1
|
Thakran S, Guin D, Singh P, Uppili B, Ramachandran S, Kushwaha SS, Kukreti R. Genome-Wide Association Study Reveals Genetic Architecture of Common Epilepsies. Clin Genet 2025. [PMID: 39904507 DOI: 10.1111/cge.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Epilepsy, affecting approximately 50 million individuals worldwide, exhibits a genetic heritability of 32%. While several genes/loci associated with epilepsy have been identified through candidate and genome-wide association studies (GWAS), exploration of population-specific markers remains underexplored. We conducted the first GWAS in north Indian population (~1500 samples) to identify genetic variants/loci associated with epilepsy risk, validated using targeted next-generation sequencing (NGS). Our GWAS revealed 30 variants across seven loci associated with epilepsy risk, including six novel loci. Subtype analysis based on etiology and seizure types, identified 57 variants across 11 loci, 10 of which are novel. Gene-set analysis unveiled enrichment in genes associated with glutathione synthesis and recycling and regulation of dopaminergic neuron differentiation pivotal in epilepsy pathophysiology. Furthermore, PRS analysis revealed a significant genetic contribution to the epilepsy with an R2 of 0.00573. Additionally, targeted NGS showed ~95% concordance with GSA genotypes. Our study highlights six novel loci rs17031055/4q31.3(DCHS2), rs73182224/3q27.2(DGKG), rs9322462/6q25.2(CNKSR3), rs75328617/8q24.23(RNU1-35P), rs2938010/10q26.13(CTBP2) and rs11652575/17p11.2(SLC5A10) associated with epilepsy risk. These findings offer valuable insights into the genetic landscape of epilepsy in the north Indian population, providing foundation for future exploratory studies.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bharathram Uppili
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srinivasan Ramachandran
- Department of Biotechnology and Allied Life Science, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Suman S Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Ngo A, Liu L, Larivière S, Kebets V, Fett S, Weber CF, Royer J, Yu E, Rodríguez-Cruces R, Zhang Z, Ooi LQR, Thomas Yeo BT, Frauscher B, Paquola C, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Bonilha L, Gleichgerrcht E, Focke NK, Kotikalapudi R, O’Brien TJ, Sinclair B, Vivash L, Desmond PM, Lui E, Vaudano AE, Meletti S, Kälviäinen R, Soltanian-Zadeh H, Winston GP, Tiwari VK, Kreilkamp BAK, Lenge M, Guerrini R, Hamandi K, Rüber T, Bauer T, Devinsky O, Striano P, Kaestner E, Hatton SN, Caciagli L, Kirschner M, Duncan JS, Thompson PM, McDonald CR, Sisodiya SM, Bernasconi N, Bernasconi A, Gan-Or Z, Bernhardt BC. ASSOCIATIONS BETWEEN EPILEPSY-RELATED POLYGENIC RISK AND BRAIN MORPHOLOGY IN CHILDHOOD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633277. [PMID: 39868179 PMCID: PMC11760683 DOI: 10.1101/2025.01.17.633277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) is associated with a complex genetic architecture, but the translation from genetic risk factors to brain vulnerability remains unclear. Here, we examined associations between epilepsy-related polygenic risk scores for HS (PRS-HS) and brain structure in a large sample of neurotypical children, and correlated these signatures with case-control findings in in multicentric cohorts of patients with TLE-HS. Imaging-genetic analyses revealed PRS-related cortical thinning in temporo-parietal and fronto-central regions, strongly anchored to distinct functional and structural network epicentres. Compared to disease-related effects derived from epilepsy case-control cohorts, structural correlates of PRS-HS mirrored atrophy and epicentre patterns in patients with TLE-HS. By identifying a potential pathway between genetic vulnerability and disease mechanisms, our findings provide new insights into the genetic underpinnings of structural alterations in TLE-HS and highlight potential imaging-genetic biomarkers for early risk stratification and personalized interventions.
Collapse
Affiliation(s)
- Alexander Ngo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Lang Liu
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Valeria Kebets
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Serena Fett
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Clara F. Weber
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Centre of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jessica Royer
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Eric Yu
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Raúl Rodríguez-Cruces
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Nanjing University School of Medicine, Nanjing, China
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Birgit Frauscher
- Department of Neurology, Duke University, Durham, United States
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-7), Forschungszentrum Ju lich, Ju lich, Germany
| | | | | | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S. Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Fernando Cendes
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L. Yasuda
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, United States
| | | | - Niels K. Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Patricia M. Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, United States
| | - Gavin P. Winston
- Division of Neurology, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Vijay K. Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, United Kingdom
| | | | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Bauer
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, United States
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, United States
| | - Sean N. Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, United States
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | | | - Carrie R. McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, United States
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, United States
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| | - Ziv Gan-Or
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Boris C. Bernhardt
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Cabada
| |
Collapse
|
3
|
Tényi D, Csábi G, Janszky J, Herold R, Tényi T. 25 years into research with the Méhes Scale, a comprehensive scale of modern dysmorphology. Front Psychiatry 2024; 15:1479156. [PMID: 39559279 PMCID: PMC11570577 DOI: 10.3389/fpsyt.2024.1479156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
It has been recognized that subtle, cosmetically insignificant anomalies tend to occur cumulatively in diseases with neurodevelopmental origin. These visible signs of morphogenesis errors are called minor physical anomalies (MPAs), serving as sensitive external markers of abnormal neurodevelopment. After the introduction of the Waldrop Scale, the studies conducted on MPAs in diseases with neurodevelopmental origin gave conflicting results. It has been debated that this discrepancy can be - at least partly - attributed to the use of the Waldrop Scale. Understanding the need of a comprehensive scale of MPAs that also differentiates according to the time of development, Hungarian pediatrician professor of University of Pécs, Károly Méhes developed a scale with 57 items, the only scale differentiating minor malformations from phenogenetic variants. With the use of the Méhes Scale, our research group has been investigating the role of abnormal neurodevelopment in different neuropsychiatric and neurologic disorders since 1997. 25 years into our research, in this review we summarize the results of our 18 research articles on MPAs in different diseases. We have found an increased number of MPAs, especially in the head and mouth region, in patients with schizophrenia, bipolar disorder, Tourette syndrome, autism and many epilepsy syndromes, fortifying the role of abnormal neurodevelopment in these diseases. Moreover, an increased number of MPAs was detected among the first-degree relatives of patients with schizophrenia and bipolar I disorder, supporting the hypothesis about MPAs being endophenotypic trait markers.
Collapse
Affiliation(s)
- Dalma Tényi
- Department of Neurology, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - Györgyi Csábi
- Department of Pediatrics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - József Janszky
- Department of Neurology, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - Róbert Herold
- Department of Psychiatry and Psychotherapy, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Li R, Zhao D, Li N, Lin W. Long-term phenobarbital treatment is effective in working-age patients with epilepsy in rural Northeast China: a 10-year follow-up study. Front Neurol 2024; 15:1429964. [PMID: 39507625 PMCID: PMC11538064 DOI: 10.3389/fneur.2024.1429964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Effective management of epilepsy in working-age patients is essential to reduce the burden on individuals, families, and communities. This study aimed to assess the long-term efficacy of phenobarbital (PB) in working-age patients with epilepsy in rural Northeast China and identify the risk factors for seizures during treatment. Methods Patients aged 18-65 years diagnosed with convulsive epilepsy in rural areas of Jilin Province between 2010 and 2024 were included, and demographic and clinical data were recorded. Seizure frequency, self-efficacy, adherence, and adverse events (AEs) were assessed monthly. Results Of the 3,568 participants, 288 (8.1%) withdrew from the study and 159 (4.5%) died. During the first year of treatment, 75.2% of patients experienced a ≥50% reduction in seizure frequency compared with baseline (considered as treatment effectiveness); 53.7% of patients were seizure-free. By the tenth year, 97.7% of patients showed treatment effectiveness, and 89.6% were seizure-free. Self-efficacy was improved in 37.8% of patients in the first year and in 72% of patients by the tenth year. The independent risk factors for seizures during treatment were higher baseline seizure frequency [odds ratio (OR) = 1.431, 95% confidence interval (CI): 1.122-1.824], presence of multiple seizure types (OR = 1.367, 95% CI: 1.023-1.826), and poor adherence (OR = 14.806, 95% CI: 3.495-62.725), with significant differences observed in the first, third, and fifth years. The most commonly reported AEs were drowsiness (43.3%), dizziness (25.0%), and headaches (17.0%), most of which were mild and decreased over time. Age at enrollment was the only factor influencing withdrawal (hazard ratio = 0.984, 95% CI: 0.973-0.996, p = 0.010), with a substantial number of patients who withdrew (32.6%) relocating for work. Cardiovascular disease was the primary cause of death, and age at enrollment was the only risk factor (hazard ratio = 1.026, 95% CI: 1.009-1.043, p = 0.002). Discussion Working-age adults with epilepsy demonstrated a favorable response and tolerability to PB monotherapy. Baseline seizure frequency, seizure type, and adherence consistently predicted prognosis throughout the treatment period. Withdrawal was mainly explained by work-related pressures in this age group. Therefore, it is essential to implement interventions that support patient adherence to therapy and maintain stable regimens.
