1
|
Martins IR, Martins LHDS, Chisté RC, Picone CSF, Joele MRSP. Betalains from vegetable peels: Extraction methods, stability, and applications as natural food colorants. Food Res Int 2024; 195:114956. [PMID: 39277261 DOI: 10.1016/j.foodres.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Betalains are hydrophilic pigments naturally present in a limited number of plants and fungi. In addition to providing pigmentation, ranging from yellow to red, they show potential for replacing artificial food colorings. Betalains can be obtained from agri-food waste like vegetable peels through conventional and emerging extraction methods; however, they are susceptible to chemical changes due to various degradation factors, such as the presence of oxygen, light, and increased temperature. In this context, encapsulation can be used as a strategy to stabilize and reduce the pigment degradation rate for later industrial application in processed foods. This study reviews data from the last five years on the production and relevance of valuing agri-food waste, in addition to research carried out on betalains obtained from vegetable peels, such as extraction methods, encapsulation as a method of controlling stability and applications as colorant in food matrices, highlighting news insights for the field of pigments from plant sources. This review shows that encapsulation techniques using mixtures of wall materials offer superior protection than isolated materials. Despite advances in applicability, gaps still persist regarding stability in food matrices, especially on an industrial scale. However, future investigations should focus on filling the gaps regarding the maintenance of the properties of betalains for application in food industries as natural food coloring based on the precepts of circular economy and sustainable technology.
Collapse
Affiliation(s)
- Ingryd Rodrigues Martins
- Graduate Program of Rural Development and Management Agrifood (PPGDRGEA), Instituto de Educação, Ciência e Tecnologia do Pará (IFPA), 68740-970 Castanhal, PA, Brazil.
| | - Luiza Helena da Silva Martins
- Institute of Animal Health and Production (ISPA), Universidade Federal Rural da Amazônia (UFRA), 66077-830 Belém, PA, Brazil.
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Universidade Federal do Pará (UFPA), 66075-900 Belém, PA, Brazil; Faculty of Pharmacy (FAFAR), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil.
| | - Carolina Siqueira Franco Picone
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Maria Regina Sarkis Peixoto Joele
- Graduate Program of Rural Development and Management Agrifood (PPGDRGEA), Instituto de Educação, Ciência e Tecnologia do Pará (IFPA), 68740-970 Castanhal, PA, Brazil.
| |
Collapse
|
2
|
Chhetri G, Kim HJ, Jeon JM, Yoon JJ. Isolation of Massilia species capable of degrading Poly(3-hydroxybutyrate) isolated from eggplant (Solanum melongena L.) field. CHEMOSPHERE 2024; 368:143776. [PMID: 39566202 DOI: 10.1016/j.chemosphere.2024.143776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Poly(3-hydroxybutyrate) (PHB) is crucial for replacing petroleum-based plastics, an essential step towards fostering a bio-based economy. This shift is urgently needed to safeguard human health and preserve natural ecosystems. PHB is one of the most extremely commercialized bio-plastics. Although. significant progress has been made in identifying bacteria that produce PHB, fewer bacteria capable of degrading it have been discovered. Four newly isolated Massilia strains capable of degrading PHB were discovered in eggplant (Solanum melongena L.) field soil. Their PHB-degrading abilities were investigated under different temperatures and media using emulsified solid-media based cultures. The strains belong to the genus Massilia, were evaluated for their effectiveness. Among them, Massilia sp. JJY02, was selected for its exceptional PHB degradation. PHB degradation was confirmed by monitoring changes in the physical and chemical properties of PHB films using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). After 20 days of cultivation with PHB film, Massilia sp. JJY02 achieved approximately 90% PHB degradation at 28 °C. All the novel strains were capable of producing carotenoid-type pigments and indole-acetic acid (IAA). Among them, Massilia sp. JJY03 and JJY04 showed phosphate solubilization activity. This study demonstrated that soil bacteria from eggplant have both PHB-degrading and plant growth promoting capabilities, marking the first instance of showing that species of Massilia can degrade PHB.
