1
|
Burkhardt T, Sibul F, Pilz F, Scherer G, Pluym N, Scherer M. A comprehensive non-targeted approach for the analysis of biomarkers in exhaled breath across different nicotine product categories. J Chromatogr A 2024; 1736:465359. [PMID: 39303480 DOI: 10.1016/j.chroma.2024.465359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In the context of the evolving landscape of nicotine consumption, the assessment of biomarkers plays a crucial role in understanding the health impact of different product categories. Exhaled breath (EB) emerges as a promising, non-invasive matrix for biomarker analysis, complementary to conventional urine and plasma data. This study explores distinctive EB biomarker profiles among users of combustible cigarettes (CC), heated tobacco products (HTP), electronic cigarettes (EC), smokeless/oral tobacco (OT), and oral/dermal nicotine products (NRT). We have successfully developed and validated a non-targeted GC-TOF-MS method for the analysis of EB samples across the aforementioned product categories. A total of 66 compounds were identified, with significantly elevated levels in at least one study group. The study found that CC users had higher levels of established VOCs associated with smoking, which supports the proof-of-concept of the method. Breathomic analysis identified increased levels of p-cymene and α-pinene in EC users, while HTP users showed potential biomarker candidates like γ-butyrolactone. This study underscores the utility of EB biomarkers for a comprehensive evaluation of diverse nicotine products. The unique advantages offered by EB analysis position it as a valuable tool for understanding the relationship between exposure and health outcomes.
Collapse
Affiliation(s)
- Therese Burkhardt
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Filip Sibul
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Fabian Pilz
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany.
| |
Collapse
|
2
|
Poindexter ME, Li Y, Madl AK, Nguyen TB, Pinkerton KE. Increasing coil temperature of a third-generation e-cigarette device modulates C57BL/6 mouse lung immune cell composition and cytokine milieu independently of aerosol dose. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-14. [PMID: 39494666 DOI: 10.1080/15287394.2024.2412998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Higher coil temperature in e-cigarette devices increases the formation of aerosols and toxicants, such as carbonyls. At present, the health implications of vaping at higher temperatures, including exacerbation of pulmonary inflammation, are largely unknown when aerosol dose is considered. To isolate the pulmonary effects of coil temperature, C57BL/6 mice were exposed to e-cigarette aerosols generated at lower (190°C) or higher (250°C) temperature for 3 days, while maintaining a similar chamber aerosol concentration. Increasing coil temperature did not markedly alter aerosol mass-normalized emissions of select carbonyls formed from thermal degradation pathways including formaldehyde, acetaldehyde, propionaldehyde, and acetone under the tested environment. Total bronchoalveolar cells, primarily macrophages, were significantly decreased in mice exposed to aerosols generated with higher coil temperatures compared to lower temperature exposures. The gene expression of IFNβ, IL-1β, TNFα, and IL-10 in mouse lung tissue was significantly reduced following e-cigarette exposure under both conditions, compared to filtered air exposure. Higher temperature exposures further exacerbated downregulation of IFNβ and IL-1β. Data suggest that higher temperature vaping might modulate acute pulmonary immune responses, potentially inducing immune suppression, even when normalized for aerosol dose exposure. Coil temperature thus appears to be an important parameter that needs to be regulated to ensure harm reduction for e-cigarette users.
Collapse
Affiliation(s)
- Morgan E Poindexter
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Yichen Li
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Amy K Madl
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Vilcassim MJR, Stowe S, Zierold KM. Perception of Health Risks of Electronic Cigarette Use Among College Students: Examining the Roles of Sex, Field of Study, Vaping Device Type, and Their Associations. J Community Health 2024:10.1007/s10900-024-01393-y. [PMID: 39179760 DOI: 10.1007/s10900-024-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Electronic cigarettes are marketed as a safer alternative to regular (combustible) cigarettes, based on the claim that there is no tobacco burning and fewer toxic chemicals in their vapor. However, recent evidence challenges the notion that e-cigarette aerosols are benign. Heating of compounds in e-liquids to high temperatures can lead to the release of toxic compounds in e-cigarette aerosols. However, users and the public may not be aware of these unique harms, impacting their perception of harm from using e-cigarettes. This research explored the perceptions of harm of e-cigarettes compared to regular cigarettes among 418 college students, aged 18-34, by employing a Qualtrics based smartphone survey. The findings revealed a vaping prevalence of 16.7% among our study population, indicating e-cigarette use among college aged young adults is at concerning levels. Perceptions of harm varied significantly by vaping status, sex, and field of study. Non-e-cigarette users and female students were less likely to perceive e-cigarettes as less harmful than regular cigarettes. Among e-cigarette users (vapers), male vapers and users of pod-type devices, such as JUUL and disposables, were more inclined to view e-cigarettes as less harmful. Among vapers, students in non-health-related fields were significantly more likely to perceive e-cigarettes as less harmful than regular cigarettes, underscoring the impact of educational background on health risk awareness. In conclusion, this study provides crucial insights into the varied perceptions of e-cigarettes among young adults. The results emphasize the need for targeted public health interventions and educational efforts to address this growing public health concern.
Collapse
Affiliation(s)
- M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, UAB School of Public Health, 1665 University Boulevard, Birmingham, AL, 35233, USA.
| | - Samuel Stowe
- Department of Environmental Health Sciences, UAB School of Public Health, 1665 University Boulevard, Birmingham, AL, 35233, USA
| | - Kristina Marie Zierold
- Department of Environmental Health Sciences, UAB School of Public Health, 1665 University Boulevard, Birmingham, AL, 35233, USA
| |
Collapse
|
4
|
Harris T. Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids. Chem Res Toxicol 2024; 37:1315-1328. [PMID: 39078024 PMCID: PMC11337207 DOI: 10.1021/acs.chemrestox.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.
Collapse
Affiliation(s)
- Trevor Harris
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| |
Collapse
|
5
|
Heywood J, Abele G, Langenbach B, Litvin S, Smallets S, Paustenbach D. Composition of e-cigarette aerosols: A review and risk assessment of selected compounds. J Appl Toxicol 2024. [PMID: 39147402 DOI: 10.1002/jat.4683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10-3-135 μg/kg-bw/day) and butyraldehyde (1.9 × 10-4-66.54 μg/kg-bw/day) corresponded to MoEs of 227-17,200,000 and 271-280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10-6-1.99 × 10-4 μg/kg-bw/day NNN corresponded to 1.4-28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.
