1
|
Shreesha L, Levin M. Stress sharing as cognitive glue for collective intelligences: A computational model of stress as a coordinator for morphogenesis. Biochem Biophys Res Commun 2024; 731:150396. [PMID: 39018974 PMCID: PMC11356093 DOI: 10.1016/j.bbrc.2024.150396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Individual cells have numerous competencies in physiological and metabolic spaces. However, multicellular collectives can reliably navigate anatomical morphospace towards much larger, reliable endpoints. Understanding the robustness and control properties of this process is critical for evolutionary developmental biology, bioengineering, and regenerative medicine. One mechanism that has been proposed for enabling individual cells to coordinate toward specific morphological outcomes is the sharing of stress (where stress is a physiological parameter that reflects the current amount of error in the context of a homeostatic loop). Here, we construct and analyze a multiscale agent-based model of morphogenesis in which we quantitatively examine the impact of stress sharing on the ability to reach target morphology. We found that stress sharing improves the morphogenetic efficiency of multicellular collectives; populations with stress sharing reached anatomical targets faster. Moreover, stress sharing influenced the future fate of distant cells in the multi-cellular collective, enhancing cells' movement and their radius of influence, consistent with the hypothesis that stress sharing works to increase cohesiveness of collectives. During development, anatomical goal states could not be inferred from observation of stress states, revealing the limitations of knowledge of goals by an extern observer outside the system itself. Taken together, our analyses support an important role for stress sharing in natural and engineered systems that seek robust large-scale behaviors to emerge from the activity of their competent components.
Collapse
Affiliation(s)
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Wright J, Bourke P. Cortical development in the structural model and free energy minimization. Cereb Cortex 2024; 34:bhae416. [PMID: 39470397 PMCID: PMC11520235 DOI: 10.1093/cercor/bhae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
A model of neocortical development invoking Friston's Free Energy Principle is applied within the Structural Model of Barbas et al. and the associated functional interpretation advanced by Tucker and Luu. Evolution of a neural field with Hebbian and anti-Hebbian plasticity, maximizing synchrony and minimizing axonal length by apoptotic selection, leads to paired connection systems with mirror symmetry, interacting via Markov blankets along their line of reflection. Applied to development along the radial lines of development in the Structural Model, a primary Markov blanket emerges between the centrifugal synaptic flux in layers 2,3 and 5,6, versus the centripetal flow in layer 4, and axonal orientations in layer 4 give rise to the differing shape and movement sensitivities characteristic of neurons of dorsal and ventral neocortex. Prediction error minimization along the primary blanket integrates limbic and subcortical networks with the neocortex. Synaptic flux bypassing the blanket triggers the arousal response to surprising stimuli, enabling subsequent adaptation. As development progresses ubiquitous mirror systems separated by Markov blankets and enclosed blankets-within-blankets arise throughout neocortex, creating the typical order and response characteristics of columnar and noncolumnar cortex.
Collapse
Affiliation(s)
- James Wright
- Centre for Brain Research and Department of Psychological Medicine, School of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Paul Bourke
- Centre for Brain Research, School of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
3
|
Cervera J, Manzanares JA, Levin M, Mafe S. Oscillatory phenomena in electrophysiological networks: The coupling between cell bioelectricity and transcription. Comput Biol Med 2024; 180:108964. [PMID: 39106669 DOI: 10.1016/j.compbiomed.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Morphogenetic regulation during embryogenesis and regeneration rely on information transfer and coordination between different regions. Here, we explore theoretically the coupling between bioelectrical and transcriptional oscillations at the individual cell and multicellular levels. The simulations, based on a set of ion channels and intercellular gap junctions, show that bioelectrical and transcriptional waves can electrophysiologically couple distant regions of a model network in phase and antiphase oscillatory states that include synchronization phenomena. In this way, different multicellular regionalizations can be encoded by cell potentials that oscillate between depolarized and polarized states, thus allowing a spatio-temporal coding. Because the electric potential patterns characteristic of development and regeneration are correlated with the spatial distributions of signaling ions and molecules, bioelectricity can act as a template for slow biochemical signals following a hierarchy of experimental times. In particular, bioelectrical gradients that couple cell potentials to transcription rates give to each single cell a rough idea of its location in the multicellular ensemble, thus controlling local differentiation processes that switch on and off crucial parts of the genome.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain
| | - Michael Levin
- Dept. of Biology, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Noble PA, Pozhitkov A, Singh K, Woods E, Liu C, Levin M, Javan G, Wan J, Abouhashem AS, Mathew-Steiner SS, Sen CK. Unraveling the Enigma of Organismal Death: Insights, Implications, and Unexplored Frontiers. Physiology (Bethesda) 2024; 39:0. [PMID: 38624244 PMCID: PMC11460531 DOI: 10.1152/physiol.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Significant knowledge gaps exist regarding the responses of cells, tissues, and organs to organismal death. Examining the survival mechanisms influenced by metabolism and environment, this research has the potential to transform regenerative medicine, redefine legal death, and provide insights into life's physiological limits, paralleling inquiries in embryogenesis.
Collapse
Affiliation(s)
- Peter A Noble
- Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Alexander Pozhitkov
- Division of Research Informatics, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Erik Woods
- Ossium Health, Indianapolis, Indiana, United States
| | - Chunyu Liu
- Institute for Human Performance, Upstate Medical University, Syracuse, New York, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Gulnaz Javan
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, Alabama, United States
| | - Jun Wan
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ahmed Safwat Abouhashem
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shomita S Mathew-Steiner
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Chandan K Sen
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Tolchinsky A, Ellis GFR, Levin M, Kaňková Š, Burgdorf JS. Disgust as a primary emotional system and its clinical relevance. Front Psychol 2024; 15:1454774. [PMID: 39295749 PMCID: PMC11409098 DOI: 10.3389/fpsyg.2024.1454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
This paper advocates for considering disgust as a primary emotional system within Panksepp's Affective Neuroscience framework, which has the potential to improve the efficacy of psychotherapy with obsessive-compulsive disorder, hypochondriasis, and emetophobia. In 2007, Toronchuk and Ellis provided comprehensive evidence that DISGUST system, as they defined it, matched all Panksepp's criteria for a primary emotional system. A debate ensued and was not unambiguously resolved. This paper is an attempt to resume this discussion and supplement it with the data that accumulated since then on DISGUST's relationship with the immune system and the role of DISGUST dysregulation in psychopathology. We hope that renewed research interest in DISGUST has the potential to improve clinical efficacy with hard-to-treat conditions.
Collapse
Affiliation(s)
- Alexey Tolchinsky
- Professional Psychology Program, George Washington University, Washington, DC, United States
| | - George F R Ellis
- Department of Mathematics, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Allen Discovery Center at Tufts University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czechia
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
Yang B, Nasab AM, Woodman SJ, Thomas E, Tilton LG, Levin M, Kramer-Bottiglio R. Self-Amputating and Interfusing Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400241. [PMID: 38780175 DOI: 10.1002/adma.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Biological organisms exhibit phenomenal adaptation through morphology-shifting mechanisms including self-amputation, regeneration, and collective behavior. For example, reptiles, crustaceans, and insects amputate their own appendages in response to threats. Temporary fusion between individuals enables collective behaviors, such as in ants that temporarily fuse to build bridges. The concept of morphological editing often involves the addition and subtraction of mass and can be linked to modular robotics, wherein synthetic body morphology may be revised by rearranging parts. This work describes a reversible cohesive interface made of thermoplastic elastomer that allows for strong attachment and easy detachment of distributed soft robot modules without direct human handling. The reversible joint boasts a modulus similar to materials commonly used in soft robotics, and can thus be distributed throughout soft robot bodies without introducing mechanical incongruities. To demonstrate utility, the reversible joint is implemented in two embodiments: a soft quadruped robot that self-amputates a limb when stuck, and a cluster of three soft-crawling robots that fuse to cross a land gap. This work points toward future robots capable of radical shape-shifting via changes in mass through autotomy and interfusion, as well as highlights the crucial role that interfacial stiffness change plays in autotomizable biological and artificial systems.
Collapse
Affiliation(s)
- Bilige Yang
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Amir Mohammadi Nasab
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Stephanie J Woodman
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Eugene Thomas
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Liana G Tilton
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, 200 Boston Ave. Suite 4604, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir, Boston, MA, 02115, USA
| | - Rebecca Kramer-Bottiglio
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| |
Collapse
|
7
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
8
|
Marmolejo-Ramos F, Tejada J, Ciria A, Cruz F, Cardona JF. Advancing mechanistic explanations through natural and artificial embodied cognitive systems. Cogn Neurosci 2024; 15:111-113. [PMID: 39350359 DOI: 10.1080/17588928.2024.2403348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024]
Abstract
Mougenot and Matheson propose that mechanistic models can explain behavior by describing the complex interactions among components of the brain, body, and environment as an integrated system, which aligns with embodied cognition. However, we suggest incorporating cognitive ontology theory and addressing degeneracy and neuronal reuse. We also recommend studying natural embodied cognition through artificial systems to develop a comprehensive mechanistic framework.
