1
|
Samani EK, Hasan SMN, Waas M, Keszei AFA, Xu X, Heydari M, Hill ME, McLaurin J, Kislinger T, Mazhab-Jafari MT. Unveiling the structural proteome of an Alzheimer's disease rat brain model. Structure 2024:S0969-2126(24)00494-5. [PMID: 39615488 DOI: 10.1016/j.str.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024]
Abstract
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes' structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer's disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
Collapse
Affiliation(s)
- Elnaz Khalili Samani
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Waas
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mahtab Heydari
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Cummings JL, Brubaker M, Selzler KJ, Gonzalez ST, Patel M, Stahl SM. An overview of the pathophysiology of agitation in Alzheimer's dementia with a focus on neurotransmitters and circuits. CNS Spectr 2024:1-10. [PMID: 39438777 DOI: 10.1017/s1092852924000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's dementia (AD) is a progressive, neurodegenerative disease often accompanied by neuropsychiatric symptoms that profoundly impact both patients and caregivers. Agitation is among the most prevalent and distressing of these symptoms and often requires treatment. Appropriate therapeutic interventions depend on understanding the biological basis of agitation and how it may be affected by treatment. This narrative review discusses a proposed pathophysiology of agitation in Alzheimer's dementia based on convergent evidence across research approaches. Available data indicate that agitation in Alzheimer's dementia is associated with an imbalance of activity between key prefrontal and subcortical brain regions. The monoamine neurotransmitter systems serve as key modulators of activity within these brain regions and circuits and are rendered abnormal in AD. Patients with AD who exhibited agitation symptoms during life have alterations in neurotransmitter nuclei and related systems when the brain is examined at autopsy. The authors present a model of agitation in Alzheimer's dementia in which noradrenergic hyperactivity along with serotonergic deficits and dysregulated striatal dopamine release contribute to agitated and aggressive behaviors.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Malaak Brubaker
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | | | | | - Mehul Patel
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, California; Department of Psychiatry and Neurology, University of California, Riverside School of Medicine, Riverside, California, USA
| |
Collapse
|
3
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2024:revneuro-2024-0081. [PMID: 39240134 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C Y Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
4
|
Watanangura A, Meller S, Farhat N, Suchodolski JS, Pilla R, Khattab MR, Lopes BC, Bathen-Nöthen A, Fischer A, Busch-Hahn K, Flieshardt C, Gramer M, Richter F, Zamansky A, Volk HA. Behavioral comorbidities treatment by fecal microbiota transplantation in canine epilepsy: a pilot study of a novel therapeutic approach. Front Vet Sci 2024; 11:1385469. [PMID: 38978633 PMCID: PMC11229054 DOI: 10.3389/fvets.2024.1385469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Anxiety and cognitive dysfunction are frequent, difficult to treat and burdensome comorbidities in human and canine epilepsy. Fecal microbiota transplantation (FMT) has been shown to modulate behavior in rodent models by altering the gastrointestinal microbiota (GIM). This study aims to investigate the beneficial effects of FMT on behavioral comorbidities in a canine translational model of epilepsy. Methods Nine dogs with drug-resistant epilepsy (DRE) and behavioral comorbidities were recruited. The fecal donor had epilepsy with unremarkable behavior, which exhibited a complete response to phenobarbital, resulting in it being seizure-free long term. FMTs were performed three times, two weeks apart, and the dogs had follow-up visits at three and six months after FMTs. Comprehensive behavioral analysis, including formerly validated questionnaires and behavioral tests for attention deficit hyperactivity disorder (ADHD)- and fear- and anxiety-like behavior, as well as cognitive dysfunction, were conducted, followed by objective computational analysis. Blood samples were taken for the analysis of antiseizure drug (ASD) concentrations, hematology, and biochemistry. Urine neurotransmitter concentrations were measured. Fecal samples were subjected to analysis using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based Dysbiosis Index (DI) assessment, and short-chain fatty acid (SCFA) quantification. Results Following FMT, the patients showed improvement in ADHD-like behavior, fear- and anxiety-like behavior, and quality of life. The excitatory neurotransmitters aspartate and glutamate were decreased, while the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and GABA/glutamate ratio were increased compared to baseline. Only minor taxonomic changes were observed, with a decrease in Firmicutes and a Blautia_A species, while a Ruminococcus species increased. Functional gene analysis, SCFA concentration, blood parameters, and ASD concentrations remained unchanged. Discussion Behavioral comorbidities in canine IE could be alleviated by FMT. This study highlights FMT's potential as a novel approach to improving behavioral comorbidities and enhancing the quality of life in canine patients with epilepsy.
Collapse
Affiliation(s)
- Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nareed Farhat
- Tech4Animals Lab, Information Systems Department, University of Haifa, Haifa, Israel
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, United States
| | - Mohammad R. Khattab
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bruna C. Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, United States
| | | | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathrin Busch-Hahn
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna Zamansky
- Tech4Animals Lab, Information Systems Department, University of Haifa, Haifa, Israel
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
5
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
6
|
Salcedo C, Pozo Garcia V, García-Adán B, Ameen AO, Gegelashvili G, Waagepetersen HS, Freude KK, Aldana BI. Increased glucose metabolism and impaired glutamate transport in human astrocytes are potential early triggers of abnormal extracellular glutamate accumulation in hiPSC-derived models of Alzheimer's disease. J Neurochem 2024; 168:822-840. [PMID: 38063257 DOI: 10.1111/jnc.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 05/19/2024]
Abstract
Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.
Collapse
Affiliation(s)
- Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Pozo Garcia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernat García-Adán
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georgi Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Thirion A, Loots DT, Williams ME, Solomons R, Mason S. 1H-NMR metabolomics investigation of CSF from children with HIV reveals altered neuroenergetics due to persistent immune activation. Front Neurosci 2024; 18:1270041. [PMID: 38745940 PMCID: PMC11091326 DOI: 10.3389/fnins.2024.1270041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background HIV can invade the central nervous system (CNS) early during infection, invading perivascular macrophages and microglia, which, in turn, release viral particles and immune mediators that dysregulate all brain cell types. Consequently, children living with HIV often present with neurodevelopmental delays. Methods In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to analyze the neurometabolic profile of HIV infection using cerebrospinal fluid samples obtained from 17 HIV+ and 50 HIV- South African children. Results Nine metabolites, including glucose, lactate, glutamine, 1,2-propanediol, acetone, 3-hydroxybutyrate, acetoacetate, 2-hydroxybutyrate, and myo-inositol, showed significant differences when comparing children infected with HIV and those uninfected. These metabolites may be associated with activation of the innate immune response and disruption of neuroenergetics pathways. Conclusion These results elucidate the neurometabolic state of children infected with HIV, including upregulation of glycolysis, dysregulation of ketone body metabolism, and elevated reactive oxygen species production. Furthermore, we hypothesize that neuroinflammation alters astrocyte-neuron communication, lowering neuronal activity in children infected with HIV, which may contribute to the neurodevelopmental delay often observed in this population.
