1
|
Talaat NB, Abdel-Salam SAM. An innovative, sustainable, and environmentally friendly approach for wheat drought tolerance using vermicompost and effective microorganisms: upregulating the antioxidant defense machinery, glyoxalase system, and osmotic regulatory substances. BMC PLANT BIOLOGY 2024; 24:866. [PMID: 39285341 PMCID: PMC11406802 DOI: 10.1186/s12870-024-05550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Vermicompost contains humic acids, nutrients, earthworm excretions, beneficial microbes, growth hormones, and enzymes, which help plants to tolerate a variety of abiotic stresses. Effective microorganisms (EM) include a wide range of microorganisms' e.g. photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, and fermenting fungi that can stimulate plant growth and improve soil fertility. To our knowledge, no study has yet investigated the possible role of vermicompost and EM dual application in enhancing plant tolerance to water scarcity. METHODS Consequently, the current study investigated the effectiveness of vermicompost and EM in mitigating drought-induced changes in wheat. The experiment followed a completely randomized design with twelve treatments. The treatments included control, as well as individual and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). RESULTS The findings demonstrated that the application of vermicompost and/or EM significantly improved wheat growth and productivity, as well as alleviated drought-induced oxidative damage with decreased the generation of superoxide anion radical and hydrogen peroxide. This was achieved by upregulating the activities of several antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Vermicompost and/or EM treatments also enhanced the antioxidant defense system by increasing the content of antioxidant molecules such as ascorbate, glutathione, phenolic compounds, and flavonoids. Additionally, the overproduction of methylglyoxal in water-stressed treated plants was controlled by the enhanced activity of the glyoxalase system enzymes; glyoxalase I and glyoxalase II. The treated plants maintained higher water content related to the higher content of osmotic regulatory substances like soluble sugars, free amino acids, glycinebetaine, and proline. CONCLUSIONS Collectively, we offer the first report that identifies the underlying mechanism by which the dual application of vermicompost and EM confers drought tolerance in wheat by improving osmolyte accumulation and modulating antioxidant defense and glyoxalase systems.
Collapse
Affiliation(s)
- Neveen B Talaat
- Department of Plant Physiology, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Sameh A M Abdel-Salam
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Abdelkhalik A, Abdou NM, Gyushi MAH, Shaaban A, Abd El-Mageed SA, Hemida KA, Abd El-Mageed TA. Enhancing sweet potato (Ipomoea batatas) resilience grown in cadmium-contaminated saline soil: a synergistic approach using Moringa leaf extract and effective microorganisms application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32464-32479. [PMID: 38653894 PMCID: PMC11133164 DOI: 10.1007/s11356-024-33295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Raising soil contamination with cadmium (Cd2+) and salinization necessitates the development of green approaches using bio-elicitors to ensure sustainable crop production and mitigate the detrimental health impacts. Two field trials were carried out to study the individual and combined effects of foliage spraying of Moringa leaf extract (MLE) and soil application of effective microorganisms (EMs) on the physio-biochemical, osmolytes, antioxidants, and performance of sweet potato grown in Cd2+-contaminated salty soil (Cd2+ = 17.42 mg kg-1 soil and soil salinity ECe = 7.42 dS m-1). Application of MLE, EMs, or MLE plus EMs significantly reduced the accumulation of Cd2+ in roots by 55.6%, 50.0%, or 68.1% and in leaves by 31.4%, 27.6%, or 38.0%, respectively, compared to the control. Co-application of MLE and EMs reduced Na+ concentration while substantially raising N, P, K+, and Ca2+ acquisition in the leaves. MLE and EMs-treated plants exhibited higher concentrations of total soluble sugar by 69.6%, free proline by 47.7%, total free amino acids by 29.0%, and protein by 125.7% compared to the control. The enzymatic (SOD, APX, GR, and CAT) and non-enzymatic (phenolic acids, GSH, and AsA) antioxidants increased in plants treated with MLE and/or EMs application. Applying MLE and/or EMs increased the leaf photosynthetic pigment contents, membrane stability, relative water content, water productivity, growth traits, and tuber yield of Cd2+ and salt-stressed sweet potato. Consequently, the integrative application of MLE and EMs achieved the best results exceeding the single treatments recommended in future application to sweet potato in saline soil contaminated with Cd2+.
