1
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Sui YV, Bertisch H, Goff DC, Samsonov A, Lazar M. Quantitative magnetization transfer and g-ratio imaging of white matter myelin in early psychotic spectrum disorders. Mol Psychiatry 2025:10.1038/s41380-024-02883-0. [PMID: 39779900 DOI: 10.1038/s41380-024-02883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort. We utilized quantitative magnetization transfer (qMT) imaging combined with advanced diffusion imaging to estimate specific myelin-related biophysical properties in 51 young adult PSD patients compared with 38 age-matched healthy controls. The macromolecular proton fraction (MPF) obtained from qMT was used as a specific marker of myelin content. Additionally, MPF was employed along with diffusion metrics of axonal density (vic) and extra-cellular volume fraction to derive the g-ratio, a measure of relative myelin sheath thickness defined as the ratio of inner to outer axonal diameter. Compared to controls, we observed a widespread MPF reduction and localized g-ratio increase in patients, primarily those with a diagnosis of schizophrenia or depressive schizoaffective disorder. No between-group differences were noted in vic, suggesting similar axonal densities across groups. Correlation analysis revealed that lower MPF was significantly related to poorer working memory performance in PSD, while the HC group showed a positive association for working memory with both g-ratio and vic. The pattern of changes observed in our multimodal imaging markers suggests that PSD, depending on symptomatology, is characterized by specific alterations in white matter integrity and myelin-axonal geometry of major white matter tracts, which may impact working memory function. These findings provide a more detailed view of myelin-related white matter changes in early stages of PSD.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Hilary Bertisch
- Department of Psychiatry, Northwell Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Donald C Goff
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute, Orangeburg, NY, USA
| | - Alexey Samsonov
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Sasaki H, Kubota M, Miyata J, Murai T. Left posterior superior temporal gyrus and its structural connectivity in schizophrenia. Psychiatry Res Neuroimaging 2025; 347:111947. [PMID: 39798501 DOI: 10.1016/j.pscychresns.2025.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
The left posterior superior temporal gyrus (pSTG) is thought to be involved in the pathophysiology and core symptoms of schizophrenia, although its structural connectivity has not yet been systematically investigated. Here, we aimed to evaluate its white matter (WM) connectivity with Broca's area, the thalamus, and the right pSTG. Eighty-three patients with schizophrenia and 141 healthy controls underwent diffusion-weighted imaging and T1-weighted three-dimensional magnetic resonance imaging. Probabilistic tractography was performed from the left pSTG to the Broca area, the left thalamus, and the right pSTG. Group comparison of WM fractional anisotropy (FA) in these pathways, as well as its correlations with the pSTG volume and clinical characteristics in the patient group, were examined. Patients showed significantly lower FA in the left pSTG-Broca and left-right pSTG pathways, but not in the left pSTG-thalamus pathway. Patients also revealed a trend toward a smaller left pSTG volume. Significant negative correlations were found in patients between FA in the left-right pSTG pathway and the left pSTG volume, and between FA in the left pSTG-Broca pathway and positive symptom severity. The present results suggest fiber-specific alterations in structural connectivity linked to the left pSTG, possibly supporting the "inner speech" and "interhemispheric disconnection" hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Sasaki Clinic, Address: #2F Patio-Okamoto 3-3-14 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-0003, Japan
| | - Manabu Kubota
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Jun Miyata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Aichi Medical University, Address: 1-1 Yazakokarimata, Nagakute, Aichi 4801195, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Sánchez de la Torre A, Ezquerro-Herce S, Huerga-Gómez A, Sánchez-Martín E, Chara JC, Matute C, Monory K, Mato S, Lutz B, Guzmán M, Aguado T, Palazuelos J. CB 1 receptors in NG2 cells mediate cannabinoid-evoked functional myelin regeneration. Prog Neurobiol 2024; 243:102683. [PMID: 39528076 DOI: 10.1016/j.pneurobio.2024.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Defects in myelin homeostasis have been reported in many neuropathological conditions. Cannabinoid compounds have been shown to efficiently promote myelin regeneration in animal models of demyelination. However, it is still unknown whether this action relies mostly on a cell autonomous effect on oligodendroglial-lineage-NG2 cells. By using conditional genetic mouse models, here we found that cannabinoid CB1 receptors located on NG2 cells are required for oligodendroglial differentiation and myelin regeneration after demyelination. Selective CB1 receptor gene depletion in NG2 cells following toxin-induced demyelination disrupted oligodendrocyte regeneration and functional remyelination and exacerbated axonal damage. These deficits were rescued by pharmacological blockade of the RhoA/ROCK/Cofilin pathway. Conversely, tetrahydrocannabinol administration promoted oligodendrocyte regeneration and functional remyelination in wild-type but not Ng2-CB1-deficient mice. Overall, this study identifies CB1 receptors as essential modulators of remyelination and support the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.
Collapse
Affiliation(s)
- Aníbal Sánchez de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain
| | - Sara Ezquerro-Herce
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain
| | - Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain
| | - Ester Sánchez-Martín
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; IIS Biobizkaia, Barakaldo 48903, Spain
| | - Juan Carlos Chara
- Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz 55128, Germany
| | - Susana Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; Institute of Physiological Chemistry, University Medical Center Mainz, Mainz 55128, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz 55128, Germany
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain.