Collapse
Affiliation(s)
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Alejandra Ciria
- Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Francisco Cruz
- School of Computer Science and Egineering, University of New South Wales, Sydney, Australia
| | - Juan F Cardona
- Facultad de Psicología, Universidad del Valle, Cali, Colombia
| |
Collapse
|
9
|
Hartl B, Risi S, Levin M. Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales. ENTROPY (BASEL, SWITZERLAND) 2024; 26:532. [PMID: 39056895 PMCID: PMC11275831 DOI: 10.3390/e26070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In recent years, the scientific community has increasingly recognized the complex multi-scale competency architecture (MCA) of biology, comprising nested layers of active homeostatic agents, each forming the self-orchestrated substrate for the layer above, and, in turn, relying on the structural and functional plasticity of the layer(s) below. The question of how natural selection could give rise to this MCA has been the focus of intense research. Here, we instead investigate the effects of such decision-making competencies of MCA agential components on the process of evolution itself, using in silico neuroevolution experiments of simulated, minimal developmental biology. We specifically model the process of morphogenesis with neural cellular automata (NCAs) and utilize an evolutionary algorithm to optimize the corresponding model parameters with the objective of collectively self-assembling a two-dimensional spatial target pattern (reliable morphogenesis). Furthermore, we systematically vary the accuracy with which the uni-cellular agents of an NCA can regulate their cell states (simulating stochastic processes and noise during development). This allows us to continuously scale the agents' competency levels from a direct encoding scheme (no competency) to an MCA (with perfect reliability in cell decision executions). We demonstrate that an evolutionary process proceeds much more rapidly when evolving the functional parameters of an MCA compared to evolving the target pattern directly. Moreover, the evolved MCAs generalize well toward system parameter changes and even modified objective functions of the evolutionary process. Thus, the adaptive problem-solving competencies of the agential parts in our NCA-based in silico morphogenesis model strongly affect the evolutionary process, suggesting significant functional implications of the near-ubiquitous competency seen in living matter.
Collapse
Affiliation(s)
- Benedikt Hartl
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Institute for Theoretical Physics, Center for Computational Materials Science (CMS), TU Wien, 1040 Wien, Austria
| | - Sebastian Risi
- Digital Design, IT University of Copenhagen, 2300 Copenhagen, Denmark;
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Munford C. Epistolution: a new principle necessary to a learning-first theory of life. Commun Integr Biol 2024; 17:2366249. [PMID: 38873336 PMCID: PMC11174056 DOI: 10.1080/19420889.2024.2366249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Biological theory assumes the organized appearance of life and the reliable recurrence of traits are due to inheritance. Natural selection acting on blind variations produces phenotypes with heritable traits, one of which may be natural learning. The aim of learning, then, is solving problems related to survival and reproduction. But what if these views confuse cause with effect? Perhaps a learning algorithm is required for any phenotype at all to arise. If so, evolution proceeds learning-first, with individuals pursuing another telos entirely. I argue that this aim may be epistemological, the drive to understand the world through an umwelt. By "understand" I mean neither association nor prediction but Karl Popper's concept of explanation through conjecture and refutation. I propose that if only genetic materials are truly heritable, not traits, then testing a successful physical theory of life will depend on building abiotic machines which can perform natural learning without the presence of any inherited materials or conditions. I name this process "epistolution," combining "epistemology" and "evolution," to distinguish it from other concepts. Epistolution is an integral consequence of any learning-first view of life, such as the Cellular Basis of Consciousness theory. This type of theory suggests that in all cells during the history of life full-blown agency, involving beliefs, intentions, and desires, generated all the phenotypes that have then been winnowed by natural selection. Unlike in other versions, I posit that the aim of agential living systems is the explanation of reality rather than inductive prediction or survival/reproduction.
Collapse
|
11
|
Parvizi-Wayne D, Sandved-Smith L, Pitliya RJ, Limanowski J, Tufft MRA, Friston KJ. Forgetting ourselves in flow: an active inference account of flow states and how we experience ourselves within them. Front Psychol 2024; 15:1354719. [PMID: 38887627 PMCID: PMC11182004 DOI: 10.3389/fpsyg.2024.1354719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Flow has been described as a state of optimal performance, experienced universally across a broad range of domains: from art to athletics, gaming to writing. However, its phenomenal characteristics can, at first glance, be puzzling. Firstly, individuals in flow supposedly report a loss of self-awareness, even though they perform in a manner which seems to evince their agency and skill. Secondly, flow states are felt to be effortless, despite the prerequisite complexity of the tasks that engender them. In this paper, we unpick these features of flow, as well as others, through the active inference framework, which posits that action and perception are forms of active Bayesian inference directed at sustained self-organisation; i.e., the minimisation of variational free energy. We propose that the phenomenology of flow is rooted in the deployment of high precision weight over (i) the expected sensory consequences of action and (ii) beliefs about how action will sequentially unfold. This computational mechanism thus draws the embodied cognitive system to minimise the ensuing (i.e., expected) free energy through the exploitation of the pragmatic affordances at hand. Furthermore, given the challenging dynamics the flow-inducing situation presents, attention must be wholly focussed on the unfolding task whilst counterfactual planning is restricted, leading to the attested loss of the sense of self-as-object. This involves the inhibition of both the sense of self as a temporally extended object and higher-order, meta-cognitive forms of self-conceptualisation. Nevertheless, we stress that self-awareness is not entirely lost in flow. Rather, it is pre-reflective and bodily. Our approach to bodily-action-centred phenomenology can be applied to similar facets of seemingly agentive experience beyond canonical flow states, providing insights into the mechanisms of so-called selfless experiences, embodied expertise and wellbeing.
Collapse
Affiliation(s)
- Darius Parvizi-Wayne
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Lars Sandved-Smith
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Clayton, VIC, Australia
| | - Riddhi J. Pitliya
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA, United States
| | - Jakub Limanowski
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Miles R. A. Tufft
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Karl J. Friston
- VERSES AI Research Lab, Los Angeles, CA, United States
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Forss S, Ciria A, Clark F, Galusca CL, Harrison D, Lee S. A transdisciplinary view on curiosity beyond linguistic humans: animals, infants, and artificial intelligence. Biol Rev Camb Philos Soc 2024; 99:979-998. [PMID: 38287201 DOI: 10.1111/brv.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Curiosity is a core driver for life-long learning, problem-solving and decision-making. In a broad sense, curiosity is defined as the intrinsically motivated acquisition of novel information. Despite a decades-long history of curiosity research and the earliest human theories arising from studies of laboratory rodents, curiosity has mainly been considered in two camps: 'linguistic human' and 'other'. This is despite psychology being heritable, and there are many continuities in cognitive capacities across the animal kingdom. Boundary-pushing cross-disciplinary debates on curiosity are lacking, and the relative exclusion of pre-linguistic infants and non-human animals has led to a scientific impasse which more broadly impedes the development of artificially intelligent systems modelled on curiosity in natural agents. In this review, we synthesize literature across multiple disciplines that have studied curiosity in non-verbal systems. By highlighting how similar findings have been produced across the separate disciplines of animal behaviour, developmental psychology, neuroscience, and computational cognition, we discuss how this can be used to advance our understanding of curiosity. We propose, for the first time, how features of curiosity could be quantified and therefore studied more operationally across systems: across different species, developmental stages, and natural or artificial agents.