Collapse
Affiliation(s)
| | - Nasr M Abdou
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mohammad A H Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
3
|
Al-Elwany OAAI, Mohamed AMHA, Abdelbaky AS, Tammam MA, Hemida KA, Hassan GHS, El-Saadony MT, El-Tarabily KA, AbuQamar SF, Abd El-Mageed TA. Application of bio-organic amendments improves soil quality and yield of fennel (Foeniculum vulgare Mill.) plants in saline calcareous soil. Sci Rep 2023; 13:19876. [PMID: 37963917 PMCID: PMC10646079 DOI: 10.1038/s41598-023-45780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The impact of bio-organic amendments on crop production is poorly understood in saline calcareous soils. The aim in the present study was to determine the effects of the application of organic manure along with lactic acid bacteria (LAB) on soil quality, and morpho-physio-biochemical responses, seed yield (SY) and essential oil yield (EOY) of fennel plants (Foeniculum vulgare Mill.) grown in saline calcareous soils. Eight treatments of farmyard manure (FM) or poultry manure (PM) individually or combined with Lactobacillus plantarum (Lp) and/or Lactococcus lactis (Ll) were applied to saline calcareous soil in two growing seasons. Either FM or PM combined with LAB had beneficial effects on lowering ECe, pH and bulk density and increasing total porosity, organic matter, and water and nutrient retention capacities in addition to total bacterial population in the soil. Growth, nutrient uptake, SY and EOY of plants were also enhanced when fennel seeds were inoculated with Lp and/or Ll and the soil was amended with any of the organic manures under unfavorable conditions. Compared to control (no bio-organic amendments), FM + Lp + Lt or PM + Lp + Lt treatment signficantlly (P ≤ 0.05) increased plant height by 86.2 or 65.0%, total chlorophyll by 73 or 50%, proline by 35 or 45%, glutathione by 100 or 138%, SY by 625 or 463% and EOY by 300 or 335%, respectively, in fennel plants. Co-application of the naturally occurring microorganisms (i.e., LAB) and organically-derived, nutrient-rich fertilizer (i.e., FM or PM) is recommended to improve yield of fennel plants in saline calcareous soils.
Collapse
Affiliation(s)
- Omar A A I Al-Elwany
- Department of Horticulture, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Abir M H A Mohamed
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed S Abdelbaky
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaulood A Hemida
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Gehad H S Hassan
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
4
|
Nie M, Ning N, Chen J, Zhang Y, Li S, Zheng L, Zhang H. Melatonin enhances salt tolerance in sorghum by modulating photosynthetic performance, osmoregulation, antioxidant defense, and ion homeostasis. Open Life Sci 2023; 18:20220734. [PMID: 37872968 PMCID: PMC10590611 DOI: 10.1515/biol-2022-0734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/25/2023] Open
Abstract
Melatonin is a potent antioxidant that can prevent plant damage caused by adverse stresses. It remains unclear whether exogenous melatonin can mitigate the effects of salt stress on seed germination and seedling growth of sorghum (Sorghum bicolor (L.) Moench). The aim of this study was to decipher the protective mechanisms of exogenous melatonin (100 μmol/L) on sorghum seedlings under NaCl-induced salt stress (120 mmol/L). Plant morphological, photosynthetic, and physiological characteristics were analyzed at different timepoints after sowing. Results showed that salt stress inhibited seed germination, seedling growth, and plant biomass accumulation by reducing photosynthetic pigment contents, photosynthetic efficiency, root vigor, and mineral uptake. In contrast, seed priming with melatonin enhanced photosynthetic pigment biosynthesis, photosynthetic efficiency, root vigor, and K+ content under salt stress. Melatonin application additionally enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and increased the levels of non-enzymatic antioxidants (reduced glutathione, ascorbic acid) in the leaves. These changes were accompanied by increase in the leaf contents of soluble sugars, soluble proteins, and proline, as well as decrease in hydrogen peroxide accumulation, malondialdehyde content, and electrolyte leakage. Our findings indicate that exogenous melatonin can alleviate salt stress-induced damage in sorghum seedlings through multifaceted mechanisms, such as improving photosynthetic performance and root vigor, facilitating ion homeostasis and osmoregulation, and promoting antioxidant defense and reactive oxygen species scavenging.