Collapse
Affiliation(s)
| | | | | | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
6
|
Mazzone PP, Hogg KM, Weir CJ, Stephen J, Bhattacharya S, Richer S, Chin RFM. Comparison of neurodevelopmental, educational and adult socioeconomic outcomes in offspring of women with and without epilepsy: A systematic review and meta-analysis. Seizure 2024; 117:213-221. [PMID: 38484631 DOI: 10.1016/j.seizure.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Adequate pre-pregnancy counselling and education planning are essential to improve outcomes for offspring of women with epilepsy (OWWE). The current systematic review and meta-analysis aimed to compare outcomes for OWWE and offspring of women without epilepsy (OWWoE). METHODS We conducted a systematic review and meta-analysis. We searched MEDLINE, EMBASE, CINAHL, PsycINFO (database inception-1st January 2023), OpenGrey, GoogleScholar, and hand-searched journals and reference lists of included studies to identify eligible studies. We placed no language restrictions and included observational studies concerning OWWE and OWWoE. We followed the PRIMSA checklist for abstracting data. The Newcastle-Ottawa Scale for risk of bias assessment was conducted independently by two authors with mediation by a third. We report pooled unadjusted odds ratios (OR) or mean differences (MD) with 95% confidence intervals (95CI) from random (I2>50%) or fixed (I2<50%) effects meta-analyses. Outcomes of interest included offspring autism, attention deficit/hyperactive disorder, intellectual disability, epilepsy, developmental disorder, intelligence, educational, and adulthood socioeconomic outcomes. RESULTS Of 10,928 articles identified, we included 21 in meta-analyses. OWWE had increased odds of autism (2 articles, 4,502,098 offspring) OR [95CI] 1·67 [1·54, 1·82], attention-deficit/hyperactivity disorder (3 articles, 957,581 offspring) 1·59 [1·44, 1·76], intellectual disability (2 articles, 4,501,786 children) 2·37 [2·13, 2·65], having special educational needs (3 articles, 1,308,919 children) 2·60 [1·07, 6·34]. OWWE had worse mean scores for full-scale intelligence (5 articles, 989 children) -6·05 [-10·31, -1·79]. No studies were identified that investigated adulthood socioeconomic outcomes. CONCLUSIONS Increased odds of poor outcomes are higher with greater anti-seizure medication burden including neurodevelopmental and educational outcomes. In fact, these two outcomes seem to be worse in OWWE compared to OWWoE, even if there was no ASM exposure during pregnancy, but further work is needed to take into account potential confounding factors.
Collapse
Affiliation(s)
- Paolo Pierino Mazzone
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
| | | | - Christopher J Weir
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacqueline Stephen
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sohinee Bhattacharya
- Aberdeen Centre for Women's Health Research, The Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Simone Richer
- The University of Edinburgh, Medical School, Edinburgh, United Kingdom
| | - Richard F M Chin
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom; Royal Hospital for Children and Young People, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Locubiche S, Ordóñez V, Abad E, Scotto di Mase M, Di Donato V, De Santis F. A Zebrafish-Based Platform for High-Throughput Epilepsy Modeling and Drug Screening in F0. Int J Mol Sci 2024; 25:2991. [PMID: 38474238 DOI: 10.3390/ijms25052991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The zebrafish model has emerged as a reference tool for phenotypic drug screening. An increasing number of molecules have been brought from bench to bedside thanks to zebrafish-based assays over the last decade. The high homology between the zebrafish and the human genomes facilitates the generation of zebrafish lines carrying loss-of-function mutations in disease-relevant genes; nonetheless, even using this alternative model, the establishment of isogenic mutant lines requires a long generation time and an elevated number of animals. In this study, we developed a zebrafish-based high-throughput platform for the generation of F0 knock-out (KO) models and the screening of neuroactive compounds. We show that the simultaneous inactivation of a reporter gene (tyrosinase) and a second gene of interest allows the phenotypic selection of F0 somatic mutants (crispants) carrying the highest rates of mutations in both loci. As a proof of principle, we targeted genes associated with neurodevelopmental disorders and we efficiently generated de facto F0 mutants in seven genes involved in childhood epilepsy. We employed a high-throughput multiparametric behavioral analysis to characterize the response of these KO models to an epileptogenic stimulus, making it possible to employ kinematic parameters to identify seizure-like events. The combination of these co-injection, screening and phenotyping methods allowed us to generate crispants recapitulating epilepsy features and to test the efficacy of compounds already during the first days post fertilization. Since the strategy can be applied to a wide range of indications, this study paves the ground for high-throughput drug discovery and promotes the use of zebrafish in personalized medicine and neurotoxicity assessment.
Collapse
Affiliation(s)
- Sílvia Locubiche
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
- Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | - Víctor Ordóñez
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | - Elena Abad
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | | | - Vincenzo Di Donato
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | - Flavia De Santis
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| |
Collapse
|
8
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Dreier JW, Christensen J, Igland J, Gissler M, Leinonen MK, Vegrim HM, Sun Y, Tomson T, Zoega H, Bjørk MH, Bromley RL. Prenatal Exposure to Antiseizure Medications and Risk of Epilepsy in Children of Mothers With Epilepsy. JAMA Netw Open 2024; 7:e2356425. [PMID: 38407908 PMCID: PMC10897746 DOI: 10.1001/jamanetworkopen.2023.56425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 02/27/2024] Open
Abstract
Importance Use of valproate and certain other antiseizure medications (ASMs) in pregnancy is associated with abnormal fetal brain development with potential long-term implications for the child. Objective To examine whether use of valproate and other ASMs in pregnancy among mothers with epilepsy is associated with epilepsy risk in their children. Design, Setting, and Participants This prospective, population-based register cohort study included singletons born to mothers with epilepsy in Denmark, Finland, Iceland, Norway, and Sweden from January 1, 1996, to December 31, 2017. Data analysis was performed from October 2022 to December 2023. Exposure Redeemed prescription for an ASM from 30 days before pregnancy until birth. Main Outcomes and Measures The main outcome was epilepsy in children, assessed using International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnoses from hospital care. Adjusted hazard ratios (AHRs) and 95% CIs were estimated using Cox proportional hazards regression. Secondary analyses included dose-response analyses, analyses using children of mothers who discontinued ASM prior to pregnancy as the reference, and sibling analyses. Results This cohort study included 38 663 children of mothers with epilepsy (19 854 [51.4%] boys). Children were followed up from birth; the mean length of follow-up was 7.2 years (range 0-22 years). Compared with 22 207 children of mothers not using an ASM in pregnancy, increased risks of epilepsy in children of mothers who used valproate in pregnancy (monotherapy: AHR, 2.18; 95% CI, 1.70-2.79; polytherapy: AHR, 2.10; 95% CI, 1.49-2.96) were observed. However, there was no dose-dependent association, and there was a similar risk of epilepsy in siblings who were exposed and unexposed to valproate (AHR, 0.95; 95% CI, 0.50-1.82). Prenatal exposure to topiramate monotherapy was associated with increased risk of epilepsy (AHR, 2.32; 95% CI, 1.30-4.16), and the risk was greater for higher doses, but the risk attenuated in comparisons with children of mothers who discontinued topiramate before pregnancy (AHR, 1.19; 95% CI, 0.26-5.44). Prenatal exposure to clonazepam monotherapy was also associated with increased epilepsy risk (AHR, 1.90; 95% CI, 1.16-3.12), but limited follow-up and low numbers precluded further analyses. No associations were observed for prenatal exposure to lamotrigine (AHR, 1.18; 95% CI, 0.95-1.47), levetiracetam (AHR, 1.28; 95% CI, 0.77-2.14), carbamazepine (AHR, 1.13; 95% CI, 0.85-1.50), or oxcarbazepine (AHR, 0.68; 95% CI, 0.44-1.05). Conclusions and Relevance In this cohort study of children born to mothers with epilepsy, the associations found between prenatal exposure to certain ASMs and the child's risk of epilepsy did not persist in sensitivity analyses, suggesting that maternal ASM use in pregnancy may not increase epilepsy risk in children beyond that associated with the maternal epilepsy itself. These findings are reassuring for women in need of treatment with ASM in pregnancy.