Collapse
Affiliation(s)
- Sofia Forss
- Collegium Helveticum, Institute for Advanced Studies, University of Zurich, ETH Zurich and Zurich University of the Arts, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alejandra Ciria
- School of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fay Clark
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Cristina-Loana Galusca
- Laboratoire de Psychologie et NeuroCognition, CNRS Université Grenoble Alpes, Grenoble, France
| | - David Harrison
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| | - Saein Lee
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul, Republic of Korea
- Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
14
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Schiller D, Yu ANC, Alia-Klein N, Becker S, Cromwell HC, Dolcos F, Eslinger PJ, Frewen P, Kemp AH, Pace-Schott EF, Raber J, Silton RL, Stefanova E, Williams JHG, Abe N, Aghajani M, Albrecht F, Alexander R, Anders S, Aragón OR, Arias JA, Arzy S, Aue T, Baez S, Balconi M, Ballarini T, Bannister S, Banta MC, Barrett KC, Belzung C, Bensafi M, Booij L, Bookwala J, Boulanger-Bertolus J, Boutros SW, Bräscher AK, Bruno A, Busatto G, Bylsma LM, Caldwell-Harris C, Chan RCK, Cherbuin N, Chiarella J, Cipresso P, Critchley H, Croote DE, Demaree HA, Denson TF, Depue B, Derntl B, Dickson JM, Dolcos S, Drach-Zahavy A, Dubljević O, Eerola T, Ellingsen DM, Fairfield B, Ferdenzi C, Friedman BH, Fu CHY, Gatt JM, de Gelder B, Gendolla GHE, Gilam G, Goldblatt H, Gooding AEK, Gosseries O, Hamm AO, Hanson JL, Hendler T, Herbert C, Hofmann SG, Ibanez A, Joffily M, Jovanovic T, Kahrilas IJ, Kangas M, Katsumi Y, Kensinger E, Kirby LAJ, Koncz R, Koster EHW, Kozlowska K, Krach S, Kret ME, Krippl M, Kusi-Mensah K, Ladouceur CD, Laureys S, Lawrence A, Li CSR, Liddell BJ, Lidhar NK, Lowry CA, Magee K, Marin MF, Mariotti V, Martin LJ, Marusak HA, Mayer AV, Merner AR, Minnier J, Moll J, Morrison RG, Moore M, Mouly AM, Mueller SC, Mühlberger A, Murphy NA, Muscatello MRA, Musser ED, Newton TL, Noll-Hussong M, Norrholm SD, Northoff G, Nusslock R, Okon-Singer H, Olino TM, Ortner C, Owolabi M, Padulo C, Palermo R, Palumbo R, Palumbo S, Papadelis C, Pegna AJ, Pellegrini S, Peltonen K, Penninx BWJH, Pietrini P, Pinna G, Lobo RP, Polnaszek KL, Polyakova M, Rabinak C, Helene Richter S, Richter T, Riva G, Rizzo A, Robinson JL, Rosa P, Sachdev PS, Sato W, Schroeter ML, Schweizer S, Shiban Y, Siddharthan A, Siedlecka E, Smith RC, Soreq H, Spangler DP, Stern ER, Styliadis C, Sullivan GB, Swain JE, Urben S, Van den Stock J, Vander Kooij MA, van Overveld M, Van Rheenen TE, VanElzakker MB, Ventura-Bort C, Verona E, Volk T, Wang Y, Weingast LT, Weymar M, Williams C, Willis ML, Yamashita P, Zahn R, Zupan B, Lowe L. The Human Affectome. Neurosci Biobehav Rev 2024; 158:105450. [PMID: 37925091 PMCID: PMC11003721 DOI: 10.1016/j.neubiorev.2023.105450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Over the last decades, theoretical perspectives in the interdisciplinary field of the affective sciences have proliferated rather than converged due to differing assumptions about what human affective phenomena are and how they work. These metaphysical and mechanistic assumptions, shaped by academic context and values, have dictated affective constructs and operationalizations. However, an assumption about the purpose of affective phenomena can guide us to a common set of metaphysical and mechanistic assumptions. In this capstone paper, we home in on a nested teleological principle for human affective phenomena in order to synthesize metaphysical and mechanistic assumptions. Under this framework, human affective phenomena can collectively be considered algorithms that either adjust based on the human comfort zone (affective concerns) or monitor those adaptive processes (affective features). This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope the Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research.
Collapse
Affiliation(s)
- Daniela Schiller
- Department of Psychiatry, the Nash Family Department of Neuroscience, and the Friedman Brain Institute, at the Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Alessandra N C Yu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Nelly Alia-Klein
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany; Integrative Spinal Research Group, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Balgrist Campus, Lengghalde 5, 8008 Zurich, Switzerland
| | - Howard C Cromwell
- J.P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Florin Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paul J Eslinger
- Departments of Neurology, Neural & Behavioral Science, Radiology, and Public Health Sciences, Penn State Hershey Medical Center and College of Medicine, Hershey, PA, United States
| | - Paul Frewen
- Departments of Psychiatry, Psychology and Neuroscience at the University of Western Ontario, London, Ontario, Canada
| | - Andrew H Kemp
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
| | - Edward F Pace-Schott
- Harvard Medical School and Massachusetts General Hospital, Department of Psychiatry, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Neurology, Radiation Medicine, Psychiatry, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Elka Stefanova
- Faculty of Medicine, University of Belgrade, Serbia; Neurology Clinic, Clinical Center of Serbia, Serbia
| | - Justin H G Williams
- Griffith University, Gold Coast Campus, 1 Parklands Dr, Southport, QLD 4215, Australia
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto, Japan
| | - Moji Aghajani
- Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands; Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Women's Health and Allied Health Professionals Theme, Medical unit Occupational Therapy & Physiotherapy, Stockholm, Sweden
| | - Rebecca Alexander
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; Australian National University, Canberra, ACT, Australia
| | - Silke Anders
- Department of Neurology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oriana R Aragón
- Yale University, 2 Hillhouse Ave, New Haven, CT, United States; Cincinnati University, Marketing Department, 2906 Woodside Drive, Cincinnati, OH 45221-0145, United States
| | - Juan A Arias
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain; The Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Tatjana Aue
- Institute of Psychology, University of Bern, Fabrikstr. 8, 3012 Bern, Switzerland
| | | | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Catholic University of Milan, Milan, Italy
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Scott Bannister
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | | | - Karen Caplovitz Barrett
- Department of Human Development & Family Studies, Colorado State University, Fort Collins, CO, United States; Department of Community & Behavioral Health, Colorado School of Public Health, Denver, CO, United States
| | | | - Moustafa Bensafi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Jamila Bookwala
- Department of Psychology, Lafayette College, Easton, PA, United States
| | - Julie Boulanger-Bertolus
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Anne-Kathrin Bräscher
- Department of Clinical Psychology, Psychotherapy and Experimental Psychopathology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | - Geraldo Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lauren M Bylsma
- Departments of Psychiatry and Psychology; and the Center for Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health, and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Julian Chiarella
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Department of Psychology, University of Turin, Turin, Italy
| | - Hugo Critchley
- Psychiatry, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Sussex, United Kingdom
| | - Denise E Croote
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai and Friedman Brain Institute, New York, NY 10029, United States; Hospital Universitário Gaffrée e Guinle, Universidade do Rio de Janeiro, Brazil
| | - Heath A Demaree
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas F Denson
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Joanne M Dickson
- Edith Cowan University, Psychology Discipline, School of Arts and Humanities, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Sanda Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anat Drach-Zahavy
- The Faculty of Health and Welfare Sciences, University of Haifa, Haifa, Israel
| | - Olga Dubljević
- Neurology Clinic, Clinical Center of Serbia, Serbia; Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade, Serbia
| | - Tuomas Eerola
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | - Dan-Mikael Ellingsen
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Beth Fairfield
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Camille Ferdenzi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Bruce H Friedman
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Cynthia H Y Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Beatrice de Gelder
- Department of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Guido H E Gendolla
- Geneva Motivation Lab, University of Geneva, FPSE, Section of Psychology, CH-1211 Geneva 4, Switzerland
| | - Gadi Gilam
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Systems Neuroscience and Pain Laboratory, Stanford University School of Medicine, CA, United States
| | - Hadass Goldblatt
- Department of Nursing, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | | | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15206, United States
| | - Talma Hendler
- Tel Aviv Center for Brain Function, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Cornelia Herbert
- Department of Applied Emotion and Motivation Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany
| | - Agustin Ibanez
- Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), United States and Trinity Collegue Dublin (TCD), Ireland
| | - Mateus Joffily
- Groupe d'Analyse et de Théorie Economique (GATE), 93 Chemin des Mouilles, 69130 Écully, France
| | - Tanja Jovanovic
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Ian J Kahrilas
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Yuta Katsumi
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Elizabeth Kensinger
- Department of Psychology and Neuroscience, Boston College, Boston, MA, United States
| | - Lauren A J Kirby
- Department of Psychology and Counseling, University of Texas at Tyler, Tyler, TX, United States
| | - Rebecca Koncz
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Specialty of Psychiatry, The University of Sydney, Concord, New South Wales, Australia
| | - Ernst H W Koster
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | | | - Sören Krach
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Mariska E Kret
- Leiden University, Cognitive Psychology, Pieter de la Court, Waassenaarseweg 52, Leiden 2333 AK, the Netherlands
| | - Martin Krippl
- Faculty of Natural Sciences, Department of Psychology, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Kwabena Kusi-Mensah
- Department of Psychiatry, Komfo Anokye Teaching Hospital, P. O. Box 1934, Kumasi, Ghana; Department of Psychiatry, University of Cambridge, Darwin College, Silver Street, CB3 9EU Cambridge, United Kingdom; Behavioural Sciences Department, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cecile D Ladouceur
- Departments of Psychiatry and Psychology and the Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alistair Lawrence
