1
|
Martínez D, Garrido M, Ponce C, Zumelzu Y, Coronado J, Santibañez N, Quilapi AM, Vargas-Lagos C, Pontigo JP, Oyarzún-Salazar R, Godoy M, Enríquez R, Muñoz JL, Vargas-Chacoff L, Romero A. Comparative analysis of the stress and immune responses in Atlantic salmon (Salmo salar) inoculated with live and inactivated Piscirickettsia salmonis. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110111. [PMID: 39753155 DOI: 10.1016/j.fsi.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Piscirickettsiosis causes the highest mortality in Atlantic salmon (Salmo salar) farming, and prophylactic treatment has not provided complete protection to date. In this study, we analyzed the immune and metabolic responses of Atlantic salmon inoculated with live and inactivated Piscirickettsia salmonis, monitoring plasma markers related to immune and stress responses. The fish were inoculated with inactivated P. salmonis, live P. salmonis, and culture medium (as control group). Blood and head-kidney samples were collected on days 3, 7, and 14 post-inoculations (dpi). Glucose and lactate levels did not show statistical differences, while cortisol levels increased from day 3 to day 14 in fish inoculated with live P. salmonis and only at 7 dpi in those inoculated with inactivated P. salmonis. Furthermore, anti-P. salmonis IgM-type immunoglobulins increased up to 14 dpi in fish inoculated with live P. salmonis but showed no change in those inoculated with inactivated P. salmonis. Meanwhile, immune markers involved in type I responses (tnfα-1, ifnγ, and cd8β) and regulatory responses (il10, tgfβ-1, and cd4-1) displayed differences between fish inoculated with live and inactivated P. salmonis. In fish inoculated with live P. salmonis, there was a clear pattern of increase at both 3 and 14 dpi, while those inoculated with inactivated P. salmonis showed a greater increase at 3 dpi. Our findings suggest that the nature of antigen may influence humoral immunity (anti-P. salmonis IgM) and the gene expression of markers involved in type I and regulatory immune responses in Atlantic salmon.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile.
| | - Monserrat Garrido
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Carlos Ponce
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Yeraldine Zumelzu
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Jose Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ana María Quilapi
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Carolina Vargas-Lagos
- Carrera de Tecnología Médica, Departamento de Salud, Universidad de los Lagos, Osorno, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile
| | - Ricardo Enríquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i∼mar, Universidad de los Lagos, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
2
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
3
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
4
|
Bodman-Harris O, Rollier CS, Iqbal M. Approaches to Enhance the Potency of Vaccines in Chickens. Vaccines (Basel) 2024; 12:1337. [PMID: 39771998 PMCID: PMC11680195 DOI: 10.3390/vaccines12121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Outbreaks of avian pathogens such as Newcastle disease virus, avian influenza virus, and salmonella have a major impact on economies and food security worldwide. Some pathogens also pose a significant zoonotic potential, especially avian influenza viruses. Vaccination plays a key role in controlling many poultry diseases, and there are many vaccines licenced in the United Kingdom for diseases of poultry caused by viruses, bacteria, and parasites. However, these vaccines often do not provide complete protection and can cause unwanted side effects. Several factors affect the potency of poultry vaccines, including the type of vaccination used, the mechanism of delivery, and the use of adjuvants. Advancements in technology have led to the study and development of novel vaccines and vaccine adjuvants for use in poultry. These induce stronger immune responses compared with current vaccine technology and have the potential to protect against multiple poultry diseases. This review aims to discuss the existing poultry vaccine technology; the effect of delivery mechanisms on vaccine efficacy; the use of current and novel adjuvants; the ability to target antigens to antigen-presenting cells; and the use of probiotics, multivalent vaccines, and nanotechnology to enhance the potency of poultry vaccines.
Collapse
Affiliation(s)
- Oenone Bodman-Harris
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Ash Road, Woking GU 24 0NF, UK;
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford GU2 7XH, UK;
| | - Christine S. Rollier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford GU2 7XH, UK;
| | - Munir Iqbal
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Ash Road, Woking GU 24 0NF, UK;
| |
Collapse
|
5
|
Li J, Xiao L, Chen Z, Fan L, Wang W, Guo R, He Z, Hu H, Jiang J, Zhao L, Zhong T, Fan B, Zhu X, Li B. A spike-based mRNA vaccine that induces durable and broad protection against porcine deltacoronavirus in piglets. J Virol 2024; 98:e0053524. [PMID: 39158273 PMCID: PMC11406889 DOI: 10.1128/jvi.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.
Collapse
MESH Headings
- Animals
- Swine
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- mRNA Vaccines
- Deltacoronavirus/immunology
- Deltacoronavirus/genetics
- Nanoparticles
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Female
- Immunity, Humoral
- Liposomes
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zhuoqi Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Liyuan Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhaoming He
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Hongpeng Hu
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Jianhao Jiang
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Lixiang Zhao
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Tianyi Zhong
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
6
|
Kumar A, Middha SK, Menon SV, Paital B, Gokarn S, Nelli M, Rajanikanth RB, Chandra HM, Mugunthan SP, Kantwa SM, Usha T, Hati AK, Venkatesan D, Rajendran A, Behera TR, Venkatesamurthy S, Sahoo DK. Current Challenges of Vaccination in Fish Health Management. Animals (Basel) 2024; 14:2692. [PMID: 39335281 PMCID: PMC11429256 DOI: 10.3390/ani14182692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.
Collapse
Affiliation(s)
- Avnish Kumar
- Department of Biotechnology, School of Life Sciences, Dr. Bhimrao Ambedkar University, Agra 282004, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Soumya Vettiyatil Menon
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Shyam Gokarn
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Meghana Nelli
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | | | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | | | - Sanwar Mal Kantwa
- Department of Zoology, B. S. Memorial P.G. College, NH 52, Ranoli, Sikar 332403, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Akshaya Kumar Hati
- Dr. Abhin Chandra Homoeopathic Medical College and Hospital, Homeopathic College Rd., Unit 3, Kharvela Nagar, Bhubaneswar 751001, India
| | | | - Abira Rajendran
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Tapas Ranjan Behera
- Department of Community Medicine, Fakir Mohan Medical College and Hospital, Januganj Rd., Kalidaspur, Balia, Balasore 756019, India
| | - Swarupa Venkatesamurthy
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
7
|
Fazel F, Doost JS, Raj S, Boodhoo N, Karimi K, Sharif S. The mRNA vaccine platform for veterinary species. Vet Immunol Immunopathol 2024; 274:110803. [PMID: 39003921 DOI: 10.1016/j.vetimm.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Vaccination has proven to be an effective means of controlling pathogens in animals. Since the introduction of veterinary vaccines in the 19th century, several generations of vaccines have been introduced. These vaccines have had a positive impact on global animal health and production. Despite, the success of veterinary vaccines, there are still some pathogens for which there are no effective vaccines available, such as African swine fever. Further, animal health is under the constant threat of emerging and re-emerging pathogens, some of which are zoonotic and can pose a threat to human health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for new vaccine platforms that are safe and efficacious, but also importantly, are adaptable and can be modified rapidly to match the circulating pathogens. mRNA vaccines have been shown to be an effective vaccine platform against various viral and bacterial pathogens. This review will cover some of the recent advances in the field of mRNA vaccines for veterinary species. Moreover, various mRNA vaccines and their delivery methods, as well as their reported efficacy, will be discussed. Current limitations and future prospects of this vaccine platform in veterinary medicine will also be discussed.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
8
|
Leiva-Rebollo R, Labella AM, Gémez-Mata J, Castro D, Borrego JJ. Fish Iridoviridae: infection, vaccination and immune response. Vet Res 2024; 55:88. [PMID: 39010235 PMCID: PMC11247874 DOI: 10.1186/s13567-024-01347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.