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain.
| |
Collapse
|
5
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
6
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
7
|
Yang L, Xing W, Shi Y, Hu M, Li B, Hu Y, Zhang G. Stress-induced NLRP3 inflammasome activation and myelin alterations in the hippocampus of PTSD rats. Neuroscience 2024; 555:156-166. [PMID: 39043314 DOI: 10.1016/j.neuroscience.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Inflammatory and myelin changes may contribute to the pathophysiology of post-traumatic stress disorder (PTSD). The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3), a brain inflammasome, is activated in the hippocampus of mice with PTSD. In other psychiatric disorders, NLRP3 expression has been associated with axonal myelination and demyelination. However, the association between NLRP3 and myelin in rats with PTSD remains unclear. Therefore, this study aims to investigate the relationship between the NLRP3 inflammasome and myelin in the hippocampus of rats with PTSD. A rat model of post-traumatic stress disorder was established using the single-prolonged stress (SPS) approach. Hippocampal tissues were collected for the detection of NLRP3 inflammasome-associated proteins and myelin basic protein at 3, 7, and 14 days after SPS. To further explore the relationship between NLRP3 and myelin, the NLRP3-specific inhibitor MCC950 was administered intraperitoneally to rats starting 72 h before SPS, and then alterations in NLRP3 inflammasome-associated proteins and myelin were observed in the PTSD and control groups. We found that NLRP3 and downstream related proteins were activated in the hippocampus of rats 3 days after SPS, and the myelin content in the hippocampus increased after SPS stress. MCC950 reduced the expression of NLRP3-related pathway proteins, improved anxiety behaviour and spatial learning memory impairment, and inhibited the increase in myelin content in the hippocampal region of rats after SPS. In conclusion the study indicates that NLRP3 has a significant role in the hippocampal region of rats with PTSD. Inhibition of the NLRP3 inflammasome could be a potential target for treating PTSD.
Collapse
Affiliation(s)
- Luodong Yang
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Wenlong Xing
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yan Shi
- Shihezi University, Shihezi, China
| | - Min Hu
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Bin Li
- Shihezi University, Shihezi, China
| | - Yuanyuan Hu
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Guiqing Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, China.
| |
Collapse
|
8
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy impairs signal transmission and working memory in a multiscale model of the aging prefrontal cortex. eLife 2024; 12:RP90964. [PMID: 39028036 PMCID: PMC11259433 DOI: 10.7554/elife.90964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
- Centre de Recerca Matemàtica, Edifici C, Campus BellaterraBellaterraSpain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici CBellaterraSpain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
- Department of Mathematics, Franklin and Marshall CollegeLancasterUnited States
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus BellaterraBellaterraSpain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici CBellaterraSpain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall CollegeLancasterUnited States
| |
Collapse
|
9
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
10
|
Rivera AD, Normanton JR, Butt AM, Azim K. The Genomic Intersection of Oligodendrocyte Dynamics in Schizophrenia and Aging Unravels Novel Pathological Mechanisms and Therapeutic Potentials. Int J Mol Sci 2024; 25:4452. [PMID: 38674040 PMCID: PMC11050044 DOI: 10.3390/ijms25084452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127 Padua, Italy;
| | - John R. Normanton
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
| | - Arthur M. Butt
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- School of Pharmacy and Biomedical Science, University of Portsmouth, Hampshire PO1 2UP, UK
| | - Kasum Azim
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| |
Collapse
|
11
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
12
|
Zhang T, Xue Y, Su S, Altouma V, Ho K, Martindale JL, Lee SK, Shen W, Park A, Zhang Y, De S, Gorospe M, Wang W. RNA-binding protein Nocte regulates Drosophila development by promoting translation reinitiation on mRNAs with long upstream open reading frames. Nucleic Acids Res 2024; 52:885-905. [PMID: 38000373 PMCID: PMC10810208 DOI: 10.1093/nar/gkad1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.
Collapse
Affiliation(s)
- Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Valerie Altouma
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Katherine Ho
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung-Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Usenko T, Bezrukova A, Basharova K, Baydakova G, Shagimardanova E, Blatt N, Rizvanov A, Limankin O, Novitskiy M, Shnayder N, Izyumchenko A, Nikolaev M, Zabotina A, Lavrinova A, Kulabukhova D, Nasyrova R, Palchikova E, Zalutskaya N, Miliukhina I, Barbitoff Y, Glotov O, Glotov A, Taraskina A, Neznanov N, Zakharova E, Pchelina S. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites 2023; 14:30. [PMID: 38248833 PMCID: PMC10819534 DOI: 10.3390/metabo14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Recent data described that patients with lysosomal storage disorders (LSDs) may have clinical schizophrenia (SCZ) features. Disruption of lipid metabolism in SCZ pathogenesis was found. Clinical features of schizophrenia (SCZ) have been demonstrated in patients with several lysosomal storage disorders (LSDs). Taking into account the critical role of lysosomal function for neuronal cells' lysosomal dysfunction could be proposed in SCZ pathogenesis. The current study analyzed lysosomal enzyme activities and the alpha-synuclein level in the blood of patients with late-onset SCZ. In total, 52 SCZ patients with late-onset SCZ, 180 sporadic Parkinson's disease (sPD) patients, and 176 controls were recruited. The enzymatic activity of enzymes associated with mucopolysaccharidosis (alpha-L-Iduronidase (IDUA)), glycogenosis (acid alpha-glucosidase (GAA)) and sphingolipidosis (galactosylceramidase (GALC), glucocerebrosidase (GCase), alpha-galactosidase (GLA), acid sphingomyelinase (ASMase)) and concentration of lysosphingolipids (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), and lysosphingomyelin (LysoSM)) were measured using LC-MS/MS. The alpha-synuclein level was estimated in magnetically separated CD45+ blood cells using the enzyme-linked immunosorbent assay (ELISA). Additionally, NGS analysis of 11 LSDs genes was conducted in 21 early-onset SCZ patients and 23 controls using the gene panel PGRNseq-NDD. Decreased ASMase, increased GLA activities, and increased HexSpn, LysoGb3, and LysoSM concentrations along with an accumulation of the alpha-synuclein level were observed in late-onset SCZ patients in comparison to the controls (p < 0.05). Four rare deleterious variants among LSDs genes causing mucopolysaccharidosis type I (IDUA (rs532731688, rs74385837) and type III (HGSNAT (rs766835582)) and sphingolipidosis (metachromatic leukodystrophy (ARSA (rs201251634)) were identified in five patients from the group of early-onset SCZ patients but not in the controls. Our findings supported the role of sphingolipid metabolism in SCZ pathogenesis. Aberrant enzyme activities and compounds of sphingolipids associated with ceramide metabolism may lead to accumulation of alpha-synuclein and may be critical in SCZ pathogenesis.