Collapse
Affiliation(s)
- Geeta Chhetri
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Hyun-Joong Kim
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea.
| |
Collapse
|
3
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Maglione G, Zinno P, Tropea A, Mussagy CU, Dufossé L, Giuffrida D, Mondello A. Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. AIMS Microbiol 2024; 10:723-755. [PMID: 39219757 PMCID: PMC11362270 DOI: 10.3934/microbiol.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.
Collapse
Affiliation(s)
- Giuseppe Maglione
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168–Messina, Italy
| | - Cassamo U. Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, F-97400 Saint-Denis, Ile de La Réunion, France
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alice Mondello
- Department of Economics, University of Messina, Via dei Verdi, 75, 98122 Messina, Italy
| |
Collapse
|
5
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
6
|
Li H, Zhao P, Li S, Guo J, Hao D. Trial and error: New insights into recombinant expression of membrane-bound insect cytochromes P450 in Escherichia coli systems. Int J Biol Macromol 2024; 273:133183. [PMID: 38897522 DOI: 10.1016/j.ijbiomac.2024.133183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Insect cytochromes P450 (CYP450s) are key enzymes responsible for a wide array of oxidative transformations of both endogenous and exogenous substrates. However, there is currently no a universal guideline established for heterologous expression of membrane-bound CYP450s, which hampers their downstream biochemical and structural studies. In this study, we conducted large-scale screening of protein overexpression in Escherichia coli using 71 insect CYP450 sequences and optimized the expression of a difficult-to-express CYP450 (CYP6HX3) using eight different optimizations, including selection of host strains and expression vectors, alternative of leader signal peptides, and N-terminal modifications. We confirmed that 1) Only insect CYP450s belonging to the CYP347 family could be expressed with N-terminal fusion of ompA2+ signal peptide in E. coli expression system. 2) E. coli Lemo 21 (DE3) effectively improved the expression of CYP6HX3 in the plasma membrane. 3) A brick-red appearance occurred frequently in the expressed thallus or membrane proteins, but this phenomenon could not necessarily indicate successful overexpression of target CYP450s. These findings provide new insights into the recombinant expression of insect CYP450s in E. coli systems and will facilitate the theoretical approaches for functional expression and production of eukaryotic CYP450s.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Peiyuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyan Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
7
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Machuca Á, Hernández VA, Deramond C, Contreras-Machuca P. The colorful fungi of the Chilean forests: Production, chemical characterization and possible applications of their pigments. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:1-40. [PMID: 39059841 DOI: 10.1016/bs.aambs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In Chile, as in the rest of the world, only a small fraction of the fungal diversity inhabiting the wide variety of its ecosystems is known. This diversity must hide an inestimable richness of species with interesting biotechnological potential, including fungal pigment producers. Recently, interest in filamentous fungi has increased significantly due to their importance as alternative sources of pigments and colorants that are environmentally and human health friendly. As a result, fungal pigments are gaining importance in various industrial applications, such as food, textiles, pharmaceuticals, cosmetics, etc. The increasing consumer demand for "green label" natural colorants requires the exploration of different ecosystems in search of new fungal species that are efficient producers of different pigment with a wide range of colors and ideally without the co-production of mycotoxins. However, advances are also needed in pigment production processes through fermentation, scale-up from laboratory to industrial scale, and final product formulation and marketing. In this respect, the journey is still full of challenges for scientists and entrepreneurs. This chapter describes studies on pigment-producing fungi collected in the forests of central-southern Chile. Aspects such as the exploration of potential candidates as sources of extracellular pigments, the optimization of pigment production by submerged fermentation, methods of pigment extraction and purification for subsequent chemical characterization, and formulation (by microencapsulation) for potential cosmetic applications are highlighted. This potential use is due to the outstanding bioactivity of most fungal pigments, making them interesting functional ingredients for many applications. Finally, the use of fungal pigments for textile and spalting applications is discussed.
