources and detailed information about its domestication at the molecular level. Given the doum palm's vast potential as a widely distributed plant in semi-arid and arid climates and a source of many applications, coupled with the current changing climate scenario, it is essential to understand the molecular processes that provide drought resistance to this plant. RESULTS Assembly of the first transcriptome of doum palms subjected to water stress generated about 39.97 Gb of RNA-Seq data. The assembled transcriptome revealed 193,167 unigenes with an average length of 1655 bp, with 128,708 (66.63%) successfully annotated in seven public databases. Unigenes exhibited significant differentially expressed genes (DEGs) in well-watered and stressed-treated plants, with 45071 and 42457 accounting for up-regulated and down-regulated DEGs, respectively. GO term, KEGG, and KOG analysis showed that DEGs were functionally enriched cellular processes, metabolic processes, cellular and catalytic activity, metabolism, genetic information processing, signal transduction mechanisms, and posttranslational modification pathways. Transcription factors (TF), such as the MYB, WRKY, NAC family, FAR1, B3, bHLH, and bZIP, were the prominent TF families identified as doum palm DEGs encoding drought stress tolerance. CONCLUSIONS This study provides a complete understanding of DEGs involved in drought stress at the transcriptome level in doum palms. This research is, therefore, the foundation for the characterization of potential genes, leading to a clear understanding of its drought stress responses and providing resources for improved genetic modification.
Collapse
Affiliation(s)
- Allen Johnny Borlay
- Department of Biological Sciences, University of Liberia, Monrovia, Liberia
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Cecilia Mbithe Mweu
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Steven Ger Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Kevin Mbogo Omolo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Labode Hospice Stevenson Naitchede
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| |
Collapse
|
7
|
Cui X, Wang B, Chen Z, Guo J, Zhang T, Zhang W, Shi L. Comprehensive physiological, transcriptomic, and metabolomic analysis of the key metabolic pathways in millet seedling adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14122. [PMID: 38148213 DOI: 10.1111/ppl.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.
Collapse
Affiliation(s)
- Xiaomeng Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bianyin Wang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Zhaoyang Chen
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wenying Zhang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Lianxuan Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Koehler T, Wankmüller FJP, Sadok W, Carminati A. Transpiration response to soil drying versus increasing vapor pressure deficit in crops: physical and physiological mechanisms and key plant traits. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4789-4807. [PMID: 37354081 PMCID: PMC10474596 DOI: 10.1093/jxb/erad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The water deficit experienced by crops is a function of atmospheric water demand (vapor pressure deficit) and soil water supply over the whole crop cycle. We summarize typical transpiration response patterns to soil and atmospheric drying and the sensitivity to plant hydraulic traits. We explain the transpiration response patterns using a soil-plant hydraulic framework. In both cases of drying, stomatal closure is triggered by limitations in soil-plant hydraulic conductance. However, traits impacting the transpiration response differ between the two drying processes and act at different time scales. A low plant hydraulic conductance triggers an earlier restriction in transpiration during increasing vapor pressure deficit. During soil drying, the impact of the plant hydraulic conductance is less obvious. It is rather a decrease in the belowground hydraulic conductance (related to soil hydraulic properties and root length density) that is involved in transpiration down-regulation. The transpiration response to increasing vapor pressure deficit has a daily time scale. In the case of soil drying, it acts on a seasonal scale. Varieties that are conservative in water use on a daily scale may not be conservative over longer time scales (e.g. during soil drying). This potential independence of strategies needs to be considered in environment-specific breeding for yield-based drought tolerance.
Collapse
Affiliation(s)
- Tina Koehler
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Fabian J P Wankmüller
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Walid Sadok
- Agronomy and Plant Genetics, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Twin Cities, MN, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Vadez V, Pilloni R, Grondin A, Hajjarpoor A, Belhouchette H, Brouziyne Y, Chehbouni G, Kharrou MH, Zitouna-Chebbi R, Mekki I, Molénat J, Jacob F, Bossuet J. Water use efficiency across scales: from genes to landscapes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4770-4788. [PMID: 36779607 PMCID: PMC10474597 DOI: 10.1093/jxb/erad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes.