- Scotland's Rural College, King's Buildings, Edinburgh, Scotland; The Roslin Institute, University of Edinburgh, Easter Bush, Scotland
| | - Chiang-Shan R Li
- Connecticut Mental Health Centre, Yale University, New Haven, CT, United States
| | - Belinda J Liddell
- School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Navdeep K Lidhar
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey Magee
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, Canada; Research Center, Institut universitaire en santé mentale de Montréal, Montreal, Canada
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Hilary A Marusak
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, United States
| | - Annalina V Mayer
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Amanda R Merner
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Robert G Morrison
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Matthew Moore
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Universite Lyon, Lyon, France
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany
| | - Nora A Murphy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, United States
| | | | - Erica D Musser
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Tamara L Newton
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Michael Noll-Hussong
- Psychosomatic Medicine and Psychotherapy, TU Muenchen, Langerstrasse 3, D-81675 Muenchen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Canada
| | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, 2029 Sheridan Road, Evanston, IL, United States
| | - Hadas Okon-Singer
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Thomas M Olino
- Department of Psychology, Temple University, 1701N. 13th St, Philadelphia, PA, United States
| | - Catherine Ortner
- Thompson Rivers University, Department of Psychology, 805 TRU Way, Kamloops, BC, Canada
| | - Mayowa Owolabi
- Department of Medicine and Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan; University College Hospital, Ibadan, Oyo State, Nigeria; Blossom Specialist Medical Center Ibadan, Oyo State, Nigeria
| | - Caterina Padulo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and of Critical Care, University of Pisa, Pisa, Italy
| | - Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan J Pegna
- School of Psychology, University of Queensland, Saint Lucia, Queensland, Australia
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kirsi Peltonen
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland; INVEST Research Flagship, University of Turku, Turku, Finland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Rosario Pintos Lobo
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Kelly L Polnaszek
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maryna Polyakova
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, United States
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany
| | - Thalia Richter
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Humane Technology Lab., Università Cattolica del Sacro Cuore, Milan, Italy
| | - Amelia Rizzo
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | | | - Pedro Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Schweizer
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; School of Psychology, University of New South Wales, Sydney, Australia
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; Department of Psychology (Clinical Psychology and Psychotherapy Research), PFH - Private University of Applied Sciences, Gottingen, Germany
| | - Advaith Siddharthan
- Knowledge Media Institute, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Ewa Siedlecka
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Robert C Smith
- Departments of Medicine and Psychiatry, Michigan State University, East Lansing, MI, United States
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Derek P Spangler
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Emily R Stern
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; New York University School of Medicine, New York, NY, United States
| | - Charis Styliadis
- Neuroscience of Cognition and Affection group, Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - James E Swain
- Departments of Psychiatry & Behavioral Health, Psychology, Obstetrics, Gynecology & Reproductive Medicine, and Program in Public Health, Renaissance School of Medicine at Stony Brook University, New York, United States
| | - Sébastien Urben
- Division of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Van den Stock
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Michael A Vander Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Tamsyn E Van Rheenen
- University of Melbourne, Melbourne Neuropsychiatry Centre, Department of Psychiatry, 161 Barry Street, Carlton, VIC, Australia
| | - Michael B VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Edelyn Verona
- Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Tyler Volk
- Professor Emeritus of Biology and Environmental Studies, New York University, New York, NY, United States
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Leah T Weingast
- Department of Social Work and Human Services and the Department of Psychological Sciences, Center for Young Adult Addiction and Recovery, Kennesaw State University, Kennesaw, GA, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Germany
| | - Claire Williams
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Elysium Neurological Services, Elysium Healthcare, The Avalon Centre, United Kingdom
| | - Megan L Willis
- School of Behavioural and Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | - Paula Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Barbra Zupan
- Central Queensland University, School of Health, Medical and Applied Sciences, Bruce Highway, Rockhampton, QLD, Australia
| | - Leroy Lowe
- Neuroqualia (NGO), Truro, Nova Scotia, Canada.
| |
Collapse
|
16
|
Tung A, Sperry MM, Clawson W, Pavuluri A, Bulatao S, Yue M, Flores RM, Pai VP, McMillen P, Kuchling F, Levin M. Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance. Nat Commun 2024; 15:535. [PMID: 38233424 PMCID: PMC10794468 DOI: 10.1038/s41467-023-44522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.
Collapse
Affiliation(s)
- Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Megan M Sperry
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Wesley Clawson
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Ananya Pavuluri
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Sydney Bulatao
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michelle Yue
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ramses Martinez Flores
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Franz Kuchling
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
18
|
Friston KJ, Parr T, Heins C, Constant A, Friedman D, Isomura T, Fields C, Verbelen T, Ramstead M, Clippinger J, Frith CD. Federated inference and belief sharing. Neurosci Biobehav Rev 2024; 156:105500. [PMID: 38056542 PMCID: PMC11139662 DOI: 10.1016/j.neubiorev.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
This paper concerns the distributed intelligence or federated inference that emerges under belief-sharing among agents who share a common world-and world model. Imagine, for example, several animals keeping a lookout for predators. Their collective surveillance rests upon being able to communicate their beliefs-about what they see-among themselves. But, how is this possible? Here, we show how all the necessary components arise from minimising free energy. We use numerical studies to simulate the generation, acquisition and emergence of language in synthetic agents. Specifically, we consider inference, learning and selection as minimising the variational free energy of posterior (i.e., Bayesian) beliefs about the states, parameters and structure of generative models, respectively. The common theme-that attends these optimisation processes-is the selection of actions that minimise expected free energy, leading to active inference, learning and model selection (a.k.a., structure learning). We first illustrate the role of communication in resolving uncertainty about the latent states of a partially observed world, on which agents have complementary perspectives. We then consider the acquisition of the requisite language-entailed by a likelihood mapping from an agent's beliefs to their overt expression (e.g., speech)-showing that language can be transmitted across generations by active learning. Finally, we show that language is an emergent property of free energy minimisation, when agents operate within the same econiche. We conclude with a discussion of various perspectives on these phenomena; ranging from cultural niche construction, through federated learning, to the emergence of complexity in ensembles of self-organising systems.
Collapse
Affiliation(s)
- Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; VERSES AI Research Lab, Los Angeles, CA 90016, USA.
| | - Thomas Parr
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK
| | - Conor Heins
- VERSES AI Research Lab, Los Angeles, CA 90016, USA; Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, 78457 Konstanz, Germany; Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Axel Constant
- VERSES AI Research Lab, Los Angeles, CA 90016, USA; School of Engineering and Informatics, The University of Sussex, Brighton, UK
| | - Daniel Friedman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA; Active Inference Institute, Davis, CA 95616, USA
| | - Takuya Isomura
- Brain Intelligence Theory Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Chris Fields
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Tim Verbelen
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| | - Maxwell Ramstead
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; VERSES AI Research Lab, Los Angeles, CA 90016, USA
| | | | - Christopher D Frith
- Institute of Philosophy, School of Advanced Studies, University of London, UK
| |
Collapse
|
19
|
Seifert G, Sealander A, Marzen S, Levin M. From reinforcement learning to agency: Frameworks for understanding basal cognition. Biosystems 2024; 235:105107. [PMID: 38128873 DOI: 10.1016/j.biosystems.2023.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Organisms play, explore, and mimic those around them. Is there a purpose to this behavior? Are organisms just behaving, or are they trying to achieve goals? We believe this is a false dichotomy. To that end, to understand organisms, we attempt to unify two approaches for understanding complex agents, whether evolved or engineered. We argue that formalisms describing multiscale competencies and goal-directedness in biology (e.g., TAME), and reinforcement learning (RL), can be combined in a symbiotic framework. While RL has been largely focused on higher-level organisms and robots of high complexity, TAME is naturally capable of describing lower-level organisms and minimal agents as well. We propose several novel questions that come from using RL/TAME to understand biology as well as ones that come from using biology to formulate new theory in AI. We hope that the research programs proposed in this piece shape future efforts to understand biological organisms and also future efforts to build artificial agents.
Collapse
Affiliation(s)
- Gabriella Seifert
- Department of Physics, University of Colorado, Boulder, CO 80309, USA; W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Ava Sealander
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA; W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA.