Collapse
Affiliation(s)
- Jonathan Heywood
- Paustenbach and Associates, Denver, Colorado, USA
- Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
6
|
Beard JM, Collom C, Liu JY, Obiako P, Strongin RM, Zavala J, Sayes CM. In vitro toxicity and chemical analysis of e-cigarette aerosol produced amid dry hitting. Toxicology 2024; 506:153865. [PMID: 38876198 DOI: 10.1016/j.tox.2024.153865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Dry hitting, a phenomenon produced by e-cigarettes with refillable cartridges when the liquid in the coil is low, is a common occurrence among regular vapers despite being an unintended consequence of the device. This phenomenon's hazard to public health is still unknown and needs further investigation. Lung cells cultured at the air-liquid interface were exposed to vaped aerosol consisting of 3 % w/v ethyl maltol in propylene glycol for three-second puffs every 30 seconds for 80 total puffs with either dry hit or saturated conditions. Cytotoxicity was measured colorimetrically. The thermal degradation of the heating coils and wicks was visualized using scanning electron microscopy. The chemical byproducts in the aerosol were analyzed using proton nuclear magnetic resonance and inductively coupled plasma mass spectrometry. The results revealed a highly significant increase in cytotoxicity from dry hit treatments. Imaging showed thermal decomposition of the cotton wick after dry hitting, which was confirmed by energy dispersive x-ray spectroscopy with less oxygen in the dry hit cotton. Chemical byproducts were found via unique peaks in the dry hit condensate in the aromatic and alkene regions. Saturated condensate showed higher concentrations of detected metal species than dry-hit condensate. E-cigarette users should avoid dry hitting by refilling tanks or cartridges preemptively or by using disposable coils to avoid increased toxicity during vaping.
Collapse
Affiliation(s)
- Jonathan M Beard
- Department of Biology, Baylor University, Waco, TX 76798-7266, USA
| | - Clancy Collom
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| | - James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| | - Precious Obiako
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | | | - Christie M Sayes
- Department of Biology, Baylor University, Waco, TX 76798-7266, USA; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA.
| |
Collapse
|
7
|
Ito H, Shigeto A, Hashizume T. A solvent-free squeezing method for extraction of collected mass from aerosols of electronic cigarettes and heated tobacco products. J Chromatogr A 2024; 1727:465009. [PMID: 38776605 DOI: 10.1016/j.chroma.2024.465009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Previous in vitro toxicological assessments have demonstrated that almost no mutagenic and genotoxic activities in electronic cigarette (e-cigarette) and heated tobacco product (HTP) aerosols were detected even at the maximum recommended concentration. To accurately compare the toxicity levels between cigarette smoke and e-cigarette or HTP aerosols, higher exposure concentrations increasing the possibility to detect toxicity in in vitro tests are necessary, while avoiding solvent-induced toxicity. This study aimed to develop a solvent-free extraction method to obtain concentrated aerosol extracts for improved toxicological evaluation. Our novel approach involved squeezing several Cambridge filter pads, which collected aerosol constituents, in closed containers to achieve solvent-free extraction with comparable efficiency to the conventional method using organic solvents. The optimized squeezing method yielded extracts with concentrations approximately 10 times higher than those obtained in conventional extraction methods. Yield comparison of various constituents, such as flavoring compounds, in e-cigarette aerosol extracts revealed similar extraction efficiencies between the squeezing and conventional methods. However, the extraction efficiency for constituents with high log Pow values, predominantly found in HTP aerosol extracts, was unacceptably low using the squeezing method. In addition, solvent-free centrifuging, another type of extraction method, exhibited unsatisfactory results for even e-cigarette aerosols compared with the conventional method. Our findings suggest that the solvent-free squeezing method is suitable for extracting aerosol collected mass from e-cigarette aerosol but not from HTP aerosol. We anticipate that the solvent-free squeezing method will contribute to a deeper understanding of toxicological differences between e-cigarettes and conventional combustible cigarettes.
Collapse
Affiliation(s)
- Hiroshi Ito
- Scientific Product Assessment Center, R&D group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan
| | - Atsushi Shigeto
- Scientific Product Assessment Center, R&D group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan
| | - Tsuneo Hashizume
- Scientific Product Assessment Center, R&D group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| |
Collapse
|
8
|
Reilly S, Cheng T, Feng C, Walters MJ. Harmful and Potentially Harmful Constituents in E-Liquids and Aerosols from Electronic Nicotine Delivery Systems (ENDS). Chem Res Toxicol 2024; 37:1155-1170. [PMID: 38924487 PMCID: PMC11256903 DOI: 10.1021/acs.chemrestox.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In 2012, the U.S. Food & Drug Administration (FDA) published an established list of 93 harmful and potentially harmful constituents (HPHCs) targeting four tobacco product types (cigarettes, cigarette tobacco, roll-your-own tobacco, smokeless tobacco). In 2016, the FDA finalized the deeming rule to regulate electronic nicotine delivery systems (ENDS). However, knowledge gaps exist regarding whether certain HPHCs are present in ENDS e-liquids and aerosols. We identified and addressed these gaps by conducting literature searches and then experimentally quantifying HPHCs in the e-liquid and aerosol of 37 ENDS brands based on gaps in the literature. The literature searches identified 66 e-liquid HPHCs and 68 aerosol HPHCs that have limited to no information regarding the quantifiability of these constituents. A contracted ISO 17025 accredited laboratory performed the HPHC quantifications. The availability of validated analytical methods in the contracted laboratory determined the HPHCs included in the study scope (63/66 for e-liquids, 64/68 for aerosols). Combining the results from the quantifications and literature searches, 36 (39%) and 34 (37%) HPHCs were found quantifiable (≥limit of quantification [LOQ]) in ENDS e-liquids and aerosols, respectively, with 25 HPHCs being quantifiable in both matrices. Quantifiability results imply potential HPHC transfers between matrices, leaching from components, or formations from aerosol generation. The study results can inform the scientific basis for manufacturers and regulators regarding regulatory requirements for HPHC reporting. The HPHC quantities can also inform evaluations of the public health impact of ENDS and public communications regarding ENDS health risks.