Collapse
Affiliation(s)
- Anicia Thirion
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Monray E. Williams
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
9
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
10
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
11
|
Baek JH, Park H, Kang H, Kim R, Kang JS, Kim HJ. The Role of Glutamine Homeostasis in Emotional and Cognitive Functions. Int J Mol Sci 2024; 25:1302. [PMID: 38279303 PMCID: PMC10816396 DOI: 10.3390/ijms25021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, 15 Jinju-daero 816 Beongil, Jinju 52727, Gyeongnam, Republic of Korea; (J.H.B.); (H.P.); (H.K.); (R.K.); (J.S.K.)
| |
Collapse
|
12
|
Lin TK, Yeh KC, Pai MS, Hsieh PW, Wang SJ. Ursolic acid inhibits the synaptic release of glutamate and prevents glutamate excitotoxicity in rats. Eur J Pharmacol 2024; 963:176280. [PMID: 38113967 DOI: 10.1016/j.ejphar.2023.176280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The present study evaluated the effect of ursolic acid, a natural pentacyclic triterpenoid, on glutamate release in rat cortical nerve terminals (synaptosomes) and its neuroprotection in a kainic acid-induced excitotoxicity rat model. In cortical synaptosomes, ursolic acid produced a concentration-dependent inhibition of evoked glutamate release with a half-maximum inhibition of release value of 9.5 μM, and calcium-free medium and the P/Q -type Ca2+ channel blocker, ω-agatoxin IVA, but not ω-conotoxin GVIA, an N-type Ca2+ channel blocker, prevented the ursoloic acid effect. The molecular docking study indicated that ursolic acid interacted with P/Q-type Ca2+ channels. Ursolic acid also significantly decreased the depolarization-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the subsequent phosphorylation of synapsin I, and the ursolic acid effect on evoked glutamate release was inhibited by the CaMKII inhibitor KN 62 in synaptosomes. In addition, in rats that were intraperitoneally injected with ursolic acid 30 min before kainic acid intraperitoneal injection, cortical neuronal degeneration was attenuated. This effect of ursolic acid in the improvement of kainic acid-induced neuronal damage was associated with the reduction of kainic acid-induced glutamate increase in the cortex of rats; this was characterized by the reduction of glutamate and glutaminase levels and elevation of glutamate dehydrogenase, glutamate transporter 1, glutamate-aspartate transporter, and glutamine synthetase protein levels. These results suggest that ursolic acid inhibits glutamate release from cortical synaptosomes by decreasing P/Q-type Ca2+ channel activity and subsequently suppressing CaMKII and exerts a preventive effect against glutamate neurotoxicity by controlling glutamate levels.
Collapse
Affiliation(s)
- Tzu-Kang Lin
- Department of Neurosurgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Kun-Chieh Yeh
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ming-Shang Pai
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, 33303, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33303, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
13
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Singh S, Ahuja A, Pathak S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders. Comb Chem High Throughput Screen 2024; 27:2043-2061. [PMID: 38243956 DOI: 10.2174/0113862073280680240101065732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| |
Collapse
|
15
|
Ramadan FA, Arani G, Jafri A, Thompson T, Bland VL, Renquist B, Raichlen DA, Alexander GE, Klimentidis YC. Mendelian Randomization of Blood Metabolites Suggests Circulating Glutamine Protects Against Late-Onset Alzheimer's Disease. J Alzheimers Dis 2024; 98:1069-1078. [PMID: 38489176 DOI: 10.3233/jad-231063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Late-onset Alzheimer's disease (LOAD) represents a growing health burden. Previous studies suggest that blood metabolite levels influence risk of LOAD. Objective We used a genetics-based study design which may overcome limitations of other epidemiological studies to assess the influence of metabolite levels on LOAD risk. Methods We applied Mendelian randomization (MR) to evaluate bi-directional causal effects using summary statistics from the largest genome-wide association studies (GWAS) of 249 blood metabolites (n = 115,082) and GWAS of LOAD (ncase = 21,982, ncontrol = 41,944). Results MR analysis of metabolites as exposures revealed a negative association of genetically-predicted glutamine levels with LOAD (Odds Ratio (OR) = 0.83, 95% CI = 0.73, 0.92) that was consistent in multiple sensitivity analyses. We also identified a positive association of genetically-predicted free cholesterol levels in small LDL (OR = 1.79, 95% CI = 1.36, 2.22) on LOAD. Using genetically-predicted LOAD as the exposure, we identified associations with phospholipids to total lipids ratio in large LDL (OR = 0.96, 95% CI = 0.94, 0.98), but not with glutamine, suggesting that the relationship between glutamine and LOAD is unidirectional. Conclusions Our findings support previous evidence that higher circulating levels of glutamine may be a target for protection against LOAD.
Collapse
Affiliation(s)
- Ferris A Ramadan
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Gayatri Arani
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Ayan Jafri
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Tingting Thompson
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Victoria L Bland
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Benjamin Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - David A Raichlen
- Department of Biological Sciences and Anthropology, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Gene E Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
18
|
Srivastava J, Trivedi R, Saxena P, Yadav S, Gupta R, Nityanand S, Kumar D, Chaturvedi CP. Bone marrow plasma metabonomics of idiopathic acquired aplastic anemia patients using 1H nuclear magnetic resonance spectroscopy. Metabolomics 2023; 19:94. [PMID: 37975930 DOI: 10.1007/s11306-023-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Idiopathic acquired aplastic anemia (AA) is a bone marrow failure disorder where aberrant T-cell functions lead to depletion of hematopoietic stem and progenitor cells in the bone marrow (BM) microenvironment. T-cells undergo metabolic rewiring, which regulates their proliferation and differentiation. Therefore, studying metabolic variation in AA patients may aid us with a better understanding of the T-cell regulatory pathways governed by metabolites and their pathological engagement in the disease. OBJECTIVE To identify the differential metabolites in BM plasma of AA patients, AA follow-up (AAF) in comparison to normal controls (NC) and to identify potential disease biomarker(s). METHODS The study used 1D 1H NMR Carr-Purcell-Meiboom-Gill (CPMG) spectra to identify the metabolites present in the BM plasma samples of AA (n = 40), AAF (n = 16), and NC (n = 20). Metabolic differences between the groups and predictive biomarkers were identified by using multivariate analysis and receiver operating characteristic (ROC) module of Metaboanalyst V5.0 tool, respectively. RESULTS The AA and AAF samples were well discriminated from NC group as per Principal Component analysis (PCA). Further, we found significant alteration in the levels of 17 metabolites in AA involved in amino-acid (Leucine, serine, threonine, phenylalanine, lysine, histidine, valine, tyrosine, and proline), carbohydrate (Glucose, lactate and mannose), fatty acid (Acetate, glycerol myo-inositol and citrate), and purine metabolism (hypoxanthine) in comparison to NC. Additionally, biomarker analysis predicted Hypoxanthine and Acetate can be used as a potential biomarker. CONCLUSION The study highlights the significant metabolic alterations in the BM plasma of AA patients which may have implication in the disease pathobiology.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pragati Saxena
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Chandra P Chaturvedi
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
19
|