Collapse
Affiliation(s)
- Ángela Machuca
- School of Science and Technology, Universidad de Concepción, Campus Los Ángeles, Los Ángeles, Chile.
| | - Vicente A Hernández
- Biotechnology Center and Faculty of Forestry Sciences, Universidad de Concepción, Concepción, Chile
| | - Christian Deramond
- School of Science and Technology, Universidad de Concepción, Campus Los Ángeles, Los Ángeles, Chile
| | | |
Collapse
|
9
|
Marey MA, Abozahra R, El-Nikhely NA, Kamal MF, Abdelhamid SM, El-Kholy MA. Transforming microbial pigment into therapeutic revelation: extraction and characterization of pyocyanin from Pseudomonas aeruginosa and its therapeutic potential as an antibacterial and anticancer agent. Microb Cell Fact 2024; 23:174. [PMID: 38867319 PMCID: PMC11170807 DOI: 10.1186/s12934-024-02438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The objectives of the current study were to extract pyocyanin from Pseudomonas aeruginosa clinical isolates, characterize its chemical nature, and assess its biological activity against different bacteria and cancer cells. Due to its diverse bioactive properties, pyocyanin, being one of the virulence factors of P. aeruginosa, holds a promising, safe, and available therapeutic potential. METHODS 30 clinical P. aeruginosa isolates were collected from different sources of infections and identified by routine methods, the VITEK 2 compact system, and 16 S rRNA. The phenazine-modifying genes (phzM, phzS) were identified using polymerase chain reaction (PCR). Pyocyanin chemical characterization included UV-Vis spectrophotometry, Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and Liquid Chromatography-Mass Spectrometry (LC-MS). The biological activity of pyocyanin was explored by determining the MIC values against different clinical bacterial strains and assessing its anticancer activity against A549, MDA-MB-231, and Caco-2 cancer cell lines using cytotoxicity, wound healing and colony forming assays. RESULTS All identified isolates harboured at least one of the phzM or phzS genes. The co-presence of both genes was demonstrated in 13 isolates. The UV-VIS absorbance peaks were maxima at 215, 265, 385, and 520 nm. FTIR could identify the characteristic pyocyanin functional groups, whereas both GC-MS and LC-MS elucidated the chemical formula C11H18N2O2, with a molecular weight 210. The quadri-technical analytical approaches confirmed the chemical nature of the extracted pyocyanin. The extract showed broad-spectrum antibacterial activity, with the greatest activity against Bacillus, Staphylococcus, and Streptococcus species (MICs 31.25-125 µg/mL), followed by E. coli isolates (MICs 250-1000 µg/mL). Regarding the anticancer activity, the pyocyanin extract showed IC50 values against A549, MDA-MB-231, and Caco-2 cancer cell lines of 130, 105, and 187.9 µg/mL, respectively. Furthermore, pyocyanin has markedly suppressed colony formation and migratory abilities in these cells. CONCLUSIONS The extracted pyocyanin has demonstrated to be a potentially effective candidate against various bacterial infections and cancers. Hence, the current findings could contribute to producing this natural compound easily through an affordable method. Nonetheless, future studies are required to investigate pyocyanin's effects in vivo and analyse the results of combining it with other traditional antibiotics or anticancer drugs.
Collapse
Affiliation(s)
- Moustafa A Marey
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nefertiti A El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| | - Sarah M Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt.
| |
Collapse
|
10
|
Makaranga A, Nesamma AA, Jutur PP. Microbial chassis as the platform for production of dihydroxy xanthophyll-based carotenoids: an overview of recent advances in biomanufacturing. World J Microbiol Biotechnol 2024; 40:197. [PMID: 38722384 DOI: 10.1007/s11274-024-03996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.
Collapse
Affiliation(s)
- Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Asha Arumugam Nesamma
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Devi M, Ramakrishnan E, Deka S, Parasar DP. Bacteria as a source of biopigments and their potential applications. J Microbiol Methods 2024; 219:106907. [PMID: 38387652 DOI: 10.1016/j.mimet.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.