Collapse
Affiliation(s)
- Julie Werenberg Dreier
- The National Centre for Register-Based Research, Aarhus University, Aarhus V, Denmark
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jakob Christensen
- The National Centre for Register-Based Research, Aarhus University, Aarhus V, Denmark
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Health and Caring Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Mika Gissler
- Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Region Stockholm, Academic Primary Health Care Centre, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maarit K. Leinonen
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
- Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Yuelian Sun
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Helga Zoega
- School of Population Health, Faculty of Medicine & Health, University of New South Wales Sydney, Sydney, Australia
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Marte-Helene Bjørk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Rebecca L. Bromley
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
10
|
Shu J, Peng F, Li J, Liu Y, Li X, Yuan C. The Relationship between SNAP25 and Some Common Human Neurological Syndromes. Curr Pharm Des 2024; 30:2378-2386. [PMID: 38963116 DOI: 10.2174/0113816128305683240621060024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Over the years, research on the pathogenesis of neurological diseases has progressed slowly worldwide. However, as the incidence rate continues to increase and the disease gradually develops, early diagnosis and treatment have become a top priority. SANP25, a protein present on the presynaptic membrane and involved in neurotransmitter release, is closely related to the loss or abnormal expression of synapses and neurons. SNAP25 deficiency can lead to synaptic disorders and inhibit neurotransmitter release. Therefore, a large amount of literature believes that SNAP25 gene mutation is a risk factor for many neurological diseases. This review used advanced search on PubMed to conduct extensive article searches for relevant literature. The search keywords included SNAP25 and Alzheimer's disease, SNAP25 and Parkinson's disease, and so on. After reading and summarizing the previous papers, the corresponding conclusions were obtained to achieve the purpose of the review. The deficiency or variation of SNAP25 might be related to the onset of schizophrenia, epilepsy, attention deficit/hypoactivity disorder, bipolar disorder effective disorder, and autism. SNAP25 has been found to be used as a neuropathological marker for neurological diseases, which could be the target of diagnosis or treatment of Alzheimer's disease and Parkinson's disease. Cerebrospinal Fluid (CSF) or blood has been found to enable more effective drug development.
Collapse
Affiliation(s)
- Jie Shu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Fan Peng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Jing Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Yuhang Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Xiaolan Li
- College of Basic Medicine, The Second People's Hospital of China Three Gorges University, Yichang 443002, China
- Department of Gynecology, The Second People's Hospital of Yichang, Hubei, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
11
|
Yavuz BR, Arici MK, Demirel HC, Tsai CJ, Jang H, Nussinov R, Tuncbag N. Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome. NPJ Genom Med 2023; 8:37. [PMID: 37925498 PMCID: PMC10625621 DOI: 10.1038/s41525-023-00377-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.
Collapse
Affiliation(s)
- Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey.
- School of Medicine, Koc University, Istanbul, 34450, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
12
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Smith SDW, McGinnity CJ, Smith AB, Barker GJ, Richardson MP, Pal DK. A prospective 5-year longitudinal study detects neurocognitive and imaging correlates of seizure remission in self-limiting Rolandic epilepsy. Epilepsy Behav 2023; 147:109397. [PMID: 37619460 DOI: 10.1016/j.yebeh.2023.109397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Self-limiting Rolandic epilepsy (RE) is the most common epilepsy in school-age children. Seizures are generally infrequent, but cognitive, language, and motor coordination problems can significantly impact the child's life. To better understand brain structure and function changes in RE, we longitudinally assessed neurocognition, cortical thickness, and subcortical volumes. METHODS At baseline, we recruited 30 participants diagnosed with RE and 24-healthy controls and followed up for 4.94 ± 0.8 years when the participants with RE were in seizure remission. Measures included were as follows: T1-weighted magnetic resonance brain imaging (MRI) with FreeSurfer analysis and detailed neuropsychological assessments. MRI and neuropsychological data were compared between baseline and follow-up in seizure remission. RESULTS Longitudinal MRI revealed excess cortical thinning in the left-orbitofrontal (p = 0.0001) and pre-central gyrus (p = 0.044). There is a significant association (p = 0.003) between a reduction in cortical thickness in the left-orbitofrontal cluster and improved processing of filtered words. Longitudinal neuropsychology revealed significant improvements in the symptoms of developmental coordination disorder (DCD, p = 0.005) in seizure remission. CONCLUSIONS There is evidence for altered development of neocortical regions between active seizure state and seizure remission in RE within two clusters maximal in the left-orbitofrontal and pre-central gyrus. There is significant evidence for improvement in motor coordination between active seizures and seizure remission and suggestive evidence for a decline in fluid intelligence and gains in auditory processing.
Collapse
Affiliation(s)
- Stuart D W Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Evelina London Children's Hospital, London, UK; Great Ormond Street Hospital, London, UK
| | - Colm J McGinnity
- Department of PET Neuroimaging, St-Thomas Hospital, Kings College London, UK
| | - Anna B Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; King's College Hospital, UK
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; King's College Hospital, UK.
| |
Collapse
|
14
|
Stuempflen M, Taymourtash A, Kienast P, Schmidbauer VU, Schwartz E, Mitter C, Binder J, Prayer D, Kasprian G. Ganglionic eminence: volumetric assessment of transient brain structure utilizing fetal magnetic resonance imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:405-413. [PMID: 37099530 DOI: 10.1002/uog.26232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To provide quantitative magnetic resonance imaging (MRI) super-resolution-based three-dimensional volumetric reference data on the growth dynamics of the ganglionic eminence (GE) relative to cortical and total fetal brain volumes (TBV). METHODS This was a retrospective study of fetuses without structural central nervous system anomalies or other confounding comorbidities that were referred for fetal MRI. Super-resolution reconstructions of 1.5- and 3-Tesla T2-weighted images were generated. Semiautomatic segmentation of TBV and cortical volume and manual segmentation of the GE were performed. Cortical volume, TBV and GE volume were quantified and three-dimensional reconstructions were generated to visualize the developmental dynamics of the GE. RESULTS Overall, 120 fetuses that underwent 127 MRI scans at a mean gestational age of 27.23 ± 4.81 weeks (range, 20-37 weeks) were included. In the investigated gestational-age range, GE volume ranged from 74.88 to 808.75 mm3 and was at its maximum at 21 gestational weeks, followed by a linear decrease (R2 = 0.559) throughout the late second and third trimesters. A pronounced reduction in GE volume relative to cortical volume and TBV occurred in the late second trimester, with a decline in this reduction observed in the third trimester (R2 = 0.936 and 0.924, respectively). Three-dimensional rendering allowed visualization of a continuous change in the shape and size of the GE throughout the second and third trimesters. CONCLUSIONS Even small compartments of the fetal brain, which are not easily accessible by standardized two-dimensional modalities, can be assessed precisely by super-resolution processed fetal MRI. The inverse growth dynamics of GE volume compared with TBV and cortical volume reflects the transitory nature and physiological involution of this (patho-)physiologically important brain structure. The normal development and involution of the GE is mandatory for normal cortical development. Pathological changes of this transient organ precede impairment of cortical structures, and their detection may allow an earlier diagnosis of such anomalies. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Stuempflen
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A Taymourtash
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - P Kienast
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - V U Schmidbauer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - E Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - C Mitter
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - J Binder
- Department of Obstetrics and Feto-maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - D Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - G Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Goswami-Sewell D, Bagnetto C, Gomez CC, Anderson JT, Maheshwari A, Zuniga-Sanchez E. βII-Spectrin Is Required for Synaptic Positioning during Retinal Development. J Neurosci 2023; 43:5277-5289. [PMID: 37369589 PMCID: PMC10359034 DOI: 10.1523/jneurosci.0063-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Neural circuit assembly is a multistep process where synaptic partners are often born at distinct developmental stages, and yet they must find each other and form precise synaptic connections with one another. This developmental process often relies on late-born neurons extending their processes to the appropriate layer to find and make synaptic connections to their early-born targets. The molecular mechanism responsible for the integration of late-born neurons into an emerging neural circuit remains unclear. Here, we uncovered a new role for the cytoskeletal protein βII-spectrin in properly positioning presynaptic and postsynaptic neurons to the developing synaptic layer. Loss of βII-spectrin disrupts retinal lamination, leads to synaptic connectivity defects, and results in impaired visual function in both male and female mice. Together, these findings highlight a new function of βII-spectrin in assembling neural circuits in the mouse outer retina.SIGNIFICANCE STATEMENT Neurons that assemble into a functional circuit are often integrated at different developmental time points. However, the molecular mechanism that guides the precise positioning of neuronal processes to the correct layer for synapse formation is relatively unknown. Here, we show a new role for the cytoskeletal scaffolding protein, βII-spectrin in the developing retina. βII-spectrin is required to position presynaptic and postsynaptic neurons to the nascent synaptic layer in the mouse outer retina. Loss of βII-spectrin disrupts positioning of neuronal processes, alters synaptic connectivity, and impairs visual function.