Zhan Q, Kong F. Mechanisms associated with post-stroke depression and pharmacologic therapy. Front Neurol 2023; 14:1274709. [PMID: 38020612 PMCID: PMC10651767 DOI: 10.3389/fneur.2023.1274709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stroke is one of the most common cerebrovascular diseases, which is the cause of long-term mental illness and physical disability, Post-stroke depression (PSD) is the most common neuropsychiatric complication after stroke, and its mechanisms are characterized by complexity, plurality, and diversity, which seriously affects the quality of survival and prognosis of patients. Studies have focused on and recognized neurotransmitter-based mechanisms and selective serotonin-reuptake inhibitors (SSRIs) can be used to treat PSD. Neuroinflammation, neuroendocrinology, neurotrophic factors, and the site of the stroke lesion may affect neurotransmitters. Thus the mechanisms of PSD have been increasingly studied. Pharmacological treatment mainly includes SSRIs, noradrenergic and specific serotonergic antidepressant (NaSSA), anti-inflammatory drugs, vitamin D, ect, which have been confirmed to have better efficacy by clinical studies. Currently, there is an increasing number of studies related to the mechanisms of PSD. However, the mechanisms and pharmacologic treatment of PSD is still unclear. In the future, in-depth research on the mechanisms and treatment of PSD is needed to provide a reference for the prevention and treatment of clinical PSD.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fanyi Kong
- Neurosurgery, Affiliated First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Abyadeh M, Yadav VK, Kaya A. Common molecular signatures between coronavirus infection and Alzheimer's disease reveal targets for drug development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544970. [PMID: 37398415 PMCID: PMC10312734 DOI: 10.1101/2023.06.14.544970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vijay K. Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
21
|
Das TK, Ganesh BP, Fatima-Shad K. Common Signaling Pathways Involved in Alzheimer's Disease and Stroke: Two Faces of the Same Coin. J Alzheimers Dis Rep 2023; 7:381-398. [PMID: 37220617 PMCID: PMC10200243 DOI: 10.3233/adr-220108] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) and stroke are two interrelated neurodegenerative disorders which are the leading cause of death and affect the neurons in the brain and central nervous system. Although amyloid-β aggregation, tau hyperphosphorylation, and inflammation are the hallmarks of AD, the exact cause and origin of AD are still undefined. Recent enormous fundamental discoveries suggest that the amyloid hypothesis of AD has not been proven and anti-amyloid therapies that remove amyloid deposition have not yet slowed cognitive decline. However, stroke, mainly ischemic stroke (IS), is caused by an interruption in the cerebral blood flow. Significant features of both disorders are the disruption of neuronal circuitry at different levels of cellular signaling, leading to the death of neurons and glial cells in the brain. Therefore, it is necessary to find out the common molecular mechanisms of these two diseases to understand their etiological connections. Here, we summarized the most common signaling cascades including autotoxicity, ApoE4, insulin signaling, inflammation, mTOR-autophagy, notch signaling, and microbiota-gut-brain axis, present in both AD and IS. These targeted signaling pathways reveal a better understanding of AD and IS and could provide a distinguished platform to develop improved therapeutics for these diseases.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kaneez Fatima-Shad
- School of Life Sciences, University of Technology Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, NSW, Australia
| |
Collapse
|
22
|
Ying N, Luo H, Li B, Gong K, Shu Q, Liang F, Gao H, Huang T, Zheng H. Exercise Alleviates Behavioral Disorders but Shapes Brain Metabolism of APP/PS1 Mice in a Region- and Exercise-Specific Manner. J Proteome Res 2023. [PMID: 37126732 DOI: 10.1021/acs.jproteome.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exercise plays a beneficial role in the management of Alzheimer's disease (AD), but its effects on brain metabolism are still far from being understood. Here, we examined behavioral changes of APP/PS1 mice after high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) and analyzed metabolomics profiles in the hippocampus, cortex, and hypothalamus by using nuclear magnetic resonance spectroscopy to explore potential metabolic mechanisms. The results demonstrate that both HIIT and MICT alleviated anxiety/depressive-like behaviors as well as learning and memory impairments of AD mice. Metabolomics analysis reveals that energy metabolism, neurotransmitter metabolism, and membrane metabolism were significantly altered in all three brain regions after both types of exercises. Amino acid metabolism was detected to be affected in the cortex and hypothalamus after HIIT and in the hippocampus and hypothalamus after MICT. However, only HIIT significantly altered astrocyte-neuron metabolism in the hippocampus and hypothalamus of AD mice. Therefore, our study suggests that exercise can shape brain metabolism of AD mice in a region- and exercise-specific manner, indicating that the precise modification of brain metabolism by a specific type of exercise might be a novel perspective for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baixia Li
- School of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Kaiyan Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fei Liang
- College of Physical Education, Gannan Normal University, Ganzhou 341000, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
23
|
Powers M, Minchella D, Gonzalez-Acevedo M, Escutia-Plaza D, Wu J, Heger C, Milne G, Aschner M, Liu Z. Loss of hepatic manganese transporter ZIP8 disrupts serum transferrin glycosylation and the glutamate-glutamine cycle. J Trace Elem Med Biol 2023; 78:127184. [PMID: 37163821 DOI: 10.1016/j.jtemb.2023.127184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND ZIP8, encoded by SLC39A8, is a membrane transporter that facilitates the cellular uptake of divalent biometals including zinc (Zn), manganese (Mn), and iron (Fe). The hepatic system has long been accepted as the central modulator for whole-body biometal distribution. Earlier investigations suggest the propensity of ZIP8 to prioritize Mn influx, as opposed to Fe or Zn, in hepatocytes. Hepatic ZIP8 Mn transport is crucial for maintaining homeostasis of various Mn-dependent metalloenzymes and their associated pathways. Herein, we hypothesize that a drastic decrease in systemic Mn, via the loss of hepatic ZIP8, disrupts two unique cellular pathways, post-translational glycosylation and the glutamate-glutamine cycle. METHODS ZIP8 liver-specific knockout (LSKO) mice were chosen in an attempt to substantially decrease whole-body Mn levels. To further elucidate the role of Mn in serum glycosylation, a Mn-deficient diet was adopted in conjunction with the LSKO mice to model a near-complete loss of systemic Mn. After the treatment course, transferrin sialylation profiles were determined using imaged capillary isoelectric focusing (icIEF). We also investigated the role of Mn in the glutamate-glutamine cycle; the conversion of glutamate to glutamine in F/F and LSKO mice was assessed by the glutamine/glutamate ratio in cerebrospinal fluid (CSF) via HPLC-MS. An open-field study was ultimately conducted to check if these mice displayed atypical behavior. RESULTS Two major biological pathways were found to be significantly altered due to the loss of hepatic ZIP8. We identified a disparity between F/F and LSKO transferrin sialylation profiles that were exacerbated under a Mn-deficient diet. Additionally, we discovered a neurotransmitter imbalance between the levels of glutamine and glutamate, exclusive to LSKO mice. This was characterized by the decreased glutamine/glutamate ratio in CSF. Secondary to the neurotransmitter alteration, LSKO mice exhibited an increase in locomotor activity in an open-field. CONCLUSION Our model successfully established a connection between the loss of hepatic ZIP8 and two Mn-dependent cellular pathways, namely, protein glycosylation and the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- Michael Powers
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Dean Minchella
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | | | - Jiaqi Wu
- ProteinSimple, A Bio-Techne Brand, San Jose, CA, USA
| | - Chris Heger
- ProteinSimple, A Bio-Techne Brand, San Jose, CA, USA
| | - Ginger Milne
- Neurochemistry Core, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Michael Aschner
- Department of Cellular Biology and Pharmacology, Albert Einstein Medical College, New York, USA
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.