Collapse
Affiliation(s)
- Tatiana Usenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anastasia Bezrukova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Galina Baydakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Research Center for Medical Genetics, 115478 Moscow, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Oleg Limankin
- Psychiatric Hospital No. 1 Named after P. P. Kashchenko, 195009 Saint Petersburg, Russia;
- North-Western Medical University Named after P. I.I. Mechnikov of the Ministry of Health of the Russian Federation, 191015 Saint Petersburg, Russia
| | - Maxim Novitskiy
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Natalia Shnayder
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Artem Izyumchenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Mikhail Nikolaev
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Zabotina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Lavrinova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Darya Kulabukhova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Regina Nasyrova
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Ekaterina Palchikova
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Natalia Zalutskaya
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Irina Miliukhina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Institute of the Human Brain of RAS, 197022 Saint Petersburg, Russia
| | - Yury Barbitoff
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Bioinformatics Institute, 197342 Saint Petersburg, Russia
| | - Oleg Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Pediatric Research and Clinical Center of Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- School of Medicine, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Taraskina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Nikolai Neznanov
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | | | - Sofya Pchelina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| |
Collapse
|
14
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
15
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Schmitz I, da Silva A, Bobermin LD, Gonçalves CA, Steiner J, Quincozes-Santos A. The Janus face of antipsychotics in glial cells: Focus on glioprotection. Exp Biol Med (Maywood) 2023; 248:2120-2130. [PMID: 38230521 PMCID: PMC10800129 DOI: 10.1177/15353702231222027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Antipsychotics are commonly prescribed to treat several neuropsychiatric disorders, including schizophrenia, mania in bipolar disorder, autism spectrum disorder, delirium, and organic or secondary psychosis, for example, in dementias such as Alzheimer's disease. There is evidence that typical antipsychotics such as haloperidol are more effective in reducing positive symptoms than negative symptoms and/or cognitive deficits. In contrast, atypical antipsychotic agents have gained popularity over typical antipsychotics, due to fewer extrapyramidal side effects and their theoretical efficacy in controlling both positive and negative symptoms. Although these therapies focus on neuron-based therapeutic schemes, glial cells have been recognized as important regulators of the pathophysiology of neuropsychiatric disorders, as well as targets to improve the efficacy of these drugs. Glial cells (astrocytes, oligodendrocytes, and microglia) are critical for the central nervous system in both physiological and pathological conditions. Astrocytes are the most abundant glial cells and play important roles in brain homeostasis, regulating neurotransmitter systems and gliotransmission, since they express a wide variety of functional receptors for different neurotransmitters. In addition, converging lines of evidence indicate that psychiatric disorders are commonly associated with the triad neuroinflammation, oxidative stress, and excitotoxicity, and that glial cells may contribute to the gliotoxicity process. Conversely, glioprotective molecules attenuate glial damage by generating specific responses that can protect glial cells themselves and/or neurons, resulting in improved central nervous system (CNS) functioning. In this regard, resveratrol is well-recognized as a glioprotective molecule, including in clinical studies of schizophrenia and autism. This review will provide a summary of the dual role of antipsychotics on neurochemical parameters associated with glial functions and will highlight the potential activity of glioprotective molecules to improve the action of antipsychotics.