Collapse
Affiliation(s)
- Moitrayee Devi
- Faculty of Paramedical Science (Microbiology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Elancheran Ramakrishnan
- Department of Chemistry, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu 621112, India
| | - Suresh Deka
- Faculty of Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Deep Prakash Parasar
- Faculty of Science (Biotechnology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India.
| |
Collapse
|
12
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
13
|
Maurya KK, Tripathi AD, Kumar D, Ramyaa TS, Paul V, Agarwal A. Growth Kinetics of Prodigiosin (Food Color) Produced by Novel Serratia marcescens bhu prodig Under Submerged Fermentation (SMF). Mol Biotechnol 2023:10.1007/s12033-023-00925-6. [PMID: 37907812 DOI: 10.1007/s12033-023-00925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023]
Abstract
Prodigiosin is a promising food color due to its antibacterial, antimalarial, antimycotic characteristics, immunomodulating, and antitumor activities. Novel prodigiosin producing strain isolated from sugarcane field soil of Banaras Hindu University, India, characterized as Serratia marcescens bhu prodig by 16 sRNA. The effect of carbon, nitrogen source, and physical parameters (pH and temperature) on pigment yield was studied. The highest amount of pigment produced, which was 800.95 ± 0.05 mg/L, was detected when sorbitol and peptone were used as nitrogen and carbon source with pH 7 at 30 °C. The optimized condition scale-up in a bioreactor with a working capacity of 3.0 L, gave maximum pigment yield of 825 ± 0.05 mg/L with µ (Maximum specific growth rate), Yp/x, which represents the product yield coefficient, and Yp/s, which signifies the specific product yield coefficient and productivity of 0.3/h, 0.62, 0.80, and 0.02 g/L/h, respectively, after 72 h of cultivation in submerged fermentation (SMF). The isolated pigment was characterized as prodigiosin by the analysis of spectral data and GC-MS. The mass spectrophotometry investigation characterized pigment as 4-methoxy-5(5 methyl-4-pentyl-2H-pyrrol-2-ylidene)- 2,2-bipyrrole ring structure. The GC-MS chromatogram showed m/z of 323, representing prodigiosin. The prodigiosin yield and productivity obtained in the current finding were higher than in previous reports.
Collapse
Affiliation(s)
- Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Deepak Kumar
- Department of Microbiology Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - T S Ramyaa
- Department of Microbiology, Thiagrajar College, Madurai, Tamilnadu, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aparna Agarwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, Delhi University, New Delhi, India
| |
Collapse
|
14
|
Rahman AU, Ali A, Ahmad F, Ahmad S, Alharbi M, Alasmari AF, Fayyaz A, Rana QUA, Khan S, Hasan F, Badshah M, Shah AA. Unraveling the Radioprotective Mechanisms of UV-Resistant Bacillus subtilis ASM-1 Extracted Compounds through Molecular Docking. Pharmaceuticals (Basel) 2023; 16:1139. [PMID: 37631055 PMCID: PMC10459916 DOI: 10.3390/ph16081139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Radioresistant microorganisms possess inimitable capabilities enabling them to thrive under extreme radiation. However, the existence of radiosensitive microorganisms inhabiting such an inhospitable environment is still a mystery. The current study examines the potential of radioresistant microorganisms to protect radiosensitive microorganisms in harsh environments. Bacillus subtilis strain ASM-1 was isolated from the Thal desert in Pakistan and evaluated for antioxidative and radioprotective potential after being exposed to UV radiation. The strain exhibited 54.91% survivability under UVB radiation (5.424 × 103 J/m2 for 8 min) and 50.94% to mitomycin-C (4 µg/mL). Extracellular fractions collected from ASM-1 extracts showed significant antioxidant potential, and chemical profiling revealed a pool of bioactive compounds, including pyrrolopyrazines, amides, alcoholics, and phenolics. The E-2 fraction showed the maximum antioxidant potential via DPPH assay (75%), and H2O2 scavenging assay (68%). A combination of ASM-1 supernatant with E-2 fraction (50 µL in a ratio of 2:1) provided substantial protection to radiosensitive cell types, Bacillus altitudinis ASM-9 (MT722073) and E. coli (ATCC 10536), under UVB radiation. Docking studies reveal that the compound supported by literature against the target proteins have strong binding affinities which further inferred its medical uses in health care treatment. This is followed by molecular dynamic simulations where it was observed among trajectories that there were no significant changes in major secondary structure elements, despite the presence of naturally flexible loops. This behavior can be interpreted as a strategy to enhance intermolecular conformational stability as the simulation progresses. Thus, our study concludes that Bacillus subtilis ASM-1 protects radiosensitive strains from radiation-induced injuries via biofilm formation and secretion of antioxidative and radioprotective compounds in the environment.