| |
Collapse
|
24
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
25
|
ALNasser MN, AlSaadi AM, Whitby A, Kim DH, Mellor IR, Carter WG. Acai Berry ( Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress. Life (Basel) 2023; 13:life13041019. [PMID: 37109548 PMCID: PMC10144606 DOI: 10.3390/life13041019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aberrant accumulation of the neurotransmitter L-glutamate (L-Glu) has been implicated as a mechanism of neurodegeneration, and the release of L-Glu after stroke onset leads to a toxicity cascade that results in neuronal death. The acai berry (Euterpe oleracea) is a potential dietary nutraceutical. The aim of this research was to investigate the neuroprotective effects of acai berry aqueous and ethanolic extracts to reduce the neurotoxicity to neuronal cells triggered by L-Glu application. L-Glu and acai berry effects on cell viability were quantified using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and effects on cellular bioenergetics were assessed via quantitation of the levels of cellular ATP, mitochondrial membrane potential (MMP), and production of reactive oxygen species (ROS) in neuroblastoma cells. Cell viability was also evaluated in human cortical neuronal progenitor cell culture after L-Glu or/and acai berry application. In isolated cells, activated currents using patch-clamping were employed to determine whether L-Glu neurotoxicity was mediated by ionotropic L-Glu-receptors (iGluRs). L-Glu caused a significant reduction in cell viability, ATP, and MMP levels and increased ROS production. The co-application of both acai berry extracts with L-Glu provided neuroprotection against L-Glu with sustained cell viability, decreased LDH production, restored ATP and MMP levels, and reduced ROS levels. Whole-cell patch-clamp recordings showed that L-Glu toxicity is not mediated by the activation of iGluRs in neuroblastoma cells. Fractionation and analysis of acai berry extracts with liquid chromatography-mass spectrometry identified several phytochemical antioxidants that may have provided neuroprotective effects. In summary, the acai berry contains nutraceuticals with antioxidant activity that may be a beneficial dietary component to limit pathological deficits triggered by excessive L-Glu accumulations.
Collapse
Affiliation(s)
- Maryam N ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ayman M AlSaadi
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Alison Whitby
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian R Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wayne G Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
26
|
Hsieh CJ, Chiou JM, Chen TF, Chen YC, Chen JH. Association of subclinical depressive symptoms and sleep with cognition in the community-dwelling older adults. J Formos Med Assoc 2023:S0929-6646(23)00072-4. [PMID: 36964100 DOI: 10.1016/j.jfma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND /Purpose: This study aimed to explore the association of subclinical depressive symptoms and sleep with cognition in community-dwelling Taiwanese older adults. METHODS This four-year prospective cohort study (2015-2019) included 379 participants aged 65 years or older from the annual senior health checkup program at National Taiwan University Hospital who were followed up two years later. Global and domain cognitive functions were assessed using validated neuropsychological tests. Depressive symptoms were evaluated using the Center for Epidemiologic Studies Depression (CES-D) Scale. Sleep quality was evaluated using the Pittsburg Sleep Quality Index (PSQI). Excessive daytime sleepiness was assessed using the Epworth Sleepiness Scale (ESS). Generalized linear mixed models were used to explore the associations of subclinical depressive symptoms and sleep variables with cognition, adjusting for important covariates. Stratification analyses were performed using the sleep variables. RESULTS Over time, depressive symptoms were associated with poor performance of memory (βˆ = 0.24, P = 0.04) and executive function (βˆ = -0.24, P = 0.03). Poor sleep quality (elevated PSQI score) was associated with poor memory performance (βˆ = -0.04 to -0.03, P < 0.05). Excessive daytime sleepiness (elevated ESS score) was associated with poor performance of memory (βˆ = -0.02, P < 0.05) and executive function (βˆ = -0.02, P = 0.001). At baseline, better sleep quality and no excessive daytime sleepiness were associated with better memory performance over time. CONCLUSION Subclinical depressive symptoms, worse sleep quality, and excessive daytime sleepiness were differentially associated with impairment of cognitive domains (mainly memory and executive function).
Collapse
Affiliation(s)
- Ching-Jow Hsieh
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Jeng-Min Chiou
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Jen-Hau Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
28
|
Matsumura K, Choi IB, Asokan M, Le NN, Natividad L, Dobbs LK. Striatal enkephalin supports maintenance of conditioned cocaine reward during extinction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529807. [PMID: 36865224 PMCID: PMC9980085 DOI: 10.1101/2023.02.23.529807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Drug predictive cues and contexts exert powerful control over behavior and can incite drug seeking and taking. This association and the behavioral output are encoded within striatal circuits, and regulation of these circuits by G-protein coupled receptors affects cocaine-related behaviors. Here, we investigated how opioid peptides and G-protein coupled opioid receptors expressed in striatal medium spiny neurons (MSNs) regulate conditioned cocaine seeking. Augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP). In contrast, opioid receptor antagonists attenuate cocaine CPP and facilitate extinction of alcohol CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. We generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing MSNs (D2-PenkKO) and tested them for cocaine CPP. Low striatal enkephalin levels did not attenuate acquisition or expression of CPP; however, D2-PenkKOs showed faster extinction of cocaine CPP. Single administration of the non-selective opioid receptor antagonist naloxone prior to preference testing blocked expression of CPP selectively in females, but equally between genotypes. Repeated administration of naloxone during extinction did not facilitate extinction of cocaine CPP for either genotype, but rather prevented extinction in D2-PenkKO mice. We conclude that while striatal enkephalin is not necessary for acquisition of cocaine reward, it maintains the learned association between cocaine and its predictive cues during extinction learning. Further, sex and pre-existing low striatal enkephalin levels may be important considerations for use of naloxone in treating cocaine use disorder.
Collapse
|
29
|
Proliferating Astrocytes in Primary Culture Do Not Depend upon Mitochondrial Respiratory Complex I Activity or Oxidative Phosphorylation. Cells 2023; 12:cells12050683. [PMID: 36899819 PMCID: PMC10001222 DOI: 10.3390/cells12050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding the role of astrocytes in the development of the nervous system and neurodegenerative disorders implies a necessary knowledge of the oxidative metabolism of proliferating astrocytes. The electron flux through mitochondrial respiratory complexes and oxidative phosphorylation may impact the growth and viability of these astrocytes. Here, we aimed at assessing to which extent mitochondrial oxidative metabolism is required for astrocyte survival and proliferation. Primary astrocytes from the neonatal mouse cortex were cultured in a physiologically relevant medium with the addition of piericidin A or oligomycin at concentrations that fully inhibit complex I-linked respiration and ATP synthase, respectively. The presence of these mitochondrial inhibitors for up to 6 days in a culture medium elicited only minor effects on astrocyte growth. Moreover, neither the morphology nor the proportion of glial fibrillary acidic protein-positive astrocytes in culture was affected by piericidin A or oligomycin. Metabolic characterization of the astrocytes showed a relevant glycolytic metabolism under basal conditions, despite functional oxidative phosphorylation and large spare respiratory capacity. Our data suggest that astrocytes in primary culture can sustainably proliferate when their energy metabolism relies only on aerobic glycolysis since their growth and survival do not require electron flux through respiratory complex I or oxidative phosphorylation.
