1
|
Porras N, Sánchez-Vizcaíno JM, Rodríguez-Bertos A, Kosowska A, Barasona JÁ. Tertiary lymphoid organs in wild boar exposed to a low-virulent isolate of African swine fever virus. Vet Q 2024; 44:1-13. [PMID: 38533618 DOI: 10.1080/01652176.2024.2331525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Despite the great interest in the development of a vaccine against African swine fever (ASF) in wild boar, the immunological mechanisms that induce animal protection are still unknown. For this purpose, tertiary lymphoid organs (TLOs) of wild boar were characterised and compared with mucosa-associated lymphoid tissues (MALTs) by histopathology, histomorphometry and immunohistochemistry (CD3, CD79, PAX5, LYVE1, fibronectin). In addition, real-time polymerase chain reaction (qPCR) and immunohistochemistry (p72) were used to evaluate the presence of ASF virus (ASFV) in blood and tissues samples, respectively. TLOs were observed in animals infected with a low-virulent ASFV isolate (LVI), animals co-infected with low and high-virulent ASFV isolates (LVI-HVI) and animals infected only with the high virulence isolate (HVI). TLOs in LVI and LVI-HVI groups were located adjacent to the mucosa and presented a similar structure to MALT. Immunoexpresion of p72 observed in the inflammatory cells adjacent to TLOs/MALTs confirmed its development and reactivity generated by ASF attenuated isolates. Immunohistochemical evaluation, based on cellular composition (T and B lymphocytes), and histomorphometrical study revealed a more pronounced maturation of TLOs/MALTs in the LVI-HVI group. It is currently unclear whether these formations play a protective role by contributing to local immunity in chronic inflammatory diseases. However, the structural similarities between TLOs and MALTs and the location of TLOs close to the mucosa suggest that they may perform a similar function, facilitating a local protective response. Nevertheless, further investigations are warranted to assess the cellular and humoral dynamics of these lymphoid organs induced by attenuated isolates.
Collapse
Affiliation(s)
- Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José Á Barasona
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Porras N, Sánchez-Vizcaíno JM, Barasona JÁ, Gómez-Buendía A, Cadenas-Fernández E, Rodríguez-Bertos A. Histopathologic evaluation system of African swine fever in wild boar infected with high (Arm07) and low virulence (Lv17/WB/Riel) isolates. Vet Pathol 2024; 61:928-942. [PMID: 39078034 DOI: 10.1177/03009858241266944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
To understand the clinicopathological forms of African swine fever (ASF) in wild boar, it is crucial to possess a basic knowledge of the biological characteristics of the currently circulating ASF virus isolates. The aim of this work is to establish an accurate and comprehensive histopathologic grading system to standardize the assessment of the ASF lesions in wild boar. The study evaluated the differences between animals infected with a high virulence genotype II isolate (Arm07) (HVI) through intramuscular (IM) (n = 6) and contact-infected (n = 12) routes, alongside those orally infected with a low virulence isolate (Lv17/WB/Riel) (LVI) (n = 6). The assessment included clinical (CS), macroscopic (MS), and histopathologic (HS) scores, as well as viral loads in blood and tissues by real-time quantitative polymerase chain reaction (qPCR). Tissues examined included skin, lymph nodes, bone marrow, palatine tonsil, lungs, spleen, liver, kidneys, thymus, heart, adrenal glands, pancreas, urinary bladder, brain, and gastrointestinal and reproductive tracts. The HVI group exhibited a 100% mortality rate with elevated CS, MS, and HS values. Animals infected by contact (CS = 12; MS = 58.5; HS = 112) and those intramuscularly infected (CS = 14.8; MS = 47; HS = 104) demonstrated similar values, indicating that the route of infection does not decisively influence the severity of clinical and pathological signs. The LVI group showed a 0% mortality rate, an inconspicuous clinical form, minimal lesions (CS = 0; MS = 12; HS = 29), and a lower viral load. Histopathologic evaluation has proven valuable in advancing our comprehension of ASF pathogenesis in wild boar and paves the groundwork for further research investigating protective mechanisms in vaccinated animals.
Collapse
Affiliation(s)
- Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Á Barasona
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Cadenas-Fernández E, Barroso-Arévalo S, Kosowska A, Díaz-Frutos M, Gallardo C, Rodríguez-Bertos A, Bosch J, Sánchez-Vizcaíno JM, Barasona JA. Challenging boundaries: is cross-protection evaluation necessary for African swine fever vaccine development? A case of oral vaccination in wild boar. Front Immunol 2024; 15:1388812. [PMID: 39411716 PMCID: PMC11473374 DOI: 10.3389/fimmu.2024.1388812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
African swine fever (ASF) poses a significant threat to domestic pigs and wild boar (Sus scrofa) populations, with the current epidemiological situation more critical than ever. The disease has spread across five continents, causing devastating losses in the swine industry. Although extensive research efforts are ongoing to develop an effective and safe vaccine, this goal remains difficult to achieve. Among the potential vaccine candidates, live attenuated viruses (LAVs) have emerged as the most promising option due to their ability to provide strong protection against experimental challenges. However, ASF virus (ASFV) is highly diverse, with genetic and phenotypic variations across different isolates, which differ in virulence. This study highlights the limitations of a natural LAV strain (Lv17/WB/Rie1), which showed partial efficacy against a highly virulent and partially heterologous isolate (Arm07; genotype II). However, the LAV's effectiveness was incomplete when tested against a more phylogenetically distant virus (Ken06.Bus; genotype IX). These findings raise concerns about the feasibility of developing a universal vaccine for ASFV in the near future, emphasizing the urgent need to assess the protective scope of LAV candidates across different ASFV isolates to better define their limitations.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Díaz-Frutos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for African Swine Fever (ASF), Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Snow NP, Smith B, Lavelle MJ, Glow MP, Chalkowski K, Leland BR, Sherburne S, Fischer JW, Kohen KJ, Cook SM, Smith H, VerCauteren KC, Miller RS, Pepin KM. Comparing efficiencies of population control methods for responding to introductions of transboundary animal diseases in wild pigs. Prev Vet Med 2024; 233:106347. [PMID: 39321741 DOI: 10.1016/j.prevetmed.2024.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Introductions of transboundary animal diseases (TADs) into free-ranging wildlife can be difficult to control and devastating for domestic livestock trade. Combating a new TAD introduction in wildlife with an emergency response requires quickly limiting spread of the disease by intensely removing wild animals within a contiguous area. In the case of African swine fever virus (ASFv) in wild pigs (Sus scrofa), which has been spreading in many regions of the world, there is little information on the time- and cost-efficiency of methods for intensively and consistently culling wild pigs and recovering carcasses in an emergency response scenario. We compared the efficiencies of aerial operations, trapping, experimental toxic baiting, and ground shooting in northcentral Texas, USA during two months in 2023. Culling and recovering carcasses of wild pigs averaged a rate of 0.15 wild pigs/person hour and cost an average of $233.04/wild pig ($USD 2023) across all four methods. Aerial operations required the greatest initial investment but subsequently was the most time- and cost-efficient, costing an average of $7266 to reduce the population by a standard measure of 10 %, including recovering carcasses. Aerial operations required a ground crew of ∼7 people/helicopter to recover carcasses. Costs for reducing the population of wild pigs using trapping were similar, although took 13.5 times longer to accomplish. In cases where carcass recovery and disposal are needed (e.g., response to ASFv), a benefit of trapping was immediate carcass recovery. Toxic baiting was less efficient because both culling and carcass recovery required substantial time. We culled very few wild pigs with ground shooting in this landscape. Our results provide insight on the efficiencies of each removal method. Strategically combining removal methods may increase overall efficiency. Overall, our findings inform the preparation of resources, personnel needs, and deployment readiness for TAD responses involving wild pigs.
Collapse
Affiliation(s)
- Nathan P Snow
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA.
| | - Benjamin Smith
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Michael J Lavelle
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Michael P Glow
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Kayleigh Chalkowski
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Bruce R Leland
- USDA/APHIS/ Wildlife Services, 5730 Northwest Pkwy #700, San Antonio, Texas 78249, USA
| | - Sarah Sherburne
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Justin W Fischer
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Keely J Kohen
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Seth M Cook
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Hatton Smith
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Kurt C VerCauteren
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Ryan S Miller
- USDA/APHIS/ Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, Colorado 80526, USA
| | - Kim M Pepin
- USDA/APHIS/ Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| |
Collapse
|
5
|
Pedrera M, Soler A, Simón A, Casado N, Pérez C, García-Casado MA, Fernández-Pacheco P, Sánchez-Cordón PJ, Arias M, Gallardo C. Characterization of the Protective Cellular Immune Response in Pigs Immunized Intradermally with the Live Attenuated African Swine Fever Virus (ASFV) Lv17/WB/Rie1. Vaccines (Basel) 2024; 12:443. [PMID: 38675825 PMCID: PMC11054368 DOI: 10.3390/vaccines12040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Candidate vaccines against African swine fever virus (ASFV) based on naturally attenuated or genetically modified viruses have the potential to generate protective immune responses, although there is no consensus on what defines a protective immune response against ASFV. Studies, especially in sensitive host species and focused on unravelling protective mechanisms, will contribute to the development of safer and more effective vaccines. The present study provides a detailed analysis of phenotypic and functional data on cellular responses induced by intradermal immunization and subsequent boosting of domestic pigs with the naturally attenuated field strain Lv17/WB/Rie1, as well as the mechanisms underlying protection against intramuscular challenge with the virulent genotype II Armenia/07 strain. The transient increase in IL-8 and IL-10 in serum observed after immunization might be correlated with survival. Protection was also associated with a robust ASFV-specific polyfunctional memory T-cell response, where CD4CD8 and CD8 T cells were identified as the main cellular sources of virus-specific IFNγ and TNFα. In parallel with the cytokine response, these T-cell subsets also showed specific cytotoxic activity as evidenced by the increased expression of the CD107a degranulation marker. Along with virus-specific multifunctional CD4CD8 and CD8 T-cell responses, the increased levels of antigen experienced in cytotoxic CD4 T cells observed after the challenge in immunized pigs might also contribute to controlling virulent infection by killing mechanisms targeting infected antigen-presenting cells. Future studies should elucidate whether the memory T-cell responses evidenced in the present study persist and provide long-term protection against further ASFV infections.