Collapse
Affiliation(s)
- Samantha
M. Reilly
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Tianrong Cheng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Charles Feng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Matthew J. Walters
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| |
Collapse
|
9
|
Hamon R, Thredgold L, Wijenayaka A, Bastian NA, Ween MP. Dual Exposure to E-Cigarette Vapour and Cigarette Smoke Results in Poorer Airway Cell, Monocyte, and Macrophage Function Than Single Exposure. Int J Mol Sci 2024; 25:6071. [PMID: 38892256 PMCID: PMC11173218 DOI: 10.3390/ijms25116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
E-cigarette users predominantly also continue to smoke cigarettes. These Dual Users either consume e-cigarettes in locations where smoking is not allowed, but vaping is, or to reduce their consumption of cigarettes, believing it will lead to harm reduction. Whilst it is known that e-cigarette vapour is chemically less complex than cigarette smoke, it has a distinct chemical profile, and very little is known about the health impacts of exposure to both chemical profiles vs. either alone. We simultaneously exposed cells in vitro to non-toxic levels of e-cigarette vapour extract (EVE) and cigarette smoke extract (CSE) to determine their effects on 16HBE14o- airway epithelial cell metabolism and inflammatory response, as well as immune cell (THP-1 cells and monocyte-derived macrophages (MDM) from healthy volunteers) migration, phagocytosis, and inflammatory response. We observed increased toxicity, reduced metabolism (a marker of proliferation) in airway epithelial cells, and reduced monocyte migration, macrophage phagocytosis, and altered chemokine production after exposure to either CSE or EVE. These cellular responses were greater after dual exposure to CSE and EVE. The airway epithelial cells from smokers showed reduced metabolism after EVE (the Switcher model) and dual CSE and EVE exposure. When EVE and CSE were allowed to interact, the chemicals were found to be altered, and new chemicals were also found compared to the CSE and EVE profiles. Dual exposure to e-cigarette vapour and cigarette smoke led to worse functional outcomes in cells compared to either single exposure alone, adding to limited data that dual use may be more dangerous than smoking only.
Collapse
Affiliation(s)
- Rhys Hamon
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Leigh Thredgold
- Department of Occupational and Environmental Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Asiri Wijenayaka
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole Anne Bastian
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Miranda P. Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Santacruz-Márquez R, Neff AM, Mourikes VE, Fletcher EJ, Flaws JA. The effects of inhaled pollutants on reproduction in marginalized communities: a contemporary review. Inhal Toxicol 2024; 36:286-303. [PMID: 37075037 PMCID: PMC10584991 DOI: 10.1080/08958378.2023.2197941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023]
Abstract
Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.
Collapse
Affiliation(s)
| | - Alison M. Neff
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | | | - Endia J. Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| |
Collapse
|
11
|
Mori A, Ito S, Sekine T. A revision of the multiple-path particle dosimetry model focusing on tobacco product aerosol dynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3796. [PMID: 38185887 DOI: 10.1002/cnm.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
To assess the health impact of inhaled aerosols, it is necessary to understand aerosol dynamics and the associated dosimetry in the human respiratory tract. Although several studies have measured or simulated the dosimetry of aerosol constituents, the respiratory tract focus areas have been limited. In particular, the aerosols generated from tobacco products are complex composites and simulating their dynamics in the respiratory tract is challenging. To assess the dosimetry of the aerosol constituents of tobacco products, we developed a revised version of the Multiple-Path Particle Dosimetry (MPPD) model, which employs (1) new geometry based on CT-scanned human respiratory tract data, (2) convective mixing in the oral cavity and deep lung, and (3) constituent partitioning between the tissue and air, and clearance. The sensitivity analysis was conducted using aerosols composed of four major constituents of electronic cigarette (EC) aerosols to investigate the parameters that have a significant impact on the results. In addition, the revised model was run with 4 and 10 constituents in ECs and conventional cigarettes (CCs), respectively. Sensitivity analysis revealed that the new modeling and the physicochemical properties of constituents had a considerable impact on the simulated aerosol concentration and dosimetry. The simulations could be carried out within 3 min even when 10 constituents of CC aerosols were analyzed simultaneously. The revised model based on MPPD is an efficient and easy-to-use tool for understanding the aerosol dynamics of CC and EC constituents and their effect on the human body.
Collapse
Affiliation(s)
- Akina Mori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Japan
| | - Takashi Sekine
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Japan
| |
Collapse
|
12
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. Does vaping increase the likelihood of SARS-CoV-2 infection? Paradoxically yes and no. Am J Physiol Lung Cell Mol Physiol 2024; 326:L175-L189. [PMID: 38147795 PMCID: PMC11280677 DOI: 10.1152/ajplung.00300.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Man Wong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Ann Song
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Teresa Martinez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| |
Collapse
|
13
|
Cook DK, Lalonde G, Oldham MJ, Wang J, Bates A, Ullah S, Sulaiman C, Carter K, Jongsma C, Dull G, Gillman IG. A Practical Framework for Novel Electronic Nicotine Delivery System Evaluation: Chemical and Toxicological Characterization of JUUL2 Aerosol and Comparison with Reference Cigarettes. TOXICS 2024; 12:41. [PMID: 38250996 PMCID: PMC10820849 DOI: 10.3390/toxics12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronic nicotine delivery systems (ENDSs) are designed as a non-combustible alternative to cigarettes, aiming to deliver nicotine without the harmful byproducts of tobacco combustion. As the category evolves and new ENDS products emerge, it is important to continually assess the levels of toxicologically relevant chemicals in the aerosols and characterize any related toxicology. Herein, we present a proposed framework for characterizing novel ENDS products (i.e., devices and formulations) and determining the reduced risk potential utilizing analytical chemistry and in vitro toxicological studies with a qualitative risk assessment. To demonstrate this proposed framework, long-term stability studies (12 months) analyzing relevant toxicant emissions from six formulations of a next-generation product, JUUL2, were conducted and compared to reference combustible cigarette (CC) smoke under both non-intense and intense puffing regimes. In addition, in vitro cytotoxicity, mutagenicity, and genotoxicity assays were conducted on aerosol and smoke condensates. In all samples, relevant toxicants under both non-intense and intense puffing regimes were substantially lower than those observed in reference CC smoke. Furthermore, neither cytotoxicity, mutagenicity, nor genotoxicity was observed in aerosol condensates generated under both intense and non-intense puffing regimes, in contrast to results observed for reference cigarettes. Following the proposed framework, the results demonstrate that the ENDS products studied in this work generate significantly lower levels of toxicants relative to reference cigarettes and were not cytotoxic, mutagenic, or genotoxic under these in vitro assay conditions.