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA; Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
20
|
Ciaunica A, Levin M, Rosas FE, Friston K. Nested Selves: Self-Organization and Shared Markov Blankets in Prenatal Development in Humans. Top Cogn Sci 2023. [PMID: 38158882 DOI: 10.1111/tops.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The immune system is a central component of organismic function in humans. This paper addresses self-organization of biological systems in relation to-and nested within-other biological systems in pregnancy. Pregnancy constitutes a fundamental state for human embodiment and a key step in the evolution and conservation of our species. While not all humans can be pregnant, our initial state of emerging and growing within another person's body is universal. Hence, the pregnant state does not concern some individuals but all individuals. Indeed, the hierarchical relationship in pregnancy reflects an even earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is dynamically determined by cell- interactions. The relationship and the interactions between the two self-organizing systems during pregnancy may play a pivotal role in understanding the nature of biological self-organization per se in humans. Specifically, we consider the role of the immune system in biological self-organization in addition to neural/brain systems that furnish us with a sense of self. We examine the complex case of pregnancy, whereby two immune systems need to negotiate the exchange of resources and information in order to maintain viable self-regulation of nested systems. We conclude with a proposal for the mechanisms-that scaffold the complex relationship between two self-organising systems in pregnancy-through the lens of the Active Inference, with a focus on shared Markov blankets.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science (CFCUL), University of Lisbon
- Institute of Cognitive Neuroscience, University College London
| | - Michael Levin
- Department of Biology and Allen Discovery Center, Tufts University
| | - Fernando E Rosas
- Department of Informatics, University of Sussex
- Centre for Complexity Science, Imperial College London
- Department of Brain Sciences, Imperial College London
- Centre for Eudaimonia and Human Flourishing, University of Oxford
| | - Karl Friston
- Welcome Centre for Human Neuroimaging, University College London
- VERSES AI Research Lab
| |
Collapse
|
21
|
Manicka S, Pai VP, Levin M. Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain. iScience 2023; 26:108398. [PMID: 38034358 PMCID: PMC10687303 DOI: 10.1016/j.isci.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Spatiotemporal patterns of cellular resting potential regulate several aspects of development. One key aspect of the bioelectric code is that transcriptional and morphogenetic states are determined not by local, single-cell, voltage levels but by specific distributions of voltage across cell sheets. We constructed and analyzed a minimal dynamical model of collective gene expression in cells based on inputs of multicellular voltage patterns. Causal integration analysis revealed a higher-order mechanism by which information about the voltage pattern was spatiotemporally integrated into gene activity, as well as a division of labor among and between the bioelectric and genetic components. We tested and confirmed predictions of this model in a system in which bioelectric control of morphogenesis regulates gene expression and organogenesis: the embryonic brain of the frog Xenopus laevis. This study demonstrates that machine learning and computational integration approaches can advance our understanding of the information-processing underlying morphogenetic decision-making, with a potential for other applications in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Santosh Manicka
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
22
|
Friston K, Da Costa L, Sakthivadivel DAR, Heins C, Pavliotis GA, Ramstead M, Parr T. Path integrals, particular kinds, and strange things. Phys Life Rev 2023; 47:35-62. [PMID: 37703703 DOI: 10.1016/j.plrev.2023.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
This paper describes a path integral formulation of the free energy principle. The ensuing account expresses the paths or trajectories that a particle takes as it evolves over time. The main results are a method or principle of least action that can be used to emulate the behaviour of particles in open exchange with their external milieu. Particles are defined by a particular partition, in which internal states are individuated from external states by active and sensory blanket states. The variational principle at hand allows one to interpret internal dynamics-of certain kinds of particles-as inferring external states that are hidden behind blanket states. We consider different kinds of particles, and to what extent they can be imbued with an elementary form of inference or sentience. Specifically, we consider the distinction between dissipative and conservative particles, inert and active particles and, finally, ordinary and strange particles. Strange particles can be described as inferring their own actions, endowing them with apparent autonomy or agency. In short-of the kinds of particles afforded by a particular partition-strange kinds may be apt for describing sentient behaviour.
Collapse
Affiliation(s)
- Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK; VERSES Research Lab, Los Angeles, CA, USA.
| | - Lancelot Da Costa
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK; Department of Mathematics, Imperial College London, London SW7 2AZ, UK; VERSES Research Lab, Los Angeles, CA, USA.
| | - Dalton A R Sakthivadivel
- VERSES Research Lab, Los Angeles, CA, USA; Department of Mathematics, Stony Brook University, Stony Brook, NY, USA; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| | - Conor Heins
- VERSES Research Lab, Los Angeles, CA, USA; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz D-78457, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz D-78457, Germany.
| | | | - Maxwell Ramstead
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK; VERSES Research Lab, Los Angeles, CA, USA.
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK.
| |
Collapse
|
23
|
Bettinger JS, Friston KJ. Conceptual foundations of physiological regulation incorporating the free energy principle and self-organized criticality. Neurosci Biobehav Rev 2023; 155:105459. [PMID: 37956880 DOI: 10.1016/j.neubiorev.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Bettinger, J. S., K. J. Friston. Conceptual Foundations of Physiological Regulation incorporating the Free Energy Principle & Self-Organized Criticality. NEUROSCI BIOBEHAV REV 23(x) 144-XXX, 2022. Since the late nineteen-nineties, the concept of homeostasis has been contextualized within a broader class of "allostatic" dynamics characterized by a wider-berth of causal factors including social, psychological and environmental entailments; the fundamental nature of integrated brain-body dynamics; plus the role of anticipatory, top-down constraints supplied by intrinsic regulatory models. Many of these evidentiary factors are integral in original descriptions of homeostasis; subsequently integrated; and/or cite more-general operating principles of self-organization. As a result, the concept of allostasis may be generalized to a larger category of variational systems in biology, engineering and physics in terms of advances in complex systems, statistical mechanics and dynamics involving heterogenous (hierarchical/heterarchical, modular) systems like brain-networks and the internal milieu. This paper offers a three-part treatment. 1) interpret "allostasis" to emphasize a variational and relational foundation of physiological stability; 2) adapt the role of allostasis as "stability through change" to include a "return to stability" and 3) reframe the model of homeostasis with a conceptual model of criticality that licenses the upgrade to variational dynamics.
Collapse
Affiliation(s)
- Jesse S Bettinger
- Center for Process Studies, Claremont, CA, United States; The Cobb Institute, Claremont, CA, United States.
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK; Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK; The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| |
Collapse
|
24
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
25
|
Nadolski EM, Moczek AP. Promises and limits of an agency perspective in evolutionary developmental biology. Evol Dev 2023; 25:371-392. [PMID: 37038309 DOI: 10.1111/ede.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 04/12/2023]
Abstract
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.
Collapse
Affiliation(s)
- Erica M Nadolski
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
26
|
Rouleau N, Levin M. The Multiple Realizability of Sentience in Living Systems and Beyond. eNeuro 2023; 10:ENEURO.0375-23.2023. [PMID: 37963652 PMCID: PMC10646883 DOI: 10.1523/eneuro.0375-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Allen Discovery Center at, Tufts University, Medford, MA 02155
| | - Michael Levin
- Allen Discovery Center at, Tufts University, Medford, MA 02155
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215
| |
Collapse
|
27
|
Rahman S. Myth of objectivity and the origin of symbols. FRONTIERS IN SOCIOLOGY 2023; 8:1269621. [PMID: 37885904 PMCID: PMC10598666 DOI: 10.3389/fsoc.2023.1269621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
An age-old challenge in epistemology and moral philosophy is whether objectivity exists independent of subjective perspective. Alfred North Whitehead labeled it a "fallacy of misplaced concreteness"; after all, knowledge is represented elusively in symbols. I employ the free energy principle (FEP) to argue that the belief in moral objectivity, although perhaps fallacious, amounts to an ancient and universal human myth that is essential for our symbolic capacity. To perceive any object in a world of non-diminishing (perhaps irreducible) uncertainty, according to the FEP, its constituent parts must display common probabilistic tendencies, known as statistical beliefs, prior to its interpretation, or active inference, as a stable entity. Behavioral bias, subjective emotions, and social norms scale the scope of identity by coalescing agents with otherwise disparate goals and aligning their perspectives into a coherent structure. I argue that by declaring belief in norms as objective, e.g., expressing that a particular theft or infidelity was generally wrong, our ancestors psychologically constructed a type of identity bound only by shared faith in a perspective that technically transcended individual subjectivity. Signaling explicit belief in what were previously non-symbolic norms, as seen in many non-human animals, simulates a top-down point of view of our social interactions and thereby constructs our cultural niche and symbolic capacity. I demonstrate that, largely by contrasting with overly reductive analytical models that assume individual rational pursuit of extrinsic rewards, shared belief in moral conceptions, i.e., what amounts to a religious faith, remains a motivational cornerstone of our language, economic and civic institutions, stories, and psychology. Finally, I hypothesize that our bias for familiar accents (shibboleth), plausibly represents the phylogenetic and ontogenetic contextual origins of our impulse to minimize social surprise by declaring belief in the myth of objectivity.