Collapse
Affiliation(s)
- Miriam Pedrera
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Soler
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Alicia Simón
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Nadia Casado
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Covadonga Pérez
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - María A. García-Casado
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Marisa Arias
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
6
|
Akhmetzhanov AR, Jung SM, Lee H, Linton NM, Yang Y, Yuan B, Nishiura H. Reconstruction and analysis of the transmission network of African swine fever in People's Republic of China, August 2018-September 2019. Epidemiol Infect 2024; 152:e27. [PMID: 38282573 PMCID: PMC10894904 DOI: 10.1017/s0950268824000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction of African swine fever (ASF) to China in mid-2018 and the subsequent transboundary spread across Asia devastated regional swine production, affecting live pig and pork product-related markets worldwide. To explore the spatiotemporal spread of ASF in China, we reconstructed possible ASF transmission networks using nearest neighbour, exponential function, equal probability, and spatiotemporal case-distribution algorithms. From these networks, we estimated the reproduction numbers, serial intervals, and transmission distances of the outbreak. The mean serial interval between paired units was around 29 days for all algorithms, while the mean transmission distance ranged 332 -456 km. The reproduction numbers for each algorithm peaked during the first two weeks and steadily declined through the end of 2018 before hovering around the epidemic threshold value of 1 with sporadic increases during 2019. These results suggest that 1) swine husbandry practices and production systems that lend themselves to long-range transmission drove ASF spread; 2) outbreaks went undetected by the surveillance system. Efforts by China and other affected countries to control ASF within their jurisdictions may be aided by the reconstructed spatiotemporal model. Continued support for strict implementation of biosecurity standards and improvements to ASF surveillance is essential for halting transmission in China and spread across Asia.
Collapse
Affiliation(s)
- Andrei R Akhmetzhanov
- Global Health Program & Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sung-Mok Jung
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hyojung Lee
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Natalie M Linton
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yichi Yang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Baoyin Yuan
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nishiura
- School of Public Health, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
7
|
Gervasi V, Masiulis M, Bušauskas P, Bellini S, Guberti V. Optimizing Vaccination Strategies against African Swine Fever Using Spatial Data from Wild Boars in Lithuania. Viruses 2024; 16:153. [PMID: 38275963 PMCID: PMC10820490 DOI: 10.3390/v16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
African swine fever (ASF) is one of the most severe suid diseases, impacting the pig industry and wild suid populations. Once an ASF vaccine is available, identifying a sufficient density of vaccination fields will be crucial to achieve eradication success. In 2020-2023, we live-trapped and monitored 27 wild boars in different areas of Lithuania, in which the wild boars were fed at artificial stations. We built a simulation study to estimate the probability of a successful ASF vaccination as a function of different eco-epidemiological factors. The average 32-day home range size across all individuals was 16.2 km2 (SD = 16.9). The wild boars made frequent visits of short durations to the feeding sites rather than long visits interposed by long periods of absence. A feeding site density of 0.5/km2 corresponded to an expected vaccination rate of only 20%. The vaccination probability increased to about 75% when the feeding site density was 1.0/km2. Our results suggest that at least one vaccination field/km2 should be used when planning an ASF vaccination campaign to ensure that everyone in the population has at least 5-10 vaccination sites available inside the home range. Similar studies should be conducted in the other ecological contexts in which ASF is present today or will be present in the future, with the objective being to estimate a context-specific relationship between wild boar movement patterns and an optimal vaccination strategy.
Collapse
Affiliation(s)
- Vincenzo Gervasi
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Via V. Brancati 60, 00144 Roma, Italy
| | - Marius Masiulis
- State Food and Veterinary Service of the Republic of Lithuania, Siesiku 19, 07170 Vilnius, Lithuania; (M.M.); (P.B.)
- Veterinary Academy, Lithuanian University of Health Sciences, Tilzes 18, 47181 Kaunas, Lithuania
| | - Paulius Bušauskas
- State Food and Veterinary Service of the Republic of Lithuania, Siesiku 19, 07170 Vilnius, Lithuania; (M.M.); (P.B.)
| | - Silvia Bellini
- Istituto Zooprofilattico della Lombardia ed Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy;
| | - Vittorio Guberti
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, 40064 Ozzano dell’Emilia, Italy;
| |
Collapse
|
8
|
Desmet C, Coelho-Cruz B, Mehn D, Colpo P, Ruiz-Moreno A. ASFV epitope mapping by high density peptides microarrays. Virus Res 2024; 339:199287. [PMID: 38029799 PMCID: PMC10711508 DOI: 10.1016/j.virusres.2023.199287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
African swine fever (ASF) is an acute, highly contagious and deadly infectious disease. It is a threat to animal health with major potential economic and societal impact. Despite decades of ASF vaccine research, still some gaps in knowledge are hindering the development of a functional vaccine. Worth mentioning are gaps in understanding the mechanism of ASF infection and immunity, as well as the fact that - in case of this disease - virus proteins, so-called protective antigens, responsible for inducing protective immune responses in pigs are not identified yet. In this paper we elaborate on a methodology to identify protective antigens based on epitope mapping by microarray technology. High density peptide microarrays, combined with fluorescence scanning, have been used to analyze the interaction of peptide sequences of African swine fever virus (ASFV) proteins with antibodies present in inactivated serum from infected and healthy animals. The study evidenced ASFV proteins already under the radar for vaccine development, such as p54, and identified specific sequences in those proteins that may become the focus for future vaccine candidates. Such methodology is amenable to automation and high-throughput and may help developing better targeting for next generation vaccines.
Collapse
Affiliation(s)
- Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Pascal Colpo
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
9
|
Porras N, Chinchilla B, Rodríguez-Bertos A, Barasona JÁ, Kosowska A, Vázquez-Fernández E, Sánchez-Cordón PJ, Sánchez-Vizcaíno JM. Intrapancreatic accessory spleens in African swine fever infection of wild boar ( Sus scrofa). Front Vet Sci 2023; 10:1306320. [PMID: 38155760 PMCID: PMC10754525 DOI: 10.3389/fvets.2023.1306320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Intrapancreatic accessory spleen (IPAS) is one of the most frequent congenital splenic anomalies in humans; however, studies in veterinary medicine are scarce. This study aimed to describe the macroscopic, histopathological and immunohistochemical features of 11 suspected cases of IPAS in wild boar piglets of 3-4 months old. Seven of the 11 animals were immunised with a low virulence isolate of African swine fever virus (ASFV) and subsequently challenged with a highly virulent ASFV isolate (LVI-HVI group). The remaining four animals were exclusively infected with a highly virulent isolate of ASFV (HVI group). Grossly, lesions comprised focal or multifocal reddish areas of variable shape, located on the surface of the pancreatic tail or within the parenchyma. Histological and immunohistochemical studies (anti-CD79 and CD3) confirmed the presence of IPAS in eight of the 11 cases. IPAS shared the same histological structure and alterations as those observed in the original spleen. The immunohistochemical study against ASFV revealed the presence of VP72+ cells in both the spleen and IPAS of seven of the eight piglets. The results of this study describe for the first time the presence of IPAS in ASFV infection of wild boar (Sus scrofa) regardless the isolate and suggest that the infection may induce the development of ectopic splenic tissue due to an increased demand for phagocytic cells from the reticuloendothelial system. However, further studies are needed to understand the immunological mechanisms that trigger the formation of these accessory organs.
Collapse
Affiliation(s)
- Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Blanca Chinchilla
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Production, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Á. Barasona
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Pedro J. Sánchez-Cordón
- Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Madrid, Spain
| | - José M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Martínez Avilés M, Bosch J, Ivorra B, Ramos ÁM, Ito S, Barasona JÁ, Sánchez-Vizcaíno JM. Epidemiological impacts of attenuated African swine fever virus circulating in wild boar populations. Res Vet Sci 2023; 162:104964. [PMID: 37531717 DOI: 10.1016/j.rvsc.2023.104964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
African swine fever virus (ASFV) genotype II has been present in wild boar in the European Union since 2014. Control measures have reduced the incidence of the ASF, but highly virulent as well as attenuated ASFV strains continue to circulate. We present the intraherd epidemiological parameters of low and highly virulent ASFV in wild boar from experimental data, and for the first time, evaluate the impact of attenuated strain circulation through unique deterministic compartmental model simulations under various potential scenarios and hypotheses. Using an estimated PCR infectious threshold of TPCR = 36.4, we obtained several transmission parameters, like an Rx (experimental intraherd R0) value of 4.5. We also introduce two novel epidemiological parameters: infectious power and resistance power, which indicate the ability of animals to transmit the infection and the reduction in infectiousness after successive exposures to varying virulence strains, respectively. The presence of ASFV attenuated strains results in 4-17% of animals either remaining in a carrier state or becoming susceptible again when exposed to highly virulent ASFV for more than two years. The timing between exposures to viruses of different virulence also influences the percentage of animals that die or remain susceptible. The findings of this study can be utilized in epidemiological modelling and provide insight into important risk situations that should be considered for surveillance and future potential ASF vaccination strategies in wild boar.
Collapse
Affiliation(s)
- Marta Martínez Avilés
- Centro de Investigación en Sanidad Animal (Animal Health Research Centre), CISA-INIA, CSIC. Madrid, 28130, Spain.
| | - Jaime Bosch
- Animal Health Health Surveillance Centre (VISAVET) and Animal Health Department, Veterinary School Complutense University of Madrid (UCM), 28040, Spain
| | - Benjamin Ivorra
- Interdisciplinary Mathematics Institute (IMI), Complutense University of Madrid (UCM), 28040, Spain
| | - Ángel Manuel Ramos
- Interdisciplinary Mathematics Institute (IMI), Complutense University of Madrid (UCM), 28040, Spain
| | - Satoshi Ito
- Animal Health Health Surveillance Centre (VISAVET) and Animal Health Department, Veterinary School Complutense University of Madrid (UCM), 28040, Spain
| | - José Ángel Barasona
- Animal Health Health Surveillance Centre (VISAVET) and Animal Health Department, Veterinary School Complutense University of Madrid (UCM), 28040, Spain
| | - José Manuel Sánchez-Vizcaíno
- Animal Health Health Surveillance Centre (VISAVET) and Animal Health Department, Veterinary School Complutense University of Madrid (UCM), 28040, Spain
| |
Collapse
|
12
|
Kosowska A, Barasona JA, Barroso-Arévalo S, Blondeau Leon L, Cadenas-Fernández E, Sánchez-Vizcaíno JM. Low transmission risk of African swine fever virus between wild boar infected by an attenuated isolate and susceptible domestic pigs. Front Vet Sci 2023; 10:1177246. [PMID: 37635760 PMCID: PMC10448392 DOI: 10.3389/fvets.2023.1177246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
African swine fever (ASF) is a lethal infectious disease that affects domestic and wild pigs. This complex virus has already affected five continents and more than 70 countries and is considered to be the main threat to the global swine industry. The disease can potentially be transmitted directly through contact with infectious animals, or indirectly by means of contaminated feed or environments. Nevertheless, the knowledge regarding the transmission patterns of different ASF virus isolates at the wildlife-livestock interface is still limited. We have, therefore, assessed the potential transmission of an attenuated ASF virus isolate between infectious wild boar and directly exposed domestic pig. We registered 3,369 interspecific interactions between animals, which were brief and mostly initiated by wild boar. The major patterns observed during the study were head-to-head contact owing to sniffing, thus suggesting a high probability of pathogen transmission. However, only one of the five domestic pigs had a short period of viremia and became serologically positive for ASF virus antibodies. It was additionally discovered that the wild boar did not transmit the virulent virus isolate to the domestic pigs, which suggests that the presence of attenuated ASF virus isolates in affected areas may control the spreading of other more virulent isolates. These outcomes may help make decisions related to large-scale targeted management actions against ASF in field conditions.