Collapse
Affiliation(s)
- Asim Ur Rahman
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
| | - Aftab Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (A.F.A.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (A.F.A.)
| | - Amna Fayyaz
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Qurrat ul ain Rana
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
- Joint Genome Institute, Lawrence Berkely National Laboratory, Berkley, CA 94720, USA
| | - Samiullah Khan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
| | - Malik Badshah
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.U.R.); (A.A.); (S.K.); (F.H.); (M.B.)
| |
Collapse
|
15
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
17
|
Biopigments of Microbial Origin and Their Application in the Cosmetic Industry. COSMETICS 2023. [DOI: 10.3390/cosmetics10020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Along with serving as a source of color, many microbial pigments have gained attention as interesting bioactive molecules with potential health advantages. These pigments have several applications in the food, agrochemical, medicine, and cosmetic industries. They have attracted the attention of these industries due to their high production value, low cost, stability, and biodegradability. Recently, many consumers worldwide have noted the impact of synthetic dyes; thus, natural pigments are more in demand than synthetic colors. On the other hand, the cosmetic industry has been moving toward greener manufacturing, from the formulation to the packaging material. Microbial pigments have several applications in the field of cosmetics due to their photoprotection, antioxidant, and antiaging properties, including inhibiting melanogenesis and acting as natural colorants for cosmetics, as some microorganisms are rich in pigments. More investigations are required to estimate the safety and efficacy of employing microbial pigments in cosmetic products. Furthermore, it is necessary to obtain information about DNA sequencing, metabolic pathways, and genetic engineering. In addition, unique habitats should be explored for novel pigments and new producing strains. Thus, new microbial pigments could be of consideration to the cosmetic industry, as they are ideal for future cosmetics with positive health effects.
Collapse
|
18
|
Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigments from bacteria, fungi, yeast, cyanobacteria, and microalgae have been gaining more demand in the food, leather, and textile industries due to their natural origin and effective bioactive functions. Mass production of microbial pigments using inexpensive and ecofriendly agro-industrial residues is gaining more demand in the current research due to their low cost, natural origin, waste utilization, and high pigment stimulating characteristics. A wide range of natural substrates has been employed in submerged fermentation as carbon and nitrogen sources to enhance the pigment production from these microorganisms to obtain the required quantity of pigments. Submerged fermentation is proven to yield more pigment when added with agro-waste residues. Hence, in this review, aspects of potential pigmented microbes such as diversity, natural substrates that stimulate more pigment production from bacteria, fungi, yeast, and a few microalgae under submerged culture conditions, pigment identification, and ecological functions are detailed for the benefit of industrial personnel, researchers, and other entrepreneurs to explore pigmented microbes for multifaceted applications. In addition, some important aspects of microbial pigments are covered herein to disseminate the knowledge.
Collapse
|
21
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
22
|
Pigment Production by Paracoccus spp. Strains through Submerged Fermentation of Valorized Lignocellulosic Wastes. FERMENTATION 2022. [DOI: 10.3390/fermentation8090440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to the increasing emphasis on the circular economy, research in recent years has focused on the feasibility of using biomass as an alternative energy source. Plant biomass is a potential substitute for countering the dependence on depleting fossil-derived energy sources and chemicals. However, in particular, lignocellulosic waste materials are complex and recalcitrant structures that require effective pretreatment and enzymatic saccharification to release the desired saccharides, which can be further fermented into a plethora of value-added products. In this context, pigment production from waste hydrolysates is a viable ecological approach to producing safe and natural colorings, which are otherwise produced via chemical synthesis and raise health concerns. The present study aims to evaluate two such abundant lignocellulosic wastes, i.e., wheat straw and pinewood sawdust as low-cost feedstocks for carotenoid production with Paracoccus strains. An alkali pretreatment approach, followed by enzymatic saccharification using an indigenous lab-isolated fungal hydrolase, was found to be effective for the release of fermentable sugars from both substrates. The fermentation of the pretreated sawdust hydrolysate by Paracoccus aminophilus CRT1 and Paracoccus kondratievae CRT2 resulted in the highest carotenoid production, 631.33 and 758.82 μg/g dry mass, respectively. Thus, the preliminary but informative research findings of the present work exhibit the potential for sustainable and economically feasible pigment production from lignocellulosic feedstocks after optimal process development on the pilot scale.