Collapse
Affiliation(s)
- Shagor Rahman
- Independent Researcher, Westfield, NJ, United States
| |
Collapse
|
28
|
Lagasse E, Levin M. Future medicine: from molecular pathways to the collective intelligence of the body. Trends Mol Med 2023; 29:687-710. [PMID: 37481382 PMCID: PMC10527237 DOI: 10.1016/j.molmed.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The remarkable anatomical homeostasis exhibited by complex living organisms suggests that they are inherently reprogrammable information-processing systems that offer numerous interfaces to their physiological and anatomical problem-solving capacities. We briefly review data suggesting that the multiscale competency of living forms affords a new path for biomedicine that exploits the innate collective intelligence of tissues and organs. The concept of tissue-level allostatic goal-directedness is already bearing fruit in clinical practice. We sketch a roadmap towards 'somatic psychiatry' by using advances in bioelectricity and behavioral neuroscience to design methods that induce self-repair of structure and function. Relaxing the assumption that cellular control mechanisms are static, exploiting powerful concepts from cybernetics, behavioral science, and developmental biology may spark definitive solutions to current biomedical challenges.
Collapse
Affiliation(s)
- Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
29
|
Witkowski O, Doctor T, Solomonova E, Duane B, Levin M. Toward an ethics of autopoietic technology: Stress, care, and intelligence. Biosystems 2023; 231:104964. [PMID: 37394111 DOI: 10.1016/j.biosystems.2023.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
The relationship between humans and technology has attracted increasing attention with the advent of ever stronger models of artificial intelligence. Humans and technology are intertwined within multiple autopoietic loops of stress, care, and intelligence. This paper suggests that technology should not be seen as a mere tool serving humans' needs, but rather as a partner in a rich relationship with humans. Our model for understanding autopoietic systems applies equally to biological, technological, and hybrid systems. Regardless of their substrates, all intelligent agents can be understood as needing to respond to a perceived mismatch between what is and what should be. We take this observation, which is evidence of intrinsic links between ontology and ethics, as the basis for proposing a stress-care-intelligence feedback loop (SCI loop for short). We note that the SCI loop provides a perspective on agency that does not require recourse to explanatorily burdensome notions of permanent and singular essences. SCI loops can be seen as individuals only by virtue of their dynamics, and are thus intrinsically integrative and transformational. We begin by considering the transition from poiesis to autopoiesis in Heidegger and the subsequent enactivist tradition, and on this basis formulate and explain the SCI loop. In an acknowledgment of Maturana's and Varela's project, our findings are considered against the backdrop of a classic Buddhist model for the cultivation of intelligence, known as the bodhisattva. We conclude by noting that SCI loops of human and technological agency can be seen as mutually integrative by noticing the stress-transfers between them. The loop framework thus acknowledges encounters and interactions between humans and technology in a way that does not relegate one to the subservience of the other (neither in ontological nor in ethical terms), suggesting instead integration and mutual respect as the default for their engagements. Moreover, an acknowledgment of diverse, multiscale embodiments of intelligence suggests an expansive model of ethics not bound by artificial, limited criteria based on privileged composition or history of an agent. The implications for our journey into the future appear numerous.
Collapse
Affiliation(s)
- Olaf Witkowski
- Cross Labs, Cross Compass Ltd., Kyoto, 604-8206, Japan; College of Arts and Sciences, University of Tokyo, Tokyo, 113-8654, Japan; Center for the Study of Apparent Selves, Kathmandu, 44600, Nepal.
| | - Thomas Doctor
- Rangjung Yeshe Institute, Kathmandu University, Kathmandu, 44600, Nepal; Center for the Study of Apparent Selves, Kathmandu, 44600, Nepal
| | - Elizaveta Solomonova
- Center for the Study of Apparent Selves, Kathmandu, 44600, Nepal; Neurophilosophy Lab, McGill University, Montreal, QC H3A 0G4, Canada
| | - Bill Duane
- Center for the Study of Apparent Selves, Kathmandu, 44600, Nepal
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
30
|
Lingam M, Frank A, Balbi A. Planetary Scale Information Transmission in the Biosphere and Technosphere: Limits and Evolution. Life (Basel) 2023; 13:1850. [PMID: 37763254 PMCID: PMC10532900 DOI: 10.3390/life13091850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Information transmission via communication between agents is ubiquitous on Earth, and is a vital facet of living systems. In this paper, we aim to quantify this rate of information transmission associated with Earth's biosphere and technosphere (i.e., a measure of global information flow) by means of a heuristic order-of-magnitude model. By adopting ostensibly conservative values for the salient parameters, we estimate that the global information transmission rate for the biosphere might be ∼1024 bits/s, and that it may perhaps exceed the corresponding rate for the current technosphere by ∼9 orders of magnitude. However, under the equivocal assumption of sustained exponential growth, we find that information transmission in the technosphere can potentially surpass that of the biosphere ∼90 years in the future, reflecting its increasing dominance.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
- Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adam Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14620, USA
| | - Amedeo Balbi
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, 00133 Roma, Italy
| |
Collapse
|
31
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
32
|
Grodstein J, McMillen P, Levin M. Closing the loop on morphogenesis: a mathematical model of morphogenesis by closed-loop reaction-diffusion. Front Cell Dev Biol 2023; 11:1087650. [PMID: 37645245 PMCID: PMC10461482 DOI: 10.3389/fcell.2023.1087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Morphogenesis, the establishment and repair of emergent complex anatomy by groups of cells, is a fascinating and biomedically-relevant problem. One of its most fascinating aspects is that a developing embryo can reliably recover from disturbances, such as splitting into twins. While this reliability implies some type of goal-seeking error minimization over a morphogenic field, there are many gaps with respect to detailed, constructive models of such a process. A common way to achieve reliability is negative feedback, which requires characterizing the existing body shape to create an error signal-but measuring properties of a shape may not be simple. We show how cells communicating in a wave-like pattern could analyze properties of the current body shape. We then describe a closed-loop negative-feedback system for creating reaction-diffusion (RD) patterns with high reliability. Specifically, we use a wave to count the number of peaks in a RD pattern, letting us use a negative-feedback controller to create a pattern with N repetitions, where N can be altered over a wide range. Furthermore, the individual repetitions of the RD pattern can be easily stretched or shrunk under genetic control to create, e.g., some morphological features larger than others. This work contributes to the exciting effort of understanding design principles of morphological computation, which can be used to understand evolved developmental mechanisms, manipulate them in regenerative-medicine settings, or engineer novel synthetic morphology constructs with desired robust behavior.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| |
Collapse
|
33
|
Blackiston D, Kriegman S, Bongard J, Levin M. Biological Robots: Perspectives on an Emerging Interdisciplinary Field. Soft Robot 2023; 10:674-686. [PMID: 37083430 PMCID: PMC10442684 DOI: 10.1089/soro.2022.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.
Collapse
Affiliation(s)
- Douglas Blackiston
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| | - Sam Kriegman
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Center for Robotics and Biosystems, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Josh Bongard
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Department of Computer Science, University of Vermont, Burlington, Vermont, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| |
Collapse
|
34
|
Lacalli T. Consciousness and its hard problems: separating the ontological from the evolutionary. Front Psychol 2023; 14:1196576. [PMID: 37484112 PMCID: PMC10362341 DOI: 10.3389/fpsyg.2023.1196576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Few of the many theories devised to account for consciousness are explicit about the role they ascribe to evolution, and a significant fraction, by their silence on the subject, treat evolutionary processes as being, in effect, irrelevant. This is a problem for biological realists trying to assess the applicability of competing theories of consciousness to taxa other than our own, and across evolutionary time. Here, as an aid to investigating such questions, a consciousness "machine" is employed as conceptual device for thinking about the different ways ontology and evolution contribute to the emergence of a consciousness composed of distinguishable contents. A key issue is the nature of the evolutionary innovations required for any kind of consciousness to exist, specifically whether this is due to the underappreciated properties of electromagnetic (EM) field effects, as in neurophysical theories, or, for theories where there is no such requirement, including computational and some higher-order theories (here, as a class, algorithmic theories), neural connectivity and the pattern of information flow that connectivity encodes are considered a sufficient explanation for consciousness. In addition, for consciousness to evolve in a non-random way, there must be a link between emerging consciousness and behavior. For the neurophysical case, an EM field-based scenario shows that distinct contents can be produced in the absence of an ability to consciously control action, i.e., without agency. This begs the question of how agency is acquired, which from this analysis would appear to be less of an evolutionary question than a developmental one. Recasting the problem in developmental terms highlights the importance of real-time feedback mechanisms for transferring agency from evolution to the individual, the implication being, for a significant subset of theories, that agency requires a learning process repeated once in each generation. For that subset of theories the question of how an evolved consciousness can exist will then have two components, of accounting for conscious experience as a phenomenon on the one hand, and agency on the other. This reduces one large problem to two, simplifying the task of investigation and providing what may prove an easier route toward their solution.