Collapse
Affiliation(s)
- Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg 39120, Germany
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
17
|
Yazarlou F, Tabibian M, Azarnezhad A, Sadeghi Rad H, Lipovich L, Sanati G, Mostafavi Abdolmaleky H, Alizadeh F. Evaluating Gene Expression and Methylation Profiles of TCF4, MBP, and EGR1 in Peripheral Blood of Drug-Free Patients with Schizophrenia: Correlations with Psychopathology, Intelligence, and Cognitive Impairment. J Mol Neurosci 2023; 73:738-750. [PMID: 37668894 DOI: 10.1007/s12031-023-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Sadeghi Rad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, Wayne State University, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Golshid Sanati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
18
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy in the aging prefrontal cortex leads to impaired signal transmission and working memory decline: a multiscale computational study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555476. [PMID: 37693412 PMCID: PMC10491254 DOI: 10.1101/2023.08.30.555476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Normal aging leads to myelin alternations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are often correlated with cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First we built a multicompartment pyramidal neuron model fit to monkey dlPFC data, with axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions, to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination in a population of neurons. Lasso regression identified distinctive parameter sets likely to modulate an axon's susceptibility to CV changes following demyelination versus remyelination. Next we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from electron microscopy up to behavior on aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| |
Collapse
|
19
|
Antunes AS, Martins-de-Souza D. Single-Cell RNA Sequencing and Its Applications in the Study of Psychiatric Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:329-339. [PMID: 37519459 PMCID: PMC10382703 DOI: 10.1016/j.bpsgos.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022] Open
Abstract
Neuroscience is currently one of the most challenging research fields owing to the enormous complexity of the mammalian nervous system. We are yet to understand precise transcriptional programs that govern cell fate during neurodevelopment, resolve the connectome of the mammalian brain, and determine the etiology of various neurodegenerative and psychiatric disorders. Technological advances in the past decade, notably single-cell RNA sequencing, have enabled huge progress in our understanding of such features. Our current knowledge of the transcriptome is largely derived from bulk RNA sequencing, which reveals only the average gene expression of millions of cells, potentially missing out on minor transcriptome differences between cells detectable only at single-cell resolution. Since 2009, several single-cell RNA sequencing techniques have emerged that enable the accurate classification of neuronal and glial cell subtypes beyond classical molecular markers and electrophysiological features and allow the identification of previously unknown cell types. Furthermore, it enables the interrogation of molecular and disease-relevant mechanisms and offers further possibilities for the discovery of new drug targets and disease biomarkers. This review intends to familiarize the reader with the main single-cell RNA sequencing techniques developed throughout the past decade and discusses their application in the fields of brain cell taxonomy, neurodevelopment, and psychiatric disorders.
Collapse
Affiliation(s)
- André S.L.M. Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
20
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Devanand M, V N S, Madhu K. Signaling mechanisms involved in the regulation of remyelination in multiple sclerosis: a mini review. J Mol Med (Berl) 2023:10.1007/s00109-023-02312-9. [PMID: 37084092 DOI: 10.1007/s00109-023-02312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disease of the CNS that causes progressive disabilities, owing to CNS axon degeneration as a late result of demyelination. In the search for the prevention of axonal loss, mitigating inflammatory attacks in the CNS and myelin restoration are two possible approaches. As a result, therapies that target diverse signaling pathways involved in neuroprotection and remyelination have the potential to overcome the challenges in the development of multiple sclerosis treatments. LINGO1 (Leucine rich repeat and Immunoglobulin domain containing, Nogo receptor- interaction protein), AKT/PIP3/mTOR, Notch, Wnt, RXR (Retinoid X receptor gamma), and Nrf2 (nuclear factor erythroid 2-related factor 2) signaling pathways are highlighted in this section. This article reviews the present knowledge regarding numerous signaling pathways and their functions in regulating remyelination in multiple sclerosis pathogenesis. These pathways are potential biomarkers and therapeutic targets in MS.
Collapse
Affiliation(s)
- Midhuna Devanand
- Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha V N
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Krishnadas Madhu
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
22
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
23
|
Ozaki T, Mikami K, Toyomaki A, Hashimoto N, Ito YM, Kusumi I. Assessment of electroencephalography modification by antipsychotic drugs in patients with schizophrenia spectrum disorders using frontier orbital theory: A preliminary study. Neuropsychopharmacol Rep 2023. [PMID: 36811149 DOI: 10.1002/npr2.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2023] Open
Abstract
AIM Schizophrenia is characterized by an abnormality in electroencephalography (EEG), which can be affected by antipsychotic drugs. Recently, the mechanism underlying these EEG alterations in schizophrenia patients was reframed from the perspective of redox abnormalities. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) can be calculated using a computational method and may be useful for evaluating the antioxidant/prooxidant effect of antipsychotic drugs. Thus, we examined the association between the effects of antipsychotic monotherapy on quantitative EEG and HOMO/LUMO energy. METHODS We used medical report data including EEG results of psychiatric patients admitted to Hokkaido University Hospital. We extracted the EEG records of patients diagnosed with a schizophrenia spectrum disorder undergoing antipsychotic monotherapy during the natural course of treatment (n = 37). We evaluated the HOMO/LUMO energy of all antipsychotic drugs using computational methods. Multiple regression analyses were used to examine the relationship between the HOMO/LUMO energy of all antipsychotic drugs and spectral band power in all patients. Statistical significance was set at p < 6.25 × 10-4 adjusted with Bonferroni correction. RESULTS We showed that the HOMO energy of all antipsychotic drugs had weak positive correlations with delta- and gamma-band power (e.g., standardized β = 0.617 for delta in the F3 channel, p = 6.6 × 10-5 ; standardized β = 0.563 for gamma in the O1 channel, p = 5.0 × 10-4 ). CONCLUSION Although there may be unexpected bias and confounding factors, our findings suggest that the effect of antipsychotic drugs on EEG may be related to their antioxidant actions.