Collapse
Affiliation(s)
- Rocío Leiva-Rebollo
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Juan Gémez-Mata
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Dolores Castro
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
9
|
Hovakimyan A, Chilingaryan G, King O, Capocchi JK, Chadarevian JP, Davtyan H, Kniazev R, Agadjanyan MG, Ghochikyan A. mRNA Vaccine for Alzheimer's Disease: Pilot Study. Vaccines (Basel) 2024; 12:659. [PMID: 38932388 PMCID: PMC11209092 DOI: 10.3390/vaccines12060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating global healthcare challenge posed by Alzheimer's Disease (AD) and compounded by the lack of effective treatments emphasizes the urgent need for innovative approaches to combat this devastating disease. Currently, passive and active immunotherapies remain the most promising strategy for AD. FDA-approved lecanemab significantly reduces Aβ aggregates from the brains of early AD patients administered biweekly with this humanized monoclonal antibody. Although the clinical benefits noted in these trials have been modest, researchers have emphasized the importance of preventive immunotherapy. Importantly, data from immunotherapy studies have shown that antibody concentrations in the periphery of vaccinated people should be sufficient for targeting Aβ in the CNS. To generate relatively high concentrations of antibodies in vaccinated people at risk of AD, we generated a universal vaccine platform, MultiTEP, and, based on it, developed a DNA vaccine, AV-1959D, targeting pathological Aβ, completed IND enabling studies, and initiated a Phase I clinical trial with early AD volunteers. Our current pilot study combined our advanced MultiTEP technology with a novel mRNA approach to develop an mRNA vaccine encapsulated in lipid-based nanoparticles (LNPs), AV-1959LR. Here, we report our initial findings on the immunogenicity of 1959LR in mice and non-human primates, comparing it with the immunogenicity of its DNA counterpart, AV-1959D.
Collapse
Affiliation(s)
- Armine Hovakimyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (A.H.); (G.C.); (O.K.); (R.K.)
| | - Garri Chilingaryan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (A.H.); (G.C.); (O.K.); (R.K.)
| | - Olga King
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (A.H.); (G.C.); (O.K.); (R.K.)
| | - Joia Kai Capocchi
- The Institute for Memory Impairments and Neurological Disorders, The University of California, Irvine, CA 92697, USA; (J.K.C.)
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- The Institute for Memory Impairments and Neurological Disorders, The University of California, Irvine, CA 92697, USA; (J.K.C.)
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Hayk Davtyan
- The Institute for Memory Impairments and Neurological Disorders, The University of California, Irvine, CA 92697, USA; (J.K.C.)
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Roman Kniazev
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (A.H.); (G.C.); (O.K.); (R.K.)
| | - Michael G. Agadjanyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (A.H.); (G.C.); (O.K.); (R.K.)
| | - Anahit Ghochikyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (A.H.); (G.C.); (O.K.); (R.K.)
| |
Collapse
|
10
|
González-Cueto E, de la Fuente J, López-Camacho C. Potential of mRNA-based vaccines for the control of tick-borne pathogens in one health perspective. Front Immunol 2024; 15:1384442. [PMID: 38947333 PMCID: PMC11211597 DOI: 10.3389/fimmu.2024.1384442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
The One Health approach, which integrates the health of humans, animals, plants, and ecosystems at various levels, is crucial for addressing interconnected health threats. This is complemented by the advent of mRNA vaccines, which have revolutionized disease prevention. They offer broad-spectrum effectiveness and can be rapidly customized to target specific pathogens. Their utility extends beyond human medicine, showing potential in veterinary practices to control diseases and reduce the risk of zoonotic transmissions. This review place mRNA vaccines and One Health in the context of tick-borne diseases. The potential of these vaccines to confer cross-species immunity is significant, potentially disrupting zoonotic disease transmission cycles and protecting the health of both humans and animals, while reducing tick populations, infestations and circulation of pathogens. The development and application of mRNA vaccines for tick and tick-borne pathogens represent a comprehensive strategy in global health, fostering a healthier ecosystem for all species in our interconnected world.
Collapse
Affiliation(s)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC)-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | | |
Collapse
|
11
|
Du L, Lu H, Qiao X, Zhang Y, Hou L, Yu X, Cheng H, Chen J, Zheng Q, Hou J, Tong G. Conventional dendritic cells 2, the targeted antigen-presenting-cell, induces enhanced type 1 immune responses in mice immunized with CVC1302 in oil formulation. Immunol Lett 2024; 267:106856. [PMID: 38537718 DOI: 10.1016/j.imlet.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Multifunctional CD4+ T helper 1 (Th1) cells, producing IFN-γ, TNF-α and IL-2, define a correlate of vaccine-mediated protection against intracellular infection. In our previous study, we found that CVC1302 in oil formulation promoted the differentiation of IFN-γ+/TNF-α+/IL-2+Th1 cells. In order to extend the application of CVC1302 in oil formulation, this study aimed to elucidate the mechanism of action in improving the Th1 immune response. Considering the signals required for the differentiation of CD4+ T cells to Th1 cells, we detected the distribution of innate immune cells and the model antigen OVA-FITC in lymph node (LN), as well as the quantity of cytokines produced by the innate immune cells. The results of these experiments show that, cDC2 and OVA-FITC localized to interfollicular region (IFR) of the draining lymph nodes, inflammatory monocytes localized to both IFR and T cell zone, which mainly infiltrate from the blood. In this inflammatory niche within LN, CD4+ T cells were attracted into IFR by CXCL10, secreted by inflammatory monocytes, then activated by cDC2, secreting IL-12. Above all, CVC1302 in oil formulation, on the one hand, targeted antigen and inflammatory monocytes into the LN IFR in order to attract CD4+ T cells, on the other hand, targeted cDC2 to produce IL-12 in order to promote optimal Th1 differentiation. The new finding will provide a blueprint for application of immunopotentiators in optimal formulations.