Collapse
|
35
|
Friston K, Friedman DA, Constant A, Knight VB, Fields C, Parr T, Campbell JO. A Variational Synthesis of Evolutionary and Developmental Dynamics. ENTROPY (BASEL, SWITZERLAND) 2023; 25:964. [PMID: 37509911 PMCID: PMC10378262 DOI: 10.3390/e25070964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
This paper introduces a variational formulation of natural selection, paying special attention to the nature of 'things' and the way that different 'kinds' of 'things' are individuated from-and influence-each other. We use the Bayesian mechanics of particular partitions to understand how slow phylogenetic processes constrain-and are constrained by-fast, phenotypic processes. The main result is a formulation of adaptive fitness as a path integral of phenotypic fitness. Paths of least action, at the phenotypic and phylogenetic scales, can then be read as inference and learning processes, respectively. In this view, a phenotype actively infers the state of its econiche under a generative model, whose parameters are learned via natural (Bayesian model) selection. The ensuing variational synthesis features some unexpected aspects. Perhaps the most notable is that it is not possible to describe or model a population of conspecifics per se. Rather, it is necessary to consider populations of distinct natural kinds that influence each other. This paper is limited to a description of the mathematical apparatus and accompanying ideas. Subsequent work will use these methods for simulations and numerical analyses-and identify points of contact with related mathematical formulations of evolution.
Collapse
Affiliation(s)
- Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1E 6AP, UK
| | - Daniel A Friedman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
- Active Inference Institute, Davis, CA 95616, USA
| | - Axel Constant
- Theory and Method in Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - V Bleu Knight
- Active Inference Institute, Davis, CA 95616, USA
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Chris Fields
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1E 6AP, UK
| | | |
Collapse
|
36
|
Adamatzky A, Tarabella G, Phillips N, Chiolerio A, D'Angelo P, Nikolaidou A, Sirakoulis GC. Kombucha electronics: electronic circuits on kombucha mats. Sci Rep 2023; 13:9367. [PMID: 37296164 PMCID: PMC10256688 DOI: 10.1038/s41598-023-36244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
A kombucha is a tea and sugar fermented by over sixty kinds of yeasts and bacteria. This symbiotic community produces kombucha mats, which are cellulose-based hydrogels. The kombucha mats can be used as an alternative to animal leather in industry and fashion once they have been dried and cured. Prior to this study, we demonstrated that living kombucha mats display dynamic electrical activity and distinct stimulating responses. For use in organic textiles, cured mats of kombucha are inert. To make kombucha wearables functional, it is necessary to incorporate electrical circuits. We demonstrate that creating electrical conductors on kombucha mats is possible. After repeated bending and stretching, the circuits maintain their functionality. In addition, the abilities and electronic properties of the proposed kombucha, such as being lighter, less expensive, and more flexible than conventional electronic systems, pave the way for their use in a diverse range of applications.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK.
- Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece.
| | - Giuseppe Tarabella
- Institute of Materials for Electronic and Magnetism, National Research Council (IMEM-CNR), Parma, Italy
| | - Neil Phillips
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| | - Alessandro Chiolerio
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
- Istituto Italiano di Tecnologia, Center for Converging Technologies, Soft Bioinspired Robotics, Via Morego 30, 16165, Genova, Italy
| | - Pasquale D'Angelo
- Institute of Materials for Electronic and Magnetism, National Research Council (IMEM-CNR), Parma, Italy
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| | - Georgios Ch Sirakoulis
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
- Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
37
|
Jacob MS. Toward a Bio-Organon: A model of interdependence between energy, information and knowledge in living systems. Biosystems 2023:104939. [PMID: 37295595 DOI: 10.1016/j.biosystems.2023.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
What is an organism? In the absence of a fundamental biological definition, what constitutes a living organism, whether it is a unicellular microbe, a multicellular being or a multi-organismal society, remains an open question. New models of living systems are needed to address the scale of this question, with implications for the relationship between humanity and planetary ecology. Here we develop a generic model of an organism that can be applied across multiple scales and through major evolutionary transitions to form a toolkit, or bio-organon, for theoretical studies of planetary-wide physiology. The tool identifies the following core organismic principles that cut across spatial scale: (1) evolvability through self-knowledge, (2) entanglement between energy and information, and (3) extrasomatic "technology" to scaffold increases in spatial scale. Living systems are generally defined by their ability to self-sustain against entropic forces of degradation. Life "knows" how to survive from the inside, not from its genetic code alone, but by utilizing this code through dynamically embodied and functionally specialized flows of information and energy. That is, entangled metabolic and communication networks bring encoded knowledge to life in order to sustain life. However, knowledge is itself evolved and is evolving. The functional coupling between knowledge, energy and information has ancient origins, enabling the original, cellular "biotechnology," and cumulative evolutionary creativity in biochemical products and forms. Cellular biotechnology also enabled the nesting of specialized cells into multicellular organisms. This nested organismal hierarchy can be extended further, suggesting that an organism of organisms, or a human "superorganism," is not only possible, but in keeping with evolutionary trends.
Collapse
Affiliation(s)
- Michael S Jacob
- Human Energy, 21 Orinda Way, Suite C 208, Orinda, CA, 94563, United States; Mental Health Service, San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States.
| |
Collapse
|
38
|
Ramstead MJD, Sakthivadivel DAR, Heins C, Koudahl M, Millidge B, Da Costa L, Klein B, Friston KJ. On Bayesian mechanics: a physics of and by beliefs. Interface Focus 2023; 13:20220029. [PMID: 37213925 PMCID: PMC10198254 DOI: 10.1098/rsfs.2022.0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/17/2023] [Indexed: 05/23/2023] Open
Abstract
The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
Collapse
Affiliation(s)
- Maxwell J. D. Ramstead
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Dalton A. R. Sakthivadivel
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Department of Mathematics, Stony Brook University, Stony Brook, NY, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Conor Heins
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Magnus Koudahl
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Beren Millidge
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Lancelot Da Costa
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Brennan Klein
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Karl J. Friston
- VERSES Research Lab, Los Angeles, CA 90016, USA
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
39
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
40
|
Fields C, Levin M. Regulative development as a model for origin of life and artificial life studies. Biosystems 2023; 229:104927. [PMID: 37211257 DOI: 10.1016/j.biosystems.2023.104927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Using the formal framework of the Free Energy Principle, we show how generic thermodynamic requirements on bidirectional information exchange between a system and its environment can generate complexity. This leads to the emergence of hierarchical computational architectures in systems that operate sufficiently far from thermal equilibrium. In this setting, the environment of any system increases its ability to predict system behavior by "engineering" the system towards increased morphological complexity and hence larger-scale, more macroscopic behaviors. When seen in this light, regulative development becomes an environmentally-driven process in which "parts" are assembled to produce a system with predictable behavior. We suggest on this basis that life is thermodynamically favorable and that, when designing artificial living systems, human engineers are acting like a generic "environment".
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
41
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
42
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Marshall P. The role of quantum mechanics in cognition based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:131-139. [PMID: 37142170 DOI: 10.1016/j.pbiomolbio.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
In 2021 I noted that in all information-based systems we understand, Cognition creates Code, which controls Chemical reactions. Known agents write software which controls hardware, and not the other way around. I proposed the same is true in all of biology. Though the textbook description of cause and effect in biology proposes the reverse, that Chemical reactions produce Code from which Cognition emerges, there are no examples in the literature demonstrating either step. A mathematical proof for the first step, cognition generating code, is based on Turing's halting problem. The second step, code controlling chemical reactions, is the role of the genetic code. Thus a central question in biology: What is the nature and source of cognition? In this paper I propose a relationship between biology and Quantum Mechanics (QM), hypothesizing that the same principle that enables an observer to collapse a wave function also grants biology its agency: the organism's ability to act on the world instead of merely being a passive recipient. Just as all living cells are cognitive (Shapiro 2021, 2007; McClintock 1984; Lyon 2015; Levin 2019, Pascal and Pross, 2022), I propose humans are quantum observers because we are made of cells and all cells are observers. This supports the century-old view that in QM, the observer does not merely record the event but plays a fundamental role in its outcome.The classical world is driven by laws, which are deductive; the quantum world is driven by choices, which are inductive. When the two are combined, they form the master feedback loop of perception and action for all biology. In this paper I apply basic definitions of induction, deduction and computation to known properties of QM to show that the organism altering itself (and its environment) is a whole shaping its parts. It is not merely parts comprising a whole. I propose that an observer collapsing the wave function is the physical mechanism for producing negentropy. The way forward in solving the information problem in biology is understanding the relationship between cognition and QM.