Collapse
Affiliation(s)
| | - Caitlin Bagnetto
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Cesiah C Gomez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph T Anderson
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Akash Maheshwari
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
16
|
Gonzalez JN, Goldman S, Carter MT, Bain JM. Rett-like Phenotypes in HNRNPH2-Related Neurodevelopmental Disorder. Genes (Basel) 2023; 14:1154. [PMID: 37372334 PMCID: PMC10298048 DOI: 10.3390/genes14061154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder with a prevalence of 1:10,000 to 15,000 females worldwide. Classic Rett Syndrome presents in early childhood with a period of developmental regression, loss of purposeful hand skills along with hand stereotypies, gait abnormalities, and loss of acquired speech. Atypical RTT is diagnosed when a child shows some but not all the phenotypes of classic RTT, along with additional supporting criteria. Over 95% of classic RTT cases are attributed to pathogenic variants in Methyl-CpG Binding Protein 2 (MECP2), though additional genes have been implicated in other RTT cases, particularly those with the atypical RTT clinical picture. Other genetic etiologies have emerged with similar clinical characteristics to RTT Syndrome. Our team has characterized HNRNPH2-related neurodevelopmental disorder (HNRNPH2-RNDD) in 33 individuals associated with de novo pathogenic missense variants in the X-linked HNRNPH2 gene, characterized by developmental delay, intellectual disability, seizures, autistic-like features, and motor abnormalities. We sought to further characterize RTT clinical features in this group of individuals by using caregiver report. Twenty-six caregivers completed electronic surveys, with only 3 individuals having previously received an atypical RTT diagnosis, and no individuals with a typical RTT diagnosis. Caregivers reported a high number of behaviors and/or phenotypes consistent with RTT, including the major criteria of the syndrome, such as regression of developmental skills and abnormal gait. Based on the survey results, 12 individuals could meet the diagnostic clinical criteria for atypical RTT Syndrome. In summary, individuals with HNRNPH2-RNDD exhibit clinical characteristics that overlap with those of RTT, and therefore, HNRNPH2-RNDD, should be considered on the differential diagnosis list with this clinical picture.
Collapse
Affiliation(s)
- Joseph Nicho Gonzalez
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Sylvie Goldman
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Sergievsky Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Melissa T. Carter
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Jennifer M. Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Morgan Stanley Children’s Hospital, NewYork Presbyterian Hospital, New York, NY 10032, USA
| |
Collapse
|
17
|
Alarcón R, Giménez B, Hernández AF, López-Villén A, Parrón T, García-González J, Requena M. Occupational exposure to pesticides as a potential risk factor for epilepsy. Neurotoxicology 2023; 96:166-173. [PMID: 37121439 DOI: 10.1016/j.neuro.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Epilepsy is a chronic neurological disorder in which brain activity becomes abnormal, causing seizures. In a previous study we found that environmental exposure to pesticides was associated with a greater risk of epilepsy. The present study examined possible occupational risk factors that may contribute to the occurrence of epilepsy in farmers and pesticide applicators (sprayers). A case-referent study was conducted on 19,704 individuals over a 17-year study period (2000-2016). Epilepsy cases (n = 5091) were collected from Hospital records and referents (non-epilepsy cases, n = 14.613) from the Centre for Prevention of Occupational Risks, both from Almería (South-Eastern Spain). A significant increased risk of having epilepsy was found in farmers working in intensive agriculture (high-yield greenhouse crops) compared to extensive agriculture (open-air crops). The risk was greater for farmers residing in rural areas with high pesticide use (intensive farming crops in plastic greenhouses) and for those not wearing protective gloves. As for sprayers, the greatest risk of epilepsy was observed in those not wearing face mask, and in those living in areas with high pesticide use (greenhouse intensive agriculture). Overall, this study supports previous findings on the association between epilepsy and pesticide exposure in the general population, and extends the risk to farmers occupationally exposed to pesticides, mainly those engaged in intensive agriculture.
Collapse
Affiliation(s)
- Raquel Alarcón
- University of Almería School of Health Sciences, 04120 Almería, Spain
| | - Belén Giménez
- University of Almería School of Health Sciences, 04120 Almería, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain; Institute of Biomedical Research, Granada (Instituto de Investigación Biosanitaria) ibs.GRANADA, Granada, Spain; Center for Biomedical Research in Epidemiology & Public Health Network (CIBER en Epidemiología y Salud Pública), CIBERESP, Spain.
| | | | - Tesifón Parrón
- University of Almería School of Health Sciences, 04120 Almería, Spain; Andalusian Council of Health at Almería Province, 04009 Almería, Spain
| | | | - Mar Requena
- University of Almería School of Health Sciences, 04120 Almería, Spain
| |
Collapse
|
18
|
Increased prevalence of minor physical anomalies in patients with epilepsy. Sci Rep 2022; 12:13707. [PMID: 35962048 PMCID: PMC9374691 DOI: 10.1038/s41598-022-17853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Our aim was to investigate the rate and topological profile of minor physical anomalies (MPAs) in adult patients with epilepsy with the use of the Méhes Scale, a comprehensive modern scale of dysmorphology. Consecutive epilepsy patients admitted for outpatient evaluation were included. Patients with comorbidities of neurodevelopmental origin (such as autism, severe intellectual disability, attention deficit hyperactivity disorder, schizophrenia, tic disorder, Tourette syndrome, bipolar disorder, specific learning disorder and specific language impairment) were excluded. All participants underwent physical examination with the use of the Méhes Scale for evaluation of MPAs, including 57 minor signs. The frequency and topological profile of MPAs were correlated to clinical patient data using Kruskal–Wallis, chi2 tests and logistic regression model. 235 patients were included, according to the following subgroups: acquired epilepsy (non-genetic, non-developmental etiology) [N = 63], temporal lobe epilepsy with hippocampal sclerosis (TLE with HS) [N = 27], epilepsy with cortical dysgenesis etiology [N = 29], cryptogenic epilepsy [N = 69] and idiopathic generalized epilepsy (IGE) [N = 47]. As controls, 30 healthy adults were recruited. The frequency of MPAs were significantly affected by the type of epilepsy [H(6) = 90.17; p < 0.001]. Pairwise comparisons showed that all patient groups except for acquired epilepsy were associated with increased frequency of MPAs (p < 0.001 in all cases). Furrowed tongue and high arched palate were more common compared to controls in all epilepsy subgroup except for TLE (p < 0.001 or p = 0.001 in all cases). A positive association was detected between the occurrence of MPAs and antiepileptic drug therapy resistance [Exp(B) = 4.19; CI 95% 1.37–12.80; p = 0.012]. MPAs are more common in patients with epilepsy, which corroborates the emerging concept of epilepsy as a neurodevelopmental disorder. Assessment of these signs may contribute to the clarification of the underlying etiology. Moreover, as increased frequency of MPAs may indicate pharmacoresistance, the identification of patients with high number of MPAs could allow evaluation for non-pharmacological treatment in time.