Collapse
|
30
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
31
|
Parra MA, Orellana P, Leon T, Victoria CG, Henriquez F, Gomez R, Avalos C, Damian A, Slachevsky A, Ibañez A, Zetterberg H, Tijms BM, Yokoyama JS, Piña-Escudero SD, Cochran JN, Matallana DL, Acosta D, Allegri R, Arias-Suárez BP, Barra B, Behrens MI, Brucki SMD, Busatto G, Caramelli P, Castro-Suarez S, Contreras V, Custodio N, Dansilio S, De la Cruz-Puebla M, de Souza LC, Diaz MM, Duque L, Farías GA, Ferreira ST, Guimet NM, Kmaid A, Lira D, Lopera F, Meza BM, Miotto EC, Nitrini R, Nuñez A, O'neill S, Ochoa J, Pintado-Caipa M, de Paula França Resende E, Risacher S, Rojas LA, Sabaj V, Schilling L, Sellek AF, Sosa A, Takada LT, Teixeira AL, Unaucho-Pilalumbo M, Duran-Aniotz C. Biomarkers for dementia in Latin American countries: Gaps and opportunities. Alzheimers Dement 2023; 19:721-735. [PMID: 36098676 PMCID: PMC10906502 DOI: 10.1002/alz.12757] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022]
Abstract
Limited knowledge on dementia biomarkers in Latin American and Caribbean (LAC) countries remains a serious barrier. Here, we reported a survey to explore the ongoing work, needs, interests, potential barriers, and opportunities for future studies related to biomarkers. The results show that neuroimaging is the most used biomarker (73%), followed by genetic studies (40%), peripheral fluids biomarkers (31%), and cerebrospinal fluid biomarkers (29%). Regarding barriers in LAC, lack of funding appears to undermine the implementation of biomarkers in clinical or research settings, followed by insufficient infrastructure and training. The survey revealed that despite the above barriers, the region holds a great potential to advance dementia biomarkers research. Considering the unique contributions that LAC could make to this growing field, we highlight the urgent need to expand biomarker research. These insights allowed us to propose an action plan that addresses the recommendations for a biomarker framework recently proposed by regional experts.
Collapse
Affiliation(s)
- Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde. Glasgow, United Kingdom
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College. Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
| | - Cabello G. Victoria
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Unit of Brain Health, Department of Neurology and Neurosurgery, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO). Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Rodrigo Gomez
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
- Graduate School, Faculty of Medicine, Universidad Mayor, Chile - Centro de Apoyo Comunitario a personas con Demencia Kintun. Santiago, Chile
| | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| | - Andres Damian
- Centro Uruguayo de Imagenología Molecular (CUDIM) - Centro de Medicina Nuclear e Imagenología Molecular, Hospital de Clínicas, Universidad de la República. Montevideo, Uruguay
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador y Facultad de Medicina, Universidad de Chile. Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO). Santiago, Chile
- Department of Neurology and Psyquiatry, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
| | - Agustin Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
- Global Brain Health Institute, Trinity College. Dublin, Ireland
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET). Buenos Aires, Argentina
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg. Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital. Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology. Queen Square, London, UK
- UK Dementia Research Institute at UCL. London, UK
- Hong Kong Center for Neurodegenerative Diseases. Clear Water Bay, Hong Kong, China
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience. Amsterdam UMC, The Netherlands
| | - Jennifer S. Yokoyama
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Department of Neurology, Memory and Aging Center, UCSF. San Francisco, USA
| | - Stefanie D. Piña-Escudero
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
| | | | - Diana L Matallana
- Medical School, Aging Institute and Psychiatry Department, Neuroscience PhD Program, Pontificia Universidad Javeriana. Bogotá,Colombia
- Memory and Cognition Center, Intellectus, Hospital Universitario San Ignacio. Bogotá, Colombia
- Psychiatry Department, Hospital Universitario Santa Fe de Bogotá. Bogotá, Colombia
| | - Daisy Acosta
- Universidad Nacional Pedro Henriquez Urena (UNPHU). Santo Domingo, República Dominicana
| | - Ricardo Allegri
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni. Buenos Aires, Argentina
- Department of Neurosciences, Universidad de la Costa. Barranquilla, Colombia
| | - Bianca P. Arias-Suárez
- Faculty of Human Medicine, Postgraduate Section, National University of San Marcos. Lima, Perú
| | - Bernardo Barra
- Mental Health Service, Clínica Universidad de los Andes. Santiago, Chile
- Department of Psychiatry, Medicine School, Andrés Bello University of Santiago (UNAB). Santiago, Chile
| | - Maria Isabel Behrens
- Department of Neurology and Psyquiatry, Clínica Alemana-Universidad del Desarrollo. Santiago, Chile
- Center for Advanced Clinical Research (CICA). Department of Neurology & Neurosurgery and Neuroscience Department, Faculty of Medicine, Universidad de Chile. Santiago, Chile
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile. Santiago, Chile
- Department of Neurocience, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Geraldo Busatto
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP. São Paulo, Brazil
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Unit, Faculdade de Medicina, Universidade Federal de Minas Gerais. Belo Horizonte, Brazil
| | - Sheila Castro-Suarez
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Instituto Nacional de Ciencias Neurológicas. Lima, Perú
| | | | - Nilton Custodio
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Sergio Dansilio
- Department of Neuropsychology, Institut of Neurology, Hospital de Clínicas, Faculty of Medicine,Universidad de la República. Montevideo, Uruguay
| | - Myriam De la Cruz-Puebla
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute. Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Neuroscience Institute, Autonomous University of Barcelona. Barcelona, Spain
- Department of Internal Medicine, Health Sciences Faculty, Technical University of Ambato. Tungurahua, Ecuador
| | - Leonardo Cruz de Souza
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP. São Paulo, Brazil
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill. North Carolina, USA
- School of Public Health, Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Lissette Duque
- Unit of Cognitive diseases, Neuromedicenter. Quito, Ecuador
| | - Gonzalo A. Farías
- Center for Advanced Clinical Research (CICA). Department of Neurology & Neurosurgery and Neuroscience Department, Faculty of Medicine, Universidad de Chile. Santiago, Chile
| | - Sergio T. Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil
| | - Nahuel Magrath Guimet
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni. Buenos Aires, Argentina
| | - Ana Kmaid
- Unit of Cognitive evaluation. Department of Geriatry ang Gerentology. Hospital de Clínicas. Faculty of Medicine. Universidad de la República. Montevideo, Uruguay
| | - David Lira
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Beatriz Mar Meza
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Department of Geriatry ang Gerentology, Hospital Central de la Fuerza Aérea del Perú. Lima, Perú
| | - Eliane C Miotto
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Alberto Nuñez
- Unit of Cognitive diseases, Neuromedicenter. Quito, Ecuador
| | - Santiago O'neill
- Neurosciences Institute, Favaloro Foundation University Hospital. Buenos Aires, Argentina
| | - John Ochoa
- Group of Neuropsychology and behavior, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Maritza Pintado-Caipa
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Unit of diagnosis of cognitive impairment and dementia prevention, Instituto Peruano de Neurociencias.Lima, Perú
| | - Elisa de Paula França Resende
- Global Brain Health Institute and the Memory and Aging Center, Weill Institute for Neurosciences, Departments of Neurology and Radiology & Biomedical Imaging, University of California, San Francisco (UCSF). San Francisco, USA
- Behavioral and Cognitive Neurology Unit, Faculdade de Medicina, Universidade Federal de Minas Gerais. Belo Horizonte, Brazil
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Faculdade de Ciências Médicas de Minas Gerais. Belo Horizonte, Brazil
| | - Shannon Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer’s Disease Research Center, Department of Neurology, Indiana University School of Medicine. Indianapolis, USA