Collapse
Affiliation(s)
- Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Luisa Blondeau Leon
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Franzoni G, Petrini S, Mészáros I, Dei Giudici S, Righi C, Olasz F, Zinellu S, Tamás V, Pela M, Gallardo C, Zádori Z, Oggiano A, Feliziani F. Evaluation of Haematological and Immunological Parameters of the ASFV Lv17/WB/Rie1 Strain and Its Derived Mutant Lv17/WB/Rie1/d110-11L against ASFV Challenge Infection in Domestic Pigs. Vaccines (Basel) 2023; 11:1277. [PMID: 37515092 PMCID: PMC10383595 DOI: 10.3390/vaccines11071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a haemorrhagic disease that threatens the global pig industry. There is an urgency to develop a safe and efficient vaccine, but the knowledge of the immune-pathogenetic mechanisms behind ASFV infection is still very limited. In this paper, we evaluated the haematological and immunological parameters of domestic pigs vaccinated with the ASFV Lv17/WB/Rie1 strain or its derived mutant Lv17/WB/Rie1/d110-11L and then challenged with virulent Armenia/07 ASFV. Circulating levels of C-reactive protein (CRP), 13 key cytokines and 11 haematological parameters were evaluated throughout the study. Lv17/WB/Rie1 triggered an inflammatory response, with increased levels of CRP and pro-inflammatory cytokines, and induced lymphopenia, thrombocytopenia and a decline in red blood cell (RBC) parameters, although this was transitory. Lv17/WB/Rie1/d110-11L triggered only transitory thrombocytopenia and a mild inflammatory reaction, with no increase in serum levels of pro-inflammatory cytokines, but it raised IL-1Ra levels. Both strains counteracted several adverse reactions elicited by virulent challenge, like thrombocytopenia, a decline in RBC parameters, and inflammation. Within this paper, we provided a deep portrayal of the impact of diverse ASFV strains on the domestic pig's immune system. A better understanding of these immune-pathological mechanisms would help to design suitable vaccines against this disease.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Stefano Petrini
- National Reference Laboratory for African Swine Fever, Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", 06126 Perugia, Italy
| | - István Mészáros
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Cecilia Righi
- National Reference Laboratory for African Swine Fever, Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", 06126 Perugia, Italy
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Vivien Tamás
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Michela Pela
- National Reference Laboratory for African Swine Fever, Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", 06126 Perugia, Italy
| | - Carmina Gallardo
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, 28130 Madrid, Spain
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Francesco Feliziani
- National Reference Laboratory for African Swine Fever, Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", 06126 Perugia, Italy
| |
Collapse
|
14
|
Tamás V, Righi C, Mészáros I, D'Errico F, Olasz F, Casciari C, Zádori Z, Magyar T, Petrini S, Feliziani F. Involvement of the MGF 110-11L Gene in the African Swine Fever Replication and Virulence. Vaccines (Basel) 2023; 11:vaccines11040846. [PMID: 37112759 PMCID: PMC10145817 DOI: 10.3390/vaccines11040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease that causes extensive economic and animal welfare losses in the Eurasian pig (Sus scrofa) population. To date, no effective and safe vaccines have been marketed against ASF. A starting point for vaccine development is using naturally occurring attenuated strains as a vaccine base. Here, we aimed to remove the multigene family (MGF) 110 gene of unknown function from the Lv17/WB/Rie1 genome to improve the usability of the virus as a live-attenuated vaccine, reducing unwanted side effects. The MGF 110-11L gene was deleted using the CRISPR/Cas9 method, and the safety and efficacy of the virus were tested in pigs after isolation. The vaccine candidates administered at high doses showed reduced pathogenicity compared to the parental strain and induced immunity in vaccinated animals, although several mild clinical signs were observed. Although Lv17/WB/Rie1/d110-11L cannot be used as a vaccine in its current form, it was encouraging that the undesirable side effects of Lv17/WB/Rie1 at high doses can be reduced by additional mutations without a significant reduction in its protective capacity.
Collapse
Affiliation(s)
- Vivien Tamás
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cecilia Righi
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - István Mészáros
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Federica D'Errico
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
15
|
Zhang H, Zhao S, Zhang H, Shen Y, Zhang P, Shan H, Cai X. Orally administered recombinant Lactobacillus expressing African swine fever virus antigens that induced immunity responses. Front Microbiol 2023; 13:1103327. [PMID: 36699597 PMCID: PMC9869048 DOI: 10.3389/fmicb.2022.1103327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
African swine fever (ASF) is a highly contagious, acute, febrile disease caused by the African swine fever virus (ASFV), with morbidity and mortality rates approaching 100% in domestic and wild swine, resulting in massive economic losses to the pig industry worldwide. This study aimed to express the p30, p54, and p72 proteins encoded by ASFV in vitro using the Lactobacillus lactis (L. lactis) expression system. Here, six new functional recombinant L. lactis were constructed, and the expression of the p30 protein, p54 protein, p72 protein, p30-LTB (heat-labile enterotoxin B, LTB) fusion protein, p54-LTB fusion protein, and the p72-LTB fusion protein was successfully detected by Western blot analysis. Following oral immunization of rabbits with recombinant L. lactis, serum IgG, intestinal mucosal sIgA, cytokines (IL-4 and INF-γ), and splenocyte viability were higher than in the control group via ELISA. Notably, without the LTB adjuvant group, humoral and Th1 cellular immunity were promoted, whereas, with the LTB adjuvant group, local mucosal immunity, humoral immunity, and Th2 cellular immunity were promoted, providing new insights into the design and development of an ASFV subunit vaccine.
Collapse
Affiliation(s)
- Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Saisai Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China,College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Haojie Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yu Shen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Peijun Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China,*Correspondence: Hu Shan, ✉
| | - Xiulei Cai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China,Xiulei Cai, ✉
| |
Collapse
|
16
|
Zhang H, Zhao S, Zhang H, Qin Z, Shan H, Cai X. Vaccines for African swine fever: an update. Front Microbiol 2023; 14:1139494. [PMID: 37180260 PMCID: PMC10173882 DOI: 10.3389/fmicb.2023.1139494] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
African swine fever (ASF) is a fatal infectious disease of swine caused by the African swine fever virus (ASFV). Currently, the disease is listed as a legally notifiable disease that must be reported to the World Organization for Animal Health (WOAH). The economic losses to the global pig industry have been insurmountable since the outbreak of ASF. Control and eradication of ASF are very critical during the current pandemic. Vaccination is the optimal strategy to prevent and control the ASF epidemic, but since inactivated ASFV vaccines have poor immune protection and there aren't enough cell lines for efficient in vitro ASFV replication, an ASF vaccine with high immunoprotective potential still remains to be explored. Knowledge of the course of disease evolution, the way of virus transmission, and the breakthrough point of vaccine design will facilitate the development of an ASF vaccine. In this review, the paper aims to highlight the recent advances and breakthroughs in the epidemic and transmission of ASF, virus mutation, and the development of vaccines in recent years, focusing on future directions and trends.
Collapse
Affiliation(s)
- Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Saisai Zhao
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Haojie Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Qin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan,
| | - Xiulei Cai
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Xiulei Cai,
| |
Collapse
|
17
|
Brake DA. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses 2022; 14:2619. [PMID: 36560623 PMCID: PMC9788307 DOI: 10.3390/v14122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The recent centennial anniversary of R.E. Montgomery's seminal published description of "a form of swine fever" disease transmitted from wild African pigs to European domestic pigs is a call to action to accelerate African Swine Fever (ASF) vaccine research and development. ASF modified live virus (MLV) first-generation gene deleted vaccine candidates currently offer the most promise to meet international and national guidelines and regulatory requirements for veterinary product licensure and market authorization. A major, rate-limiting impediment to the acceleration of current as well as future vaccine candidates into regulatory development is the absence of internationally harmonized standards for assessing vaccine purity, potency, safety, and efficacy. This review summarizes the asymmetrical landscape of peer-reviewed published literature on ASF MLV vaccine approaches and lead candidates, primarily studied to date in the research laboratory in proof-of-concept or early feasibility clinical safety and efficacy studies. Initial recommendations are offered toward eventual consensus of international harmonized guidelines and standards for ASF MLV vaccine purity, potency, safety, and efficacy. To help ensure the successful regulatory development and approval of ASF MLV first generation vaccines by national regulatory associated government agencies, the World Organisation for Animal Health (WOAH) establishment and publication of harmonized international guidelines is paramount.
Collapse
Affiliation(s)
- David A Brake
- BioQuest Associates, LLC, P.O. Box 787, Stowe, VT 05672, USA
| |
Collapse
|
18
|
Chenais E, Depner K, Ebata A, Penrith M, Pfeiffer DU, Price C, Ståhl K, Fischer K. Exploring the hurdles that remain for control of African swine fever in smallholder farming settings. Transbound Emerg Dis 2022; 69:e3370-e3378. [PMID: 35737577 PMCID: PMC9796485 DOI: 10.1111/tbed.14642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023]
Abstract
To honour the 100 years anniversary of the first publication about African swine fever (ASF) a webinar with a particular focus on disease control in the smallholder sector was organized. This article is based on the webinar, summarizing the early history of ASF research, reflecting on the current global disease situation and bringing forward some suggestions that could contribute towards achieving control of ASF. The first description of ASF by R. Eustace Montgomery in 1921 laid the foundations for what we know about the disease today. Subsequent research confirmed its association with warthogs and soft ticks of the Ornithodoros moubata complex. During the latter half of the 21st century, exponential growth of pig production in Africa has led to a change in the ASF-epidemiology pattern. It is now dominated by a cycle involving domestic pigs and pork with virus spread driven by people. In 2007, a global ASF epidemic started, reaching large parts of Europe, Asia and the Americas. In Europe, this epidemic has primarily affected wild boar. In Asia, wild boar, smallholders and industrialized pig farms have been affected with impact on local, national and international pig value chains. Globally and historically, domestic pigs in smallholder settings are most frequently affected and the main driver of ASF virus transmission. Awaiting a safe and efficacious vaccine, we need to continue focus on other measures, such as biosecurity, for controlling the disease. However, smallholders face specific challenges linked to poverty and other structural factors in implementing biosecurity measures that can prevent spread. Improving biosecurity in the smallholder sector thus remains an important tool for preventing and controlling ASF. In this regard, interdisciplinary research can help to find new ways to promote safe practices, facilitate understanding and embrace smallholders' perspectives, engage stakeholders and adjust prevention and control policies to improve implementation.