Collapse
Affiliation(s)
- David K. Cook
- JUUL Labs, 1000 F Street NW, Washington, DC 20004, USA (M.J.O.); (S.U.); (C.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Campbell C, Jin T, Round EK, Nelson PR, Baxter S. Abuse liability of two electronic nicotine delivery systems compared with combustible cigarettes and nicotine gum from an open-label randomized crossover study. Sci Rep 2023; 13:18951. [PMID: 37919490 PMCID: PMC10622442 DOI: 10.1038/s41598-023-45894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
An assessment of the likelihood of use and abuse potential for new tobacco products is an important part of tobacco product regulation in the United States and abroad. This paper reports the results of a randomized, open-label, crossover clinical study that assessed factors related to product adoption and abuse liability (AL), comparing two closed electronic nicotine delivery system (ENDS) products to combustible cigarettes and nicotine gum, high- and low-AL comparator products, respectively. During an 11-day confinement period that included multiple product familiarization sessions, healthy adult smokers participated in AL test sessions to evaluate the abuse liability of each product. During these test sessions, changes in subjective measures; speed and amount of nicotine uptake; and maximum changes in physiological effects before, during, and after use of each assigned product were assessed over 4 h. Positive subjective effects measures scores such as product-liking and overall intent to use again were highest for cigarettes, followed by the Vuse ENDS, with nicotine gum consistently having the lowest scores. The PK results (Cmax and Tmax) of the Vuse ENDS products are between UB cigarettes and nicotine gum, which correlates with the subjective effects. All nicotine uptake measures for the Vuse ENDS products were lower than that of usual brand (UB) cigarettes, including peak nicotine uptake and overall nicotine uptake, and were either similar to or lower than nicotine gum. The time course of nicotine uptake after use of the ENDS was more similar to that of combustible cigarettes than nicotine gum. The results indicate that the AL of each ENDS product is lower than that of UB cigarettes and similar to that of nicotine gum.
Collapse
Affiliation(s)
| | - Tao Jin
- RAI Services Company, 401 N. Main Street, Winston‑Salem, NC, 27101, USA.
| | - Elaine K Round
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | | | - Sarah Baxter
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| |
Collapse
|
15
|
Sousan S, Mooring R, Fresquez S, Park YM, Coombs V, Bertges N, Thomas L, Gold E, Gogineni A, Tiet A, Pender J, Soule EK. Use of real-time monitors to evaluate the potential exposure of secondhand electronic cigarette particulate matter inside vehicles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122480. [PMID: 37657722 PMCID: PMC10591990 DOI: 10.1016/j.envpol.2023.122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Electronic cigarette (ECIG) use continues to be highly prevalent, especially among youth and young adults. Potential exposure from secondhand ECIG particulate matter (PM) places bystanders in danger of inhaling harmful substances, especially in confined spaces. This study was conducted to measure the potential exposure from secondhand ECIG PM exposure in vehicles, with participants completing a 30-min ECIG use session in their own vehicle with their preferred ECIG device. Sessions included a 5-min, 10-puff directed bout (30-s interpuff interval), followed by a 25-min ad libitum bout in which participants could take as many puffs as desired. Real-time PM1, PM2.5, and PM10 (the 50% efficiency mass cut-off of that passes through a size-selective inlet at 1 μm, 2.5 μm, and 10 μm aerodynamic diameters, respectively) measurements were captured during the sessions using portable PM monitors (MiniWRAS, pDR, SidePak, and GeoAir2 low-cost monitors). A total of 56 participants with valid measurements were included in the study, with a total of 13 unique ECIG device brands, including Vuse Alto, Box Air Bar, ElfBar, Esco Bar, Aegis Legend, Hyde Edge, JUUL, Kang Onee Stick, Kang Onee Stick Plus, Nord X, Nord 2, Nord 3, and Vaporesso. During the 5-min directed bout, the highest real-time PM2.5 mean concentrations were 175 μg/m3 for the MiniWRAS, 1050 μg/m3 for pDR and 3314 μg/m3 for SidePak. The filter measurements were not detectable in most experiments, except for two participants, with one taking 205 puffs and the other taking 285 puffs, approximately 10 times the mean (30) puffs of all participants. The evaluation of GeoAir2 with the MiniWRAS showed a wide range of Pearson correlation coefficient (r) values, ranging from -0.03 to 1.00, for the 13 ECIG brands. The mass median diameter (0.31 μm-3.42 μm) and geometric standard deviation (2.47-8.21) were different based on the participants for the same ECIG brand.
Collapse
Affiliation(s)
- Sinan Sousan
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA; North Carolina Agromedicine Institute, Greenville, NC, 27858, USA.
| | - Ronald Mooring
- Department of Chemistry, Thomas Harriot College of Arts & Sciences, East Carolina University, Greenville, NC, 27858, USA
| | - Sarah Fresquez
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Yoo Min Park
- Department of Geography, University of Connecticut, Storrs, CT, 06269, USA
| | - Vivien Coombs
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA
| | - Nicole Bertges
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Luke Thomas
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA
| | - Emily Gold
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA
| | - Anish Gogineni
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA
| | - Alex Tiet
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA
| | - Jack Pender
- Department of Chemistry, Thomas Harriot College of Arts & Sciences, East Carolina University, Greenville, NC, 27858, USA
| | - Eric K Soule
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, 27858, USA; Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, 27858, USA
| |
Collapse
|
16
|
Close A, Blackerby J, Tunnell H, Pender J, Soule E, Sousan S. Effects of E-Cigarette Liquid Ratios on the Gravimetric Filter Correction Factors and Real-Time Measurements. AEROSOL AND AIR QUALITY RESEARCH 2023; 23:230011. [PMID: 38500670 PMCID: PMC10947168 DOI: 10.4209/aaqr.230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Electronic cigarettes (ECIGs) generate high concentrations of particulate matter (PM), impacting the air quality inhaled by humans through secondhand exposure. ECIG liquids are available commercially and some users create their own "do-it-yourself" liquids, and these liquids often vary in the amounts of their chemical ingredients, including propylene glycol (PG) and vegetable glycerin (VG). Previous studies have quantified PM concentrations in ECIG aerosol generated from liquids containing different PG/VG ratios. However, the effects of these ratios on aerosol instrument filter correction factors needed to measure PM concentrations accurately have not been assessed. Thus, ECIG aerosol filter correction factors for multiple aerosol instruments (SMPS + APS, MiniWRAS, pDR, and SidePak) were determined for five different PG/VG ratios 1) 0PG/100VG, 2) 15PG/85VG, 3) 50PG/50VG, 4) 72PG/28VG, and 5) 90PG/10VG and two different PM sizes, PM1 (1 μm and smaller) and PM2.5 (2.5 μm and smaller). ECIG aerosols were generated inside a controlled exposure chamber using a diaphragm pump and a refillable ECIG device for all the ratios. In addition, the aerosol size distribution and mass median diameter were measured for all five ECIG ratios. PM2.5 correction factors (5-7.6) for ratios 1, 2, 3, and 4 were similar for the SMPS + APS combined data, and ratios 1, 2, 3 were similar for the MiniWRAS (~2), pDR (~0.5), and SidePak (~0.24). These data suggest different correction factors may need to be developed for aerosol generated from ECIGs with high PG content. The higher correction factor values for the 90PG/10VG ratio may have resulted from greater PG volatility relative to VG and sensor losses. The correction factors (ratios 1-4) for PM2.5 were SMPS + APS data (4.96-7.62), MiniWRAS (2.02-3.64), pDR (0.50-1.07), and SidePak (0.22-0.40). These data can help improve ECIG aerosol measurement accuracy for different ECIG mixture ratios.