Collapse
|
19
|
Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents-in celebration of 80th birthday of Professor Peter Riederer. J Neural Transm (Vienna) 2022; 129:627-642. [PMID: 35624406 DOI: 10.1007/s00702-022-02513-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Eleonóra Spekker
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary. .,Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.
| |
Collapse
|
20
|
Perspective: Chicken Models for Studying the Ontogenetic Origin of Neuropsychiatric Disorders. Biomedicines 2022; 10:biomedicines10051155. [PMID: 35625892 PMCID: PMC9138209 DOI: 10.3390/biomedicines10051155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022] Open
Abstract
Nutrients and xenobiotics cross the blood–placenta barrier, potentially depositing in the fetal brain. The prenatal exposure affects the neuroendocrine and microbial development. The mechanism underlying maternal risk factors reprograming the microbiota–gut–brain axis with long-term effects on psychosocial behaviors in offspring is not clear. In humans, it is not possible to assess the nutrient or xenobiotic deposition in the fetal brain and gastrointestinal system for ethical reasons. Moreover, the maternal–fetal microbe transfer during gestation, natural labor, and breast-feeding constitutes the initial gut microbiome in the progeny, which is inevitable in the most widely utilized rodent models. The social predisposition in precocial birds, including chickens, provides the possibility to test behavioral responses shortly after being hatched. Hence, chickens are advantageous in investigating the ontogenetic origin of behaviors. Chicken embryos are suitable for deposition assessment and mechanistic study due to the accessibility, self-contained development, uniform genetic background, robust microbiota, and easy in vivo experimental manipulation compared to humans and rodents. Therefore, chicken embryos can be used as an alternative to the rodent models in assessing the fetal exposure effect on neurogenesis and investigating the mechanism underlying the ontogenetic origin of neuropsychiatric disorders.
Collapse
|
21
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
22
|
Wu Y, Huang K, Wen S, Xiao B, Feng L. Validation of the Chinese Version of the Stigma Scale of Epilepsy. Front Neurol 2022; 13:796296. [PMID: 35197923 PMCID: PMC8858795 DOI: 10.3389/fneur.2022.796296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose This study was carried out to test the validity and reliability of the Chinese version of the Stigma Scale of Epilepsy (SSE), with aim to better understand the public stigmatizing attitudes of epilepsy in China and help elucidate stigma determinants for interventions. Methods The SSE was translated into Simplified Chinese Mandarin. In this study, most of the participants were enrolled via convenience sampling by randomly distributing questionnaires on the streets and parts of the participants were recruited by an online platform named Wenjuanxing. We assessed the psychometric properties of the SSE in 310 Chinese native-speaker. Cronbach's alpha was tested for reliability. Index of Content Validity (CVI) was calculated. Exploratory and confirmatory analysis were used to explore the factor structure and verify the validity of SSE. Results The Cronbach's alpha is 0.936 for the overall scale, and the CVI value is greater than 0.78. The exploratory factor analysis (EFA) extracted SSE six factors: the fear of seizure attacks (factor 1), sympathy for patients with epilepsy (PWEs) (factor 2); difficulties faced by PWEs (factor 3); speculation on PWEs' feeling (factor 4); discrimination against PWEs (factor 5); and knowledge about epilepsy (factor 6). The item 13 was proven to be problematic and has been eliminated. The confirmatory factor analysis (CFA) ensured the great construct validity (χ2/SD = 1.725, goodness of fit index (GFI) = 0.916, and root mean square error of approximation (RMSEA) = 0.048), convergent validity (the factor loads of each item corresponding to each latent variable >0.6, average variance extracted (AVE) > 0.5, and composite reliability (CR) > 0.7), and discrimination validity (all of the absolute value of correlation coefficient are <0.5,and less than the square root of AVE) of the SSE. Conclusions The Chinese version of the SSE scale was a valid and reliable tool to measure epilepsy-associated stigma in the Chinese society.
Collapse
Affiliation(s)
- Yuanxia Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kailing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shirui Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Li Feng
| |
Collapse
|
23
|
The Role of Ketogenic Metabolic Therapy on the Brain in Serious Mental Illness: A Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220009. [PMID: 36483840 PMCID: PMC9728807 DOI: 10.20900/jpbs.20220009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In search of interventions targeting brain dysfunction and underlying cognitive impairment in schizophrenia, we look at the brain and beyond to the potential role of dysfunctional systemic metabolism on neural network instability and insulin resistance in serious mental illness. We note that disrupted insulin and cerebral glucose metabolism are seen even in medication-naïve first-episode schizophrenia, suggesting that people with schizophrenia are at risk for Type 2 diabetes and cardiovascular disease, resulting in a shortened life span. Although glucose is the brain's default fuel, ketones are a more efficient fuel for the brain. We highlight evidence that a ketogenic diet can improve both the metabolic and neural stability profiles. Specifically, a ketogenic diet improves mitochondrial metabolism, neurotransmitter function, oxidative stress/inflammation, while also increasing neural network stability and cognitive function. To reverse the neurodegenerative process, increasing the brain's access to ketone bodies may be needed. We describe evidence that metabolic, neuroprotective, and neurochemical benefits of a ketogenic diet potentially provide symptomatic relief to people with schizophrenia while also improving their cardiovascular or metabolic health. We review evidence for KD side effects and note that although high in fat it improves various cardiovascular and metabolic risk markers in overweight/obese individuals. We conclude by calling for controlled clinical trials to confirm or refute the findings from anecdotal and case reports to address the potential beneficial effects of the ketogenic diet in people with serious mental illness.
Collapse
|
24
|
Henley JM, Nair JD, Seager R, Yucel BP, Woodhall G, Henley BS, Talandyte K, Needs HI, Wilkinson KA. Kainate and AMPA receptors in epilepsy: Cell biology, signalling pathways and possible crosstalk. Neuropharmacology 2021; 195:108569. [PMID: 33915142 DOI: 10.1016/j.neuropharm.2021.108569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy is caused when rhythmic neuronal network activity escapes normal control mechanisms, resulting in seizures. There is an extensive and growing body of evidence that the onset and maintenance of epilepsy involves alterations in the trafficking, synaptic surface expression and signalling of kainate and AMPA receptors (KARs and AMPARs). The KAR subunit GluK2 and AMPAR subunit GluA2 are key determinants of the properties of their respective assembled receptors. Both subunits are subject to extensive protein interactions, RNA editing and post-translational modifications. In this review we focus on the cell biology of GluK2-containing KARs and GluA2-containing AMPARs and outline how their regulation and dysregulation is implicated in, and affected by, seizure activity. Further, we discuss role of KARs in regulating AMPAR surface expression and plasticity, and the relevance of this to epilepsy. This article is part of the special issue on 'Glutamate Receptors - Kainate receptors'.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK; Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jithin D Nair
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Richard Seager
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Busra P Yucel
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Gavin Woodhall
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Benjamin S Henley
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Karolina Talandyte
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Hope I Needs
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
25
|
Randhawa HS, Randhawa J, Kulkarni A, More A, Jain A. A Very Rare Case of Megalencephalic Leukoencephalopathy With Subcortical Cysts in a Child Born of Non-Consanguineous Marriage in a Non-Predisposed Community. Cureus 2021; 13:e16941. [PMID: 34381660 PMCID: PMC8351400 DOI: 10.7759/cureus.16941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/05/2022] Open
Abstract
Megalencephalic leukoencephalopathy (MLC) with subcortical cysts is a very rare white matter disorder characterized predominantly by motor developmental delay and seizures in a child with macrocephaly. Extrapyramidal symptoms, ataxia and mental retardation may also occur. Only a few cases of the disease have been reported worldwide with most of them showing an autosomal recessive pattern of inheritance. In India, most cases have been reported in Agrawal community. Here, we present an interesting case of MLC in a child born in non-Agrawal community to a non-consanguineous marriage. By reporting this case we intend to increase the research horizon and increase the published literature for atypical cases of MLC.