Collapse
Affiliation(s)
- Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Haiyan Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Haiwei Cheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology Nanjing, 210014, Jiangsu, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| |
Collapse
|
12
|
Celis-Giraldo C, Ordoñez D, Díaz-Arévalo D, Bohórquez MD, Ibarrola N, Suárez CF, Rodríguez K, Yepes Y, Rodríguez A, Avendaño C, López-Abán J, Manzano-Román R, Patarroyo MA. Identifying major histocompatibility complex class II-DR molecules in bovine and swine peripheral blood monocyte-derived macrophages using mAb-L243. Vaccine 2024; 42:3445-3454. [PMID: 38631956 DOI: 10.1016/j.vaccine.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Michel D Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
| | - Carlos F Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Kewin Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yoelis Yepes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Alexander Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, National Medical Center, Duarte, CA, United States
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
13
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
14
|
Wu G, Du J, Yu C, Fu Z, Zhang X, Wang L, Wang J. Mass spectrometry study on SARS-CoV-2 recombinant vaccine with comprehensive separation techniques to characterize complex heterogeneity. Anal Chim Acta 2024; 1297:342349. [PMID: 38438233 DOI: 10.1016/j.aca.2024.342349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024]
Abstract
SARS-CoV-2, the causative agent of COVID-19, has imposed a major public health threat, which needs effective therapeutics and vaccination strategies. Several potential candidate vaccines being rapidly developed are in clinical evaluation and recombinant vaccine has gained much attention thanks to its potential for greater response predictability, improved efficacy, rapid development and reduced side effects. Recombinant vaccines are designed and manufactured using bacterial, yeast cells or mammalian cells. A small piece of DNA is taken from the virus or bacterium against which we want to protect and inserted into the manufacturing cells. Due to the extremely complex heterogeneity of SARS-CoV-2 recombinant vaccine, single technology platform cannot achieve thorough and accurate characterization of such difficult proteins so integrating comprehensive technologies is essential. This study illustrates an innovative workflow employing multiple separation techniques tandem high-resolution mass spectrometry for comprehensive and in-depth characterization of SARS-CoV-2 recombinant vaccine, including ultra-high performance liquid chromatography (UHPLC), ion exchange chromatography (IEX) and imaged capillary isoelectric focusing (icIEF). The integrated methodology focuses on the importance of cutting-edge icIEF-MS online coupling and icIEF fractionation applied to revealing the heterogeneity secret of SARS-CoV-2 recombinant vaccine.
Collapse
Affiliation(s)
- Gang Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jialiang Du
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Zhihao Fu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Xiaoxi Zhang
- Thermo Fisher Scientific, A Building, Henggu1976, No.1976 Middle Gaoke Road, Pudong District, 201203, Shanghai, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing, 102629, China
| | - Junzhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
15
|
Ioannou P, Baliou S, Samonis G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics (Basel) 2024; 13:121. [PMID: 38391507 PMCID: PMC10886108 DOI: 10.3390/antibiotics13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The development of antimicrobial resistance (AMR), along with the relative reduction in the production of new antimicrobials, significantly limits the therapeutic options in infectious diseases. Thus, novel treatments, especially in the current era, where AMR is increasing, are urgently needed. There are several ongoing studies on non-classical therapies for infectious diseases, such as bacteriophages, antimicrobial peptides, and nanotechnology, among others. Nanomaterials involve materials on the nanoscale that could be used in the diagnosis, treatment, and prevention of infectious diseases. This review provides an overview of the applications of nanotechnology in the diagnosis and treatment of infectious diseases from a clinician's perspective, with a focus on pathogens with AMR. Applications of nanomaterials in diagnosis, by taking advantage of their electrochemical, optic, magnetic, and fluorescent properties, are described. Moreover, the potential of metallic or organic nanoparticles (NPs) in the treatment of infections is also addressed. Finally, the potential use of NPs in the development of safe and efficient vaccines is also reviewed. Further studies are needed to prove the safety and efficacy of NPs that would facilitate their approval by regulatory authorities for clinical use.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| |
Collapse
|
16
|
Eckerstorfer MF, Dolezel M, Miklau M, Greiter A, Heissenberger A, Engelhard M. Scanning the Horizon for Environmental Applications of Genetically Modified Viruses Reveals Challenges for Their Environmental Risk Assessment. Int J Mol Sci 2024; 25:1507. [PMID: 38338787 PMCID: PMC10855828 DOI: 10.3390/ijms25031507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The release of novel genetically modified (GM) virus applications into the environment for agricultural, veterinary, and nature-conservation purposes poses a number of significant challenges for risk assessors and regulatory authorities. Continuous efforts to scan the horizon for emerging applications are needed to gain an overview of new GM virus applications. In addition, appropriate approaches for risk assessment and management have to be developed. These approaches need to address pertinent challenges, in particular with regard to the environmental release of GM virus applications with a high probability for transmission and spreading, including transboundary movements and a high potential to result in adverse environmental effects. However, the current preparedness at the EU and international level to assess such GM virus application is limited. This study addresses some of the challenges associated with the current situation, firstly, by conducting a horizon scan to identify emerging GM virus applications with relevance for the environment. Secondly, outstanding issues regarding the environmental risk assessment (ERA) of GM virus applications are identified based on an evaluation of case study examples. Specifically, the limited scientific information available for the ERA of some applications and the lack of detailed and appropriate guidance for ERA are discussed. Furthermore, considerations are provided for future work that is needed to establish adequate risk assessment and management approaches.
Collapse
Affiliation(s)
- Michael F. Eckerstorfer
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marion Dolezel
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marianne Miklau
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Anita Greiter
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Andreas Heissenberger
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Margret Engelhard
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany;
| |
Collapse
|
17
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
18
|
Domínguez-Odio A, Rodríguez Martínez E, Cala Delgado DL. Commercial vaccines used in poultry, cattle, and aquaculture: a multidirectional comparison. Front Vet Sci 2024; 10:1307585. [PMID: 38234985 PMCID: PMC10791835 DOI: 10.3389/fvets.2023.1307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
|
19
|
Sulejmanovic T, Schnug J, Philipp HC. Veterinary Autogenous Vaccines for Poultry in Europe-Many Ways to Crack an Egg. Avian Dis 2024; 67:456-466. [PMID: 38300664 DOI: 10.1637/aviandiseases-d-23-99991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 02/02/2024]
Abstract
In the past decade, European animal farming has increasingly used autogenous vaccines for the prevention of nonnotifiable diseases. In Europe, these vaccines are exclusively inactivated bacterial and viral vaccines, with a set of specific regulations that differentiate them from conventional vaccines. The highest number of applications most likely occurs in poultry, as these animal species are farmed in the highest numbers compared with other types of food-producing animals. In 2019, autogenous vaccines came within the scope of harmonized European regulation for the first time, although many important aspects are still missing and need to be further developed. Consequently, several important legal provisions remain in national legislations and can vary tremendously between different member states of the European Union. The inclusion of autogenous vaccines in the management of certain diseases of poultry is justified by the nonavailability of licensed vaccines and the evolution and diversity of antigens in the field that are not covered by licensed vaccines. In addition, these vaccines aid in reducing the use of antibiotics. The methods for isolating and typing pathogenic isolates to obtain relevant antigens are pathogen specific and require a careful approach based on clinical evidence. Manufacturing processes are optimized according to regulatory standards, and they represent the most critical factor influencing the quality of autogenous vaccines and their placement on the market. This review presents the important requirements for manufacturing autogenous vaccines for poultry in addition to the relevant regulatory considerations. The results from a survey of several European Union member states regarding specific provisions within their national legislations are also presented.