Collapse
Affiliation(s)
- Erika Chenais
- Department of Disease Control and EpidemiologyNational Veterinary InstituteUppsalaSweden
| | - Klaus Depner
- Institute for International Animal Health / One HealthFriedrich‐Loeffler‐InstitutGreifswald‐Insel RiemsGermany
| | - Ayako Ebata
- Institute of Development StudiesUniversity of SussexBrightonUK
| | - Mary‐Louise Penrith
- Department of Veterinary Tropical DiseasesUniversity of PretoriaPretoriaSouth Africa
| | - Dirk U. Pfeiffer
- Centre for Applied One Health Research and Policy AdviceCity University of Hong KongHong KongPR China,Pathobiology and Population SciencesRoyal Veterinary CollegeLondonUK
| | - Cortney Price
- Animal Production and Health DivisionFood and Agriculture Organization of the United NationsRomeItaly
| | - Karl Ståhl
- Department of Disease Control and EpidemiologyNational Veterinary InstituteUppsalaSweden
| | - Klara Fischer
- Department of Urban and Rural DevelopmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
19
|
Taking a Promising Vaccine Candidate Further: Efficacy of ASFV-G-ΔMGF after Intramuscular Vaccination of Domestic Pigs and Oral Vaccination of Wild Boar. Pathogens 2022; 11:pathogens11090996. [PMID: 36145428 PMCID: PMC9504512 DOI: 10.3390/pathogens11090996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is a pandemic threat to the global pig industry and wild suids. A safe and efficacious vaccine could monumentally assist in disease eradication. In the past years, promising live attenuated vaccine candidates emerged in proof-of-concept experiments, among which was “ASFV-G-∆MGF”. In our study, we tested the vaccine candidate in three animal experiments intramuscularly in domestic pigs and orally in wild boar. Further, a macrophage-grown vaccine virus and a virus grown on permanent cells could be employed. Irrespective of the production system of the vaccine virus, a two-dose intramuscular immunization could induce close-to-sterile immunity with full clinical protection against challenge infection. After oral immunization, 50% of the vaccinees seroconverted and all responders were completely protected against subsequent challenge. All nonresponders developed ASF upon challenge with two acute lethal infections and two mild and transient courses. The latter results show a lower efficiency after oral administration that would have to be taken into consideration when designing vaccination-based control measures. Overall, our findings confirm that “ASFV-G-∆MGF” is a most promising vaccine candidate that could find its way into well-organized and controlled immunization campaigns. Further research is needed to characterize safety aspects and define possible improvements of oral efficiency.
Collapse
|
20
|
Abstract
African swine fever (ASF) is a lethal and highly contagious viral disease of domestic and wild pigs, listed as a notifiable disease reported to the World Organization for Animal Health (OIE). Despite its limited host range and absent zoonotic potential, the socio-economic and environmental impact of ASF is very high, representing a serious threat to the global swine industry and the many stakeholders involved. Currently, only control and eradication measures based mainly on early detection and strict stamping-out policies are available, however, the rapid spread of the disease in new countries, and in new regions in countries already affected, show these strategies to be lacking. In this review, we discuss approaches to ASF vaccinology, with emphasis on the advances made over the last decade, including the development of virulence-associated gene deleted strains such as the very promising ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine epithelial cell line, and the cross-protecting BA71ΔCD2 capable of stably growing in the commercial COS-1 cell line, or the naturally attenuated Lv17/WB/Rie1 which shows solid protection in wild boar. We also consider the key constraints involved in the scale-up and commercialization of promising live attenuated and virus-vectored vaccine candidates, namely cross-protection, safety, lack of suitable animal models, compatibility with wildlife immunization, availability of established and licensed cell lines, and differentiating infected from vaccinated animals (DIVA) strategy.
Collapse
Affiliation(s)
- Ana Catarina Urbano
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| | - Fernando Ferreira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| |
Collapse
|
21
|
Evaluation of the Deletion of MGF110-5L-6L on Swine Virulence from the Pandemic Strain of African Swine Fever Virus and Use as a DIVA Marker in Vaccine Candidate ASFV-G-ΔI177L. J Virol 2022; 96:e0059722. [PMID: 35862688 PMCID: PMC9327674 DOI: 10.1128/jvi.00597-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) is responsible for an ongoing pandemic that is affecting central Europe, Asia, and recently the Dominican Republic, the first report of the disease in the Western Hemisphere in over 40 years. ASFV is a large, complex virus with a double-stranded DNA (dsDNA) genome that carries more than 150 genes, most of which have not been studied. Here, we assessed the role of the MGF110-5L-6L gene during virus replication in cell cultures and experimental infection in swine. A recombinant virus with MGF110-5L-6L deleted (ASFV-G-ΔMGF110-5L-6L) was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. ASFV-G-ΔMGF110-5L-6L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the MGF110-5L-6L gene is nonessential for virus replication. Similarly, domestic pigs inoculated with ASFV-G-ΔMGF110-5L-6L presented with a clinical disease undistinguishable from that caused by the parental ASFV-G, confirming that the MGF110-5L-6L gene is not involved in producing disease in swine. Sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognized the protein encoded by the MGF110-5L-6L gene as a potential target for the development of an antigenic marker differentiation of infected from vaccinated animals (DIVA) vaccine. To test this hypothesis, the MGF110-5L-6L gene was deleted from the highly efficacious ASFV vaccine candidate ASFV-G-ΔI177L, generating the recombinant ASFV-G-ΔI177L/ΔMGF110-5L-6L. Animals inoculated with ASFV-G-ΔI177L/ΔMGF110-5L-6L developed an ASFV-specific antibody response detected by enzyme-linked immunosorbent assay (ELISA). The sera strongly recognized ASFV p30 expressed in eukaryotic cells but did not recognize ASFV MGF110-5L-6L protein, demonstrating that deletion of the MGF110-5L-6L gene can enable DIVA capabilities in preexisting vaccine candidates. IMPORTANCE Currently, there are no African swine fever (ASF) commercial vaccines that can be used to prevent or control the spread of ASF. The only effective experimental vaccines against ASF are live-attenuated vaccines. However, these experimental vaccines, which rely on a deletion of a specific gene of the current circulating strain of ASF, make it hard to tell the difference between a vaccinated and an infected animal. In our search for a serological marker, we identified that the virus protein encoded by the MGF110-5L-6L gene induced an immune response, making a virus lacking this gene a vaccine candidate that allows the differentiation of infected from vaccinated animals (DIVA). Here, we show that deletion of MGF110-5L-6L does not affect virulence or virus replication. However, when the deletion of MGF110-5L-6L was added to vaccine candidate ASFV-G-ΔI177L, a reduction in the effectiveness of the vaccine occurred.
Collapse
|
22
|
Vlasova NN, Verkhovsky OA, Aliper TI, Kapustina OV, Alekseev KP, Yuzhakov AG, Gulukin MI, Gulukin AM. [Problems of specific prevention of African swine fever]. Vopr Virusol 2022; 67:206-216. [PMID: 35831963 DOI: 10.36233/0507-4088-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
This review presents the current state of the problem of development and application of the specific prevention of African swine fever (ASF) with a brief description of its etiology and pathogenesis. The unique nature of the ASF virus (ASFV) determines some limitations and the complexity of solving the problem of vaccine development. Such situation stimulated the development of highly specific diagnostic methods for rapid and accurate detection of the ASFV. In this regard, results of studies, including our own, concerning the comparative analysis of the genome of vaccine and virulent strains of the ASFV, as well as immunodiagnostic approaches to determine causes of high virulence and low protective activity of the ASFV, are briefly presented. Special attention is given to the issue related to the development of safe and effective vaccines against ASF. In this context disadvantages and possible advantages of live attenuated (LAV) and recombinant (RV) vaccines are considered in details. Results of recent studies on the assessment of the immunogenicity of genetically modified vaccines (GMV) which developed in various laboratories around the world are presented. The obtained data indicate that ASF vaccination is currently the most promising measure to stop the spread of this disease in our country and in the world, however, previous experience with ASF vaccination has revealed some problems in its development and application. The significant contribution of foreign researchers to the study of the basics of virulence of this pathogen and the study of its genes functions are noted. The possible further expansion of ASF in Europe and Asia in bordering Russia territories, as well as the established fact of the persistence of ASFV in wild boar population indicate a constant threat of its re-introduction into our country. In conclusion, the importance of developing a safe effective vaccine against ASF and the assessing of the possible risks of creating the artificial sources of the infection in nature as a result of its use is emphasized.
Collapse
Affiliation(s)
- N N Vlasova
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O A Verkhovsky
- Diagnostic and Prevention Research Institute for Human and Animal Diseases
| | - T I Aliper
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O V Kapustina
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - K P Alekseev
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A G Yuzhakov
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - M I Gulukin
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A M Gulukin
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| |
Collapse
|
23
|
Zhou X, Lu H, Wu Z, Zhang X, Zhang Q, Zhu S, Zhu H, Sun H. Comparison of mucosal immune responses to African swine fever virus antigens intranasally delivered with two different viral vectors. Res Vet Sci 2022; 150:204-212. [DOI: 10.1016/j.rvsc.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
24
|
Zajac MD, Sangewar N, Lokhandwala S, Bray J, Sang H, McCall J, Bishop RP, Waghela SD, Kumar R, Kim T, Mwangi W. Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN-γ, and CTL Responses in Pigs. Front Vet Sci 2022; 9:921481. [PMID: 35711803 PMCID: PMC9195138 DOI: 10.3389/fvets.2022.921481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161−169, p37859−867, p1501363−1371, and p1501463−1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161−169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859−867 and p1501363−1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463−1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Michelle D. Zajac
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyne Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Waithaka Mwangi
| |
Collapse
|
25
|
Pikalo J, Porfiri L, Akimkin V, Roszyk H, Pannhorst K, Kangethe RT, Wijewardana V, Sehl-Ewert J, Beer M, Cattoli G, Blome S. Vaccination With a Gamma Irradiation-Inactivated African Swine Fever Virus Is Safe But Does Not Protect Against a Challenge. Front Immunol 2022; 13:832264. [PMID: 35558083 PMCID: PMC9088005 DOI: 10.3389/fimmu.2022.832264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV “Estonia 2014” was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain “Armenia 2008”. Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.