| | - Luz Angela Rojas
- Research Group, MI Dneuropsy, Universidad Surcolombiana. Neiva, Colombia
| | - Valentina Sabaj
- Unit of Neuropsychogeriatry, Instituto Nacional de Geriatría. Santiago, Chile
| | - Lucas Schilling
- Neurology Service, School of Medicine, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
- Graduate Program in Biomedical Gerontology, Pontifical University of Rio Grande do Sul (PUCRS). Porto Alegre, Brazil
| | | | - Ana Sosa
- Instituto Nacional de Neurología y Neurocirugía (INNN), Manuel Velasco Suarez. Ciudad de México, México
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo Medical School, University of São Paulo. São Paulo, Brazil
| | - Antonio L. Teixeira
- Faculdade Santa Casa BH. Belo Horizonte, Brazil
- Neuropsychiatry Program, University of Texas Health Science Center at Houston. Houston, USA
| | - Martha Unaucho-Pilalumbo
- Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), University of California San Francisco. San Francisco, USA
- Departamento de Neurología, Hospital Universidad Técnica Particular de Loja. Loja, Ecuador
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez. Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez. Santiago, Chile
| |
Collapse
|
32
|
Abyadeh M, Yadav VK, Kaya A. Common Molecular Signatures Between Coronavirus Infection and Alzheimer's Disease Reveal Targets for Drug Development. J Alzheimers Dis 2023; 95:995-1011. [PMID: 37638446 DOI: 10.3233/jad-230684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| |
Collapse
|
33
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
34
|
Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Toward structural-omics of the bovine retinal pigment epithelium. Cell Rep 2022; 41:111876. [PMID: 36577381 PMCID: PMC9875382 DOI: 10.1016/j.celrep.2022.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
The use of an integrated systems biology approach to investigate tissues and organs has been thought to be impracticable in the field of structural biology, where the techniques mainly focus on determining the structure of a particular biomacromolecule of interest. Here, we report the use of cryoelectron microscopy (cryo-EM) to define the composition of a raw bovine retinal pigment epithelium (RPE) lysate. From this sample, we simultaneously identify and solve cryo-EM structures of seven different RPE enzymes whose functions affect neurotransmitter recycling, iron metabolism, gluconeogenesis, glycolysis, axonal development, and energy homeostasis. Interestingly, dysfunction of these important proteins has been directly linked to several neurodegenerative disorders, including Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease, and schizophrenia. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Department of Chemistry, Thiel College, Greenville, PA 16125, USA,These authors contributed equally
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,These authors contributed equally
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Lead contact,Correspondence:
| |
Collapse
|
35
|
Lapresa R, Agulla J, Bolaños JP, Almeida A. APC/C-Cdh1-targeted substrates as potential therapies for Alzheimer's disease. Front Pharmacol 2022; 13:1086540. [PMID: 36588673 PMCID: PMC9794583 DOI: 10.3389/fphar.2022.1086540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the main cause of dementia in the elderly. The disease has a high impact on individuals and their families and represents a growing public health and socio-economic burden. Despite this, there is no effective treatment options to cure or modify the disease progression, highlighting the need to identify new therapeutic targets. Synapse dysfunction and loss are early pathological features of Alzheimer's disease, correlate with cognitive decline and proceed with neuronal death. In the last years, the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C) has emerged as a key regulator of synaptic plasticity and neuronal survival. To this end, the ligase binds Cdh1, its main activator in the brain. However, inactivation of the anaphase promoting complex/cyclosome-Cdh1 complex triggers dendrite disruption, synapse loss and neurodegeneration, leading to memory and learning impairment. Interestingly, oligomerized amyloid-β (Aβ) peptide, which is involved in Alzheimer's disease onset and progression, induces Cdh1 phosphorylation leading to anaphase promoting complex/cyclosome-Cdh1 complex disassembly and inactivation. This causes the aberrant accumulation of several anaphase promoting complex/cyclosome-Cdh1 targets in the damaged areas of Alzheimer's disease brains, including Rock2 and Cyclin B1. Here we review the function of anaphase promoting complex/cyclosome-Cdh1 dysregulation in the pathogenesis of Alzheimer's disease, paying particular attention in the neurotoxicity induced by its molecular targets. Understanding the role of anaphase promoting complex/cyclosome-Cdh1-targeted substrates in Alzheimer's disease may be useful in the development of new effective disease-modifying treatments for this neurological disorder.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Jesus Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain,*Correspondence: Angeles Almeida,
| |
Collapse
|
36
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
37
|
Hass B. The values and rules of capacity assessments. JOURNAL OF MEDICAL ETHICS 2022; 48:816-820. [PMID: 35197300 DOI: 10.1136/medethics-2021-107923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
This article advances two views on the role of evaluative judgment in clinical assessments of decision-making capacity. The first is that it is rationally impossible for such assessments to exclude judgments of the values a patient uses to motivate their decision-making. Predictably, and second, attempting to exclude such judgments sometimes yields outcomes that contain intractable dilemmas that harm patients. These arguments count against the prevailing model of assessment in common law countries-the four abilities model-which is often incorrectly advertised as being value-neutral in respect of patient decision-making both by its proponents and in statute. A straightforward evaluative model of capacity assessment which wears its values on its sleeves and is biased against what are called 'serious prudential mistakes' avoids these rational and practical problems.
Collapse
Affiliation(s)
- Binesh Hass
- Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Miller B, Moreno N, Gutierrez BA, Limon A. Microtransplantation of Postmortem Native Synaptic mGluRs Receptors into Xenopus Oocytes for Their Functional Analysis. MEMBRANES 2022; 12:931. [PMID: 36295690 PMCID: PMC9609105 DOI: 10.3390/membranes12100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 05/13/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are membrane receptors that play a central role in the modulation of synaptic transmission and neuronal excitability and whose dysregulation is implicated in diverse neurological disorders. Most current understanding about the electrophysiological properties of such receptors has been determined using recombinant proteins. However, recombinant receptors do not necessarily recapitulate the properties of native receptors due to the lack of obligated accessory proteins, some of which are differentially expressed as function of developmental stage and brain region. To overcome this limitation, we sought to microtransplant entire synaptosome membranes from frozen rat cortex into Xenopus oocytes, and directly analyze the responses elicited by native mGluRs. We recorded ion currents elicited by 1 mM glutamate using two electrodes voltage clamp. Glutamate produced a fast ionotropic response (6 ± 0.3 nA) in all microtransplanted oocytes (n = 218 oocytes) and a delayed oscillatory response (52 ± 7 nA) in 73% of them. The participation of Group 1 mGluRs was confirmed by the presence of metabotropic oscillations during the administration of (±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD; Group 1 mGluR agonist), and the absence of oscillations during co-administration of N-(1-adamantyl)quinoxaline-2-carboxamide (NPS 2390; Group 1 mGluR antagonist). Since both mGluR1 and mGluR5 belong to Group 1 mGluRs, further investigation revealed that mGluR1 antagonism with LY 456236 has little effect on metabotropic oscillations, while mGluR5 antagonism with 100 µM AZD 9272 has significant reduction of metabotropic currents elicited by ACPD and glutamate. We confirmed the expression of mGluR1 and mGluR5 in native synaptosomes by immunoblots, both of which are enhanced when compared to their counterpart proteins in rat cortex tissue lysates. Finally, these results demonstrate the merit of using microtransplantation of native synaptosomes for the study of mGluRs and the contribution of mGluR5 to the metabotropic glutamate signaling, providing a better tool for the understanding of the role of these receptors in neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