Collapse
Affiliation(s)
- Austin Close
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jane Blackerby
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Heather Tunnell
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Jack Pender
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Eric Soule
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC 27858
| | - Sinan Sousan
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- North Carolina Agromedicine Institute, Greenville, NC 27834, USA
| |
Collapse
|
17
|
Bishop E, Gaça M, Thorne D. Advances in whole aerosol approaches for in vitro e-cigarette testing. Drug Test Anal 2023; 15:1133-1144. [PMID: 36945752 DOI: 10.1002/dta.3471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Electronic-cigarette regulation and risk assessment is a prominent and developing field, as the popularity and prevalence of this product category increases. Over the last 10 years since their emergence, there have been many advances and adaptations to current in vitro testing techniques to better assess and predict absolute consumer risk. However, there are still requirements to create a cross-field harmonised approach to appropriate exposure and experimental design. With many assessments still being carried out using methods developed and optimised for cigarette smoke, there must first be an acknowledgement regarding the differences between cigarette smoke and tobacco-free e-cigarette aerosols before we can accurately assess these distinct products. Here, we discuss five published studies from within our own research to demonstrate how in vitro testing techniques have evolved to improve determination of risk by considering appropriate dosimetry and exposure for both e-cigarette and cigarette aerosols and how we can contextualise the data through human consumption and dose extrapolation, ultimately giving more relevance to in vitro data. Furthermore, we have demonstrated the evolution of techniques, which has allowed us to bridge between platforms, simplify exposure set-up, experimental design and demonstrate technology evolution within our products, thus fulfilling a responsible duty of care to consumers via an appropriate and robust in vitro product assessment.
Collapse
Affiliation(s)
- Emma Bishop
- British American Tobacco, R&D, Southampton, UK
| | | | | |
Collapse
|
18
|
Sala M, Gotti C. Electronic nicotine delivery systems (ENDS): A convenient means of smoking? Pharmacol Res 2023; 195:106885. [PMID: 37634554 DOI: 10.1016/j.phrs.2023.106885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Electronic nicotine delivery systems (ENDS), which are becoming increasingly popular in many parts of the world, have recently become more sophisticated in terms of their more active content and better controlled vaporisation. This review begins by describing how cigarette smoking led to the development of ENDS as a means of combatting nicotine addiction. ENDS are usually categorised as belonging to one of only three main generations, but a fourth has been added in order to differentiate the latest, most powerful, most advanced and innovative that have improved heating efficiency. Descriptions of the principal substances contained in ENDS are followed by considerations concerning the risk of toxicity due to the presence of albeit low concentrations of such a variety of compounds inhaled over a long time, and the increasingly widespread use of ENDS as a means of smoking illicit drugs. We also review the most widely used pharmacotherapeutic approaches to smoking cessation, and recent epidemiological data showing that ENDS can help some people to stop smoking. However, in order to ensure their appropriate regulation, there is a need for higher-quality evidence concerning the health effects and safety of ENDS, and their effectiveness in discouraging tobacco smoking.
Collapse
Affiliation(s)
- Mariaelvina Sala
- Institute of Neuroscience, CNR-Milan Unit, c/o Bldg. U28, University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, MB, Italy; NeuroMi Milan Center for Neuroscience University of Milano Bicocca,Italy.
| | - Cecilia Gotti
- Institute of Neuroscience, CNR-Milan Unit, c/o Bldg. U28, University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, MB, Italy; NeuroMi Milan Center for Neuroscience University of Milano Bicocca,Italy
| |
Collapse
|
19
|
Richards GA, Theron AJ, van den Bout I, Anderson R, Feldman C, van Zyl Smit R, Chang JW, Tintinger GR. Comparison of the effects of electronic cigarette vapours and tobacco smoke extracts on human neutrophils in vitro. ERJ Open Res 2023; 9:00502-2022. [PMID: 37228295 PMCID: PMC10204819 DOI: 10.1183/23120541.00502-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background Electronic cigarettes (ECs) are electronic aerosol delivery systems composed of nicotine and various chemicals, which are widely used to facilitate smoking cessation. Although ECs are considered safer than cigarettes, they do, however, contain chemical toxicants, some of which may interact with cells of the host's innate immune system of which neutrophils constitute a key component. Methods The current study was designed to compare the effects of aqueous EC aerosol extracts (ECEs; with or without nicotine) with those of cigarette smoke extract (CSE) on neutrophil and platelet reactivity in vitro. Neutrophil reactivity is characterised by the generation of reactive oxygen species (ROS), degranulation (elastase release) and the release of extracellular DNA (neutrophil extracellular trap (NET) formation: NETosis), which were measured using chemiluminescence, spectrophotometric and microscopic procedures, respectively. Platelet reactivity was measured according to the magnitude of upregulated expression of the adhesion molecule CD62P on activated cells using a flow cytometric procedure. Results Exposure of neutrophils to either ECEs or CSE caused a significant inhibition of ROS generation and elastase release by N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1 µM)-activated neutrophils. Pre-treatment of neutrophils with CSE also resulted in a marked attenuation of phorbol 12-myristate 13-acetate (6.25 nM)-mediated release of extracellular DNA, which was unaffected by the ECEs. Similarly, CSE, but not the ECEs, inhibited the expression of CD62P by platelets activated with ADP (100 µM). Conclusions These observations suggest that ECE aerosols may inhibit some of the immuno-protective activities of neutrophils such as ROS production and elastase release by activated cells, the effect of which was not enhanced by inclusion of nicotine. The inhibitory effects of CSE were significantly more pronounced than those of ECEs, especially so for suppression of NET formation and platelet activation. If operative in vivo, these harmful immunosuppressive effects of ECEs may compromise intrinsic pulmonary antimicrobial defence mechanisms, albeit less so than cigarette smoke.