Collapse
Affiliation(s)
- Vincent Vadez
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Telangana, India
- LMI LAPSE, CERAAS-ISRA, Thiès, Senegal
| | - Raphael Pilloni
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Alexandre Grondin
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Amir Hajjarpoor
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Hatem Belhouchette
- ABSys, Université de Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Youssef Brouziyne
- International Water Management Institute (IWMI), MENA Office, Giza 12661, Egypt
| | - Ghani Chehbouni
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P) UMR CESBIO, Benguerir 43150, Morocco
| | - Mohamed Hakim Kharrou
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P) UMR CESBIO, Benguerir 43150, Morocco
| | | | - Insaf Mekki
- INRGREF, Carthage University, B.P. 10, 2080 Ariana, Tunisia
| | - Jérôme Molénat
- UMR LISAH, Université de Montpellier, INRAE, IRD, Institut Agro Montpellier, AgroParisTech, Montpellier, France
| | - Frédéric Jacob
- UMR LISAH, Université de Montpellier, INRAE, IRD, Institut Agro Montpellier, AgroParisTech, Montpellier, France
| | | |
Collapse
|
10
|
Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, Singh SK. The potentialities of omics resources for millet improvement. Funct Integr Genomics 2023; 23:210. [PMID: 37355501 DOI: 10.1007/s10142-023-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Millets are nutrient-rich (nutri-rich) cereals with climate resilience attributes. However, its full productive potential is not realized due to the lack of a focused yield improvement approach, as evidenced by the available literature. Also, the lack of well-characterized genomic resources significantly limits millet improvement. But the recent availability of genomic data and advancement in omics tools has shown its enormous potential to enhance the efficiency and precision faced by conventional breeding in millet improvement. The development of high throughput genotyping platforms based on next-generation sequencing (NGS) has provided a low-cost method for genomic information, specifically for neglected nutri-rich cereals with the availability of a limited number of reference genome sequences. NGS has created new avenues for millet biotechnological interventions such as mutation-based study, GWAS, GS, and other omics technologies. The simultaneous discovery of high-throughput markers and multiplexed genotyping platform has aggressively aided marker-assisted breeding for millet improvement. Therefore, omics technology offers excellent opportunities to explore and combine useful variations for targeted traits that could impart high nutritional value to high-yielding cultivars under changing climatic conditions. In millet improvement, an in-depth account of NGS, integrating genomics data with different biotechnology tools, is reviewed in this context.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agricultural, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Samastipur, Bihar, 848125, India.
| | - Priyanka Jaiswal
- Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Mithilesh Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| | - Khem Raj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, 305817, India
| | - Satish Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
11
|
Shinde H, Dudhate A, Sathe A, Paserkar N, Wagh SG, Kadam US. Gene Coexpression Analysis Identifies Genes Associated with Chlorophyll Content and Relative Water Content in Pearl Millet. PLANTS (BASEL, SWITZERLAND) 2023; 12:1412. [PMID: 36987099 PMCID: PMC10057621 DOI: 10.3390/plants12061412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Pearl millet is a significant crop that is tolerant to abiotic stresses and is a staple food of arid regions. However, its underlying mechanisms of stress tolerance are not fully understood. Plant survival is regulated by the ability to perceive a stress signal and induce appropriate physiological changes. Here, we screened for genes regulating physiological changes such as chlorophyll content (CC) and relative water content (RWC) in response to abiotic stress by using "weighted gene coexpression network analysis" (WGCNA) and clustering changes in physiological traits, i.e., CC and RWC associated with gene expression. Genes' correlations with traits were defined in the form of modules, and different color names were used to denote a particular module. Modules are groups of genes with similar patterns of expression, which also tend to be functionally related and co-regulated. In WGCNA, the dark green module (7082 genes) showed a significant positive correlation with CC, and the black (1393 genes) module was negatively correlated with CC and RWC. Analysis of the module positively correlated with CC highlighted ribosome synthesis and plant hormone signaling as the most significant pathways. Potassium transporter 8 and monothiol glutaredoxin were reported as the topmost hub genes in the dark green module. In Clust analysis, 2987 genes were found to display a correlation with increasing CC and RWC. Furthermore, the pathway analysis of these clusters identified the ribosome and thermogenesis as positive regulators of RWC and CC, respectively. Our study provides novel insights into the molecular mechanisms regulating CC and RWC in pearl millet.