Collapse
Affiliation(s)
- Jutta Pikalo
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Luca Porfiri
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Valerij Akimkin
- Chemical and Veterinary Investigations, Office Stuttgart, Fellbach, Germany
| | - Hanna Roszyk
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
26
|
ASF -survivors’ sera do not inhibit African swine fever virus replication in vitro. J Vet Res 2022; 66:21-27. [PMID: 35582480 PMCID: PMC8959686 DOI: 10.2478/jvetres-2022-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction African swine fever virus (ASFV) causes one of the most dangerous diseases of pigs and wild boar – African swine fever (ASF). Since its second introduction into Europe (in 2007), the disease has been spreading consistently, and now ASF-free European countries are at risk. Complex interactions between the host’s immune system and the virus have long prevented the development of a safe vaccine against ASF. This study analysed the possibility of neutralisation of the ASFV in vitro by sera collected from ASF-survivor animals. Material and Methods Two pig and three wild boar serum samples were collected from previously selected potential ASF survivors. All sera presented high antibody titres (>5 log10/mL). Primary alveolar macrophages were cultured in growth medium containing 10% and 20% concentrations of selected sera and infected with a haemadsorbing ASFV strain (Pol18_28298_O111, genotype II). The progress of infection was investigated under a light microscope by observing the cytopathic effect (CPE) and the haemadsorption phenomenon. Growth kinetics were investigated using a real-time PCR assay. Results Haemadsorption inhibition was detected in the presence of almost all selected sera; however, the inhibition of virus replication in vitro was excluded. In all samples, a CPE and decreasing quantification cycle values of the viral DNA were found. Conclusion Anti-ASFV antibodies alone are not able to inhibit virus replication. Interactions between the humoral and cellular immune response which effectively combat the disease are implicated in an ASF-survivor’s organism.
Collapse
|
27
|
Wang Z, Ai Q, Huang S, Ou Y, Gao Y, Tong T, Fan H. Immune Escape Mechanism and Vaccine Research Progress of African Swine Fever Virus. Vaccines (Basel) 2022; 10:vaccines10030344. [PMID: 35334976 PMCID: PMC8949402 DOI: 10.3390/vaccines10030344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body’s inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body’s immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yating Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Tiezhu Tong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| |
Collapse
|
28
|
Wang T, Luo R, Sun Y, Qiu HJ. Current efforts towards safe and effective live attenuated vaccines against African swine fever: challenges and prospects. Infect Dis Poverty 2021; 10:137. [PMID: 34949228 PMCID: PMC8702042 DOI: 10.1186/s40249-021-00920-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a fatal hemorrhagic disease in domestic pigs and wild boar caused by African swine fever virus (ASFV). Since ASF has been introduced into Europe and Asia, the major pig-raising areas, posing a huge threat to the pork industry worldwide. Currently, prevention and control of ASF are basically dependent on strict biosecurity measures and stamping-out policy once ASF occurs. Main text The major risks of ASF spread are insufficient biosecurity measures and human behaviors. Therefore, a safe and effective vaccine seems to be a reasonable demand for the prevention and control of ASF. Due to the efficacy advantage over other types of vaccines, live attenuated vaccines (LAVs), especially virulence-associated genes deleted vaccines, are likely to be put into emergency and conditional use in restricted areas if ASF is out of control in a country with a huge pig population and pork consumption, like China. However, the safety, efficacy, and genetic stability of current candidate ASF LAVs require comprehensive clinical evaluations prior to country-wide field application. Several critical issues need to be addressed to commercialize an ideal ASF LAV, including a stable cell line for manufacturing vaccines, differentiation of infected from vaccinated animals (DIVA), and cross-protection from different genotypes. Conclusion A safe and effective DIVA vaccine and an accompanying diagnostic assay will facilitate the prevention, control, and eradication of ASF, which is quite challenging in the near future. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Rui Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,School of Life Science Engineering, Foshan University, Foshan, 528231, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China. .,School of Life Science Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
29
|
Barasona JA, Cadenas-Fernández E, Kosowska A, Barroso-Arévalo S, Rivera B, Sánchez R, Porras N, Gallardo C, Sánchez-Vizcaíno JM. Safety of African Swine Fever Vaccine Candidate Lv17/WB/Rie1 in Wild Boar: Overdose and Repeated Doses. Front Immunol 2021; 12:761753. [PMID: 34917082 PMCID: PMC8669561 DOI: 10.3389/fimmu.2021.761753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
African swine fever (ASF) is a highly lethal infectious disease that affects domestic pigs and wild boar. Outbreaks of ASF have grown considerably in the last decade causing important economic consequences for the swine industry. Its control is hampered by the lack of an effective treatment or vaccine. In Europe, the wild boar is a key wild reservoir for ASF. The results of the oral vaccination trial of wild boar with Lv17/WB/Rie1 are hope for this problem. However, this vaccine candidate has certain safety concerns, since it is a naturally attenuated vaccine. Therefore, the current study aims to evaluate the safety of this vaccine candidate in terms of overdose (high dose) and repeated doses (revaccination) in wild boar. Low-dose orally vaccinated animals developed only a slight transient fever after vaccination and revaccination. This was also the case for most of the high-dose vaccinated wild boar, except for one of them which succumbed after revaccination. Although this fatality was related to hierarchical fights between animals, we consider that further studies are required for clarification. Considering these new results and the current epidemiological situation of ASF in wild boar, this vaccine prototype is a promising tool for the control of the disease in these wild populations, although further studies are needed.
Collapse
Affiliation(s)
- Jose A Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Belén Rivera
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Rocío Sánchez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Néstor Porras
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
30
|
Laguna E, Barasona JA, Vicente J, Keuling O, Acevedo P. Differences in wild boar spatial behaviour among land uses and management scenarios in Mediterranean ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148966. [PMID: 34273834 DOI: 10.1016/j.scitotenv.2021.148966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous wild boar is causing diverse and growing conflicts of socio-ecological and economic relevance worldwide. For that reason, knowledge of its spatial ecology is crucial to designing effective management programmes. But this knowledge is scarce in Mediterranean areas with mixed land uses. We describe the spatial ecology and habitat selection of 41 adult wild boar monitored using GPS collars and analyse the effects of sex and the period (food shortage period, hunting season and food abundance period) under different land uses (protected areas, mixed farms and fenced hunting estates). The spatial ecology of wild boar was characterised by marked temporality, mediated by sex and the land uses in the area. The activity (ACT), daily range (DR) and home range (HR) were higher for males than females, and in mixed farms versus fenced hunting estates, while the lowest values were obtained in protected areas. These effects were more marked for ACT and DR (movement) than HR. The selection of scrublands and avoidance of woodlands was observed where drive hunt events occur (mixed farms and fenced estates), but not in the protected areas. The differences in the requirements, reproductive behaviour and, interestingly, response to disturbance according to sex may explain this dissimilar behaviour. Disturbance originated higher movement rates and the selection of sheltering land cover as a refuge during the hunting season. This information is useful for designing species monitoring and management programmes; including both preventive and reactive actions in response to events such as outbreaks of African swine fever and agricultural damage produced by wild boar in Europe.
Collapse
Affiliation(s)
- Eduardo Laguna
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), UCLM-CSIC-JCCM, 13071 Ciudad Real, Spain
| | - José A Barasona
- VISAVET, Health Surveillance Centre, Department of Animal Health, Complutense University of Madrid, Madrid 28040, Spain
| | - Joaquín Vicente
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), UCLM-CSIC-JCCM, 13071 Ciudad Real, Spain.
| | - Oliver Keuling
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine, Hannover, Germany
| | - Pelayo Acevedo
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), UCLM-CSIC-JCCM, 13071 Ciudad Real, Spain
| |
Collapse
|
31
|
Kosowska A, Barasona JA, Barroso-Arévalo S, Rivera B, Domínguez L, Sánchez-Vizcaíno JM. A new method for sampling African swine fever virus genome and its inactivation in environmental samples. Sci Rep 2021; 11:21560. [PMID: 34732758 PMCID: PMC8566511 DOI: 10.1038/s41598-021-00552-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is currently the most dangerous disease for the global pig industry, causing huge economic losses, due to the lack of effective vaccine or treatment. Only the early detection of ASF virus (ASFV) and proper biosecurity measures are effective to reduce the viral expansion. One of the most widely recognized risks as regards the introduction ASFV into a country is infected animals and contaminated livestock vehicles. In order to improve ASF surveillance, we have assessed the capacity for the detection and inactivation of ASFV genome by using Dry-Sponges (3 M) pre-hydrated with a new surfactant liquid. We sampled different surfaces in ASFV-contaminated facilities, including animal skins, and the results were compared to those obtained using a traditional sampling method. The surfactant liquid successfully inactivated the virus, while ASFV DNA was well preserved for the detection. This is an effective method to systematically recover ASFV DNA from different surfaces and skin, which has a key applied relevance in surveillance of vehicles transporting live animals and greatly improves animal welfare. This method provides an important basis for the detection of ASFV genome that can be assessed without the biosafety requirements of a BSL-3 laboratory at least in ASF-affected countries, which may substantially speed up the early detection of the pathogen.