Collapse
Affiliation(s)
- Guy A. Richards
- Division of Critical Care, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iman van den Bout
- Centre of Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard van Zyl Smit
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Ju-Wei Chang
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Gregory R. Tintinger
- Department of Internal Medicine, Steve Biko Academic Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Shen Y, Liu C, Yang T, Tang Y, Shen Y, Gu Y. Transcriptome characterization of human gingival mesenchymal and periodontal ligament stem cells in response to electronic-cigarettes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121307. [PMID: 36804562 DOI: 10.1016/j.envpol.2023.121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The potential toxicities and threats of electronic cigarettes (E-cigs) on periodontal health remain elusive. Gingival mesenchymal stem cells (GMSCs) and periodontal ligament stem cells (PDLSCs) contribute to cell differentiation and regeneration for periodontium as well as inflammatory modulation. However, the effects of E-cig exposure on periodontal tissues, particularly GMSCs and PDLSCs, and the underlying epigenetic mechanisms remain largely unknown. In this study, we conducted RNA-seq analysis to examine the transcriptome of human GMSCs and PDLSCs exposed to four types of E-cigs (aerosol and liquid with tobacco and menthol flavor) and conventional tobacco smoke in vitro. Our results showed that E-cig exposure primarily impacted the immunoregulation and inflammatory responses to pathogenic microorganisms in GMSCs, and the microenvironment, differentiation and response to corticosteroid in PDLSCs, which were significantly different from the damage effects caused by tobacco smoke. Additionally, we discovered a large number of differentially expressed non-coding RNAs among the different E-cig exposure methods and flavors. We also noticed that in GMSCs, CXCL2 was especially down-regulated by E-cig aerosol exposure whereas up-regulated by E-liquid exposure compared to control. Of note, the enhancer elements near CXCL2 and other genes located at Chromosome 4 contributed to the transcription activity of these genes, and KDM6B was remarkably elevated in response to E-liquid exposure. Lastly, we conducted ChIP-seq analysis to confirm that the elevated gene transcription by E-liquids was due to the weakened H3K27me3 at genome-wide enhancer elements in GMSCs, but not at promoter regions. Taken together, our results characterized the diverse gene expression profiles of GMSCs and PDLSCs in response to E-cigs with different exposure methods and flavors in vitro, and indicated a novel mechanism of KDM6B-mediated H3K27me3 on enhancers for gene transcription regulation. Our data could be served as a resource for emphasizing the understanding of E-cigs in periodontal health.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Chao Liu
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Tao Yang
- Department of Dentistry, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Ying Tang
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Yihang Shen
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Yongchun Gu
- Department of Dentistry, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China.
| |
Collapse
|
21
|
Bishop E, East N, Miazzi F, Fiebelkorn S, Breheny D, Gaca M, Thorne D. A contextualised e-cigarette testing strategy shows flavourings do not impact lung toxicity in vitro. Toxicol Lett 2023; 380:1-11. [PMID: 36935081 DOI: 10.1016/j.toxlet.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Vaping has the potential to reduce the individual health risks associated with smoking and e-cigarette flavours have been reported to help smokers' transition from cigarettes. In this manuscript, we provide evidence to support the reduced risk potential of e-cigarette aerosols and flavours by assessing commercially available e-liquids (Vuse ePod - Manufactured by British American Tobacco) in a 2D in vitro screening approach. We also analysed selected flavours using a more physiologically relevant 3D (MucilAir) whole aerosol exposure model, measuring toxicity and functional endpoints such as Trans Epithelial Electrical Resistance, Cilia Beat Frequency and Active Area. To contextualise responses, we have compared e-cigarette aerosol to cigarette smoke (1R6F research cigarette) and calculated the percentage reduction using a point of departure approach. We show that aerosolised flavoured e-liquids, (appropriately stewarded) do not increase the overall measured aerosol toxicity when compared to cigarette smoke. In fact, we demonstrate that the measured in vitro cellular toxicity of flavoured e-cigarette products remains >95% reduced when compared to cigarette smoke toxicity, using point of departure (IC80) approach. These data indicate that the overall product toxicity is not increased in a flavour dependent manner and that flavoured e-cigarette products can potentially play a role in tobacco harm reduction.
Collapse
Affiliation(s)
- E Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S Fiebelkorn
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
22
|
Abstract
This perspective summarizes available evidence on biomarkers of exposure in electronic nicotine delivery system (ENDS) users to aid the overall assessment of the health consequences of using ENDS. Identification of novel biomarkers of exposure specific to ENDS use remains challenging because chemicals emitted from ENDS devices have many familiar sources. The biomarker levels of many tobacco-related toxicants measured in biological samples collected from ENDS users did not differ significantly from non-users, except for nicotine metabolites and a small number of biomarkers of exposure to volatile organic compounds and tobacco-specific tobacco nitrosamines. Several studies have shown that while exposed to nicotine, long-term exclusive ENDS users showed significantly lower levels of toxicant biomarkers than cigarette smokers. Studies have also shown that concurrent users of ENDS and combustible cigarettes ('dual users') are not reducing overall exposure to harmful toxicants compared to exclusive cigarette smokers. Because of an absence of validated ENDS-specific biomarkers, we recommend combining several biomarkers to differentiate tobacco product user groups in population-based studies and monitor ENDS compliance in randomized controlled trials. Using a panel of biomarkers would provide a better understanding of health effects related to ENDS use.
Collapse
Affiliation(s)
- Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Elam and Carlton Streets, Buffalo NY 14226, United States
| |
Collapse
|
23
|
Lim DH, Ahmadi Y, Kim YH, Kim KH. The extent of harmful volatile organic compounds released when smoking after breaking the flavor capsules of heat-not-burn (HNB) cigarette products. ENVIRONMENTAL RESEARCH 2023; 216:114501. [PMID: 36220443 DOI: 10.1016/j.envres.2022.114501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
A number of flavored capsule heat-not-burn (FC-HNB) tobacco products such as IQOS, Lil, and Glo have been introduced as a new generation of cigarettes. As they can release various types of volatile organic compounds (VOCs), it is important to assess the harmfulness associated with their use. Thus, the composition of VOCs in HNB cigarette vapor was evaluated to investigate the interactive roles of key variables controlling the relationships between VOC composition and capsule breaking, particularly the compositional changes induced by capsule breaking and release of flavor from FC-HNB cigarettes relative to regular products. As the capsules of FC-HNB cigarettes were broken, the total VOC concentrations increased by as high as eight times from 60.3 ± 0.48 to 488 ± 21.8 μg cig-1. The key VOC components released after breaking the flavored capsules were identified as ethyl butyrate (157 ± 13.6 μg cig-1; Lil), isoamyl acetate (76.9 ± 1.98 μg cig-1; Lil), and limonene (52.3 ± 3.29 μg cig-1; Glo). If the primary health risks of FC-HNB cigarette vapor are assessed using National Institute for Occupational Safety & Health (NIOSH) guidelines, 2,3-butanedinone exceeds the maximum daily intake limit (i.e., 0.05 mg day-1). Our study is expected to offer valuable insights into the harmful effects of direct and indirect exposure to various VOCs in FC-HNB products.