Collapse
Affiliation(s)
- Harshraj Shinde
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Ambika Dudhate
- Sequencing and Discovery Genomics Center, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Atul Sathe
- Plant Science Department, McGill University, Macdonald Campus, Sainte Anne de Bellevue, QC H9X 3V9, Canada
| | - Neha Paserkar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sopan Ganpatrao Wagh
- Department of Adaptive Biotechnology, Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| | - Ulhas Sopanrao Kadam
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science (BK21 Four), Gyeongsang National University, Jinju-Daero, Jinju 52828, Gyeongnam-do, Republic of Korea
| |
Collapse
|
12
|
Kumar A, Sheoran P, Mann A, Yadav D, Kumar A, Devi S, Kumar N, Dhansu P, Sharma DK. Deciphering trait associated morpho-physiological responses in pearlmillet hybrids and inbred lines under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1121805. [PMID: 36938010 PMCID: PMC10018183 DOI: 10.3389/fpls.2023.1121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pearl millet is a staple food for more than 90 million people residing in highly vulnerable hot arid and semi-arid regions of Africa and Asia. These regions are more prone to detrimental effects of soil salinity on crop performance in terms of reduced biomass and crop yields. We investigated the physiological mechanisms of salt tolerance to irrigation induced salinity stress (ECiw ~3, 6 & 9 dSm-1) and their confounding effects on plant growth and yield in pearl millet inbred lines and hybrids. On average, nearly 30% reduction in above ground plant biomass was observed at ECiw ~6 dSm-1 which stretched to 56% at ECiw ~9 dSm-1 in comparison to best available water. With increasing salinity stress, the crop performance of test hybrids was better in comparison to inbred lines; exhibiting relatively higher stomatal conductance (gS; 16%), accumulated lower proline (Pro; -12%) and shoot Na+/K+(-31%), synthesized more protein (SP; 2%) and sugars (TSS; 32%) compensating in lower biomass (AGB; -22%) and grain yield (GY: -14%) reductions at highest salinity stress of ECiw ~9 dSm-1. Physiological traits modeling underpinning plant salt tolerance and adaptation mechanism illustrated the key role of 7 traits (AGB, Pro, SS, gS, SPAD, Pn, and SP) in hybrids and 8 traits (AGB, Pro, PH, Na+, K+, Na+/K+, SPAD, and gS) in inbred lines towards anticipated grain yield variations in salinity stressed pearl millet. Most importantly, the AGB alone, explained >91% of yield variation among evaluated hybrids and inbreed lines at ECiw ~9 dSm-1. Cumulatively, the better morpho-physiological adaptation and lesser yield reduction with increasing salinity stress in pearl millet hybrids (HHB 146, HHB 272, and HHB 234) and inbred lines (H77/833-2-202, ICMA 94555 and ICMA 843-22) substantially complemented in increased plant salt tolerance and yield stability over a broad range of salinity stress. The information generated herein will help address in deciphering the trait associated physiological alterations to irrigation induced salt stress, and developing potential hybrids in pearl millet using these parents with special characteristics.
Collapse
Affiliation(s)
- Ashwani Kumar
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Parvender Sheoran
- Division of Social Sciences Research, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Anita Mann
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Devvart Yadav
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Arvind Kumar
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Sunita Devi
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Naresh Kumar
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
- Department of Chemistry and Biochemistry Eternal University, Baru, Sahib, India
| | - Pooja Dhansu
- ICAR–Sugarcane Breeding Institute, Regional Center, Karnal, India
| | - Dinesh K. Sharma
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, India
| |
Collapse
|
13
|
Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium barbarum during Fruit Ripening and Seedling Response to Heat Stress. Curr Issues Mol Biol 2022; 44:5933-5948. [PMID: 36547065 PMCID: PMC9777030 DOI: 10.3390/cimb44120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Plant−water relations mediated by aquaporins (AQPs) play vital roles in both key plant growth processes and responses to environmental challenges. As a well-known medicinal and edible plant, the harsh natural growth habitat endows Lycium plants with ideal materials for stress biology research. However, the details of their molecular switch for water transport remain unclear. In the present work, we first identified and characterized AQP family genes from Lycium (L.) barbarum at the genome scale and conducted systemic bioinformatics and expression analyses. The results showed that there were 38 Lycium barbarum AQPs (LbAQPs) in L. barbarum, which were classified into four subfamilies, including 17 LbPIP, 9 LbTIP, 10 LbNIP, and 2 LbXIP. Their encoded genes were unevenly distributed on all 12 chromosomes, except chromosome 10. Three of these genes encoded truncated proteins and three genes underwent clear gene duplication events. Cis-acting element analysis indicated that the expression of LbAQPs may be mainly regulated by biotic/abiotic stress, phytohormones and light. The qRT-PCR assay indicated that this family of genes presented a clear tissue-specific expression pattern, in which most of the genes had maximal transcript levels in roots, stems, and leaves, while there were relatively lower levels in flowers and fruits. Most of the LbAQP genes were downregulated during L. barbarum fruit ripening and presented a negative correlation with the fruit relative water content (RWC). Most of their transcripts presented a quick and sharp upregulation response to heat stress following exposure of the 2-month-old seedlings to a 42 °C temperature for 0, 1, 3, 12, or 24 h. Our results proposed that LbAQPs were involved in L. barbarum key development events and abiotic stress responses, which may lay a foundation for further studying the molecular mechanism of the water relationship of Lycium plants, especially in harsh environments.