Collapse
Affiliation(s)
- Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Belén Rivera
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Deletion of E184L, a putative DIVA target from the pandemic strain of African swine fever virus, produces a reduction in virulence and protection against virulent challenge. J Virol 2021; 96:e0141921. [PMID: 34668772 DOI: 10.1128/jvi.01419-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
African swine fever (ASF) is currently causing a major pandemic affecting the swine industry and protein availability from Central Europe to East and South Asia. No commercial vaccines are available, making disease control dependent on the elimination of affected animals. Here, we show that the deletion of the ASFV E184L gene from the highly virulent ASFV-Georgia2010 (ASFV-G) isolate produces a reduction in virus virulence during the infection in swine. Forty percent (40%) of domestic pigs intramuscularly inoculated with a recombinant virus lacking the E184L gene (ASFV-G-ΔE184L) experienced a significantly (5 days) delayed presentation of clinical disease and, overall, had a 60% rate of survival when compared to animals inoculated with the virulent parental ASFV-G. Importantly, all animals surviving ASFV-G-ΔE184L infection developed a strong antibody response and were protected when challenged with ASFV-G. As expected, a pool of sera from ASFV-G-ΔE184L-inoculated animals lacked any detectable antibody response to peptides partially representing the E184L protein, while sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognize the same set of peptides. These results support the potential use of the E184L deletion for the development of vaccines able to differentiate infected from vaccinated animals (DIVA). Therefore, it is shown here that the E184L gene is a novel ASFV determinant of virulence that can potentially be used to increase safety in pre-existing vaccine candidates as well as to provide them with DIVA capabilities. To our knowledge, E184L is the first ASFV gene product experimentally shown to be a functional DIVA antigenic marker. Importance: No commercial vaccines are available to prevent African swine fever. The ASF pandemic caused by the Georgia (ASFV-G) strain is seriously affecting pork production in a contiguous geographical area from Central Europe to East Asia. The only effective experimental vaccines are viruses attenuated by deleting ASFV genes associated with virus virulence. Therefore, identification of such genes is of critical importance for vaccine development. Here we report the discovery of a novel determinant of ASFV virulence, the E184L gene. Deletion of the E184L gene from the ASFV-G genome (ASFV-G-ΔE184L) produced a reduction in virus virulence and, importantly, animals surviving infection with ASFV-G-ΔE184L were protected from developing ASF after challenge with the virulent parental virus ASFV-G. Importantly, the virus protein encoded by E184L is highly immunogenic, making a virus lacking this gene a DIVA vaccine candidate that allows the differentiation of infected from vaccinated animals. Here we show that unlike what is observed in animals inoculated with the vaccine candidate ASFV-G-ΔMGF, ASFV-G-ΔE184L-inoculated animals do not mount a E184L-specific antibody response, indicating the feasibility of using the E184L deletion as the antigenic marker for the development of a DIVA vaccine in ASFV.
Collapse
|
33
|
Lu H, Zhou X, Wu Z, Zhang X, Zhu L, Guo X, Zhang Q, Zhu S, Zhu H, Sun H. Comparison of the mucosal adjuvanticities of two Toll-like receptor ligands for recombinant adenovirus-delivered African swine fever virus fusion antigens. Vet Immunol Immunopathol 2021; 239:110307. [PMID: 34399310 DOI: 10.1016/j.vetimm.2021.110307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
The mucosal immunity plays an important role against African swine fever virus (ASFV) infection and the efficacy of mucosal vaccination is highly dependent on the adjuvant. However, the mucosal adjuvant for ASFV vaccination is poorly studied. Toll-like receptor (TLR) ligands such as the FlaB flagellin from Vibrio vulnificus and the heat shock protein 70 from Mycobacterium tuberculosis (mHsp70) hold a great promise as novel vaccine adjuvant. However, the mucosal adjuvanticities of such TLR ligands have not been studied in pigs. In this study, three recombinant Adenovirus (rAd) vectors, namely rAd-F1, rAd-FlaB-F1 and rAd-F1-Hsp70, were constructed by fusing the FlaB or mHsp70 to ASFV CD2v-p30-p54 fusion antigen. Western blotting showed that the three fusion proteins expressed in rAd-infected cells reacted positively with ASFV antibodies. After intranasal immunization of pigs with the three rAd vectors, the antigen-specific IgG antibodies were detectable from day 7 after primary immunization, which were significantly boosted by the secondary immunization. Strong Th1/Th2 cytokine responses were detected in the peripheral blood mononuclear cells. Compared to immunization with the control rAd-F1, significantly higher levels of the antigen-specific IgA antibodies were detected in the nasal fluids, tracheal washes and lung lavages.1 Compared to immunization with rAd-Flab-F1, immunization with rAd-F1-Hsp70 induced significantly stronger mucosal IgA antibody response. Cytokine detection of the pig lung lavages showed that the elevated IgA antibody responses were correlated mainly with IL-4, IL-10 and IFN-α, which were confirmed by the significantly increased antigen-recall cytokine expression in the porcine alveolar macrophages. These data suggest that mHsp70 has potent mucosal adjuvanticity in pigs, and the fusion rAd vector can be used for ASFV mucosal vaccine development.
Collapse
Affiliation(s)
- Huipeng Lu
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Zhou
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xinyu Zhang
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Liqi Zhu
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Guo
- The Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Quan Zhang
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Hongfei Zhu
- The Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huaichang Sun
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China.
| |
Collapse
|
34
|
Kim YJ, Park B, Kang HE. Control measures to African swine fever outbreak: active response in South Korea, preparation for the future, and cooperation. J Vet Sci 2021; 22:e13. [PMID: 33522165 PMCID: PMC7850787 DOI: 10.4142/jvs.2021.22.e13] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022] Open
Abstract
African swine fever (ASF) is one of the most complex infectious swine diseases and the greatest concern to the pig industry owing to its high mortality and no effective vaccines available to prevent the disease. Since the first outbreak of ASF in pig farms, ASF has been identified in 14 pig farms in four cities/counties in South Korea. The outbreak was resolved in a short period because of the immediate control measures and cooperative efforts. This paper reviews the ASF outbreak and the experience of successfully stopping ASF in pig farms in South Korea through active responses to prevent the spread of ASF. In addition, suitable changes to build a sustainable pig production system and collaborative efforts to overcome the dangerous animal disease, such as ASF, are discussed.
Collapse
Affiliation(s)
- Yong Joo Kim
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Bongkyun Park
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hae Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
35
|
Gallardo C, Soler A, Nurmoja I, Cano-Gómez C, Cvetkova S, Frant M, Woźniakowski G, Simón A, Pérez C, Nieto R, Arias M. Dynamics of African swine fever virus (ASFV) infection in domestic pigs infected with virulent, moderate virulent and attenuated genotype II ASFV European isolates. Transbound Emerg Dis 2021; 68:2826-2841. [PMID: 34273247 DOI: 10.1111/tbed.14222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/15/2023]
Abstract
This study aimed to compare the infection dynamics of three genotype II African swine fever viruses (ASFV) circulating in Europe. Eighteen domestic pigs divided into three groups were infected intramuscularly or by direct contact with two haemadsorbent ASFVs (HAD) from Poland (Pol16/DP/ OUT21) and Estonia (Est16/WB/Viru8), and with the Latvian non-HAD ASFV (Lv17/WB/Rie1). Parameters, such as symptoms, pathogenicity, and distribution of the virus in tissues, humoral immune response, and dissemination of the virus by blood, oropharyngeal and rectal routes, were investigated. The Polish ASFV caused a case of rapidly developing fatal acute disease, while the Estonian ASFV caused acute to sub-acute infections and two animals survived. In contrast, animals infected with the ASFV from Latvia developed a more subtle, mild, or even subclinical disease. Oral excretion was sporadic or even absent in the attenuated group, whereas in animals that developed an acute or sub-acute form of ASF, oral excretion began at the same time the ASFV was detected in the blood, or even 3 days earlier, and persisted up to 22 days. Regardless of virulence, blood was the main route of transmission of ASFV and infectious virus was isolated from persistently infected animals for at least 19 days in the attenuated group and up to 44 days in the group of moderate virulence. Rectal excretion was limited to the acute phase of infection. In terms of diagnostics, the ASFV genome was detected in contact pigs from oropharyngeal samples earlier than in blood, independently of virulence. Together with blood, both samples could allow to detect ASFV infection for a longer period. The results presented here provide quantitative data on the spread and excretion of ASFV strains of different virulence among domestic pigs that can help to better focus surveillance activities and, thus, increase the ability to detect ASF introductions earlier.
Collapse
Affiliation(s)
- Carmina Gallardo
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| | - Alejandro Soler
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| | - Imbi Nurmoja
- Estonian Veterinary and Food Laboratory, Estonian ASF-National reference laboratory (NRL), Kreutzwaldi, Tartu, Estonia
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| | - Svetlana Cvetkova
- Laboratory of Microbiology and Pathology Institute of Food Safety, Animal Health and Enviroment, BIOR, Latvian ASF-National reference laboratory, Lejupes, Riga, Latvia
| | - Maciej Frant
- National Veterinary Research Institute, Poland ASF-National reference laboratory, Partyzantow, Pulawy, Poland
| | - Grzegorz Woźniakowski
- National Veterinary Research Institute, Poland ASF-National reference laboratory, Partyzantow, Pulawy, Poland.,Department of Diagnostics and Clinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska, Toruń, Poland
| | - Alicia Simón
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| | - Covadonga Pérez
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| | - Raquel Nieto
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| | - Marisa Arias
- Centro de Investigación en Sanidad Animal, CISA, INIA-CSIC, European Union Reference Laboratory for African Swine Fever (EURL), Valdeolmos, Madrid, Spain
| |
Collapse
|
36
|
Polyacrylate-GnRH Peptide Conjugate as an Oral Contraceptive Vaccine Candidate. Pharmaceutics 2021; 13:pharmaceutics13071081. [PMID: 34371772 PMCID: PMC8308917 DOI: 10.3390/pharmaceutics13071081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023] Open
Abstract
Contraceptive vaccines are designed to elicit immune responses against major components of animal reproductive systems. These vaccines, which are most commonly administered via injection, typically target gonadotropin-releasing hormone (GnRH). However, the need to restrain animals for treatment limits the field applications of injectable vaccines. Oral administration would broaden vaccine applicability. We explored contraceptive vaccine candidates composed of GnRH peptide hormone, universal T helper PADRE (P), and a poly(methylacrylate) (PMA)-based delivery system. When self-assembled into nanoparticles, PMA-P-GnRH induced the production of high IgG titers after subcutaneous and oral administration in mice. PADRE was then replaced with pig T helper derived from the swine flu virus, and the vaccine was tested in pigs. High levels of systemic antibodies were produced in pigs after both injection and oral administration of the vaccine. In conclusion, we developed a simple peptide–polymer conjugate that shows promise as an effective, adjuvant-free, oral GnRH-based contraceptive vaccine.