Collapse
Affiliation(s)
- Takashi Ozaki
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of psychiatry, Koyogaoka Hospital, Abashiri, Japan
| | - Koichiro Mikami
- Department of material chemistry, Sagami Chemical Research Institute, Ayase, Japan
| | - Atsuhito Toyomaki
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
White matter microstructure of superior longitudinal fasciculus II is associated with intelligence and treatment response of negative symptoms in patients with schizophrenia. SCHIZOPHRENIA 2022; 8:43. [PMID: 35853887 PMCID: PMC9262917 DOI: 10.1038/s41537-022-00253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Although the potential role of superior longitudinal fasciculus (SLF) in intellectual deficits and treatment response (TR) in patients with schizophrenia (SZ) has been previously described, little is known about the white-matter (WM) integrity of SLF subcomponents (SLF I, II, III, and arcuate fasciculus) and their particular relationships with the clinical presentations of the illness. This study examined the associations between fractional anisotropy (FA) of SLF subcomponents and intelligence level and 6-month treatment response (TR) of negative symptoms (NS) in patients with SZ. At baseline, 101 patients with SZ and 101 healthy controls (HCs) underwent structural magnetic resonance imaging. Voxel-wise group comparison analysis showed significant SLF FA reductions in patients with SZ compared with HCs. Voxel-wise correlation analyses revealed significant positive correlations of FAs of right SLF II with Korean–Wechsler Adult Intelligence Scale at baseline and the percentage reduction of negative syndrome subscale of the Positive and Negative Syndrome Scales at 6 months. These findings suggest that aberrance in WM microstructure in SLF II may be associated with intellectual deficits in patients with SZ and TR of NS, which may support the potential role of SLF II as a novel neuroimaging biomarker for clinical outcomes of the illness.
Collapse
|
25
|
Silva AI, Ehrhart F, Ulfarsson MO, Stefansson H, Stefansson K, Wilkinson LS, Hall J, Linden DEJ. Neuroimaging Findings in Neurodevelopmental Copy Number Variants: Identifying Molecular Pathways to Convergent Phenotypes. Biol Psychiatry 2022; 92:341-361. [PMID: 35659384 DOI: 10.1016/j.biopsych.2022.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Genomic copy number variants (CNVs) are associated with a high risk of neurodevelopmental disorders. A growing body of genetic studies suggests that these high-risk genetic variants converge in common molecular pathways and that common pathways also exist across clinically distinct disorders, such as schizophrenia and autism spectrum disorder. A key question is how common molecular mechanisms converge into similar clinical outcomes. We review emerging evidence for convergent cognitive and brain phenotypes across distinct CNVs. Multiple CNVs were shown to have similar effects on core sensory, cognitive, and motor traits. Emerging data from multisite neuroimaging studies have provided valuable information on how these CNVs affect brain structure and function. However, most of these studies examined one CNV at a time, making it difficult to fully understand the proportion of shared brain effects. Recent studies have started to combine neuroimaging data from multiple CNV carriers and identified similar brain effects across CNVs. Some early findings also support convergence in CNV animal models. Systems biology, through integration of multilevel data, provides new insights into convergent molecular mechanisms across genetic risk variants (e.g., altered synaptic activity). However, the link between such key molecular mechanisms and convergent psychiatric phenotypes is still unknown. To better understand this link, we need new approaches that integrate human molecular data with neuroimaging, cognitive, and animal model data, while taking into account critical developmental time points. Identifying risk mechanisms across genetic loci can elucidate the pathophysiology of neurodevelopmental disorders and identify new therapeutic targets for cross-disorder applications.
Collapse
Affiliation(s)
- Ana I Silva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom.
| | - Friederike Ehrhart
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Magnus O Ulfarsson
- deCODE genetics, Amgen, Reykjavik, Iceland; Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | | | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
26
|
Raskó T, Pande A, Radscheit K, Zink A, Singh M, Sommer C, Wachtl G, Kolacsek O, Inak G, Szvetnik A, Petrakis S, Bunse M, Bansal V, Selbach M, Orbán TI, Prigione A, Hurst LD, Izsvák Z. A Novel Gene Controls a New Structure: PiggyBac Transposable Element-Derived 1, Unique to Mammals, Controls Mammal-Specific Neuronal Paraspeckles. Mol Biol Evol 2022; 39:6661922. [PMID: 36205081 PMCID: PMC9538788 DOI: 10.1093/molbev/msac175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.
Collapse
Affiliation(s)
- Tamás Raskó
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | | | | | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Manvendra Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Christian Sommer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Gerda Wachtl
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
| | - Gizem Inak
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Attila Szvetnik
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | | | | |
Collapse
|
27
|
You S, Su X, Ying J, Li S, Qu Y, Mu D. Research Progress on the Role of RNA m6A Modification in Glial Cells in the Regulation of Neurological Diseases. Biomolecules 2022; 12:biom12081158. [PMID: 36009052 PMCID: PMC9405963 DOI: 10.3390/biom12081158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells are the most abundant and widely distributed cells that maintain cerebral homeostasis in the central nervous system. They mainly include microglia, astrocytes, and the oligodendrocyte lineage cells. Moreover, glial cells may induce pathological changes, such as inflammatory responses, demyelination, and disruption of the blood–brain barrier, to regulate the occurrence and development of neurological diseases through various molecular mechanisms. Furthermore, RNA m6A modifications are involved in various pathological processes associated with glial cells. In this review, the roles of glial cells in physiological and pathological states, as well as advances in understanding the mechanisms by which glial cells regulate neurological diseases under RNA m6A modification, are summarized, hoping to provide new perspectives on the deeper mechanisms and potential therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Siyi You
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
28
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
29
|