Collapse
Affiliation(s)
- Dae-Hwan Lim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea; Department of Analytical Chemistry, Kabul University, Kabul, 1001, Afghanistan
| | - Young-Hyun Kim
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Department of Environment and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
24
|
Soulet S, Sussman RA. Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions. TOXICS 2022; 10:714. [PMID: 36548547 PMCID: PMC9787926 DOI: 10.3390/toxics10120714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
We review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing on the consistency between their experimental design and a realistic usage of the devices, as determined by the power ranges of an optimal regime fulfilling a thermodynamically efficient process of aerosol generation that avoids overheating and "dry puffs". The majority of the reviewed studies failed in various degrees to comply with this consistency criterion or supplied insufficient information to verify it. Consequently, most of the experimental outcomes and risk assessments are either partially or totally unreliable and/or of various degrees of questionable relevance to end users. Studies testing the devices under reasonable approximation to realistic conditions detected levels of all organic byproducts that are either negligible or orders of magnitude lower than in tobacco smoke. Our review reinforces the pressing need to update and improve current laboratory standards by an appropriate selection of testing parameters and the logistical incorporation of end users in the experimental design.
Collapse
Affiliation(s)
| | - Roberto A. Sussman
- Institute of Nuclear Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
25
|
Warner KE, Kiessling KA, Douglas CE, Liber AC. A Proposed Policy Agenda For Electronic Cigarettes In The US: Product, Price, Place, And Promotion. Health Aff (Millwood) 2022; 41:1299-1306. [PMID: 36067433 DOI: 10.1377/hlthaff.2022.00187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Growth in the market for electronic cigarettes (e-cigarettes) raises complex questions about the devices' public health implications and, hence, challenging policy issues. We propose a policy agenda addressing concerns about preventing youth uptake of e-cigarettes and the desire to realize the potential of e-cigarettes to increase adult cigarette smoking cessation. We organize interventions according to the "four Ps" of marketing: product, price, place, and promotion. Policies include decreasing the addictiveness of combusted tobacco products while ensuring the availability of consumer-acceptable reduced-risk nicotine products, imposing large taxes on combustible products and smaller taxes on e-cigarettes, limiting the sale of all tobacco and (nonmedicinal) nicotine products to adult-only retailers, and developing communications that accurately portray e-cigarettes' risks to youth and benefits for inveterate adult smokers. All members of the public health community should unite to pursue a shared commitment to the principle that both youth and adults deserve a future free of tobacco-related disease.
Collapse
Affiliation(s)
| | | | | | - Alex C Liber
- Alex C. Liber, Georgetown University, Washington, D.C
| |
Collapse
|
26
|
Gaca M, Williamson J, Digard H, Adams L, Hawkridge L, Proctor C. Bridging: Accelerating Regulatory Acceptance of Reduced-Risk Tobacco and Nicotine Products. Nicotine Tob Res 2022; 24:1371-1378. [PMID: 35171296 PMCID: PMC9356683 DOI: 10.1093/ntr/ntac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The number and variety of alternative tobacco and nicotine products that can potentially provide reduced-risk choices for cigarette smokers who switch completely to such products instead of continued smoking have grown substantially in the past decade. Innovation and choice are likely to improve the prospects of smokers making the switch, but this provides challenges to regulators and manufacturers to ensure that changes to regulations and products promote and do not hinder contributions to tobacco harm reduction. AIMS AND METHODS This paper looks at where bridging data sets for tobacco heating products, closed system vaping products, and oral nicotine products might enable innovation while protecting the interests of consumers. RESULTS We review product data from chemical studies and a toxicological study showing how bridging can be applied and consider what product development changes might allow bridging from existing datasets or trigger the need for new ones. CONCLUSIONS Bridging across specific product ranges can increase the speed of innovation, foster competition, and limit the burden of assessment for regulators while maintaining product safety and quality. IMPLICATIONS Bridging partial data sets is an established practice within other industries, that aims to improve efficiency with regulatory approvals, accepts natural product variation, and supports product innovation. We review product data from chemical studies and a toxicological study showing how bridging can be applied and consider what product development changes might allow bridging from existing datasets or trigger the need for new ones. This in turn can increase the speed of innovation, foster competition, and limit the burden of assessment for regulators while maintaining product safety and quality.
Collapse
Affiliation(s)
- Marianna Gaca
- British American Tobacco (Holdings) Ltd, Globe House, 4 Temple Place, London WC2R 2PG, UK
| | - Justine Williamson
- British American Tobacco (Holdings) Ltd, Globe House, 4 Temple Place, London WC2R 2PG, UK
| | - Helena Digard
- Research and Development, British American Tobacco (Investments) Ltd, Regent’s Park Road, Southampton SO15 8TL, UK
| | - Louise Adams
- Research and Development, British American Tobacco (Investments) Ltd, Regent’s Park Road, Southampton SO15 8TL, UK
| | - Lauren Hawkridge
- Research and Development, British American Tobacco (Investments) Ltd, Regent’s Park Road, Southampton SO15 8TL, UK
| | | |
Collapse
|
27
|
Johnson NL, Patten T, Ma M, De Biasi M, Wesson DW. Chemosensory Contributions of E-Cigarette Additives on Nicotine Use. Front Neurosci 2022; 16:893587. [PMID: 35928010 PMCID: PMC9344001 DOI: 10.3389/fnins.2022.893587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
While rates of smoking combustible cigarettes in the United States have trended down in recent years, use of electronic cigarettes (e-cigarettes) has dramatically increased, especially among adolescents. The vast majority of e-cigarette users consume "flavored" products that contain a variety of chemosensory-rich additives, and recent literature suggests that these additives have led to the current "teen vaping epidemic." This review, covering research from both human and rodent models, provides a comprehensive overview of the sensory implications of e-cigarette additives and what is currently known about their impact on nicotine use. In doing so, we specifically address the oronasal sensory contributions of e-cigarette additives. Finally, we summarize the existing gaps in the field and highlight future directions needed to better understand the powerful influence of these additives on nicotine use.
Collapse
Affiliation(s)
- Natalie L. Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Theresa Patten
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Dalrymple A, McEwan M, Brandt M, Bielfeldt S, Bean E, Moga A, Coburn S, Hardie G. A novel clinical method to measure skin staining reveals activation of skin damage pathways by cigarette smoke. Skin Res Technol 2022; 28:162-170. [PMID: 34758171 PMCID: PMC9299119 DOI: 10.1111/srt.13108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long-term use of cigarettes can result in localised staining and aging of smokers' skin. The use of tobacco heating products (THPs) and electronic cigarettes (ECs) has grown on a global scale; however, the long-term effect of these products' aerosols on consumers' skin is unknown. This pilot clinical study aimed to determine whether THP or EC aerosol exposure results in skin staining or activation of biomarkers associated with oxidative stress. MATERIALS AND METHODS Eight areas were identified on the backs of 10 subjects. Two areas were used for air control, and two areas exposed to 32-puffs of cigarette smoke (CS), THP or EC aerosols, which were delivered to the skin using a 3-cm diameter exposure chamber and smoke engine. Skin colour was measured using a Chromameter. Squalene (SQ), SQ monohydroperoxide (SQOOH) and malondialdehyde (MDA) levels were measured in sebum samples by mass spectrometry and catalase colorimetry. RESULTS CS exposure significantly increased skin staining, SQOOH and MDA levels and SQOOH/SQ ratio. THP and EC values were significantly lower than CS; EC values being comparable to air control. THP values were comparable to EC and air control at all endpoints, apart from skin staining. SQ and catalase levels did not change with exposure. CONCLUSIONS CS stained skin and activated pathways known to be associated with skin damage. THPs and ECs produced significantly lower values, suggesting they could offer hygiene and cosmetic benefits for consumers who switch exclusively from smoking cigarettes. Further studies are required to assess longer-term effects of ECs and THPs on skin function.