39
|
Lane HY, Lin CH. Diagnosing Alzheimer's Disease Specifically and Sensitively With pLG72 and Cystine/Glutamate Antiporter SLC7A11 AS Blood Biomarkers. Int J Neuropsychopharmacol 2022; 26:1-8. [PMID: 35986919 PMCID: PMC9850657 DOI: 10.1093/ijnp/pyac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Reliable blood biomarkers for Alzheimer's disease (AD) have been lacking. The D-amino acids oxidase modulator (named pLG72) modulates glutamate N-methyl-D-aspartate receptor activity. The cystine/glutamate antiporter contains a SLC7A11 subunit, which mediates glutamate release. This study aimed to determine the accuracy of pLG72 protein and SLC7A11 mRNA in diagnosing AD. METHODS This study enrolled 130 healthy controls and 109 unmatched AD patients; among them, 40 controls and 70 patients were selected to match by age. We measured their pLG72 protein in plasma and SLC7A11 mRNA in white blood cells. RESULTS AD patients had markedly higher pLG72 levels and SLC7A11 mRNA ΔCT values than healthy controls (in both unmatched and matched cohorts; all 4 P values <.001). The receiver operating characteristics analysis in the unmatched cohorts demonstrated that the pLG72 level had a high specificity (0.900) at the optimal cutoff value of 2.3285, the ΔCT of SLC7A11 mRNA displayed an excellent sensitivity (0.954) at the cutoff of 12.185, and the combined value of pLG72 and SLC7A11 ΔCT determined a favorable area under the curve (AUC) (0.882) at the cutoff of 21.721. The AUC of the combined value surpassed that of either biomarker. The specificity, sensitivity, and AUC of the matched cohort were like those of the unmatched cohort. CONCLUSIONS The findings suggest that pLG72 protein and SLC7A11 mRNA can distinguish AD patients from healthy controls with excellent specificity and sensitivity, respectively. The combination of pLG72 and SLC7A11 yields better AUC than either, suggesting the superiority of simultaneously measuring both biomarkers in identifying AD patients.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Correspondence: Chieh-Hsin Lin, MD, PhD, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Da-Pi Rd, Kaohsiung 833, Taiwan ()
| |
Collapse
|
40
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
41
|
Caballero FF, Lana A, Struijk EA, Arias-Fernández L, Yévenes-Briones H, Cárdenas-Valladolid J, Salinero-Fort MÁ, Banegas JR, Rodríguez-Artalejo F, Lopez-Garcia E. Prospective Association Between Plasma Amino Acids And Multimorbidity In Older Adults. J Gerontol A Biol Sci Med Sci 2022; 78:637-644. [PMID: 35876753 DOI: 10.1093/gerona/glac144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Some amino acids have been associated with aging-related disorders and risk of physical impairment. The aim of this study was to assess the association between plasma concentrations of nine amino acids, including branched-chain and aromatic amino acids, and multimorbidity. METHODS This research uses longitudinal data from the Seniors-ENRICA 2 study, a population-based cohort from Spain which comprises non-institutionalized adults older than 65. Blood samples were extracted at baseline and after a follow-up period of two years for a total of 1488 subjects. Participants' information was linked with electronic health records. Chronic diseases were grouped into a list of 60 mutually exclusive conditions. A quantitative measure of multimorbidity, weighting morbidities by their regression coefficients on physical functioning, was employed and ranged from 0 to 100. Generalized estimating equation models were used to explore the relationship between plasma amino acids and multimorbidity, adjusting for sociodemographics, socioeconomic status and lifestyle behaviors. RESULTS The mean age of participants at baseline was 73.6 (SD = 4.2) years, 49.6% were women. Higher concentrations of glutamine [coef. per mmol/l (95% confidence interval = 10.1 (3.7, 16.6)], isoleucine [50.3 (21.7, 78.9)] and valine [15.5 (3.1, 28.0)] were significantly associated with higher multimorbidity scores, after adjusting for potential confounders. Body mass index could have influenced the relationship between isoleucine and multimorbidity (p = 0.016). CONCLUSIONS Amino acids could play a role in regulating aging-related diseases. Glutamine and branched-chain amino acids as isoleucine and valine are prospectively associated and could serve as risk markers for multimorbidity in older adults.
Collapse
Affiliation(s)
- Francisco Félix Caballero
- Department of Preventive Medicine and Public Health. Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid
| | - Alberto Lana
- Department of Medicine. Universidad de Oviedo/ISPA, Oviedo
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health. Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid
| | | | - Humberto Yévenes-Briones
- Department of Preventive Medicine and Public Health. Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid
| | - Juan Cárdenas-Valladolid
- Dirección Técnica de Sistemas de Información. Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid.,Fundación de Investigación e Innovación Biosanitaria de Atención Primaria, Madrid.,Enfermería. Universidad Alfonso X El Sabio, Villanueva de la Cañada
| | - Miguel Ángel Salinero-Fort
- Fundación de Investigación e Innovación Biosanitaria de Atención Primaria, Madrid.,Subdirección General de Investigación Sanitaria. Consejería de Sanidad, Madrid.,Red de Investigación en Servicios de Salud en Enfermedades Crónicas.,Grupo de Envejecimiento y Fragilidad de las personas mayores. IdIPAZ, Madrid
| | - José R Banegas
- Department of Preventive Medicine and Public Health. Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health. Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid.,IMDEA-Food Institute. CEI UAM+CSIC, Madrid
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health. Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid.,IMDEA-Food Institute. CEI UAM+CSIC, Madrid
| |
Collapse
|
42
|
Araujo JA, Segarra S, Mendes J, Paradis A, Brooks M, Thevarkunnel S, Milgram NW. Sphingolipids and DHA Improve Cognitive Deficits in Aged Beagle Dogs. Front Vet Sci 2022; 9:646451. [PMID: 35909696 PMCID: PMC9329143 DOI: 10.3389/fvets.2022.646451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Canine cognitive dysfunction syndrome (CDS) is a disorder found in senior dogs that is typically defined by the development of specific behavioral signs which are attributed to pathological brain aging and no other medical causes. One way of objectively characterizing CDS is with the use of validated neuropsychological test batteries in aged Beagle dogs, which are a natural model of this condition. This study used a series of neuropsychological tests to evaluate the effectiveness of supplementation with a novel lipid extract containing porcine brain-derived sphingolipids (Biosfeen®) and docosahexaenoic acid (DHA) for attenuating cognitive deficits in aged Beagles. Two groups (n = 12), balanced for baseline cognitive test performance, received a daily oral dose of either test supplement, or placebo over a 6-month treatment phase. Cognitive function was evaluated using the following tasks: delayed non-matching to position (DNMP), selective attention, discrimination learning retention, discrimination reversal learning, and spatial discrimination acquisition and reversal learning. The effect of the supplement on brain metabolism using magnetic resonance spectroscopy (MRS) was also examined. A significant decline (p = 0.02) in DNMP performance was seen in placebo-treated dogs, but not in dogs receiving the supplement, suggesting attenuation of working memory performance decline. Compared to placebo, the supplemented group also demonstrated significantly improved (p = 0.01) performance on the most difficult pattern of the spatial discrimination task and on reversal learning of the same pattern (p = 0.01), potentially reflecting improved spatial recognition and executive function, respectively. MRS revealed a significant increase (p = 0.048) in frontal lobe glutamate and glutamine in the treatment group compared to placebo, indicating a physiological change which may be attributed to the supplement. Decreased levels of glutamate and glutamine have been correlated with cognitive decline, suggesting the observed increase in these metabolites might be linked to the positive cognitive effects found in the present study. Results of this study suggest the novel lipid extract may be beneficial for counteracting age-dependent deficits in Beagle dogs and supports further investigation into its use for treatment of CDS. Additionally, due to parallels between canine and human aging, these results might also have applicability for the use of the supplement in human cognitive health.