Collapse
|
37
|
Muñoz-Pérez C, Jurado C, Sánchez-Vizcaíno JM. African swine fever vaccine: Turning a dream into reality. Transbound Emerg Dis 2021; 68:2657-2668. [PMID: 34137198 DOI: 10.1111/tbed.14191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
African swine fever (ASF) is currently threatening the swine industry at a global level. The disease originated in Africa has spread to Europe, Asia and Oceania, since 2007, reaching a pandemic dimension. Currently, the spread of ASF is unstoppable and that the development of a safe and effective vaccine is urgently required. The objective of this paper is to review the vaccine candidates tested during the 20th and 21st centuries, to identify the strengths and weaknesses of these studies and to highlight what we should learn. Several strategies have been explored to date, some of which have shown positive and negative results. Inactivated preparations and subunit vaccines are not a viable option. The most promising strategy would appear to be live attenuated vaccines, because these vaccine candidates are able to induce variable percentages of protection against certain homologous and heterologous virus isolates. The number of studies on live attenuated vaccine candidates has steadily increased in the 21st century thanks to advances in molecular biology and an in-depth knowledge of ASF virus, which have allowed the development of vaccines based on deletion mutants. The deletion of virulence-related genes has proved to be a useful tool for attenuation, although attenuation does not always mean protection and even less, cross protection. Therefore, ASF vaccine development has proved to be one of the top priorities in ASF research. Efforts are still being made to fill the gaps in the knowledge regarding immune response, safety and cross protection, and these efforts will hopefully help to find a safe and effective vaccine that could be commercialised soon, thus making it possible to turn a dream into reality.
Collapse
Affiliation(s)
- Carolina Muñoz-Pérez
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Cristina Jurado
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
38
|
African Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine-Current Data. Viruses 2021; 13:v13071212. [PMID: 34201761 PMCID: PMC8310326 DOI: 10.3390/v13071212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prevention and control of African swine fever virus (ASFV) in Europe, Asia, and Africa seem to be extremely difficult in view of the ease with which it spreads, its high resistance to environmental conditions, and the many obstacles related to the introduction of effective specific immunoprophylaxis. Biological properties of ASFV indicate that the African swine fever (ASF) pandemic will continue to develop and that only the implementation of an effective and safe vaccine will ensure a reduction in the spread of ASFV. At present, vaccines against ASF are not available. The latest approaches to the ASFV vaccine’s design concentrate on the development of either modified live vaccines by targeted gene deletion from different isolates or subunit vaccines. The construction of an effective vaccine is hindered by the complex structure of the virus, the lack of an effective continuous cell line for the isolation and propagation of ASFV, unpredictable and stain-specific phenotypes after the genetic modification of ASFV, a risk of reversion to virulence, and our current inability to differentiate infected animals from vaccinated ones. Moreover, the design of vaccines intended for wild boars and oral administration is desirable. Despite several obstacles, the design of a safe and effective vaccine against ASFV seems to be achievable.
Collapse
|
39
|
Barroso-Arévalo S, Barasona JA, Cadenas-Fernández E, Sánchez-Vizcaíno JM. The Role of Interleukine-10 and Interferon-γ as Potential Markers of the Evolution of African Swine Fever Virus Infection in Wild Boar. Pathogens 2021; 10:pathogens10060757. [PMID: 34203976 PMCID: PMC8232672 DOI: 10.3390/pathogens10060757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
40
|
Thoughts on African Swine Fever Vaccines. Viruses 2021; 13:v13050943. [PMID: 34065425 PMCID: PMC8161283 DOI: 10.3390/v13050943] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is an acute viral hemorrhagic disease of domestic swine with mortality rates approaching 100%. Devastating ASF outbreaks and continuing epidemics starting in the Caucasus region and now in the Russian Federation, Europe, China, and other parts of Southeast Asia (2007 to date) highlight its significance. ASF strain Georgia-07 and its derivatives are now endemic in extensive regions of Europe and Asia and are "out of Africa" forever, a situation that poses a grave if not an existential threat to the swine industry worldwide. While our current concern is Georgia-07, other emerging ASFV strains will threaten for the indefinite future. Economic analysis indicates that an ASF outbreak in the U.S. would result in approximately $15 billion USD in losses, assuming the disease is rapidly controlled and the U.S. is able to reenter export markets within two years. ASF's potential to spread and become endemic in new regions, its rapid and efficient transmission among pigs, and the relative stability of the causative agent ASF virus (ASFV) in the environment all provide significant challenges for disease control. Effective and robust methods, including vaccines for ASF response and recovery, are needed immediately.
Collapse
|
41
|
M448R and MGF505-7R: Two African Swine Fever Virus Antigens Commonly Recognized by ASFV-Specific T-Cells and with Protective Potential. Vaccines (Basel) 2021; 9:vaccines9050508. [PMID: 34069239 PMCID: PMC8156282 DOI: 10.3390/vaccines9050508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is today′s number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8+ T-cells. Here, we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a suboptimal dose of the BA71ΔCD2 LAV given as booster vaccination, against Georgia2007/1 lethal challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-7R, a CD8+ T-cell antigen previously described, confirmed these two proteins as T-cell antigens with protective potential. These studies might be useful to pave the road for designing safe and more efficient vaccine formulations in the future.
Collapse
|
42
|
Borca MV, Ramirez-Medina E, Silva E, Vuono E, Rai A, Pruitt S, Espinoza N, Velazquez-Salinas L, Gay CG, Gladue DP. ASFV-G-∆I177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses 2021; 13:765. [PMID: 33925435 PMCID: PMC8146859 DOI: 10.3390/v13050765] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 02/02/2023] Open
Abstract
The African swine fever virus (ASFV) is currently causing a pandemic affecting wild and domestic swine from Western Europe to Asia. No commercial vaccines are available to prevent African swine fever (ASF), resulting in overwhelming economic losses to the swine industry. We recently developed a recombinant vaccine candidate, ASFVG-ΔI177L, by deleting the I177L gene from the genome of the highly virulent ASFV strain Georgia (ASFV-G). ASFV-G-ΔI177L has been proven safe and highly efficacious in challenge studies using parental ASFV-G. Here, we present data demonstrating that ASFV-G-ΔI177L can be administered by the oronasal (ON) route to achieve a similar efficacy to that of intramuscular (IM) administration. Animals receiving ON ASFV-G-ΔI177L were completely protected against virulent ASFV-G challenge. As previously described, similar results were obtained when ASFV-G-ΔI177L was given intramuscularly. Interestingly, viremias induced in animals inoculated oronasally were lower than those measured in IM-inoculated animals. ASFV-specific antibody responses, mediated by IgG1, IgG2 and IgM, do not differ in animals inoculated by the ON route from that had IM inoculations. Therefore, the ASFV-G-ΔI177L vaccine candidate can be administered oronasally, a critical attribute for potential vaccination of wild swine populations.
Collapse
Affiliation(s)
- Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Cyril G. Gay
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (E.V.); (A.R.); (S.P.); (N.E.); (L.V.-S.)
| |
Collapse
|
43
|
Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019. Pathogens 2021; 10:pathogens10050521. [PMID: 33925986 PMCID: PMC8146468 DOI: 10.3390/pathogens10050521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we report on the full genome phylogenetic analysis of four ASFV isolates obtained from wild boars in Russia. These samples originated from two eastern and two western regions of Russia in 2019. Phylogenetic analysis indicated that the isolates were assigned to genotype II and grouped according to their geographical origins. The two eastern isolates shared 99.99% sequence identity with isolates from China, Poland, Belgium, and Moldova, whereas the western isolates had 99.98% sequence identity with isolates from Lithuania and the original Georgia 2007 isolate. Based on the full genome phylogenies, we identified three single locus targets, MGF-360-10L, MGF-505-9R, and I267L, that yielded the same resolving power as the full genomes. The ease of alignment and a high level of variation make these targets a suitable selection as additional molecular markers in future ASFV phylogenetic practices.
Collapse
|
44
|
High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent Challenge. Vaccines (Basel) 2021; 9:vaccines9030242. [PMID: 33802021 PMCID: PMC7999564 DOI: 10.3390/vaccines9030242] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/29/2022] Open
Abstract
African swine fever (ASF) is currently the major concern of the global swine industry, as a consequence of which a reconsideration of the containment and prevention measures taken to date is urgently required. A great interest in developing an effective and safe vaccine against ASF virus (ASFV) infection has, therefore, recently appeared. The objective of the present study is to test an inactivated ASFV preparation under a vaccination strategy that has not previously been tested in order to improve its protective effect. The following have been considered: (i) virus inactivation by using a low binary ethyleneimine (BEI) concentration at a low temperature, (ii) the use of new and strong adjuvants; (iii) the use of very high doses (6 × 109 haemadsorption in 50% of infected cultures (HAD50)), and (iv) simultaneous double inoculation by two different routes of administration: intradermal and intramuscular. Five groups of pigs were, therefore, inoculated with BEI- Pol16/DP/OUT21 in different adjuvant formulations, twice with a 4-week interval. Six weeks later, all groups were intramuscularly challenged with 10 HAD50 of the virulent Pol16/DP/OUT21 ASFV isolate. All the animals had clinical signs and pathological findings consistent with ASF. This lack of effectiveness supports the claim that an inactivated virus strategy may not be a viable vaccine option with which to fight ASF.
Collapse
|
45
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Abrahantes JC, Dhollander S, Ivanciu C, Papanikolaou A, Van der Stede Y, Blome S, Guberti V, Loi F, More S, Olsevskis E, Thulke HH, Viltrop A. ASF Exit Strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J 2021; 19:e06419. [PMID: 33717352 PMCID: PMC7926520 DOI: 10.2903/j.efsa.2021.6419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.
Collapse
|
46
|
Lopez E, van Heerden J, Bosch-Camós L, Accensi F, Navas MJ, López-Monteagudo P, Argilaguet J, Gallardo C, Pina-Pedrero S, Salas ML, Salt J, Rodriguez F. Live Attenuated African Swine Fever Viruses as Ideal Tools to Dissect the Mechanisms Involved in Cross-Protection. Viruses 2020; 12:v12121474. [PMID: 33371460 PMCID: PMC7767464 DOI: 10.3390/v12121474] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/03/2022] Open
Abstract
African swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania. Previous results from our laboratory have demonstrated the ability of BA71∆CD2, a recombinant LAV lacking CD2v, to confer protection against homologous (BA71) and heterologous genotype I (E75) and genotype II (Georgia2007/01) ASFV strains, both belonging to same clade (clade C). Here, we extend these results using BA71∆CD2 as a tool trying to understand ASFV cross-protection, using phylogenetically distant ASFV strains. We first observed that five out of six (83.3%) of the pigs immunized once with 106 PFU of BA71∆CD2 survived the tick-bite challenge using Ornithodoros sp. soft ticks naturally infected with RSA/11/2017 strain (genotype XIX, clade D). Second, only two out of six (33.3%) survived the challenge with Ken06.Bus (genotype IX, clade A), which is phylogenetically more distant to BA71∆CD2 than the RSA/11/2017 strain. On the other hand, homologous prime-boosting with BA71∆CD2 only improved the survival rate to 50% after Ken06.Bus challenge, all suffering mild ASF-compatible clinical signs, while 100% of the pigs immunized with BA71∆CD2 and boosted with the parental BA71 virulent strain survived the lethal challenge with Ken06.Bus, without almost no clinical signs of the disease. Our results confirm that cross-protection is a multifactorial phenomenon that not only depends on sequence similarity. We believe that understanding this complex phenomenon will be useful for designing future vaccines for ASF-endemic areas.