Collapse
Affiliation(s)
- Mengen Nie
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Na Ning
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Jing Chen
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Yizhong Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University,238 Yunhua West Street, Jinzhong, Shanxi, 030600, China
| | - Shuangshuang Li
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Lue Zheng
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Haiping Zhang
- Center for Agricultural Gene Resources Research, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
5
|
Abd El-Mageed TA, Ihab R, Rady MM, Belal HEE, Mostafa FA, Galal TM, Masoudi LMA, Ali EF, Roulia M, Mahmoud AEM. A Novel Nutrient- and Antioxidant-Based Formulation Can Sustain Tomato Production under Full Watering and Drought Stress in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3407. [PMID: 37836147 PMCID: PMC10574430 DOI: 10.3390/plants12193407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.
Collapse
Affiliation(s)
- Taia A. Abd El-Mageed
- Soil and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Radwa Ihab
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (R.I.); (H.E.E.B.)
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (R.I.); (H.E.E.B.)
| | - Hussein E. E. Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (R.I.); (H.E.E.B.)
| | - Fatma A. Mostafa
- Plant Pathology Research Institute, Agriculture Research Center, Giza 11571, Egypt;
| | - Tarek M. Galal
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (L.M.A.M.)
| | - Luluah M. Al Masoudi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (L.M.A.M.)
| | - Esmat F. Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (L.M.A.M.)
| | - Maria Roulia
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Amr E. M. Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
6
|
Alhammad BA, Zaheer MS, Ali HH, Hameed A, Ghanem KZ, Seleiman MF. Effect of Co-Application of Azospirillum brasilense and Rhizobium pisi on Wheat Performance and Soil Nutrient Status under Deficit and Partial Root Drying Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3141. [PMID: 37687389 PMCID: PMC10489886 DOI: 10.3390/plants12173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Water management techniques are improving at the farm level, but they are not enough to deal with the limited availability of water and increased crop yields. Soil microbes play a vital role in nitrogen fixation, improving soil fertility and enhancing plant growth hormones under drought conditions. Therefore, this study was conducted to investigate the impact of water management combined with Azospirillum brasilense and Rhizobium pisi on wheat crop productivity and soil properties in dry regions. Three water management techniques were compared, normal irrigation as a control (C), deficit irrigation (DI), and partial root drying irrigation (PRD), together with the interaction of plant-growth-promoting rhizobacteria (PGPR). Experiments were conducted with six treatments in total: T1 = C + No PGPR, T2 = C + PGPR, T3 = DI + No PGPR, T4 = DI + PGPR, T5 = PRD + No PGPR, and T6 = PRD + PGPR. The highest grain yield was achieved in the control irrigation treatment using seeds inoculated with rhizobacteria, followed by control treatment without any inoculation, and the lowest was recorded with deficit irrigation without rhizobacteria inoculated in the seeds. However, PRD irrigation resulted in significantly higher plant growth and grain yield than the DI treatment. PGPR inoculation combined with PRD resulted in a 22% and 20% higher number of grains per spike, a 19% and 21% higher grain yield, and a 25% and 22% higher crop growth rate compared to rhizobacteria inoculation combined with the DI system in 2021-22 and 2022-23, respectively. This increase was due to the higher production of growth hormones and higher leaf area index under water-limited conditions. A greater leaf area index leads to a higher chlorophyll content and higher food production for plant growth.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 292, Riyadh 11942, Saudi Arabia;
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Hafiz Haider Ali
- Department of Agriculture, Government College University, Lahore 54000, Pakistan;
| | - Akhtar Hameed
- Institute of Plant Protection, MNS University of Agriculture Multan, Multan 61000, Pakistan;
| | - Kholoud Z. Ghanem
- Department of Biological Science, College of Science and Humanities, Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| |
Collapse
|
7
|