Collapse
Affiliation(s)
- Tarik Sulejmanovic
- Vaxxinova Autogenous Vaccines GmbH, Anton-Flettner-Strasse 6, 27472 Cuxhaven, Germany,
| | - Jana Schnug
- Vaxxinova Autogenous Vaccines GmbH, Anton-Flettner-Strasse 6, 27472 Cuxhaven, Germany
| | | |
Collapse
|
20
|
Apinda N, Yao Y, Zhang Y, Muenthaisong A, Sangkakam K, Nambooppha B, Rittipornlertrak A, Koonyosying P, Nair V, Sthitmatee N. Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks. Vaccines (Basel) 2023; 11:1498. [PMID: 37766174 PMCID: PMC10535566 DOI: 10.3390/vaccines11091498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fowl cholera is caused by the bacterium Pasteurella multocida, a highly transmissible avian ailment with significant global implications, leading to substantial economic repercussions. The control of fowl cholera outbreaks primarily relies on vaccination using traditional vaccines that are still in use today despite their many limitations. In this research, we describe the development of a genetically engineered herpesvirus of turkeys (HVT) that carries the OmpH gene from P. multocida integrated into UL 45/46 intergenic region using CRISPR/Cas9-NHEJ and Cre-Lox system editing. The integration and expression of the foreign cassettes were confirmed using polymerase chain reaction (PCR), indirect immunofluorescence assays, and Western blot assays. The novel recombinant virus (rHVT-OmpH) demonstrated stable integration of the OmpH gene even after 15 consecutive in vitro passages, along with similar in vitro growth kinetics as the parent HVT virus. The protective efficacy of the rHVT-OmpH vaccine was evaluated in vaccinated ducks by examining the levels of P. multocida OmpH-specific antibodies in serum samples using ELISA. Groups of ducks that received the rHVT-OmpH vaccine or the rOmpH protein with Montanide™ (SEPPIC, Paris, France) adjuvant exhibited high levels of antibodies, in contrast to the negative control groups that received the parental HVT or PBS. The recombinant rHVT-OmpH vaccine also provided complete protection against exposure to virulent P. multocida X-73 seven days post-vaccination. This outcome not only demonstrates that the HVT vector possesses many characteristics of an ideal recombinant viral vaccine vector for protecting non-chicken hosts, such as ducks, but also represents significant research progress in identifying a modern, effective vaccine candidate for combatting ancient infectious diseases.
Collapse
Affiliation(s)
- Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Yongxiu Yao
- The Pirbright Institute, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.N.)
| | - Yaoyao Zhang
- The Pirbright Institute, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.N.)
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Venugopal Nair
- The Pirbright Institute, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.N.)
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| |
Collapse
|
21
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
22
|
Janse M, Sesa G, van de Burgwal L. A Case Study of European Collaboration between the Veterinary and Human Field for the Development of RSV Vaccines. Vaccines (Basel) 2023; 11:1137. [PMID: 37514953 PMCID: PMC10385505 DOI: 10.3390/vaccines11071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The One Health (OH) approach describes the interconnection between the health of animals, humans, and the environment. The need for collaboration between the veterinary and human fields is increasing due to the rise in several infectious diseases that cross human-animal barriers and need to be addressed jointly. However, such collaboration is not evident in practice, especially for non-zoonotic diseases. A qualitative research approach was used to explore the barriers and enablers influencing collaborative efforts on the development of vaccines for the non-zoonotic RSV virus. It was found that in the European context, most veterinary and human health professionals involved in RSV vaccine development see themselves as belonging to two distinct groups, indicating a lack of a common goal for collaboration. Next to this, the different conceptualizations of the OH approach, and the fact that RSV is not a zoonotic disease, strengthens the opinion that there is no shared need for collaboration. This paper adds insights on how, for a non-zoonotic situation, collaboration between human and veterinary professionals shaped the development of vaccines in both areas; thus, improving public health requires awareness, mutual appreciation, and shared goal setting.
Collapse
Affiliation(s)
- Marga Janse
- Athena Institute, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Giulia Sesa
- Athena Institute, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Maina TW, Grego EA, Broderick S, Sacco RE, Narasimhan B, McGill JL. Immunization with a mucosal, post-fusion F/G protein-based polyanhydride nanovaccine protects neonatal calves against BRSV infection. Front Immunol 2023; 14:1186184. [PMID: 37359514 PMCID: PMC10289034 DOI: 10.3389/fimmu.2023.1186184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of death in young children and there are no FDA approved vaccines. Bovine RSV (BRSV) is antigenically similar to HRSV, and the neonatal calf model is useful for evaluation of HRSV vaccines. Here, we determined the efficacy of a polyanhydride-based nanovaccine encapsulating the BRSV post-fusion F and G glycoproteins and CpG, delivered prime-boost via heterologous (intranasal/subcutaneous) or homologous (intranasal/intranasal) immunization in the calf model. We compared the performance of the nanovaccine regimens to a modified-live BRSV vaccine, and to non-vaccinated calves. Calves receiving nanovaccine via either prime-boost regimen exhibited clinical and virological protection compared to non-vaccinated calves. The heterologous nanovaccine regimen induced both virus-specific cellular immunity and mucosal IgA, and induced similar clinical, virological and pathological protection as the commercial modified-live vaccine. Principal component analysis identified BRSV-specific humoral and cellular responses as important correlates of protection. The BRSV-F/G CpG nanovaccine is a promising candidate vaccine to reduce RSV disease burden in humans and animals.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Domínguez-Odio A, Delgado DLC. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015-2022 technological surveillance. Vet World 2023; 16:946-956. [PMID: 37576757 PMCID: PMC10420726 DOI: 10.14202/vetworld.2023.946-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Pasteurella multocida can infect a multitude of wild and domesticated animals, bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in animal production. The study aimed to evaluate the current status and scientific trends related to veterinary vaccines against Pasteurella multocida during the 2015-2022 period. Material and Methods The characteristics of globally marketed vaccines were investigated based on the official websites of 22 pharmaceutical companies. VOSviewer® 1.6.18 was used to visualize networks of coauthorship and cooccurrence of keywords from papers published in English and available in Scopus. Results Current commercial vaccines are mostly inactivated (81.7%), adjuvanted in aluminum hydroxide (57.8%), and designed to immunize cattle (33.0%). Investigational vaccines prioritize the inclusion of attenuated strains, peptide fragments, recombinant proteins, DNA as antigens, aluminum compounds as adjuvants and poultry as the target species. Conclusion Despite advances in genetic engineering and biotechnology, there will be no changes in the commercial dominance of inactivated and aluminum hydroxide-adjuvanted vaccines in the short term (3-5 years). The future prospects for bacterial vaccines in animal production are promising, with advancements in vaccine formulation and genetic engineering, they have the potential to improve the sustainability of the industry. It is necessary to continue with the studies to improve the efficacy of the vaccines and their availability.