Lariosa-Willingham K, Leonoudakis D, Bragge T, Tolppanen L, Nurmi A, Flanagan M, Gibson J, Wilson D, Stratton J, Lehtimäki KK, Miszczuk D. An in vivo accelerated developmental myelination model for testing promyelinating therapeutics. BMC Neurosci 2022; 23:30. [PMID: 35614392 PMCID: PMC9134688 DOI: 10.1186/s12868-022-00714-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background Therapeutic agents stimulating the process of myelination could be beneficial for the treatment of demyelinating diseases, such as multiple sclerosis. The efficient translation of compounds promoting myelination in vitro to efficacy in vivo is inherently time-consuming and expensive. Thyroid hormones accelerate the differentiation and maturation of oligodendrocytes, thereby promoting myelination. Systemic administration of the thyroid hormone thyroxine (T4) accelerates brain maturation, including myelination, during early postnatal development. The objective of this study was to validate an animal model for rapid testing of promyelinating therapeutic candidates for their effects on early postnatal development by using T4 as a reference compound. Methods Daily subcutaneous injections of T4 were given to Sprague Dawley rat pups from postnatal day (PND) 2 to PND10. Changes in white matter were determined at PND10 using diffusion tensor magnetic resonance imaging (DTI). Temporal changes in myelination from PND3 to PND11 were also assessed by quantifying myelin basic protein (MBP) expression levels in the brain using the resonance Raman spectroscopy/enzyme-linked immunosorbent assay (RRS-ELISA) and quantitative immunohistochemistry. Results DTI of white matter tracts showed significantly higher fractional anisotropy in the internal capsule of T4-treated rat pups. The distribution of total FA values in the forebrain was significantly shifted towards higher values in the T4-treated group, suggesting increased myelination. In vivo imaging data were supported by in vitro observations, as T4 administration significantly potentiated the developmental increase in MBP levels in brain lysates starting from PND8. MBP levels in the brain of animals that received treatment for 9 days correlated with the FA metric determined in the same pups in vivo a day earlier. Furthermore, accelerated developmental myelination following T4 administration was confirmed by immunohistochemical staining for MBP in coronal brain sections of treated rat pups. Conclusions T4-treated rat pups had increased MBP expression levels and higher MRI fractional anisotropy values, both indications of accelerated myelination. This simple developmental myelination model affords a rapid test of promyelinating activity in vivo within several days, which could facilitate in vivo prescreening of candidate therapeutic compounds for developmental hypomyelinating diseases. Further research will be necessary to assess the utility of this platform for screening promyelination compounds in more complex demyelination disease models, such us multiple sclerosis. Supplementary information The online version contains supplementary material available at 10.1186/s12868-022-00714-y.
Collapse
Affiliation(s)
| | | | - Timo Bragge
- Charles River Discovery Services, Neulaniementie 4, 70210, Kuopio, Finland
| | - Laura Tolppanen
- Charles River Discovery Services, Neulaniementie 4, 70210, Kuopio, Finland
| | - Antti Nurmi
- Charles River Discovery Services, Neulaniementie 4, 70210, Kuopio, Finland
| | | | | | - David Wilson
- Teva Pharmaceutical Industries Ltd, Redwood City, CA, 94063, USA
| | | | - Kimmo K Lehtimäki
- Charles River Discovery Services, Neulaniementie 4, 70210, Kuopio, Finland
| | - Diana Miszczuk
- Charles River Discovery Services, Neulaniementie 4, 70210, Kuopio, Finland
| |
Collapse
|
30
|
Ma Q, Wang D, Li Y, Yang H, Li Y, Wang J, Li J, Sun J, Liu J. Activation of A 2B adenosine receptor protects against demyelination in a mouse model of schizophrenia. Exp Ther Med 2022; 23:396. [PMID: 35495590 PMCID: PMC9047022 DOI: 10.3892/etm.2022.11323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022] Open
Abstract
The purpose of the present study was to explore the effects of A2B adenosine receptor (A2BAR) on learning, memory and demyelination in a dizocilpine maleate (MK-801)-induced mouse model of schizophrenia (SCZ). BAY 60-6583, an agonist of A2BAR, or PSB 603, an antagonist of A2BAR, was used to treat SCZ in this model. The Morris Water Maze (MWM) was utilized to determine changes in cognitive function. Moreover, western blotting, immunohistochemistry and immunofluorescence were conducted to investigate the myelination and oligodendrocyte (OL) alterations at differentiation and maturation stages. The MWM results showed that learning and memory were impaired in SCZ mice, while subsequent treatment with BAY 60-6583 alleviated these impairments. In addition, western blot analysis revealed that myelin basic protein (MBP) and chondroitin sulphate proteoglycan 4 (NG2) expression levels were significantly decreased in MK-801-induced mice, while the expression of G protein-coupled receptor 17 (GPR17) was increased. Additionally, the number of anti-adenomatous polyposis coli clone CC-1/OL transcription factor 2 (CC-1+/Olig2+) cells was also decreased. Notably, BAY 60-6583 administration could reverse these changes, resulting in a significant increase in MBP and NG2 protein expression, and in the number of CC-1+/Olig2+ cells, while GPR17 protein expression levels were decreased. The present study indicated that the selective activation of A2BAR using BAY 60-6583 could improve the impaired learning and memory of SCZ mice, as well as protect the myelin sheath from degeneration by regulating the survival and maturation of OLs.
Collapse
Affiliation(s)
- Quanrui Ma
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Dan Wang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yunhong Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao Yang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yilu Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Junyan Wang
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jinxia Li
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jinping Sun
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Department of Human Anatomy and Histo-Embryology, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
31
|
Wu Y, Zhong Y, Liao X, Miao X, Yu J, Lai X, Zhang Y, Ma C, Pan H, Wang S. Transmembrane protein 108 inhibits the proliferation and myelination of oligodendrocyte lineage cells in the corpus callosum. Mol Brain 2022; 15:33. [PMID: 35410424 PMCID: PMC8996597 DOI: 10.1186/s13041-022-00918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Abnormal white matter is a common neurobiological change in bipolar disorder, and dysregulation of myelination in oligodendrocytes (OLs) is the cause. Transmembrane protein 108 (Tmem108), as a susceptible gene of bipolar disorder, is expressed higher in OL lineage cells than any other lineage cells in the central nervous system. Moreover, Tmem108 mutant mice exhibit mania-like behaviors, belonging to one of the signs of bipolar disorder. However, it is unknown whether Tmem108 regulates the myelination of the OLs. Results Tmem108 expression in the corpus callosum decreased with the development, and OL progenitor cell proliferation and OL myelination were enhanced in the mutant mice. Moreover, the mutant mice exhibited mania-like behavior after acute restraint stress and were susceptible to drug-induced epilepsy. Conclusions Tmem108 inhibited OL progenitor cell proliferation and mitigated OL maturation in the corpus callosum, which may also provide a new role of Tmem108 involving bipolar disorder pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-022-00918-7.