Collapse
|
23
|
Microalgal carotenoids: A promising alternative to synthetic dyes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
de Medeiros TDM, Dufossé L, Bicas JL. Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chem X 2022; 13:100223. [PMID: 35128384 PMCID: PMC8808281 DOI: 10.1016/j.fochx.2022.100223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
The search for sustainable processes is constantly increasing in the last years, so reusing, recycling and adding value to residues and by-products from agroindustry is a consolidated area of research. Particularly in the field of fermentation technology, the lignocellulosic substrates have been used to produce a diversity of chemicals, fuels and food additives. These residues or by-products are rich sources of carbon, which may be used to yield fermentescible sugars upon hydrolysis, but are usually inaccessible to enzyme and microbial attack. Therefore, pre-treatments (e.g. hydrolysis, steam explosion, biological pretreatment or others) are required prior to microbial action. Biopigments are added-value compounds that can be produced biotechnologically, including fermentation processes employing lignocellulosic substrates. These molecules are important not only for their coloring properties, but also for their biological activities. Therefore, this paper discusses the most recent and relevant processes for biopigment production using lignocellulosic substrates (solid-state fermentation) or their hydrolysates.
Collapse
Affiliation(s)
- Tiago Daniel Madureira de Medeiros
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| |
Collapse
|
25
|
Grewal J, Woła̧cewicz M, Pyter W, Joshi N, Drewniak L, Pranaw K. Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front Microbiol 2022; 13:832918. [PMID: 35173704 PMCID: PMC8841802 DOI: 10.3389/fmicb.2022.832918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Colors with their attractive appeal have been an integral part of human lives and the easy cascade of chemical catalysis enables fast, bulk production of these synthetic colorants with low costs. However, the resulting hazardous impacts on the environment and human health has stimulated an interest in natural pigments as a safe and ecologically clean alternative. Amidst sources of natural producers, the microbes with their diversity, ease of all-season production and peculiar bioactivities are attractive entities for industrial production of these marketable natural colorants. Further, in line with circular bioeconomy and environmentally clean technologies, the use of agro-industrial wastes as feedstocks for carrying out the microbial transformations paves way for sustainable and cost-effective production of these valuable secondary metabolites with simultaneous waste management. The present review aims to comprehensively cover the current green workflow of microbial colorant production by encompassing the potency of waste feedstocks and fermentation technologies. The commercially important pigments viz. astaxanthin, prodigiosin, canthaxanthin, lycopene, and β-carotene produced by native and engineered bacterial, fungal, or yeast strains have been elaborately discussed with their versatile applications in food, pharmaceuticals, textiles, cosmetics, etc. The limitations and their economic viability to meet the future market demands have been envisaged. The most recent advances in various molecular approaches to develop engineered microbiological systems for enhanced pigment production have been included to provide new perspectives to this burgeoning field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Xi Y, Zhang J, Kong F, Che J, Chi Z. Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina. BIORESOUR BIOPROCESS 2022; 9:4. [PMID: 38647742 PMCID: PMC10991233 DOI: 10.1186/s40643-022-00495-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 12/31/2022] Open
Abstract
Dunaliella salina is a green microalga with the great potential to generate natural β-carotene. However, the corresponding mathematical models to guide optimized production of β-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and β-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both β-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value β-carotene production.