Collapse
Affiliation(s)
- Aníbal Domínguez-Odio
- Dirección de Ciencia e Innovación. Grupo Empresarial LABIOFAM. Avenida Independencia km 16½, Boyeros, La Habana, Cuba
| | - Daniel Leonardo Cala Delgado
- Animal Science Research Group, Universidad Cooperativa de Colombia, Sede Bucaramanga, Carrera 33 N°, 30ª-05 (4.162,49 km) 68000, Bucaramanga, Colombia
| |
Collapse
|
25
|
Mba IE, Sharndama HC, Anyaegbunam ZKG, Anekpo CC, Amadi BC, Morumda D, Doowuese Y, Ihezuo UJ, Chukwukelu JU, Okeke OP. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop Med Int Health 2023; 28:275-299. [PMID: 36861882 DOI: 10.1111/tmi.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Ben Chibuzo Amadi
- Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari, Taraba, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | - Uchechi Justina Ihezuo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
26
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
27
|
Improved DNA Vaccine Delivery with Needle-Free Injection Systems. Vaccines (Basel) 2023; 11:vaccines11020280. [PMID: 36851159 PMCID: PMC9964240 DOI: 10.3390/vaccines11020280] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.
Collapse
|
28
|
Boyner M, Ivarsson E, Wattrang E, Sun L, Wistedt A, Wall H. Effects of access to feed, water, and a competitive exclusion product in the hatcher on some immune traits and gut development in broiler chickens. Br Poult Sci 2023. [PMID: 36628611 DOI: 10.1080/00071668.2022.2163152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study evaluated the effect of access to feed, water, and the competitive exclusion (CE) product Broilact®, administered in the hatcher, on broiler performance, caecal microbiota development, organ development, intestinal morphology, serum levels of IgY and vaccine-induced antibody responses.In total, 250 chicks were hatched in a HatchCareTM hatcher and divided into four groups, given access to feed, water and the CE product sprayed on the chicks (CEs); access to feed, water, and the CE product in water (CEw); access to feed and water (Cpos); or no access to feed and water (Cneg) in the hatcher. At the research facility, 10 chicks per hatching treatment were euthanized for organ measurements. The remaining 200 chicks were randomly distributed to 20 pens. On d 11, all birds were vaccinated against avian pneumovirus (APV). Three focal birds per pen were blood-sampled weekly for quantification of IgY and serum antibodies to APV. On d 11 and 32, two birds per replicate pen were euthanised for organ measurements and sample collection. Feed intake and body weight were recorded weekly.Delayed access to feed and water reduced weight gain and feed intake early in life. At the end of the study, no differences in body weight remained.There were some early effects on organs, with depressed intestinal development and higher relative gizzard weight for the Cneg group at placement. No treatment effects on the immune traits measured were detected. The relative abundance of seven bacterial genera differed between treatment groups at d 11 of age. The results suggested that chickens are capable of compensating for 40 h feed and water deprival post-hatch. Provision of Broilact® did not have any persistent performance-enhancing properties, although different outcomes under rearing conditions closer to commercial production cannot be ruled out.
Collapse
Affiliation(s)
- M Boyner
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala
| | - L Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Wistedt
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
29
|
Cagigi A, Douradinha B. Have mRNA vaccines sentenced DNA vaccines to death? Expert Rev Vaccines 2023; 22:1154-1167. [PMID: 37941101 DOI: 10.1080/14760584.2023.2282065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION After receiving emergency approval during the COVID-19 pandemic, mRNA vaccines have taken center stage in the quest to enhance future vaccination strategies for both infectious diseases and cancer. Indeed, they have significantly overshadowed another facet of genetic vaccination, specifically DNA vaccines. Nevertheless, it is important to acknowledge that both types of genetic vaccines have distinct advantages and disadvantages that set them apart from each other. AREAS COVERED In this work, we delve extensively into the history of genetic vaccines, their mechanisms of action, their strengths, and limitations, and ultimately highlight ongoing research in key areas for potential enhancement of both DNA and mRNA vaccines. EXPERT OPINION Here, we assess the significance of the primary benefits and drawbacks associated with DNA and mRNA vaccination. We challenge the current lines of thought by highlighting that the existing drawbacks of DNA vaccination could potentially be more straightforward to address compared to those linked with mRNA vaccination. In our view, this suggests that DNA vaccines should remain viable contenders in the pursuit of the future of vaccination.
Collapse
Affiliation(s)
- Alberto Cagigi
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| | | |
Collapse
|
30
|
Arnouts S, Brown S, de Arriba ML, Donabedian M, Charlier J. Technology Readiness Levels for vaccine and drug development in animal health: From discovery to life cycle management. Front Vet Sci 2022; 9:1016959. [PMID: 36619962 PMCID: PMC9811140 DOI: 10.3389/fvets.2022.1016959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Public research and innovation initiatives in animal health aim to deliver key knowledge, services and products that improve the control of animal infectious diseases and animal welfare to deliver on global challenges including public health threats, environmental concerns and food security. The Technology Readiness Level (TRL) is a popular innovation policy instrument to monitor the maturity of upcoming new technologies in publicly funded research projects. However, while general definition of the 9 levels on the TRL-scale enable uniform discussions of technical maturity across different types of technology, these definitions are very generic which hampers concrete interpretation and application. Here, we aligned innovation pipeline stages as used in the animal health industry for the development of new vaccines or drugs with the TRL scale, resulting in TRL for animal health (TRLAH). This more bespoke scale can help to rationally allocate funding for animal health research from basic to applied research, map innovation processes, monitor progress and develop realistic progress expectations across the time span of a research and innovation project. The TRLAH thus become an interesting instrument to enhance the translation of public research results into industrial and societal innovation and foster public-private partnerships in animal health.