Collapse
|
32
|
Liu D, Huang J, Gao S, Jin H, He J. A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging. Acta Pharm Sin B 2022; 12:3341-3353. [PMID: 35967273 PMCID: PMC9366215 DOI: 10.1016/j.apsb.2022.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 11/01/2022] Open
|
33
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
34
|
What Can We Learn from Animal Models to Study Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:15-33. [DOI: 10.1007/978-3-030-97182-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Liu M, Zheng M, Zhang W, Yang F, Hong L, Yu X, Xu H. Cuprizone-induced dopaminergic hyperactivity and locomotor deficit in zebrafish larvae. Brain Res 2022; 1780:147802. [PMID: 35085574 DOI: 10.1016/j.brainres.2022.147802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
|
36
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
37
|
Gao Z, Zhang C, Feng Z, Liu Z, Yang Y, Yang K, Chen L, Yao R. C1q inhibits differentiation of oligodendrocyte progenitor cells via Wnt/β-catenin signaling activation in a cuprizone-induced mouse model of multiple sclerosis. Exp Neurol 2021; 348:113947. [PMID: 34902359 DOI: 10.1016/j.expneurol.2021.113947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system demyelinating disease of autoimmune originate. Complement C1q, a complex glycoprotein, mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity. Although we found that the increased serum C1q level was highly associated with the Fazekas scores and T2 lesion volume of MS patients, the effect and mechanism of C1q on demyelination remains unclear. Cluster analysis and protein array results showed that serum Wnt receptors Frizzled-6 and LRP-6 levels in MS patients were both increased, we proposed that C1q may be involved in demyelination via Wnt signaling. The increased C1q protein levels in the serum and brain tissue were confirmed in a cuprizone (CPZ)-induced demyelination mice model. Moreover, CPZ treatment induced significant increase of LRP-6 and Frizzled-6 protein in mice corpus callosum. LRP-6 extra-cellular domain (LRP-6-ECD) level in the serum and cerebrospinal fluid (CSF) of CPZ mice also significantly increased. Knockdown of the subunit C1s of C1 not only substantially attenuated demyelination, promoted M2 microglia polarization and improved neurological function, but inhibited β-catenin expression and its nuclear translocation in oligodendrocyte progenitor cells (OPCs). In vitro, C1s silence reversed the increased level of LRP-6-ECD in the medium and β-catenin expression in OPCs induced by C1q treatment. Meanwhile, inhibition of C1s also markedly lowered the number of EDU positive OPCs, but enhanced the number of CNPase positive oligodendrocyte and the protein of MBP. The present study indicated that C1q was involved in demyelination in response to CPZ in mice by preventing OPC from differentiating into mature oligodendrocyte via Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Zhaowei Feng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ziqi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Yaru Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Kexin Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Lei Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| |
Collapse
|
38
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
39
|
Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton fraction. Transl Psychiatry 2021; 11:365. [PMID: 34226491 PMCID: PMC8257619 DOI: 10.1038/s41398-021-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Myelin deficiency is commonly recognized as an important pathological feature of brain tissues in schizophrenia (SZ). In this pilot study, global myelin content abnormalities in white matter (WM) and gray matter (GM) of SZ patients were non-invasively investigated using a novel clinically-targeted quantitative myelin imaging technique, fast macromolecular proton fraction (MPF) mapping. MPF maps were obtained from 23 healthy subjects and 31 SZ patients using a clinical 1.5T magnetic resonance imaging (MRI) scanner. Mean MPF in WM and GM was compared between the healthy control subjects and SZ patients with positive and negative leading symptoms using the multivariate analysis of covariance. The SZ patients had significantly reduced MPF in GM (p < 0.001) and WM (p = 0.02) with the corresponding relative decrease of 5% and 3%, respectively. The effect sizes for the myelin content loss in SZ relative to the control group were 1.0 and 1.5 for WM and GM, respectively. The SZ patients with leading negative symptoms had significantly lower MPF in GM (p < 0.001) and WM (p = 0.003) as compared to the controls and showed a significant MPF decrease in WM (p = 0.03) relative to the patients with leading positive symptoms. MPF in WM significantly negatively correlated with the disease duration in SZ patients (Pearson's r = -0.51; p = 0.004). This study demonstrates that chronic SZ is characterized by global microscopic brain hypomyelination of both WM and GM, which is associated with the disease duration and negative symptoms. Myelin deficiency in SZ can be detected and quantified by the fast MPF mapping method.