Collapse
Affiliation(s)
| | - Jasneet Randhawa
- Department of Resident Medical Services, Fortis Escorts Hospital, Amritsar, IND
| | - Anagha Kulkarni
- Department of Pediatrics, Lokmanya Tilak Municipal General (LTMG) Hospital, Mumbai, IND
| | - Akshay More
- Department of Interventional Radiology, Lokmanya Tilak Municipal General (LTMG) Hospital, Mumbai, IND
| | - Akshay Jain
- Department of Radiology, Government Medical College, Kolhapur, IND
| |
Collapse
|
26
|
Cavalcante BRR, Improta-Caria AC, Melo VHD, De Sousa RAL. Exercise-linked consequences on epilepsy. Epilepsy Behav 2021; 121:108079. [PMID: 34058490 DOI: 10.1016/j.yebeh.2021.108079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Epilepsy is a brain disorder that leads to seizures and neurobiological, cognitive, psychological, and social consequences. Physical inactivity can contribute to worse epilepsy pathophysiology. Here, we review how physical exercise affects epilepsy physiopathology. METHODS An extensive literature search was performed and the mechanisms of physical exercise on epilepsy were discussed. The search was conducted in Scopus and PubMed. Articles with relevant information were included. Only studies written in English were considered. RESULTS The regular practice of physical exercise can be beneficial for individuals with neurodegenerative diseases, such as epilepsy by decreasing the production of pro-inflammatory and stress biomarkers, increasing socialization, and reducing the incidence of epileptic seizures. Physical exercise is also capable of reducing the symptoms of depression and anxiety in epilepsy. Physical exercise can also improve cognitive function in epilepsy. The regular practice of physical exercise enhances the levels of brain-derived neuro factor (BDNF) in the hippocampi, induces neurogenesis, inhibits oxidative stress and reactive gliosis, avoids cognitive impairment, and stimulates the production of dopamine in the epileptic brain. CONCLUSION Physical exercise is an excellent non-pharmacological tool that can be used in the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleyś Jequitinhonha and Mucuri, Minas Gerais, Brazil; Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
| |
Collapse
|
27
|
Esumi S, Nasu M, Kawauchi T, Miike K, Morooka K, Yanagawa Y, Seki T, Sakimura K, Fukuda T, Tamamaki N. Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons. Front Neurosci 2021; 15:607908. [PMID: 34305510 PMCID: PMC8297055 DOI: 10.3389/fnins.2021.607908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Intermediate progenitors of both excitatory and inhibitory neurons, which can replenish neurons in the adult brain, were recently identified. However, the generation of intermediate progenitors of GABAergic inhibitory neurons (IPGNs) has not been studied in detail. Here, we characterized the spatiotemporal distribution of IPGNs in mouse cerebral cortex. IPGNs generated neurons during both embryonic and postnatal stages, but the embryonic IPGNs were more proliferative. Our lineage tracing analyses showed that the embryonically proliferating IPGNs tended to localize to the superficial layers rather than the deep cortical layers at 3 weeks after birth. We also found that embryonic IPGNs derived from the medial and caudal ganglionic eminence (CGE) but more than half of the embryonic IPGNs were derived from the CGE and broadly distributed in the cerebral cortex. Taken together, our data indicate that the broadly located IPGNs during embryonic and postnatal stages exhibit a different proliferative property and layer distribution.
Collapse
Affiliation(s)
- Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nasu
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Koichiro Miike
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
28
|
Zapata-Muñoz J, Villarejo-Zori B, Largo-Barrientos P, Boya P. Towards a better understanding of the neuro-developmental role of autophagy in sickness and in health. Cell Stress 2021; 5:99-118. [PMID: 34308255 PMCID: PMC8283300 DOI: 10.15698/cst2021.07.253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a critical cellular process by which biomolecules and cellular organelles are degraded in an orderly manner inside lysosomes. This process is particularly important in neurons: these post-mitotic cells cannot divide or be easily replaced and are therefore especially sensitive to the accumulation of toxic proteins and damaged organelles. Dysregulation of neuronal autophagy is well documented in a range of neurodegenerative diseases. However, growing evidence indicates that autophagy also critically contributes to neurodevelopmental cellular processes, including neurogenesis, maintenance of neural stem cell homeostasis, differentiation, metabolic reprogramming, and synaptic remodelling. These findings implicate autophagy in neurodevelopmental disorders. In this review we discuss the current understanding of the role of autophagy in neurodevelopment and neurodevelopmental disorders, as well as currently available tools and techniques that can be used to further investigate this association.
Collapse
Affiliation(s)
- Juan Zapata-Muñoz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | | | | | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
29
|
Zheng JJ, Zhang TY, Liu HT, Huang ZX, Teng JM, Deng JX, Zhong JG, Qian X, Sheng XW, Ding JQ, He SQ, Zhao X, Ji WD, Qi DF, Li W, Zhang M. Cytisine Exerts an Anti-Epileptic Effect via α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. Front Pharmacol 2021; 12:706225. [PMID: 34248648 PMCID: PMC8263902 DOI: 10.3389/fphar.2021.706225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Temporal lobe epilepsy (TLE) is a common chronic neurological disease that is often invulnerable to anti-epileptic drugs. Increasing data have demonstrated that acetylcholine (ACh) and cholinergic neurotransmission are involved in the pathophysiology of epilepsy. Cytisine, a full agonist of α7 nicotinic acetylcholine receptors (α7nAChRs) and a partial agonist of α4β2nAChRs, has been widely applied for smoking cessation and has shown neuroprotection in neurological diseases. However, whether cytisine plays a role in treating TLE has not yet been determined. Experimental Approach: In this study, cytisine was injected intraperitoneally into pilocarpine-induced epileptic rats for three weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was used to evaluate the mechanism of action of cytisine. Rats were assayed for the occurrence of seizures and cognitive function by video surveillance and Morris water maze. Hippocampal injuries and synaptic structure were assessed by Nissl staining and Golgi staining. Furthermore, levels of glutamate, γ-aminobutyric acid (GABA), ACh, and α7nAChRs were measured. Results: Cytisine significantly reduced seizures and hippocampal damage while improving cognition and inhibiting synaptic remodeling in TLE rats. Additionally, cytisine decreased glutamate levels without altering GABA levels, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. α-bgt antagonized the above-mentioned effects of cytisine treatment. Conclusion and Implications: Taken together, these findings indicate that cytisine exerted an anti-epileptic and neuroprotective effect in TLE rats via activation of α7nAChRs, which was associated with a decrease in glutamate levels, inhibition of synaptic remodeling, and improvement of cholinergic transmission in the hippocampus. Hence, our findings not only suggest that cytisine represents a promising anti-epileptic drug, but provides evidence of α7nAChRs as a novel therapeutic target for TLE.
Collapse
Affiliation(s)
- Jing-Jun Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacy, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Teng-Yue Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Tao Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xin Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Mei Teng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Xian Deng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Gui Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xu Qian
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Wen Sheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ji-Qiang Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu-Qiao He
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Xin Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - De-Feng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hop-ital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mei Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Mandal PK, Shukla D. KALPANA: Advanced Spectroscopic Signal Processing Platform for Improved Accuracy to Aid in Early Diagnosis of Brain Disorders in Clinical Setting. J Alzheimers Dis 2021; 75:397-402. [PMID: 32200359 DOI: 10.3233/jad-191351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance spectroscopy (MRS) plays a substantial role in the non-invasive detection of brain neurochemicals, antioxidants, and neurotransmitters. Quantitative monitoring of these neurochemicals and neurotransmitters in the brain has a profound application for the understanding of brain disorders. Significant progress in the MR scanner as well as MR pulse sequence development to detect in vivo neurochemicals has been accomplished. The processing of MR signal from these low abundant neurochemicals/neurotransmitters should be very robust and sensitive in order to provide distinctive observations of disease-related neurochemical alterations and their absolute quantitation to aid in early clinical diagnosis. We highlight the diversity in currently available MRS processing tools, and recently introduced, KALPANA, a promising package integrating the end-to-end processing as well as robust quantitation of neurochemicals in a user-friendly approach through a graphical user interface. This further necessitates the futuristic need for advanced MRS processing pipeline and the respective readout that can help in early diagnosis and prognosis of diseases in the clinical environment.