Youssef SM, Shaaban A, Abdelkhalik A, Abd El Tawwab AR, Abd Al Halim LR, Rabee LA, Alwutayd KM, Ahmed RMM, Alwutayd R, Hemida KA. Compost and Phosphorus/Potassium-Solubilizing Fungus Effectively Boosted Quinoa's Physio-Biochemical Traits, Nutrient Acquisition, Soil Microbial Community, and Yield and Quality in Normal and Calcareous Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3071. [PMID: 37687318 PMCID: PMC10489913 DOI: 10.3390/plants12173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Calcareous soil had sufficient phosphorus and potassium (PK) in different forms due to the high contents of PK-bearing minerals; however, the available PK state was reduced due to its PK-fixation capacity. Compost, coupled with high PK solubilization capacity microbes, is a sustainable solution for bioorganic fertilization of plants grown in calcareous soil. A 2-year field experiment was conducted to investigate the effect of compost (20 t ha-1) with Aspergillus niger through soil drenching (C-AN) along with partial substitution of PK fertilization on quinoa performance in normal and calcareous soils. Treatments included PK100% (72 kg P2O5 ha-1 + 60 kg K2O ha-1 as conventional rate), PK100%+C-AN, PK75%+C-AN, PK50%+C-AN, PK25%+C-AN, and only C-AN in normal and calcareous soils. Results showed that C-AN and reduced PK fertilization (up to 75 or 50%) increased photosynthetic pigments and promoted nutrient acquisition in quinoa grown in calcareous soil. Reduced PK fertilization to 75 or 50% plus C-AN in calcareous soil increased osmoprotectants, nonenzymatic antioxidants, and DPPH scavenging activity of quinoa's leaves compared to the PK0%+C-AN treatment. The integrative application of high PK levels and C-AN enhanced the quinoa's seed nutritional quality (i.e., lipids, carbohydrates, mineral contents, total phenolics, total flavonoids, half maximal inhibitory concentration, and antiradical power) in calcareous soil. At reduced PK fertilization (up to 75 or 50%), application of compost with Aspergillus niger through soil drenching increased plant dry weight by 38.7 or 53.2%, hectoliter weight by 3.0 or 2.4%, seed yield by 49.1 or 39.5%, and biological yield by 43.4 or 33.6%, respectively, compared to PK0%+C-AN in calcareous soil. The highest P-solubilizing microorganism's population was found at PK0%+C-AN in calcareous soil, while the highest Azotobacter sp. population was observed under high PK levels + C-AN in normal soil. Our study recommends that compost with Aspergillus niger as a bioorganic fertilization treatment can partially substitute PK fertilization and boost quinoa's tolerance to salt calcareous-affected soil.
Collapse
Affiliation(s)
- Samah M. Youssef
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Abdelsattar Abdelkhalik
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed R. Abd El Tawwab
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Laila R. Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Laila A. Rabee
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Reda M. M. Ahmed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Rahaf Alwutayd
- Department of Information Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Khaulood A. Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
8
|
Semida WM, Abd El-Mageed TA, Gyushi MAH, Abd El-Mageed SA, Rady MM, Abdelkhalik A, Merah O, Sabagh AE, El-Metwally IM, Sadak MS, Abdelhamid MT. Exogenous Selenium Improves Physio-Biochemical and Performance of Drought-Stressed Phaseolus vulgaris Seeded in Saline Soil. SOIL SYSTEMS 2023; 7:67. [DOI: 10.3390/soilsystems7030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Water and salt stresses are among the most important global problems that limit the growth and production of several crops. The current study aims at the possibility of mitigating the effect of deficit irrigation of common bean plants growing in saline lands by foliar spraying with selenium via the assessment of growth, productivity, physiological, and biochemical measurements. In our study, two field-based trials were conducted in 2017 and 2018 to examine the influence of three selenium (Se) concentrations (0 (Se0), 25 (Se25), and 50 mg L−1 (Se50)) on common bean plants grown under full irrigation (I100 = 100% of the crop evapotranspiration; ETc) and deficit irrigation (I80 = 80% of ETc, and I60 = 60% of ETc). Bean plants exposed to water stress led to a notable reduction in growth, yield, water productivity (WP), water status, SPAD value, and chlorophyll a fluorescence features (Fv/Fm and PI). However, foliar spraying of selenium at 25 or 50 mg L−1 on stressed bean plants attenuated the harmful effects of water stress. The findings suggest that foliage application of 25 or 50 mg L−1 selenium to common bean plants grown under I80 resulted in a higher membrane stability index, relative water content, SPAD chlorophyll index, and better efficiency of photosystem II (Fv/Fm, and PI). Water deficit at 20% increased the WP by 17%; however, supplementation of 25 or 50 mg L−1 selenium mediated further increases in WP up to 26%. Exogenous application of selenium (25 mg L−1 or 50 mg L−1) to water-stressed bean plants elevated the plant defense system component, given that it increased the free proline, ascorbic acid, and glutathione levels, as well as antioxidant enzymes (SOD, APX, GPX, and CAT). It was concluded that the application of higher levels (25 or/and 50 mg L−1) of Se improves plant water status as well as the growth and yield of common beans cultivated in saline soil.