Collapse
Affiliation(s)
- Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiali Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jian Che
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd, Dalian, 116200, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
27
|
López GD, Álvarez-Rivera G, Carazzone C, Ibáñez E, Leidy C, Cifuentes A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Crit Rev Anal Chem 2021; 53:1239-1262. [PMID: 34915787 DOI: 10.1080/10408347.2021.2016366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Natural carotenoids are secondary metabolites that exhibit antioxidant, anti-inflammatory, and anti-cancer properties. These types of compounds are highly demanded by pharmaceutical, cosmetic, nutraceutical, and food industries, leading to the search for new natural sources of carotenoids. In recent years, the production of carotenoids from bacteria has become of great interest for industrial applications. In addition to carotenoids with C40-skeletons, some bacteria have the ability to synthesize characteristic carotenoids with C30-skeletons. In this regard, a great variety of methodologies for the extraction and identification of bacterial carotenoids has been reported and this is the first review that condenses most of this information. To understand the diversity of carotenoids from bacteria, we present their biosynthetic origin in order to focus on the methodologies employed in their extraction and characterization. Special emphasis has been made on high-performance liquid chromatography-mass spectrometry (HPLC-MS) for the analysis and identification of bacterial carotenoids. We end up this review showing their potential commercial use. This review is proposed as a guide for the identification of these metabolites, which are frequently reported in new bacteria strains.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Chemistry Department, Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
- Physics Department, Laboratory of Biophysics, Universidad de los Andes, Bogotá, Colombia
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Madrid, Spain
| | | | - Chiara Carazzone
- Chemistry Department, Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Madrid, Spain
| | - Chad Leidy
- Physics Department, Laboratory of Biophysics, Universidad de los Andes, Bogotá, Colombia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Madrid, Spain
| |
Collapse
|
28
|
Production of soluble dietary fibers and red pigments from potato pomace in submerged fermentation by Monascus purpureus. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Chaudhary V, Katyal P, Poonia AK, Kaur J, Puniya AK, Panwar H. Natural pigment from Monascus: The production and therapeutic significance. J Appl Microbiol 2021; 133:18-38. [PMID: 34569683 DOI: 10.1111/jam.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The present review highlights the advantages of using natural colorant over the synthetic one. We have discussed the fermentation parameters that can enhance the productivity of Monascus pigment on agricultural wastes. BACKGROUND Food industry is looking for natural colours because these can enhance the esthetic value, attractiveness, and acceptability of food while remaining nontoxic. Many synthetic food colours (Azorubine Carmoisine, quinoline) have been prohibited due to their toxicity and carcinogenicity. Increasing consumer awareness towards the food safety has forced the manufacturing industries to look for suitable alternatives. In addition to safety, natural colorants have been found to have nutritional and therapeutic significance. Among the natural colorants, microbial pigments can be considered as a viable option because of scalability, easier production, no seasonal dependence, cheaper raw materials and easier extraction. Fungi such as Monascus have a long history of safety and therefore can be used for production of biopigments. METHOD The present review summarizes the predicted biosynthetic pathways and pigment gene clusters in Monascus purpureus. RESULTS The challenges faced during the pilot-scale production of Monascus biopigment and taming it by us of low-cost agro-industrial substrates for solid state fermentation has been suggested. CONCLUSION Keeping in mind, therapeutic properties of Monascus pigments and their derivatives, they have huge potential for industrial and pharmaceutical application. APPLICATION Though the natural pigments have wide scope in the food industry. However, stabilization of pigment is the greatest challenge and attempts are being made to overcome this by complexion with hydrocolloids or metals and by microencapsulation.
Collapse
Affiliation(s)
- Vishu Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priya Katyal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anuj Kumar Poonia
- Department of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jaspreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
30
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
31
|
Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021; 11:92. [PMID: 33561985 PMCID: PMC7915786 DOI: 10.3390/metabo11020092] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids' demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their use in the food and feed industry. This review also describes some issues that are linked with biotechnological production of fungal and yeasts carotenoids, as well as new approaches/directions to make their biotechnological production more efficient.
Collapse
Affiliation(s)
- Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str. 1-537, LV-1004 Riga, Latvia
| | - Irina Guzhova
- Laboratory of Cell Protective Mechanisms, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint Petersburg, Russia;
| | - Lorenzo Bernetti
- Department of Agricultural, Food and Environmental Sciences and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (L.B.); (P.B.)
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (L.B.); (P.B.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| |
Collapse
|