Collapse
|
14
|
El-Badri AM, Batool M, Mohamed IAA, Wang Z, Wang C, Tabl KM, Khatab A, Kuai J, Wang J, Wang B, Zhou G. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119815. [PMID: 35926737 DOI: 10.1016/j.envpol.2022.119815] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/28/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
In recent years, much attention has been directed toward using nanoparticles (NPs) as one of the most effective strategies to improve plant growth, especially under salt stress conditions. Further research has been conducted to develop NPs using various chemical ways; accordingly, knowledge about the beneficial effect of bioSeNPs in rapeseed is obscure. Selenium (Se) is a vital micronutrient with a series of physiological and antioxidative properties. Seed priming is emerging as a low-cost, efficient, and environment-friendly seed treatment in nanotechnology. The current study was carried out to examine the promising effects of nanopriming via bioSeNPs on the expression level of aquaporin genes, seed microstructure, seed germination, growth traits, physiochemical attributes, and minerals uptake of two rapeseed cultivars under salinity stress conditions. Our investigation monitored the positive effects of bioSeNPs on the expression level of aquaporin genes (BnPIP1-1 and BnPIP2-1) and water uptake during the seed imbibition (4 and 8 h of priming), which indicated higher imbibition potential and germination promotion with bioSeNPs application (most effective at 150 μmol/L). The total performance index was significantly enhanced with nano-treatments in rapeseed seedlings. Collectively, nano-application improved seed microstructure, seed germination, and photosynthetic efficiency directly correlated with higher seedlings biomass, especially with a higher concentration of bioSeNPs. The enhancement in α-amylase and free amino acid contents in nanoprimed seeds resulted in rapid seed germination. Moreover, bioSeNPs increased the osmotic adjustment and enhanced the efficiency of the plant's defense system by improving the activity of enzymatic and non-enzymatic antioxidants, thus enhancing ROS scavenging under salt stress. The obtained results may indicate the strengthening of seed vigor, improving seedling growth and physiochemical attributes via bioSeNPs. Our findings displayed that bioSeNPs modulated the Na+ and K+ uptake, which improved the rapeseed growth and showed a close relationship with the low contents of toxic Na+ ion; thus, it prevented oxidative damage due to salt stress. This comprehensive data can add more knowledge to understand the mechanisms behind plant-bioSeNPs interaction and provide physiological evidence for the beneficial roles of nanopriming using bioSeNPs on rapeseed germination and seedling development under salinity stress conditions. Such studies can be used to develop simple prepackaged nano primer products, which can be used before sowing to boost seed germination and crop productivity under stress conditions.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ibrahim A A Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyun Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karim M Tabl
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531, Alexandria, Egypt
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Burridge JD, Grondin A, Vadez V. Optimizing Crop Water Use for Drought and Climate Change Adaptation Requires a Multi-Scale Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:824720. [PMID: 35574091 PMCID: PMC9100818 DOI: 10.3389/fpls.2022.824720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 05/09/2023]
Abstract
Selection criteria that co-optimize water use efficiency and yield are needed to promote plant productivity in increasingly challenging and variable drought scenarios, particularly dryland cereals in the semi-arid tropics. Optimizing water use efficiency and yield fundamentally involves transpiration dynamics, where restriction of maximum transpiration rate helps to avoid early crop failure, while maximizing grain filling. Transpiration restriction can be regulated by multiple mechanisms and involves cross-organ coordination. This coordination involves complex feedbacks and feedforwards over time scales ranging from minutes to weeks, and from spatial scales ranging from cell membrane to crop canopy. Aquaporins have direct effect but various compensation and coordination pathways involve phenology, relative root and shoot growth, shoot architecture, root length distribution profile, as well as other architectural and anatomical aspects of plant form and function. We propose gravimetric phenotyping as an integrative, cross-scale solution to understand the dynamic, interwoven, and context-dependent coordination of transpiration regulation. The most fruitful breeding strategy is likely to be that which maintains focus on the phene of interest, namely, daily and season level transpiration dynamics. This direct selection approach is more precise than yield-based selection but sufficiently integrative to capture attenuating and complementary factors.
Collapse
Affiliation(s)
- James D. Burridge
- DIADE Group, Cereal Root Systems, Institute de Recherche pour le Développement/Université de Montpellier, Montpellier, France
- *Correspondence: James D. Burridge,
| | - Alexandre Grondin
- DIADE Group, Cereal Root Systems, Institute de Recherche pour le Développement/Université de Montpellier, Montpellier, France
- Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Laboratoire Mixte International, Dakar, Senegal
- Centre d’Étude Régional pour l’Amélioration de l’Adaptation à la Sécheresse, Thiès, Senegal
| | - Vincent Vadez
- DIADE Group, Cereal Root Systems, Institute de Recherche pour le Développement/Université de Montpellier, Montpellier, France
- Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Laboratoire Mixte International, Dakar, Senegal
- Centre d’Étude Régional pour l’Amélioration de l’Adaptation à la Sécheresse, Thiès, Senegal
- International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, India
- Vincent Vadez,
| |
Collapse
|