Collapse
Affiliation(s)
| | - Sergi Segarra
- R&D Bioiberica S.A.U., Esplugues de Llobregat, Barcelona, Spain
- *Correspondence: Sergi Segarra
| | | | | | | | | | | |
Collapse
|
43
|
Park HRP, Williams LM, Turner RM, Gatt JM. TWIN-10: protocol for a 10-year longitudinal twin study of the neuroscience of mental well-being and resilience. BMJ Open 2022; 12:e058918. [PMID: 35777871 PMCID: PMC9252211 DOI: 10.1136/bmjopen-2021-058918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Mental well-being is a core component of mental health, and resilience is a key process of positive adaptive recovery following adversity. However, we lack an understanding of the neural mechanisms that contribute to individual variation in the trajectories of well-being and resilience relative to risk. Genetic and/or environmental factors may also modulate these mechanisms. The aim of the TWIN-10 Study is to characterise the trajectories of well-being and resilience over 12 years across four timepoints (baseline, 1 year, 10 years, 12 years) in 1669 Australian adult twins of European ancestry (to account for genetic stratification effects). To this end, we integrate data across genetics, environment, psychological self-report, neurocognitive performance and brain function measures of well-being and resilience. METHODS AND ANALYSIS Twins who took part in the baseline TWIN-E Study will be invited back to participate in the TWIN-10 Study, at 10-year and 12-year follow-up timepoints. Participants will complete an online battery of psychological self-reports, computerised behavioural assessments of neurocognitive functions and MRI testing of the brain structure and function during resting and task-evoked scans. These measures will be used as predictors of the risk versus resilience trajectory groups defined by their changing levels of well-being and illness symptoms over time as a function of trauma exposure. Structural equation models will be used to examine the association between the predictors and trajectory groups of resilience and risk over time. Univariate and multivariate twin modelling will be used to determine heritability of the measures, as well as the shared versus unique genetic and environmental contributions. ETHICS AND DISSEMINATION This study involves human participants. This study was approved by the University of New South Wales Human Research Ethics Committee (HC180403) and the Scientific Management Panel of Neuroscience Research Australia Imaging (CX2019-05). Results will be disseminated through publications and presentations to the public and the academic community. Participants gave informed consent to participate in the study before taking part.
Collapse
Affiliation(s)
- Haeme R P Park
- Neuroscience Research Australia, Randwick, New South Wales, Sydney, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Leanne M Williams
- Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Robin M Turner
- Biostatistics Centre, Division of Health Sciences, University of Otago, Dunedin, Central Dunedin, New Zealand
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, New South Wales, Sydney, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
44
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
45
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
46
|
Rojas M, Ariza D, Ortega Á, Riaño-Garzón ME, Chávez-Castillo M, Pérez JL, Cudris-Torres L, Bautista MJ, Medina-Ortiz O, Rojas-Quintero J, Bermúdez V. Electroconvulsive Therapy in Psychiatric Disorders: A Narrative Review Exploring Neuroendocrine-Immune Therapeutic Mechanisms and Clinical Implications. Int J Mol Sci 2022; 23:6918. [PMID: 35805923 PMCID: PMC9266340 DOI: 10.3390/ijms23136918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
Electroconvulsive therapy (ECT) is based on conducting an electrical current through the brain to stimulate it and trigger generalized convulsion activity with therapeutic ends. Due to the efficient use of ECT during the last years, interest in the molecular bases involved in its mechanism of action has increased. Therefore, different hypotheses have emerged. In this context, the goal of this review is to describe the neurobiological, endocrine, and immune mechanisms involved in ECT and to detail its clinical efficacy in different psychiatric pathologies. This is a narrative review in which an extensive literature search was performed on the Scopus, Embase, PubMed, ISI Web of Science, and Google Scholar databases from inception to February 2022. The terms "electroconvulsive therapy", "neurobiological effects of electroconvulsive therapy", "molecular mechanisms in electroconvulsive therapy", and "psychiatric disorders" were among the keywords used in the search. The mechanisms of action of ECT include neurobiological function modifications and endocrine and immune changes that take place after ECT. Among these, the decrease in neural network hyperconnectivity, neuroinflammation reduction, neurogenesis promotion, modulation of different monoaminergic systems, and hypothalamus-hypophysis-adrenal and hypothalamus-hypophysis-thyroid axes normalization have been described. The majority of these elements are physiopathological components and therapeutic targets in different mental illnesses. Likewise, the use of ECT has recently expanded, with evidence of its use for other pathologies, such as Parkinson's disease psychosis, malignant neuroleptic syndrome, post-traumatic stress disorder, and obsessive-compulsive disorder. In conclusion, there is sufficient evidence to support the efficacy of ECT in the treatment of different psychiatric disorders, potentially through immune, endocrine, and neurobiological systems.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Manuel E. Riaño-Garzón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia; (M.E.R.-G.); (M.J.B.)
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
- Psychiatric Hospital of Maracaibo, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina, Valledupar 200001, Colombia;
| | - María Judith Bautista
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia; (M.E.R.-G.); (M.J.B.)
| | - Oscar Medina-Ortiz
- Facultad de Medicina, Universidad de Santander, Cúcuta 540003, Colombia;
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 77054, USA;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
47
|
Kholghi G, Arjmandi-Rad S, Zarrindast MR, Vaseghi S. St. John's wort (Hypericum perforatum) and depression: what happens to the neurotransmitter systems? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:629-642. [PMID: 35294606 DOI: 10.1007/s00210-022-02229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
St. John's wort (Hypericum perforatum) is a herbaceous plant containing many bioactive molecules including naphthodianthrones, phloroglucinol derivatives, flavonoids, bioflavonoids, proanthocyanidins, and chlorogenic acid. Evidence has shown the therapeutic effects of St. John's wort and especially its two major active components, hyperforin and hypericin, on different psychiatric and mood disorders such as posttraumatic stress disorder (PTSD), attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and anxiety disorders. St. John's wort also induces antidepressant effects. In this review study, we aimed to discuss the role of St. John's wort in modulating depression, with respect to the role of different neurotransmitter systems in the brain. We discussed changes in the neurotransmitter levels in depression, and following use of St. John's wort. It was concluded that changes in the function and level of neurotransmitters in depression are complex. Also, St. John's wort can induce inconsistent effects on neurotransmitter levels. We also found that glutamate and acetylcholine may be the most important neurotransmitters to study in future works, because the function of both neurotransmitters in depression is unclear. In addition, St. John's wort induces a dualistic modulation on the activity of cholinergic signaling, which can be an interesting topic for future studies.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
48
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
49
|
Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022; 12:metabo12050459. [PMID: 35629963 PMCID: PMC9143347 DOI: 10.3390/metabo12050459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood–brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.
Collapse
|
50
|
Hyperpolarized [5- 13C,4,4- 2H 2,5- 15N]-L-glutamine provides a means of annotating in vivo metabolic utilization of glutamine. Proc Natl Acad Sci U S A 2022; 119:e2120595119. [PMID: 35512101 PMCID: PMC9172133 DOI: 10.1073/pnas.2120595119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glutamine is the most abundant amino acid in human plasma, although it is challenging to determine glutamine’s metabolic fate noninvasively. In this work, we utilize established chemical methods to develop a platform for imaging glutamine metabolism using hyperpolarized magnetic resonance imaging. Using this strategy, we are able to spatially measure glutaminolysis in vivo as well as develop a biomarker for the inhibition of glutaminase. Combining this biomarker with isotope tracing metabolomics connects this inhibition to reduced glutamine contribution to the tricarboxylic acid cycle. This provides an approach for future imaging of glutamine metabolism in humans. Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.
Collapse
|