Collapse
Affiliation(s)
- Sven Arnouts
- Provaxs, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium,*Correspondence: Sven Arnouts ✉
| | - Scott Brown
- SABAH Consulting, Galesburg, MI, United States
| | | | | | | |
Collapse
|
31
|
Nishikawa S, Ogawa Y, Shiraiwa K, Nozawa R, Nakayama M, Eguchi M, Shimoji Y. Rational Design of Live-Attenuated Vaccines against Genome-Reduced Pathogens. Microbiol Spectr 2022; 10:e0377622. [PMID: 36453908 PMCID: PMC9769512 DOI: 10.1128/spectrum.03776-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
To develop safe and highly effective live vaccines, rational vaccine design is necessary. Here, we sought a simple approach to rationally develop a safe attenuated vaccine against the genome-reduced pathogen Erysipelothrix rhusiopathiae. We examined the mRNA expression of all conserved amino acid biosynthetic genes remaining in the genome after the reductive evolution of E. rhusiopathiae. Reverse transcription-quantitative PCR (qRT-PCR) analysis revealed that half of the 14 genes examined were upregulated during the infection of murine J774A.1 macrophages. Gene deletion was possible only for three proline biosynthesis genes, proB, proA, and proC, the last of which was upregulated 29-fold during infection. Five mutants bearing an in-frame deletion of one (ΔproB, ΔproA, or ΔproC mutant), two (ΔproBA mutant), or three (ΔproBAC mutant) genes exhibited attenuated growth during J774A.1 infection, and the attenuation and vaccine efficacy of these mutants were confirmed in mice and pigs. Thus, for the rational design of live vaccines against genome-reduced bacteria, the selective targeting of genes that escaped chromosomal deletions during evolution may be a simple approach for identifying genes which are specifically upregulated during infection. IMPORTANCE Identification of bacterial genes that are specifically upregulated during infection can lead to the rational construction of live vaccines. For this purpose, genome-based approaches, including DNA microarray analysis and IVET (in vivo expression technology), have been used so far; however, these methods can become laborious and time-consuming. In this study, we used a simple in silico approach and showed that in genome-reduced bacteria, the genes which evolutionarily remained conserved for metabolic adaptations during infection may be the best targets for the deletion and construction of live vaccines.
Collapse
Affiliation(s)
- Sayaka Nishikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazumasa Shiraiwa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Rieko Nozawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Momoko Nakayama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
32
|
Rojas-Peña M, Aceituno P, Salvador ME, Garcia-Ordoñez M, Teles M, Ortega-Villaizan MDM, Perez L, Roher N. How modular protein nanoparticles may expand the ability of subunit anti-viral vaccines: The spring viremia carp virus (SVCV) case. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1051-1062. [PMID: 36371050 DOI: 10.1016/j.fsi.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Spring viremia of carp (SVC) remains as a vaccine orphan disease mostly affecting juvenile specimens. Young fish are especially difficult to vaccinate and oral administration of vaccine combined with food would be the election system to minimise stress and the vaccination costs associated to injection. However, administration of prophylactics with food pellets faces off several drawbacks mainly related with vaccine degradation and weak protection correlates of oral vaccines. Here we present a platform based on recombinant proteins (subunit vaccines) manufactured as highly resistant nanostructured materials, and providing excellent levels of protection against SVC virus in a preliminary i.p injection challenge. The G3 domain of SVCV glycoprotein G was overexpressed in E. coli together with IFNγ and the modular protein was purified from bacterial aggregates (inclusion bodies) as highly organised nanostructured biomaterial (nanopellets, NP). These SVCV-IFNNP were taken up by zebrafish cells leading to the enhanced expression of different antiviral and IFN markers (e.g vig1, mx, lmp2 or ifngr1 among others) in zebrafish liver cells (ZFL). To monitor if SVCVNP and SVCV-IFNNP can be taken up by intestinal epithelia and can induce antiviral response we performed experiments with SVCVNP and SVCV-IFNNP in 3 days post fertilization (dpf) zebrafish larvae. Both, SVCVNP and SVCV-IFNNP were taken up and accumulated in the intestine without signs of toxicity. The antiviral response in larvae showed a different induction pattern: SVCV-IFNNP did not induce an antiviral response while SVCVNP showed a good antiviral induction. Interestingly ZF4, an embryonic derived cell line, showed an antiviral response like ZFL cells, although the lmp2 and ifngr1 (markers of the IFNγ response) were not overexpressed. Experiments with adult zebrafish indicated an excellent level of protection against a SVCV model infection where SVCV-IFNNP vaccinated fish reached 20% cumulative mortality while control fish reached over 80% cumulative mortality.
Collapse
Affiliation(s)
- Mauricio Rojas-Peña
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Patricia Aceituno
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Maria E Salvador
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Marlid Garcia-Ordoñez
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Mariana Teles
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain.
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
33
|
Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022; 11:pathogens11121444. [PMID: 36558778 PMCID: PMC9781236 DOI: 10.3390/pathogens11121444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prophylactic vaccines against human papillomavirus (HPV) have proven efficacy in those who have not been infected by the virus. However, they do not benefit patients with established tumors. Therefore, the development of therapeutic options for HPV-related malignancies is critical. Third-generation vaccines based on nucleic acids are fast and simple approaches to eliciting adaptive immune responses. However, techniques to boost immunogenicity, reduce degradation, and facilitate their capture by immune cells are frequently required. One option to overcome this constraint is to employ delivery systems that allow selective antigen absorption and help modulate the immune response. This review aimed to discuss the influence of these different systems on the response generated by nucleic acid vaccines. The results indicate that delivery systems based on lipids, polymers, and microorganisms such as yeasts can be used to ensure the stability and transport of nucleic acid vaccines to their respective protein synthesis compartments. Thus, in view of the limitations of nucleic acid-based vaccines, it is important to consider the type of delivery system to be used-due to its impact on the immune response and desired final effect.
Collapse
|
34
|
Andretta M, Call DR, Nero LA. Insights into antibiotic use in Brazilian dairy production. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Milimani Andretta
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária Universidade Federal de Viçosa, Campus Universitário Viçosa MG 36570‐900 Brazil
| | - Douglas Ruben Call
- Paul G. Allen School for Global Health Washington State University 240 SE Ott Road Pullman WA 99164 USA
| | - Luís Augusto Nero
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária Universidade Federal de Viçosa, Campus Universitário Viçosa MG 36570‐900 Brazil
| |
Collapse
|
35
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
36
|
Manohar MM, Campbell BE, Walduck AK, Moore RJ. Enhancement of live vaccines by co-delivery of immune modulating proteins. Vaccine 2022; 40:5769-5780. [PMID: 36064671 DOI: 10.1016/j.vaccine.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Vaccines are very effective in providing protection against many infectious diseases. However, it has proven difficult to develop highly efficacious vaccines against some pathogens and so there is a continuing need to improve vaccine technologies. The first successful and widely used vaccines were based on attenuated pathogens (e.g., laboratory passaged Pasteurella multocida to vaccinate against fowl cholera) or closely related non-pathogenic organisms (e.g., cowpox to vaccinate against smallpox). Subsequently, live vaccines, either attenuated pathogens or non-pathogenic microorganisms modified to deliver heterologous antigens, have been successfully used to induce protective immune responses against many pathogens. Unlike conventional killed and subunit vaccines, live vaccines can deliver antigens to mucosal surfaces in a similar manner and context as the natural infection and hence can often produce a more appropriate and protective immune response. Despite these advantages, there is still a need to improve the immunogenicity of some live vaccines. The efficacy of injectable killed and subunit vaccines is usually enhanced using adjuvants such mineral salts, oils, and saponin, but such adjuvants cannot be used with live vaccines. Instead, live vaccines can be engineered to produce immunomodulatory molecules that can stimulate the immune system to induce more robust and long-lasting adaptive immune responses. This review focuses on research that has been undertaken to engineer live vaccines to produce immunomodulatory molecules that act as adjuvants to increase immunogenicity. Adjuvant strategies with varying mechanisms of action (inflammatory, antibody-mediated, cell-mediated) and delivery modes (oral, intramuscular, intranasal) have been investigated, with varying degrees of success. The goal of such research is to define adjuvant strategies that can be adapted to enhance live vaccine efficacy by triggering strong innate and adaptive immune responses and produce vaccines against a wider range of pathogens.