Collapse
Affiliation(s)
- Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mohammed A. H. Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | | | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier-Toulouse III, IUT A, 32000 Auch, France
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Ibrahim M. El-Metwally
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
| | - Mervat Sh. Sadak
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2474, USA
| |
Collapse
|
9
|
Abd El Mageed TA, Semida W, Hemida KA, Gyushi MA, Rady MM, Abdelkhalik A, Merah O, Brestic M, Mohamed HI, El Sabagh A, Abdelhamid MT. Glutathione-mediated changes in productivity, photosynthetic efficiency, osmolytes, and antioxidant capacity of common beans ( Phaseolus vulgaris) grown under water deficit. PeerJ 2023; 11:e15343. [PMID: 37366423 PMCID: PMC10290831 DOI: 10.7717/peerj.15343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023] Open
Abstract
Globally, salinity and drought are severe abiotic stresses that presently threaten vegetable production. This study investigates the potential exogenously-applied glutathione (GSH) to relieve water deficits on Phaseolus vulgaris plants cultivated in saline soil conditions (6.22 dS m-1) by evaluating agronomic, stability index of membrane, water satatus, osmolytes, and antioxidant capacity responses. During two open field growing seasons (2017 and 2018), foliar spraying of glutathione (GSH) at 0.5 (GSH1) or 1.0 (GSH1) mM and three irrigation rates (I100 = 100%, I80 = 80% and I60 = 60% of the crop evapotranspiration) were applied to common bean plants. Water deficits significantly decreased common bean growth, green pods yield, integrity of the membranes, plant water status, SPAD chlorophyll index, and photosynthetic capacity (Fv/Fm, PI), while not improving the irrigation use efficiency (IUE) compared to full irrigation. Foliar-applied GSH markedly lessened drought-induced damages to bean plants, by enhancing the above variables. The integrative I80 + GSH1 or GSH2 and I60 + GSH1 or GSH2 elevated the IUE and exceeded the full irrigation without GSH application (I100) treatment by 38% and 37%, and 33% and 28%, respectively. Drought stress increased proline and total soluble sugars content while decreased the total free amino acids content. However, GSH-supplemented drought-stressed plants mediated further increases in all analyzed osmolytes contents. Exogenous GSH enhanced the common bean antioxidative machinery, being promoted the glutathione and ascorbic acid content as well as up-regulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. These findings demonstrate the efficacy of exogenous GSH in alleviating water deficit in bean plants cultivated in salty soil.
Collapse
Affiliation(s)
| | - Wael Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Mohammed A.H. Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Othmane Merah
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, Toulouse, Toulouse, France
- IUT A, Département Génie Biologique, Université Paul Sabatier-Toulouse III, Auch, France
| | - Marian Brestic
- Plant Physiology, Slovak University of Agriculture, Nitra, Nitra, Slovakia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, A. Hlinku 2, Nitra, Slovakia
| | - Heba I. Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr Al-Sheik, Egypt
- Botany Department, National Research Centre, Cairo, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, Cairo, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
10
|
Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, Kocsubé S, Jakab P, Monostori T, Škrbić BD, Mohai E, Hatvani L, Vágvölgyi C, Kredics L. Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation. Microorganisms 2023; 11:microorganisms11040914. [PMID: 37110337 PMCID: PMC10143537 DOI: 10.3390/microorganisms11040914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation.