Collapse
Affiliation(s)
- Pravat K Mandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| | - Deepika Shukla
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
31
|
Weninger J, Meseke M, Rana S, Förster E. Heat-Shock Induces Granule Cell Dispersion and Microgliosis in Hippocampal Slice Cultures. Front Cell Dev Biol 2021; 9:626704. [PMID: 33693000 PMCID: PMC7937632 DOI: 10.3389/fcell.2021.626704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Granule cell dispersion (GCD) has been found in the dentate gyrus (dg) of patients with temporal lobe epilepsy (TLE) and a history of febrile seizures but was also recently observed in pediatric patients that did not suffer from epilepsy. This indicates that GCD might not always be disease related, but instead could reflect normal morphological variation. Thus, distribution of newborn granule cells within the hilar region is part of normal dg development at early stages but could be misinterpreted as pathological GCD. In turn, pathological GCD may be caused, for example, by genetic mutations, such as the reeler mutation. GCD in the reeler mutant goes along with an increased susceptibility to epileptiform activity. Pathological GCD in combination with epilepsy is caused by experimental administration of the glutamate receptor agonist kainic acid in rodents. In consequence, the interpretation of GCD and the role of febrile seizures remain controversial. Here, we asked whether febrile temperatures alone might be sufficient to trigger GCD and used hippocampal slice cultures as in vitro model to analyze the effect of a transient temperature increase on the dg morphology. We found that a heat-shock of 41°C for 6 h was sufficient to induce GCD and degeneration of a fraction of granule cells. Both of these factors, broadening of the granule cell layer (gcl) and increased neuronal cell death within the gcl, contributed to the development of a significantly reduced packaging density of granule cells. In contrast, Reelin expressing Cajal–Retzius (CR) cells in the molecular layer were heat-shock resistant. Thus, their number was not reduced, and we did not detect degenerating CR cells after heat-shock, implying that GCD was not caused by the loss of CR cells. Importantly, the heat-shock-induced deterioration of dg morphology was accompanied by a massive microgliosis, reflecting a robust heat-shock-induced immune response. In contrast, in the study that reported on GCD as a non-specific finding in pediatric patients, no microglia reaction was observed. Thus, our findings underpin the importance of microglia as a marker to distinguish pathological GCD from normal morphological variation.
Collapse
Affiliation(s)
- Jasmin Weninger
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Maurice Meseke
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Shaleen Rana
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Eckart Förster
- Institute of Anatomy, Department of Neuroanatomy and Molecular Brain Research, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
32
|
Burger CA, Albrecht NE, Jiang D, Liang JH, Poché RA, Samuel MA. LKB1 and AMPK instruct cone nuclear position to modify visual function. Cell Rep 2021; 34:108698. [PMID: 33535040 PMCID: PMC7906279 DOI: 10.1016/j.celrep.2021.108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cone photoreceptors detect light and are responsible for color vision. These cells display a distinct polarized morphology where nuclei are precisely aligned in the apical retina. However, little is known about the mechanisms involved in cone nuclear positioning or the impact of this organization on retina function. We show that the serine/threonine kinase LKB1 and one of its substrates, AMPK, regulate cone nuclear positioning. In the absence of either molecule, cone nuclei are misplaced along the axon, resulting in altered nuclear lamination. LKB1 is required specifically in cones to mediate this process, and disruptions in nuclear alignment result in reduced cone function. Together, these results identify molecular determinants of cone nuclear position and indicate that cone nuclear position alignment enables proper visual function.
Collapse
Affiliation(s)
- Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
34
|
Pfisterer U, Petukhov V, Demharter S, Meichsner J, Thompson JJ, Batiuk MY, Asenjo-Martinez A, Vasistha NA, Thakur A, Mikkelsen J, Adorjan I, Pinborg LH, Pers TH, von Engelhardt J, Kharchenko PV, Khodosevich K. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat Commun 2020; 11:5038. [PMID: 33028830 PMCID: PMC7541486 DOI: 10.1038/s41467-020-18752-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly understood due to the high complexity of affected neuronal circuits. To identify dysfunctional neuronal subtypes underlying seizure activity in the human brain, we have performed single-nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that the largest transcriptomic changes occur in distinct neuronal subtypes from several families of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the subtypes with the largest epilepsy-related transcriptomic changes may belong to the same circuit, since we observed coordinated transcriptomic shifts across these subtypes. Glutamate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal subtype-specific molecular phenotype of epilepsy. The pathophysiology of epilepsy is unclear. Here, the authors present single-nuclei transcriptomic profiling of human temporal lobe epilepsy from patients. They identified epilepsy-associated neuronal subtypes, and a panel of dysregulated genes, predicting neuronal circuits contributing to epilepsy.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Viktor Petukhov
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Johanna Meichsner
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mykhailo Y Batiuk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ashish Thakur
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jens Mikkelsen
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Istvan Adorjan
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Lars H Pinborg
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark.,Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
35
|
Jeon SJ, Ham J, Park CS, Lee B. Susceptibility of pentylenetetrazole-induced seizures in mice with Cereblon gene knockout. BMB Rep 2020. [PMID: 32843131 PMCID: PMC7526979 DOI: 10.5483/bmbrep.2020.53.9.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by unpredictable seizures,
which are bursts of electrical activity that tempo-rarily affect the brain.
Cereblon (CRBN), a DCAFs (DDB1 and
CUL4associated factors),
is a well-established protein associated with human mental retardation. Being a
substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) 4 complex, CRBN
mediates ubiquitination of several substrates and conducts multiple biological
processes. In the central nervous system, the large-conductance
Ca2+-activated K+ (BKCa) channel, which is the
substrate of CRBN, is an important regulator of epilepsy. Despite the functional
role and importance of CRBN in the brain, di-rect injection of
pentylenetetrazole (PTZ) to induce seizures in CRBN knock-out mice has not been
challenged. In this study, we investigated the effect of PTZ in CRBN knock-out
mice. Here, we demonstrate that, compared with WT mice, CRBN knock-out mice do
not show the intensification of seizures by PTZ induction. Moreover,
electroencephalography recordings were also performed in the brains of both WT
and CRBN knockout mice to identify the absence of significant differences in the
pattern of seizure activities. Consistently, immunoblot analysis for validating
the protein level of the CRL4 complex containing CRBN (CRL4Crbn) in
the mouse brain was carried out. Taken together, we found that the deficiency of
CRBN does not affect PTZ-induced seizure.
Collapse
Affiliation(s)
- Seung-Je Jeon
- School of Life Sciences and Integrated Institute of Biomedical Research (IIBR), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jinsil Ham
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chul-Seung Park
- School of Life Sciences and Integrated Institute of Biomedical Research (IIBR), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
36
|
Abstract
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal stress responses.
Collapse
Affiliation(s)
- Julie Qiaojin Lin
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes Dev 2020; 34:1190-1209. [PMID: 32820037 PMCID: PMC7462064 DOI: 10.1101/gad.333906.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iván Mestres
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Centre, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
38
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Krivopalov SA, Yushkov BG, Bykova MY, Zabegalov KN. [Gender differences in the pool of free amino acid neurotransmitters in Krushinsky-Molodkina rats]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:124-129. [PMID: 32420892 DOI: 10.18097/pbmc20206602124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study of the role of neurotransmitter systems in the pathogenesis of epilepsy is one of the priorities of epileptology. New data on the functions of free neurotransmitter-like amino acid in the central nervous system are of the greatest importance and determine the prospects for the development of novel effective anticonvulsants. It is widely believed in clinical medicine that epilepsy has distinct gender characteristics. The aim of this study was to investigate the gender peculiarities in the content of neurotransmitter amino acids in the brain of Krushinsky-Molodkina (KM) rats, which were used as model organisms for the study of genetically induced audiogenic epilepsy. The content of Asp, Glu, GABA, Gly, and Tau of the medulla oblongata, hippocampus and cerebral cortex were determined using high-performance liquid chromatography (HPLC) in intact KM rats, KM rats exposed to a series of epileptiform seizures, and Wistar rats (control group). Both the Wistar and KM rats had gender distinctions in the distribution of free amino acids among the investigated brain parts. The audiogenic epilepsy was characterized by smoothing gender differences as well as differences between the concentrations of free amino acids in the cortex and medulla oblongata, specific for Wistar rats. The changes observed in male rats after the set of seizures included the increase in GABA concentration and a decrease in the Gly level in all investigated brain parts, as well as the decrease of the Tau content in the cortex and hippocampus. At the same time, the Glu content in cortex increased, while the Asp level decreased. After 6 days of audiogenic stimulations the female KM rats demonstrated the increase in the Glu level in all investigated brain parts, the increase in Gly and Asp levels in hippocampus, and no changes in the GABA content. Thus, after the set of epileptiform seizures the KM rats achieved a new steady state of the studied amino acids pool, which differed in males and females. In this case, gender differences significantly changed after the seizures.