Collapse
Affiliation(s)
- Megha M Manohar
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | - Anna K Walduck
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
37
|
Status and Challenges for Vaccination against Avian H9N2 Influenza Virus in China. Life (Basel) 2022; 12:life12091326. [PMID: 36143363 PMCID: PMC9505450 DOI: 10.3390/life12091326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
In China, H9N2 avian influenza virus (AIV) has become widely prevalent in poultry, causing huge economic losses after secondary infection with other pathogens. Importantly, H9N2 AIV continuously infects humans, and its six internal genes frequently reassort with other influenza viruses to generate novel influenza viruses that infect humans, threatening public health. Inactivated whole-virus vaccines have been used to control H9N2 AIV in China for more than 20 years, and they can alleviate clinical symptoms after immunization, greatly reducing economic losses. However, H9N2 AIVs can still be isolated from immunized chickens and have recently become the main epidemic subtype. A more effective vaccine prevention strategy might be able to address the current situation. Herein, we analyze the current status and vaccination strategy against H9N2 AIV and summarize the progress in vaccine development to provide insight for better H9N2 prevention and control.
Collapse
|
38
|
McVey DS, Shi J, Reynolds DL. Vaccines. Vet Microbiol 2022. [DOI: 10.1002/9781119650836.ch70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
40
|
Mondal H, Thomas J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 30:1971-2000. [PMID: 35528247 PMCID: PMC9059915 DOI: 10.1007/s10499-022-00884-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
Globally, aquaculture has faced serious economic problems due to bacterial, viral, and various other infectious diseases of different origins. Even though such diseases are being detected and simultaneously treated with several therapeutic and prophylactic methods, the broad-spectrum activity of vaccines plays a vital role as a preventive measure in aquaculture. However, treatments like use of antibiotics and probiotics seem to be less effective when new mutant strains develop and disease causing pathogens become resistant to commonly used antibiotics. Therefore, vaccines developed by using recent advanced molecular techniques can be considered as an effective way of treating disease causing pathogens in aquatic organisms. The present review emphasizes on the current advances in technology and future outlook with reference to different types of vaccines used in the aquaculture industries. Beginning with traditional killed/inactivated and live attenuated vaccines, this work culminates in the review of modern new generation ones including recombinant, synthetic peptides, mucosal and DNA, subunit, nanoparticle-based and plant-based edible vaccines, reverse vaccinology, and monovalent and polyvalent vaccines.
Collapse
Affiliation(s)
- Haimanti Mondal
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
41
|
Gendered Barriers and Opportunities for Women Smallholder Farmers in the Contagious Caprine Pleuropneumonia Vaccine Value Chain in Kenya. Animals (Basel) 2022; 12:ani12081026. [PMID: 35454271 PMCID: PMC9031503 DOI: 10.3390/ani12081026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Small animals such as goats, sheep and chickens are an important source of income for rural livelihoods, especially for women farmers in Africa, because they are able to control the resources that come from the sale of these animals. However, one of the biggest problems they face is livestock diseases, even when vaccines are available. In Kenya, Contagious Caprine Pleuropneumonia (CCPP) is a highly infectious disease of goats with a mortality rate of more than 70%. A vaccine for CCPP is available but difficult to access by women in the rural areas. This study examines the gaps and barriers that prevent women smallholder farmers from effectively accessing and adopting CCPP vaccination for their animals in the Machakos district of Kenya. Our results indicate that key constraints to vaccine access and adoption for rural smallholder women farmers are lack of a cold chain for vaccine maintenance, inadequate and late delivery of veterinary services, lack of information and training, and limited financial capacity to purchase the vaccine. If more resources, information, and training is made available to women smallholder farmers through government or the private sector, there would be improved livestock productivity, better livelihoods, and increased opportunities and agency for women. Abstract Most rural women smallholder farmers in Kenya generate income from the sale of small ruminant animals. However, diseases such as Contagious Caprine Pleuropneumonia (CCPP) prevent them from optimizing earnings. A crucial aspect for the control of CCPP is vaccination. In Kenya, CCPP vaccines are distributed through a government delivery mechanism. This study examines gaps and barriers that prevent women smallholder farmers from accessing CCPP vaccines. Qualitative data collection tools used were focus groups discussions, focus meals, jar voices and key informant interviews. Using outcome mapping (OM) methodology, critical partners and stakeholders in the CCPP vaccine value chain (CCPP-VVC) were identified to be the manufacturers, importers, distributors, agrovets, public and private veterinarians, local leaders, and farmers. Respondents highlighted the barriers to be limited access to vaccines due to cold chain problems, inadequate and late delivery of services, lack of information and training on vaccines, and financial constraints. Identified opportunities that can support women’s engagement in the CCPP-VVC are the Kenya Governments two-third gender rule, which requires that not more than two thirds of the members of elective or appointive bodies shall be of the same gender, and positive community perception of female veterinarians. We conclude that more resources and training should be made available to women farmers, and that gender perspectives on policy development related to livestock production and disease prevention are urgently needed to improve livestock productivity and increase agency for women.
Collapse
|
42
|
Entrican G, Francis MJ. Applications of platform technologies in veterinary vaccinology and the benefits for one health. Vaccine 2022; 40:2833-2840. [DOI: 10.1016/j.vaccine.2022.03.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
|
43
|
Tang B, Li J, Li T, Xie Y, Guan W, Zhao Y, Yang S, Liu M, Xu D. Vaccines as a Strategy to Control Trichinellosis. Front Microbiol 2022; 13:857786. [PMID: 35401479 PMCID: PMC8984473 DOI: 10.3389/fmicb.2022.857786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Trichinellosis caused by Trichinella spiralis is a worldwide food-borne parasitic zoonosis. Several approaches have been performed to control T. spiralis infection, including veterinary vaccines, which contribute to improving animal health and increasing public health by preventing the transmission of trichinellosis from animals to humans. In the past several decades, many vaccine studies have been performed in effort to control T. spiralis infection by reducing the muscle larvae and adult worms burden. Various candidate antigens, selected from excretory-secretory (ES) products and different functional proteins involved in the process of establishing infection have been investigated in rodent or swine models to explore their protective effect against T. spiralis infection. Moreover, different types of vaccines have been developed to improve the protective effect against T. spiralis infection in rodent or swine models, such as live attenuated vaccines, natural antigen vaccines, recombinant protein vaccines, DNA vaccines, and synthesized epitope vaccines. However, few studies of T. spiralis vaccines have been performed in pigs, and future research should focus on exploring the protective effect of different types of vaccines in swine models. Here, we present an overview of the strategies for the development of effective T. spiralis vaccines and summarize the factors of influencing the effectiveness of vaccines. We also discuss several propositions in improving the effectiveness of vaccines and may provide a route map for future T. spiralis vaccines development.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Mingyuan Liu,
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Daoxiu Xu,
| |
Collapse
|
44
|
Desanti-Consoli H, Bouillon J, Chapuis RJJ. Equids' Core Vaccines Guidelines in North America: Considerations and Prospective. Vaccines (Basel) 2022; 10:398. [PMID: 35335029 PMCID: PMC8955191 DOI: 10.3390/vaccines10030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccination against infectious diseases is a cornerstone of veterinary medicine in the prevention of disease transmission, illness severity, and often death in animals. In North American equine medicine, equine vaccines protecting against tetanus, rabies, Eastern and Western equine encephalomyelitis, and West Nile are core vaccines as these have been classified as having a heightened risk of mortality, infectiousness, and endemic status. Some guidelines differ from the label of vaccines, to improve the protection of patients or to decrease the unnecessary administration to reduce potential side effects. In North America, resources for the equine practitioners are available on the American Association of Equine Practitioners (AAEP) website. Conversely, in small companion animals, peer review materials are regularly published in open access journals to guide the vaccination of dogs and cats. The aims of this review are to present how the vaccine guidelines have been established for small companion animals and horses in North America, to review the equine literature to solidify or contrast the current AAEP guidelines of core vaccines, and to suggest future research directions in the equine vaccine field considering small companion animal strategies and the current available resources in equine literature.