Collapse
Affiliation(s)
- Elisabeth Lopez
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
| | - Juanita van Heerden
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa;
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
| | - Francesc Accensi
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
- Departament de Sanitat i d’Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Maria Jesus Navas
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
| | - Paula López-Monteagudo
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
| | - Jordi Argilaguet
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
| | - Carmina Gallardo
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Madrid, Spain;
| | - Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
| | - Maria Luisa Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, 28049 Madrid, Spain;
| | - Jeremy Salt
- GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik Edinburgh EH26 0PZ, UK;
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; (E.L.); (L.B.-C.); (F.A.); (M.J.N.); (P.L.-M.); (J.A.); (S.P.-P.)
- Correspondence:
| |
Collapse
|
47
|
Kosowska A, Cadenas-Fernández E, Barroso S, Sánchez-Vizcaíno JM, Barasona JA. Distinct African Swine Fever Virus Shedding in Wild Boar Infected with Virulent and Attenuated Isolates. Vaccines (Basel) 2020; 8:vaccines8040767. [PMID: 33339147 PMCID: PMC7765575 DOI: 10.3390/vaccines8040767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Since the reappearance of African swine fever virus (ASFV), the disease has spread in an unprecedented animal pandemic in Eurasia. ASF currently constitutes the greatest global problem for the swine industry. The wild boar (Sus scrofa) in which the pathogen has established wild self-sustaining cycles, is a key reservoir for ASFV, signifying that there is an urgent need to develop an effective vaccine against this virus. Current scientific debate addresses whether live attenuated vaccines (LAVs), which have shown promising results in cross-protection of susceptible hosts, may be feasible for vaccinations carried out owing to safety concerns. The objective of this study was, therefore, to compare the ASFV shedding in wild boar infected with virulent and attenuated (LAV) isolates. Different shedding routes (oral fluid and feces) and viremia rates were characterized in wild boar inoculated with Lv17/WB/Rie1 isolate (n = 12) when compared to those inoculated with the virulent Armenia07 isolate (n = 17). In general, fewer animals infected with the Lv17/WB/Rie1 isolate tested positive for ASFV in blood, oral fluid, and feces in comparison to animals infected with the virulent Armenia07 isolate. The shedding patterns were characterized in order to understand the transmission dynamics. This knowledge will help evaluate the shedding of new LAV candidates in wild boar populations, including the comparison with gene deletion mutant LAVs, whose current results are promising.
Collapse
Affiliation(s)
- Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (E.C.-F.); (S.B.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.K.); (J.A.B.)
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (E.C.-F.); (S.B.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandra Barroso
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (E.C.-F.); (S.B.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (E.C.-F.); (S.B.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (E.C.-F.); (S.B.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.K.); (J.A.B.)
| |
Collapse
|
48
|
Teklue T, Wang T, Luo Y, Hu R, Sun Y, Qiu HJ. Generation and Evaluation of an African Swine Fever Virus Mutant with Deletion of the CD2v and UK Genes. Vaccines (Basel) 2020; 8:E763. [PMID: 33327488 PMCID: PMC7768475 DOI: 10.3390/vaccines8040763] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and often lethal disease caused by African swine fever virus (ASFV). ASF emerged in China in August 2018 and has since rapidly spread into many areas of the country. The disease has caused a significant impact on China's pig and related industries. A safe and effective vaccine is needed to prevent and control the disease. Several gene-deleted ASFVs have been reported; however, none of them is safe enough and commercially available. In this study, we report the generation of a double gene-deleted ASFV mutant, ASFV-SY18-∆CD2v/UK, from a highly virulent field strain ASFV-SY18 isolated in China. The results showed that ASFV-SY18-∆CD2v/UK lost hemadsorption properties, and the simultaneous deletion of the two genes did not significantly affect the in vitro replication of the virus in primary porcine alveolar macrophages. Furthermore, ASFV-SY18-∆CD2v/UK was attenuated in pigs. All the ASFV-SY18-∆CD2v/UK-inoculated pigs remained healthy, and none of them developed ASF-associated clinical signs. Additionally, the ASFV-SY18-∆CD2v/UK-infected pigs developed ASFV-specific antibodies, and no virus genome was detected in blood and nasal discharges at 21 and 28 days post-inoculation. More importantly, we found that all the pigs inoculated with 104 TCID50 of ASFV-SY18-∆CD2v/UK were protected against the challenge with the parental ASFV-SY18. However, low-level ASFV DNA was detected in blood, nasal swabs, and lymphoid tissue after the challenge. The results demonstrate that ASFV-SY18-∆CD2v/UK is safe and able to elicit protective immune response in pigs and can be a potential vaccine candidate to control ASF.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130000, China;
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| |
Collapse
|
49
|
Yamada M, Masujin K, Kameyama KI, Yamazoe R, Kubo T, Iwata K, Tamura A, Hibi H, Shiratori T, Koizumi S, Ohashi K, Ikezawa M, Kokuho T, Yamakawa M. Experimental infection of pigs with different doses of the African swine fever virus Armenia 07 strain by intramuscular injection and direct contact. J Vet Med Sci 2020; 82:1835-1845. [PMID: 33162428 PMCID: PMC7804033 DOI: 10.1292/jvms.20-0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We experimentally infected pigs with the African swine fever virus (ASFV) Armenia 07 strain (genotype II) to analyze the effect of different dose injections on
clinical manifestations, virus-shedding patterns, histopathology, and transmission dynamics by direct contact. Each three pigs and four pigs were injected
intramuscularly with 0.1 fifty percent hemadsorbing doses (HAD50)/ml, 101 HAD50/ml and 106 HAD50/ml of
ASFV Armenia 07 strain, respectively. Each two of three pigs injected with 0.1 HAD50/ml and 101 HAD50/ml died by 10 days post
inoculation. All pigs had a gross lesion of splenomegaly. Perigastric and renal lymph nodes were enlarged and resembled blood clots in nine of ten pigs. It was
revealed that 0.1 HAD50/ml of this ASFV was sufficient to infect healthy pigs by intramuscular injection and caused sub-acute lethal disease. For the
transmission study, two 8-week-old pigs were injected intramuscularly with 103 HAD50/ml of the same virus. Each of the experimentally
inoculated pigs was co-housed with two 8-week-old naive pigs. All contact pigs exhibited clinical manifestations at 6 or 7 days after the experimentally
inoculated pigs developed pyrexia. These findings suggest that this strain may spread slowly within a herd. Histologically, lymph nodes resembled blood clots
were formed by severe blood absorption and followed hemorrhage result of disruption of the lymphoid sinus filling with absorbed red blood cells. The severity of
the gross and histological lesions depended on duration after infection, regardless of the difference of injection doses in this study.
Collapse
Affiliation(s)
- Manabu Yamada
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan.,Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kentaro Masujin
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Ken-Ichiro Kameyama
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Reiko Yamazoe
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Takashi Kubo
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Kei Iwata
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Aiko Tamura
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Hiroyuki Hibi
- Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Kanagawa 235-0008, Japan
| | - Takayoshi Shiratori
- Yamagata Prefectural Chuo Livestock Hygiene Service Center, Yamagata, Yamagata 990-2171, Japan
| | - Shunjiro Koizumi
- Saitama Prefectural Chuo Livestock Hygiene Service Center, Saitama, Saitama 331-0821, Japan
| | - Kousuke Ohashi
- Osaka Livestock Hygiene Service Center, Izumisano, Osaka 598-0048, Japan
| | - Mitsutaka Ikezawa
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| | - Makoto Yamakawa
- Division of Transboundary Animal Diseases, Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo 187-0022, Japan
| |
Collapse
|
50
|
Moise L, Gutiérrez AH, Khan S, Tan S, Ardito M, Martin WD, De Groot AS. New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Front Immunol 2020; 11:563362. [PMID: 33123135 PMCID: PMC7571332 DOI: 10.3389/fimmu.2020.563362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Novel computational tools for swine vaccine development can expand the range of immunization approaches available to prevent economically devastating swine diseases and spillover events between pigs and humans. PigMatrix and EpiCC are two new tools for swine T cell epitope identification and vaccine efficacy analysis that have been integrated into an existing computational vaccine design platform named iVAX. The iVAX platform is already in use for the development of human vaccines, thus integration of these tools into iVAX improves and expands the utility of the platform overall by making previously validated immunoinformatics tools, developed for humans, available for use in the design and analysis of swine vaccines. PigMatrix predicts T cell epitopes for a broad array of class I and class II swine leukocyte antigen (SLA) using matrices that enable the scoring of sequences for likelihood of binding to SLA. PigMatrix facilitates the prospective selection of T cell epitopes from the sequences of swine pathogens for vaccines and permits the comparison of those predicted epitopes with "self" (the swine proteome) and with sequences from other strains. Use of PigMatrix with additional tools in the iVAX toolkit also enables the computational design of vaccines in silico, for testing in vivo. EpiCC uses PigMatrix to analyze existing or proposed vaccines for their potential to protect, based on a comparison between T cell epitopes in the vaccine and circulating strains of the same pathogen. Performing an analysis of T cell epitope relatedness analysis using EpiCC may facilitate vaccine selection when a novel strain emerges in a herd and also permits analysis of evolutionary drift as a means of immune escape. This review of novel computational immunology tools for swine describes the application of PigMatrix and EpiCC in case studies, such as the design of cross-conserved T cell epitopes for swine influenza vaccine or for African Swine Fever. We also describe the application of EpiCC for determination of the best vaccine strains to use against circulating viral variants of swine influenza, swine rotavirus, and porcine circovirus type 2. The availability of these computational tools accelerates infectious disease research for swine and enable swine vaccine developers to strategically advance their vaccines to market.
Collapse
Affiliation(s)
- Lenny Moise
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | | | - Swan Tan
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|