Collapse
Affiliation(s)
- Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Anuar Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Ádám Bordé
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Adrienn Szarvas
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Jakab
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Tamás Monostori
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Biljana D. Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Edina Mohai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
11
|
Abdelkhalik A, Abd El-Mageed TA, Mohamed IAA, Semida WM, Al-Elwany OAAI, Ibrahim IM, Hemida KA, El-Saadony MT, AbuQamar SF, El-Tarabily KA, Gyushi MAH. Soil application of effective microorganisms and nitrogen alleviates salt stress in hot pepper ( Capsicum annum L.) plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1079260. [PMID: 36743545 PMCID: PMC9889995 DOI: 10.3389/fpls.2022.1079260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The application of effective microorganisms (EMs) and/or nitrogen (N) have a stimulating effect on plants against abiotic stress conditions. The aim of the present study was to determine the impact of the co-application of EMs and N on growth, physio-biochemical attributes, anatomical structures, nutrients acquisition, capsaicin, protein, and osmoprotectant contents, as well as the antioxidative defense system of hot pepper (Capsicum annum L.) plants. In the field trials, EMs were not applied (EMs-) or applied (EMs+) along with three N rates of 120, 150, and 180 kg unit N ha-1 (designated as N120, N150, and N180, respectively) to hot pepper plants grown in saline soils (9.6 dS m-1). The application of EMs and/or high N levels attenuated the salt-induced damages to hot pepper growth and yield. The application of EMs+ with either N150 or N180 increased the number, average weight and yield of fruits by 14.4 or 17.0%, 20.8 or 20.8% and 28.4 or 27.5%, respectively, compared to hot pepper plants treated with the recommended dose (EMs- × N150). When EMs+ was individually applied or combined with either N150 or N180, increased accumulation of capsaicin were observed by 16.7 or 20.8%, protein by 12.5 or 16.7%, proline by 19.0 or 14.3%, and total soluble sugars by 3.7 or 7.4%, respectively, in comparison with those treated with the integrative EMs- × N150. In addition, the non-enzymatic contents (ascorbate, and glutathione) and enzymatic activities (catalase, superoxide dismutase, and glutathione reductase) of the antioxidant defense systems significantly increased in hot pepper plants treated with EMs+ alone or combined with N150 or N180 under salt stress conditions. Higher accumulation of nutrients (N, P, K+, and Ca2+) along with reduced Na+ acquisition was also evidenced in response to EMs+ or/and high N levels. Most anatomical features of stems and leaves recovered in hot pepper plants grown in saline soils and supplied with EMs+ and N. The application of EMs and N is undoubtedly opening new sustainable approaches toward enhancing abiotic stress tolerance in crops (e.g. hot pepper).
Collapse
Affiliation(s)
| | | | | | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Ibrahim M. Ibrahim
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
12
|
El-Sappah AH, Metwally MAS, Rady MM, Ali HM, Wang L, Maitra P, Ihtisham M, Yan K, Zhao X, Li J, Desoky ESM. Interplay of silymarin and clove fruit extract effectively enhances cadmium stress tolerance in wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2023; 14:1144319. [PMID: 37123831 PMCID: PMC10140571 DOI: 10.3389/fpls.2023.1144319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Linghui Wang
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Muhammad Ihtisham
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Xin Zhao
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- *Correspondence: Jia Li, ; El-Sayed M. Desoky, ; Xin Zhao,
| | - Jia Li
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- *Correspondence: Jia Li, ; El-Sayed M. Desoky, ; Xin Zhao,
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Jia Li, ; El-Sayed M. Desoky, ; Xin Zhao,
| |
Collapse
|
13
|
Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. PLANTS 2022; 11:plants11182392. [PMID: 36145792 PMCID: PMC9504293 DOI: 10.3390/plants11182392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil’s productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle–plant–microbe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work.
Collapse
|