Collapse
Affiliation(s)
| | - Juliette Bouillon
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis;
| | - Ronan J. J. Chapuis
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis;
| |
Collapse
|
45
|
Baschieri S, Menassa R, Klement E, Donini M. Editorial: Plant-Production Platforms for Veterinary Biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:858043. [PMID: 35283916 PMCID: PMC8905339 DOI: 10.3389/fpls.2022.858043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Eyal Klement
- Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marcello Donini
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| |
Collapse
|
46
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
47
|
Abstract
HTLV-1 is a global infection with 5-20 million infected individuals. Although only a minority of infected individuals develop myelopathy, lymphoproliferative malignancy, or inflammatory disorders, infection is associated with immunosuppression and shorter survival. Transmission of HTLV-1 is through contaminated blood or needles, mother-to-child exposure through breast-feeding, and sexual intercourse. HTLV-1 is a delta retrovirus that expresses immunogenic Gag, Envelope, TAX, and Hbz proteins. Neutralizing antibodies have been identified directed against the surface envelope protein, and cytotoxic T-cell epitopes within TAX have been characterized. Thus far, there have been few investigations of vaccines directed against each of these proteins, with limited responses, thus far. However, with new technologies developed in the last few years, a renewed investigation is warranted in search for a safe and effective HTLV-1 vaccine.
Collapse
|
48
|
Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol 2022; 106:25-56. [PMID: 34889981 PMCID: PMC8661323 DOI: 10.1007/s00253-021-11713-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Inactivated and live attenuated vaccines have improved human life and significantly reduced morbidity and mortality of several human infectious diseases. However, these vaccines have faults, such as reactivity or suboptimal efficacy and expensive and time-consuming development and production. Additionally, despite the enormous efforts to develop vaccines against some infectious diseases, the traditional technologies have not been successful in achieving this. At the same time, the concerns about emerging and re-emerging diseases urge the need to develop technologies that can be rapidly applied to combat the new challenges. Within the last two decades, the research of vaccine technologies has taken several directions to achieve safe, efficient, and economic platforms or technologies for novel vaccines. This review will give a brief overview of the current state of the novel vaccine technologies, new vaccine candidates in clinical trial phases 1-3 (listed by European Medicines Agency (EMA) and Food and Drug Administration (FDA)), and vaccines based on the novel technologies which have already been commercially available (approved by EMA and FDA) with the special reference to pandemic COVID-19 vaccines. KEY POINTS: • Vaccines of the new generation follow the minimalist strategy. • Some infectious diseases remain a challenge for the vaccine development. • The number of new vaccine candidates in the late phase clinical trials remains low.
Collapse
|
49
|
Soleymani S, Tavassoli A, Housaindokht MR. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput Biol Med 2022; 140:105057. [PMID: 34839187 DOI: 10.1016/j.compbiomed.2021.105057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Vaccination remains the most effective strategy for preventing and controlling infectious diseases. Numerous conventional vaccines, especially live attenuated, inactivated (killed) microorganisms and subunit vaccines, lead to an effective induction of protective immune responses, mainly antibody-mediated responses against pathogens. However, it has become known that a wide range of highly dangerous pathogens are uncontrollable via conventional vaccination strategies. Recent advances in molecular biology, immunology, genetics, biochemistry, and bioinformatics have provided new prospects for vaccine development. As a result of these advances, several new strategies for vaccine design, development, and production have appeared. These strategies show advantages over conventional vaccines. In this review, we discuss some of the major novel approaches, including recombinant protein vaccines, live recombinant viral and bacterial vectors, DNA and RNA vaccines, reverse vaccinology and reverse genetics approaches. Moreover, we have described the recent progresses on computational tools and immunoinformatics approaches for identifying, designing, and developing new candidate vaccines.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
50
|
Gabriel ÁM, Galué-Parra A, Pereira WLA, Pedersen KW, da Silva EO. Leishmania 360°: Guidelines for Exosomal Research. Microorganisms 2021; 9:2081. [PMID: 34683402 PMCID: PMC8537887 DOI: 10.3390/microorganisms9102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmania parasites are a group of kinetoplastid pathogens that cause a variety of clinical disorders while maintaining cell communication by secreting extracellular vesicles. Emerging technologies have been adapted for the study of Leishmania-host cell interactions, to enable the broad-scale analysis of the extracellular vesicles of this parasite. Leishmania extracellular vesicles (LEVs) are spheroidal nanoparticles of polydispersed suspensions surrounded by a layer of lipid membrane. Although LEVs have attracted increasing attention from researchers, many aspects of their biology remain unclear, including their bioavailability and function in the complex molecular mechanisms of pathogenesis. Given the importance of LEVs in the parasite-host interaction, and in the parasite-parasite relationships that have emerged during the evolutionary history of these organisms, the present review provides an overview of the available data on Leishmania, and formulates guidelines for LEV research. We conclude by reporting direct methods for the isolation of specific LEVs from the culture supernatant of the promastigotes and amastigotes that are suitable for a range of different downstream applications, which increases the compatibility and reproducibility of the approach for the establishment of optimal and comparable isolation conditions and the complete characterization of the LEV, as well as the critical immunomodulatory events triggered by this important group of parasites.
Collapse
Affiliation(s)
- Áurea Martins Gabriel
- Global Health and Tropical Medicine, GHTM, Institute of Hygiene and Tropical Medicine of NOVA University of Lisbon, IHMT-UNL, 1349-008 Lisbon, Portugal
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
| | - Adan Galué-Parra
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
| | | | | | - Edilene Oliveira da Silva
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|