Collapse
|
40
|
Shared Biological Pathways between Antipsychotics and Omega-3 Fatty Acids: A Key Feature for Schizophrenia Preventive Treatment? Int J Mol Sci 2021; 22:ijms22136881. [PMID: 34206945 PMCID: PMC8269187 DOI: 10.3390/ijms22136881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia typically emerges during adolescence, with progression from an ultra-high risk state (UHR) to the first episode of psychosis (FEP) followed by a chronic phase. The detailed pathophysiology of schizophrenia and the factors leading to progression across these stages remain relatively unknown. The current treatment relies on antipsychotics, which are effective for FEP and chronic schizophrenia but ineffective for UHR patients. Antipsychotics modulate dopaminergic and glutamatergic neurotransmission, inflammation, oxidative stress, and membrane lipids pathways. Many of these biological pathways intercommunicate and play a role in schizophrenia pathophysiology. In this context, research of preventive treatment in early stages has explored the antipsychotic effects of omega-3 supplementation in UHR and FEP patients. This review summarizes the action of omega-3 in various biological systems involved in schizophrenia. Similar to antipsychotics, omega-3 supplementation reduces inflammation and oxidative stress, improves myelination, modifies the properties of cell membranes, and influences dopamine and glutamate pathways. Omega-3 supplementation also modulates one-carbon metabolism, the endocannabinoid system, and appears to present neuroprotective properties. Omega-3 has little side effects compared to antipsychotics and may be safely prescribed for UHR patients and as an add-on for FEP patients. This could to lead to more efficacious individualised treatments, thus contributing to precision medicine in psychiatry.
Collapse
|
41
|
Sun Y, Ji J, Zha Z, Zhao H, Xue B, Jin L, Wang L. Effect and Mechanism of Catalpol on Remyelination via Regulation of the NOTCH1 Signaling Pathway. Front Pharmacol 2021; 12:628209. [PMID: 33708131 PMCID: PMC7940842 DOI: 10.3389/fphar.2021.628209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Promoting the differentiation of oligodendrocyte precursor cells (OPCs) is important for fostering remyelination in multiple sclerosis. Catalpol has the potential to promote remyelination and exert neuroprotective effects, but its specific mechanism is still unclear. Recent studies have shown that the NOTCH1 signaling pathway is involved in mediating OPC proliferation and differentiation. In this study, we elucidated that catalpol promoted OPC differentiation in vivo and vitro and explored the regulatory role of catalpol in specific biomolecular processes. Following catalpol administration, better and faster recovery of body weight and motor balance was observed in mice with cuprizone (CPZ)-induced demyelination. Luxol fast blue staining (LFB) and transmission electron microscopy (TEM) showed that catalpol increased the myelinated area and improved myelin ultrastructure in the corpus callosum in demyelinated mice. In addition, catalpol enhanced the expression of CNPase and MBP, indicating that it increased OPC differentiation. Additionally, catalpol downregulated the expression of NOTCH1 signaling pathway-related molecules, such as JAGGED1, NOTCH1, NICD1, RBPJ, HES5, and HES1. We further demonstrated that in vitro, catalpol enhanced the differentiation of OPCs into OLs and inhibited NOTCH1 signaling pathway activity. Our data suggested that catalpol may promote OPC differentiation and remyelination through modulation of the NOTCH1 pathway. This study provides new insight into the mechanism of action of catalpol in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Zheng Zha
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Core Facility Center, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
A unique missense variant in the E1A-binding protein P400 gene is implicated in schizophrenia by whole-exome sequencing and mutant mouse models. Transl Psychiatry 2021; 11:132. [PMID: 33602898 PMCID: PMC7892873 DOI: 10.1038/s41398-021-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Genetic and epidemiological evidence has suggested that genetic factors are important in schizophrenia, although its pathophysiology is poorly understood. This study used whole-exome sequencing to investigate potential novel schizophrenia-causing genes in a Japanese family containing several members affected by severe or treatment-resistant schizophrenia. A missense variant, chr12:132064747C>T (rs200626129, P2805L), in the E1A-binding protein P400 (EP400) gene completely segregated with schizophrenia in this family. Furthermore, numerous other EP400 mutations were identified in the targeted sequencing of a schizophrenia patient cohort. We also created two lines of Ep400 gene-edited mice, which had anxiety-like behaviours and reduced axon diameters. Our findings suggest that rs200626129 in EP400 is likely to cause schizophrenia in this Japanese family, and may lead to a better understanding and treatment of schizophrenia.
Collapse
|
43
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
44
|
Jones MT, Harvey PD. Major Neuropsychological Impairments in Schizophrenia Patients: Clinical Implications. Curr Psychiatry Rep 2020; 22:59. [PMID: 32886232 DOI: 10.1007/s11920-020-01181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Schizophrenia is a complex severe mental illness with high morbidity and mortality. It is characterized by positive symptoms, negative symptoms, and cognitive impairment. Cognitive impairment is strongly associated with functional impairment and presents a major barrier to recovery. This article reviews some of the most recent research on cognition in schizophrenia and the clinical implications. RECENT FINDINGS There have been recent studies related to the genomics of cognition and neural structures involved in cognition. We review recent investigations into the assessment of social cognition and the implications of impaired introspective accuracy. A recent network analysis assessed the relationship of neurocognition and social cognition to functional capacity. We further discuss the role of specific symptoms in functioning, including negative symptoms and symptoms related to autism spectrum disorder. We conclude with a discussion of a novel computerized treatment for social cognition. Recent research has sought to better understand several dimensions of cognition including genomics, brain structure, social cognition, functional capacity, and symptomatology. This recent research brings us closer to understanding the complex clinical picture of schizophrenia and the best treatments to achieve recovery.
Collapse
Affiliation(s)
- Mackenzie T Jones
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Research Service, Bruce W. Carter VA Medical Center, Miami, FL, USA
| |
Collapse
|