Collapse
Affiliation(s)
| | | | - Marianne Brandt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | - Stephan Bielfeldt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | | | | | | | | |
Collapse
|
29
|
Margham J, McAdam K, Cunningham A, Porter A, Fiebelkorn S, Mariner D, Digard H, Proctor C. The Chemical Complexity of e-Cigarette Aerosols Compared With the Smoke From a Tobacco Burning Cigarette. Front Chem 2021; 9:743060. [PMID: 34660535 PMCID: PMC8514950 DOI: 10.3389/fchem.2021.743060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As e-cigarette popularity has increased, there is growing evidence to suggest that while they are highly likely to be considerably less harmful than cigarettes, their use is not free of risk to the user. There is therefore an ongoing need to characterise the chemical composition of e-cigarette aerosols, as a starting point in characterising risks associated with their use. This study examined the chemical complexity of aerosols generated by an e-cigarette containing one unflavored and three flavored e-liquids. A combination of targeted and untargeted chemical analysis approaches was used to examine the number of compounds comprising the aerosol. Contributions of e-liquid flavors to aerosol complexity were investigated, and the sources of other aerosol constituents sought. Emissions of 98 aerosol toxicants were quantified and compared to those in smoke from a reference tobacco cigarette generated under two different smoking regimes. Results: Combined untargeted and targeted aerosol analyses identified between 94 and 139 compounds in the flavored aerosols, compared with an estimated 72-79 in the unflavored aerosol. This is significantly less complex (by 1-2 orders of magnitude) than the reported composition of cigarette smoke. Combining both types of analysis identified 5-12 compounds over and above those found by untargeted analysis alone. Gravimetrically, 89-99% of the e-cigarette aerosol composition was composed of glycerol, propylene glycol, water and nicotine, and around 3% comprised other, more minor, constituents. Comparable data for the Ky3R4F reference tobacco cigarette pointed to 58-76% of cigarette smoke "tar" being composed of minor constituents. Levels of the targeted toxicants in the e-cigarette aerosols were significantly lower than those in cigarette smoke, with 68.5->99% reductions under ISO 3308 puffing conditions and 88.4->99% reductions under ISO 20778 (intense) conditions; reductions against the WHO TobReg 9 priority list were around 99%. Conclusion: These analyses showed that the e-cigarette aerosols contain fewer compounds and at significantly lower concentrations than cigarette smoke. The chemical diversity of an e-cigarette aerosol is strongly impacted by the choice of e-liquid ingredients.
Collapse
Affiliation(s)
- J. Margham
- Group Research and Development, British American Tobacco, Southampton, United Kingdom
| | - K. McAdam
- McAdam Scientific Ltd., Eastleigh, United Kingdom
| | - A. Cunningham
- Group Research and Development, British American Tobacco, Southampton, United Kingdom
| | - A. Porter
- Independent Researcher, Montreal, QC, Canada
| | - S. Fiebelkorn
- Group Research and Development, British American Tobacco, Southampton, United Kingdom
| | - D. Mariner
- Mariner Science Ltd., Salisbury, United Kingdom
| | - H. Digard
- Group Research and Development, British American Tobacco, Southampton, United Kingdom
| | - C. Proctor
- DoctorProctorScience Ltd., Ascot, United Kingdom
| |
Collapse
|
30
|
Shah NH, Noe MR, Agnew-Heard KA, Pithawalla YB, Gardner WP, Chakraborty S, McCutcheon N, Grisevich H, Hurst TJ, Morton MJ, Melvin MS, Miller IV JH. Non-Targeted Analysis Using Gas Chromatography-Mass Spectrometry for Evaluation of Chemical Composition of E-Vapor Products. Front Chem 2021; 9:742854. [PMID: 34660534 PMCID: PMC8511636 DOI: 10.3389/fchem.2021.742854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The Premarket Tobacco Product Applications (PMTA) guidance issued by the Food and Drug Administration for electronic nicotine delivery systems (ENDSs) recommends that in addition to reporting harmful and potentially harmful constituents (HPHCs), manufacturers should evaluate these products for other chemicals that could form during use and over time. Although e-vapor product aerosols are considerably less complex than mainstream smoke from cigarettes and heated tobacco product (HTP) aerosols, there are challenges with performing a comprehensive chemical characterization. Some of these challenges include the complexity of the e-liquid chemical compositions, the variety of flavors used, and the aerosol collection efficiency of volatile and semi-volatile compounds generated from aerosols. In this study, a non-targeted analysis method was developed using gas chromatography-mass spectrometry (GC-MS) that allows evaluation of volatile and semi-volatile compounds in e-liquids and aerosols of e-vapor products. The method employed an automated data analysis workflow using Agilent MassHunter Unknowns Analysis software for mass spectral deconvolution, peak detection, and library searching and reporting. The automated process ensured data integrity and consistency of compound identification with >99% of known compounds being identified using an in-house custom mass spectral library. The custom library was created to aid in compound identifications and includes over 1,100 unique mass spectral entries, of which 600 have been confirmed from reference standard comparisons. The method validation included accuracy, precision, repeatability, limit of detection (LOD), and selectivity. The validation also demonstrated that this semi-quantitative method provides estimated concentrations with an accuracy ranging between 0.5- and 2.0-fold as compared to the actual values. The LOD threshold of 0.7 ppm was established based on instrument sensitivity and accuracy of the compounds identified. To demonstrate the application of this method, we share results from the comprehensive chemical profile of e-liquids and aerosols collected from a marketed e-vapor product. Applying the data processing workflow developed here, 46 compounds were detected in the e-liquid formulation and 55 compounds in the aerosol sample. More than 50% of compounds reported have been confirmed with reference standards. The profiling approach described in this publication is applicable to evaluating volatile and semi-volatile compounds in e-vapor products.
Collapse
Affiliation(s)
- Niti H. Shah
- Center for Research and Technology, Altria Client Services LLC, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|