Collapse
Affiliation(s)
- Perry Marshall
- Evolution 2.0, 805 Lake Street #295, Oak Park, IL, 60301, USA.
| |
Collapse
|
44
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Bongard J, Levin M. There's Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines. Biomimetics (Basel) 2023; 8:110. [PMID: 36975340 PMCID: PMC10046700 DOI: 10.3390/biomimetics8010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., a tendency to oversimplify) and prior technological limitations in favor of a more continuous view, necessitated by the study of evolution, developmental biology, and intelligent machines. Form and function are tightly entwined in nature, and in some cases, in robotics as well. Thus, efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing"-the ability of the same substrate to simultaneously compute different things, and make those computational results available to different observers. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of their computational materials, as reported in the rapidly growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of mesoscale events, as it has already done at quantum and relativistic scales. To develop our understanding of how life performs polycomputing, and how it can be convinced to alter one or more of those functions, we can first create technologies that polycompute and learn how to alter their functions. Here, we review examples of biological and technological polycomputing, and develop the idea that the overloading of different functions on the same hardware is an important design principle that helps to understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as to evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
Collapse
Affiliation(s)
- Joshua Bongard
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
46
|
Dodig-Crnkovic G, Miłkowski M. Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment. ENTROPY (BASEL, SWITZERLAND) 2023; 25:310. [PMID: 36832676 PMCID: PMC9955108 DOI: 10.3390/e25020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Three special issues of Entropy journal have been dedicated to the topics of "Information-Processing and Embodied, Embedded, Enactive Cognition". They addressed morphological computing, cognitive agency, and the evolution of cognition. The contributions show the diversity of views present in the research community on the topic of computation and its relation to cognition. This paper is an attempt to elucidate current debates on computation that are central to cognitive science. It is written in the form of a dialog between two authors representing two opposed positions regarding the issue of what computation is and could be, and how it can be related to cognition. Given the different backgrounds of the two researchers, which span physics, philosophy of computing and information, cognitive science, and philosophy, we found the discussions in the form of Socratic dialogue appropriate for this multidisciplinary/cross-disciplinary conceptual analysis. We proceed as follows. First, the proponent (GDC) introduces the info-computational framework as a naturalistic model of embodied, embedded, and enacted cognition. Next, objections are raised by the critic (MM) from the point of view of the new mechanistic approach to explanation. Subsequently, the proponent and the critic provide their replies. The conclusion is that there is a fundamental role for computation, understood as information processing, in the understanding of embodied cognition.
Collapse
Affiliation(s)
- Gordana Dodig-Crnkovic
- Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Division of Computer Science and Software Engineering, School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden
| | - Marcin Miłkowski
- Institute of Philosophy and Sociology, Polish Academy of Sciences, ul. Nowy Świat 72, 00-330 Warszawa, Poland
| |
Collapse
|
47
|
Shreesha L, Levin M. Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25010131. [PMID: 36673272 PMCID: PMC9858125 DOI: 10.3390/e25010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular competency, since cells are not passive materials but descendants of unicellular organisms with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional information values provided by cells' 'structural genes', operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). We find that even minimal ability of cells with to improve their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that increasing the behavioral competency masks the raw fitness encoded by structural genes, with selection favoring improvements to its developmental problem-solving capacities over improvements to its structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. This kind of feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico and in bioengineering.
Collapse
Affiliation(s)
- Lakshwin Shreesha
- UFR Fundamental and Biomedical Sciences, Université Paris Cité, 75006 Paris, France
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
48
|
Harrison D, Rorot W, Laukaityte U. Mind the matter: Active matter, soft robotics, and the making of bio-inspired artificial intelligence. Front Neurorobot 2022; 16:880724. [PMID: 36620483 PMCID: PMC9815774 DOI: 10.3389/fnbot.2022.880724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Philosophical and theoretical debates on the multiple realisability of the cognitive have historically influenced discussions of the possible systems capable of instantiating complex functions like memory, learning, goal-directedness, and decision-making. These debates have had the corollary of undermining, if not altogether neglecting, the materiality and corporeality of cognition-treating material, living processes as "hardware" problems that can be abstracted out and, in principle, implemented in a variety of materials-in particular on digital computers and in the form of state-of-the-art neural networks. In sum, the matter in se has been taken not to matter for cognition. However, in this paper, we argue that the materiality of cognition-and the living, self-organizing processes that it enables-requires a more detailed assessment when understanding the nature of cognition and recreating it in the field of embodied robotics. Or, in slogan form, that the matter matters for cognitive form and function. We pull from the fields of Active Matter Physics, Soft Robotics, and Basal Cognition literature to suggest that the imbrication between material and cognitive processes is closer than standard accounts of multiple realisability suggest. In light of this, we propose upgrading the notion of multiple realisability from the standard version-what we call 1.0-to a more nuanced conception 2.0 to better reflect the recent empirical advancements, while at the same time averting many of the problems that have been raised for it. These fields are actively reshaping the terrain in which we understand materiality and how it enables, mediates, and constrains cognition. We propose that taking the materiality of our embodied, precarious nature seriously furnishes an important research avenue for the development of embodied robots that autonomously value, engage, and interact with the environment in a goal-directed manner, in response to existential needs of survival, persistence, and, ultimately, reproduction. Thus, we argue that by placing further emphasis on the soft, active, and plastic nature of the materials that constitute cognitive embodiment, we can move further in the direction of autonomous embodied robots and Artificial Intelligence.
Collapse
Affiliation(s)
- David Harrison
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, United Kingdom
- Leverhulme Centre for the Future of Intelligence, Cambridge, United Kingdom
- Konrad Lorenz Institute for Evolution and Cognition Research, Vienna, Austria
| | - Wiktor Rorot
- Human Interactivity and Language Lab, Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Urte Laukaityte
- Department of Philosophy, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
49
|
Adamatzky A. Electrical Potential Spiking of Kombucha Zoogleal Mats: A Symbiotic Community of Bacteria and Yeasts. Bioelectricity 2022. [DOI: 10.1089/bioe.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Andrew Adamatzky
- Department of Computer Science, Unconventional Computing Laboratory, UWE, Bristol, United Kingdom
| |
Collapse
|
50
|
Abstract
The consensus on the origins of life is that it involved organization of prebiotic chemicals according to the underlying principles of thermodynamics to dissipate energy derived from photochemical and/or geochemical sources. Leading theories tend to be chemistry-centric, revolving around either metabolism or information-containing polymers first. However, experimental data also suggest that bioelectricity and quantum effects play an important role in biology, which might suggest that a further factor is required to explain how life began. Intriguingly, in the early part of 20th century, the concept of the "morphogenetic field" was proposed by Gurwitsch to explain how the shape of an organism was determined, while a role for quantum mechanics in biology was suggested by Bohr and Schrödinger, among others. This raises the question as to the potential of these phenomena, especially bioelectric fields, to have been involved in the origin of life. It points to the possibility that as bioelectricity is universally prevalent in biological systems today, it represents a more complex echo of an electromagnetic skeleton which helped shape life into being. It could be argued that as a flow of ions creates an electric field, this could have been pivotal in the formation of an energy dissipating structure, for instance, in deep sea thermal vents. Moreover, a field theory might also hint at the potential involvement of nontrivial quantum effects in life. Not only might this perspective help indicate the origins of morphogenetic fields, but also perhaps suggest where life may have started, and whether metabolism or information came first. It might also help to provide an insight into aging, cancer, consciousness, and, perhaps, how we might identify life beyond our planet. In short, when thinking about life, not only do we have to consider the accepted chemistry, but also the fields that must also shape it. In effect, to fully understand life, as well as the yin of accepted particle-based chemistry, there is a yang of field-based interaction and an ethereal skeleton.
Collapse
Affiliation(s)
- Alistair V.W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom.,Address correspondence to: Alistair V.W. Nunn, PhD, Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|