Collapse
Affiliation(s)
- S A Krivopalov
- Institute of Immunology and Physiology, Ural Branch of RAS, Yekaterinburg, Russia; Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| | - B G Yushkov
- Institute of Immunology and Physiology, Ural Branch of RAS, Yekaterinburg, Russia; Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | - M Yu Bykova
- Institute of Immunology and Physiology, Ural Branch of RAS, Yekaterinburg, Russia
| | - K N Zabegalov
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
40
|
Fisher NM, Gould RW, Gogliotti RG, McDonald AJ, Badivuku H, Chennareddy S, Buch AB, Moore AM, Jenkins MT, Robb WH, Lindsley CW, Jones CK, Conn PJ, Niswender CM. Phenotypic profiling of mGlu 7 knockout mice reveals new implications for neurodevelopmental disorders. GENES BRAIN AND BEHAVIOR 2020; 19:e12654. [PMID: 32248644 DOI: 10.1111/gbb.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.
Collapse
Affiliation(s)
- Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert W Gould
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Annalise J McDonald
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Hana Badivuku
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Susmita Chennareddy
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Aditi B Buch
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Annah M Moore
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew T Jenkins
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - W Hudson Robb
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
41
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
42
|
Needs HI, Henley BS, Cavallo D, Gurung S, Modebadze T, Woodhall G, Henley JM. Changes in excitatory and inhibitory receptor expression and network activity during induction and establishment of epilepsy in the rat Reduced Intensity Status Epilepticus (RISE) model. Neuropharmacology 2019; 158:107728. [PMID: 31356824 PMCID: PMC6892273 DOI: 10.1016/j.neuropharm.2019.107728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/19/2023]
Abstract
The RISE model is an effective system to study the underlying molecular and cellular mechanisms involved in the initiation and maintenance of epilepsy in vivo. Here we profiled the expression of excitatory and inhibitory neurotransmitter receptor subunits and synaptic scaffolding proteins in the hippocampus and temporal lobe and compared these changes with alterations in network activity at specific timepoints during epileptogenesis. Significant changes occurred in all of the ionotropic glutamate receptor subunits tested during epilepsy induction and progression and the profile of these changes differed between the hippocampus and temporal lobe. Notably, AMPAR subunits were dramatically decreased during the latent phase of epilepsy induction, matched by a profound decrease in the network response to kainate application in the hippocampus. Moreover, decreases in the GABAAβ3 subunit are consistent with a loss of inhibitory input contributing to the perturbation of excitatory/inhibitory balance and seizure generation. These data highlight the synaptic reorganisation that mediates the relative hypoexcitability prior to the manifestation of seizures and subsequent hyperexcitability when spontaneous seizures develop. These patterns of changes give new insight into the mechanisms underpinning epilepsy and provide a platform for future investigations targeting particular receptor subunits to reduce or prevent seizures.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Benjamin S Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Damiana Cavallo
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Tamara Modebadze
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Gavin Woodhall
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
43
|
Brenet A, Hassan-Abdi R, Somkhit J, Yanicostas C, Soussi-Yanicostas N. Defective Excitatory/Inhibitory Synaptic Balance and Increased Neuron Apoptosis in a Zebrafish Model of Dravet Syndrome. Cells 2019; 8:cells8101199. [PMID: 31590334 PMCID: PMC6829503 DOI: 10.3390/cells8101199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dravet syndrome is a type of severe childhood epilepsy that responds poorly to current anti-epileptic drugs. In recent years, zebrafish disease models with Scn1Lab sodium channel deficiency have been generated to seek novel anti-epileptic drug candidates, some of which are currently undergoing clinical trials. However, the spectrum of neuronal deficits observed following Scn1Lab depletion in zebrafish larvae has not yet been fully explored. To fill this gap and gain a better understanding of the mechanisms underlying neuron hyperexcitation in Scn1Lab-depleted larvae, we analyzed neuron activity in vivo using combined local field potential recording and transient calcium uptake imaging, studied the distribution of excitatory and inhibitory synapses and neurons as well as investigated neuron apoptosis. We found that Scn1Lab-depleted larvae displayed recurrent epileptiform seizure events, associating massive synchronous calcium uptakes and ictal-like local field potential bursts. Scn1Lab-depletion also caused a dramatic shift in the neuronal and synaptic balance toward excitation and increased neuronal death. Our results thus provide in vivo evidence suggesting that Scn1Lab loss of function causes neuron hyperexcitation as the result of disturbed synaptic balance and increased neuronal apoptosis.
Collapse
Affiliation(s)
- Alexandre Brenet
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | | | - Julie Somkhit
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | | | | |
Collapse
|
44
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Development of the Concept for Stem Cell-Based Developmental Neurotoxicity Evaluation. Toxicol Sci 2019; 165:14-20. [PMID: 29982725 DOI: 10.1093/toxsci/kfy175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human brain development consists of a series of complex spatiotemporal processes that if disturbed by chemical exposure causes irreversible impairments of the nervous system. To evaluate a chemical disturbance in an alternative assay, the concept evolved that the complex procedure of brain development can be disassembled into several neurodevelopmental endpoints which can be represented by a combination of different alternative assays. In this review article, we provide a scientific rationale for the neurodevelopmental endpoints that are currently chosen to establish assays with human stem/and progenitor cells. Assays covering these major neurodevelopmental endpoints are thought to assemble as building blocks of a DNT testing battery.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.,Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019; 127:210-222. [PMID: 30831192 PMCID: PMC6753933 DOI: 10.1016/j.nbd.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Juan Arranz
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Balducci
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gentzane Sánchez-Elexpuru
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Sònia Najas
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Alberto Parras
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Isabel Pijuan
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gaetano Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, 08020 Barcelona, Spain
| | - Maria J Barallobre
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina P Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Susana de la Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Maria L Arbonés
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
46
|
Mandal PK, Ersland L. Editorial: Predictive Imagable Biomarkers for Neurodegenerative and Neurodevelopmental Diseases. Front Neurol 2019; 10:583. [PMID: 31263443 PMCID: PMC6585100 DOI: 10.3389/fneur.2019.00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy Laboratory (NINS), National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
47
|
Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. J Cell Mol Med 2019; 23:4494-4504. [PMID: 31087543 PMCID: PMC6584734 DOI: 10.1111/jcmm.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of epileptic seizures in Alzheimer's disease (AD) has attracted an increasing amount of attention in recent years, and many cohort studies have found several risk factors associated with the genesis of seizures in AD. Among these factors, young age and severe dementia are seemingly contradictory and independent risk factors, indicating that the pathogenesis of epileptic seizures is, to a certain extent, stage‐dependent. A disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) is a crucial α‐secretase responsible for ectodomain shedding of its substrates; thus, the function of this protein depends on the biological effects of its substrates. Intriguingly, transgenic models have demonstrated ADAM10 to be associated with epilepsy. Based on the biological effects of its substrates, the potential pathogenic roles of ADAM10 in epileptic seizures can be classified into amyloidogenic processes in the ageing stage and cortical dysplasia in the developmental stage. Therefore, ADAM10 is reviewed here as a stage‐dependent modulator in the pathogenesis of epilepsy. Current data regarding ADAM10 in epileptic seizures were collected and reviewed for potential pathogenic roles (ie amyloidogenic processes and cortical dysplasia) and regulatory mechanisms (ie transcriptional and posttranscriptional regulation). These findings are then discussed in terms of the significance of the stage‐dependent functions of ADAM10 in epilepsy. Several potential targets for seizure control, such as candidate transcription factors and microRNAs that regulate ADAM10, as well as potential genetic screening tools for the early recognition of cortical dysplasia, have been suggested but must be studied in more detail.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Pathogenic potential of human SLC12A5 variants causing KCC2 dysfunction. Brain Res 2019; 1710:1-7. [DOI: 10.1016/j.brainres.2018.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
|
49
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
50
|
Olson PD, Zarowiecki M, James K, Baillie A, Bartl G, Burchell P, Chellappoo A, Jarero F, Tan LY, Holroyd N, Berriman M. Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms. EvoDevo 2018; 9:21. [PMID: 30455861 PMCID: PMC6225667 DOI: 10.1186/s13227-018-0110-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. RESULTS RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5-30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-β/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing 'signals' and 'switches' showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. CONCLUSIONS Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites.
Collapse
Affiliation(s)
- Peter D. Olson
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Magdalena Zarowiecki
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Katherine James
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Andrew Baillie
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Georgie Bartl
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Phil Burchell
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Azita Chellappoo
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Francesca Jarero
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Li Ying Tan
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matt Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|