1
|
Wu P, Wang TY, Wang YH, Liu AL, Zhao SP, Feng K, Li LJ. Effect of Slow-Release Urea on Yield and Quality of Euryale ferox. Int J Mol Sci 2024; 25:11737. [PMID: 39519289 PMCID: PMC11546189 DOI: 10.3390/ijms252111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Slow-release urea, as an environmentally friendly fertiliser, can provide a continuous and uniform supply of nutrients needed by the crop, reduce the amount and frequency of fertiliser application, and promote the uptake and utilisation of nitrogen in crops. The production of E. ferox is often dominated by the application of quick-acting fertilisers, resulting in serious problems of over-fertilisation, inappropriate periods of fertilisation, eutrophication of soil and water due to fertilisation, and difficulties in applying fertilisers. Therefore, in this study, different amounts (CK, T1, T2, T3, T4, T5) of SRU (Slow-release Urea) were first applied, and T3 (18.8 kg·667 m-2) was found to significantly improve both yield and quality. Further, it was found that under different SRU (CK, S1, S2, S3, S4) application period treatments, application of 18.8 kg·667 m-2 at AFP20 (S2) period significantly increased the yield and quality of E. ferox. In the seed kernels of E. ferox, the total yield, soluble sugar content, total starch, and flavonoid content increased significantly by 10.35%, 36.40%, 5.91%, and 22.80%, respectively, compared with CK. In addition, the expression of key sugar transporter genes (EfSWEETs), flavonoid synthesis-related genes (EfPAL, EfDFR, etc.), and starch synthesis-related enzyme activities (SBE, SSS, GBSS) were significantly increased. By exploring the quantity of application and application period of SRU, this study was carried out to investigate the in-depth effect of SRU on the growth and development of E. ferox and to provide technical references for the increase in E. ferox yield, the improvement in E. ferox quality, and the simplification of fertiliser application.
Collapse
Affiliation(s)
- Peng Wu
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Tian-Yu Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Yu-Hao Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Ai-Lian Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Shu-Ping Zhao
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Kai Feng
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Liang-Jun Li
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Antonietta M, Martinez D, Guiamet JJ. Delayed senescence and crop performance under stress: always a functional couple? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4244-4257. [PMID: 38635775 DOI: 10.1093/jxb/erae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Exposure to abiotic stresses accelerates leaf senescence in most crop plant species, thereby reducing photosynthesis and other assimilatory processes. In some cases, genotypes with delayed leaf senescence (i.e. 'stay-green') show stress resistance, particularly in cases of water deficit, and this has led to the proposal that senescence delay improves crop performance under some abiotic stresses. In this review, we summarize the evidence for increased resistance to abiotic stress, mostly water deficit, in genotypes with delayed senescence, and specifically focus on the physiological mechanisms and agronomic conditions under which the stay-green trait may ameliorate grain yield under stress.
Collapse
Affiliation(s)
| | - Dana Martinez
- Instituto de Fisiología Vegetal, CONICET-UNLP, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal, CONICET-UNLP, Argentina
| |
Collapse
|
3
|
Dirk LMA, Zhao T, May J, Li T, Han Q, Zhang Y, Sahib MR, Downie AB. Alterations in Carbohydrate Quantities in Freeze-Dried, Relative to Fresh or Frozen Maize Leaf Disks. Biomolecules 2023; 13:biom13010148. [PMID: 36671533 PMCID: PMC9855396 DOI: 10.3390/biom13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
For various reasons, leaves are occasionally lyophilized prior to storage at -80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from disks after freezing in liquid nitrogen with or without subsequent lyophilization (both years) or directly after removal from plants with or without lyophilization (only in the second year). By adding the lyophilizing step, galactose content consistently increased and, frequently, so did galactoglycerols. The source of the galactose increase with the added lyophilizing step was not due to metabolizing raffinose, as the raffinose synthase (rafs) null mutant leaves, which do not make that trisaccharide, also had a similar increase in galactose content with lyophilization. Apparently, the ester linkages attaching free fatty acids to galactoglycerolipids of the chloroplast are particularly sensitive to cleavage during lyophilization, resulting in increases in galactoglycerols. Regardless of the galactose source, a systematic error is introduced for carbohydrate (and, most likely, also chloroplast mono- or digalactosyldiacylglycerol) amounts when maize leaf samples are lyophilized prior to extraction. The recognition of lyophilization as a source of galactose increase provides a cautionary note for investigators of soluble carbohydrates.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - John May
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, N-222A Ag Science North, Lexington, KY 40546, USA
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Mohammad R. Sahib
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- College of Agriculture, Al-Qasim Green University, Babylon 00964, Iraq
| | - Allan Bruce Downie
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- Correspondence: ; Tel.: +1-(859)-257-5237
| |
Collapse
|
4
|
Lai X, Wang H, Yan J, Zhang Y, Yan L. Exploring the differences between sole silages of gramineous forages and mixed silages with forage legumes using 16S/ITS full-length sequencing. Front Microbiol 2023; 14:1120027. [PMID: 36937291 PMCID: PMC10017965 DOI: 10.3389/fmicb.2023.1120027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background/Objective Silage characteristics of grass materials directly affect their silage qualities. To expand the source of silage raw materials and develop mixed silages underlined by exploring the positive interactions between forage grasses and legumes, three gramineous grasses, Napier grass (Pennisetum purpureum), king grass (Pennisetum sinese), and forage maize (Zea mays) were separately mixed ensiled with a combination of four forage legumes including Medicago sativa, Vicia villosa, Vicia sativa, and Trifolium repens. Methods The chemical composition and fermentation quality of the mixed silages were analyzed and compared with those of the sole silages of these three grasses, as well as the diversity of microbial communities, through the 16S/ITS full-length sequencing. Results The results showed that the inclusion of forage legumes could somewhat improve the fermentation quality, as indicated by significantly (p < 0.05) higher crude protein and lactic acid contents while lower neutral detergent fiber, acid detergent fiber contents and pH values, compared with the sole silages. Among the three types of mixed silages, the mixed king grass had the highest dry matter and crude protein content as well as lowest neutral detergent fiber and acid detergent fiber content. Meanwhile, the bacterial and fungal communities in the mixed silages were influenced by increased the relative abundance of lactic acid bacteria, which inhibited the proliferation of undesirable bacteria, such as Hafnia alvei, Enterobacter cloacae, and Serratia proteamaculanss. Co-occurrence networks identified 32 nodes with 164 positive and 18 negative correlations in bacteria and 80 nodes with two negative and 76 positive correlations in fungi during fermentation. Conclusion Inclusion of forage legume to grasses can improve the fermentation quality and optimize the structure of microbial community, which appears to be a feasible strategy to enhance the forage resource utilization.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Junfeng Yan
- Chengdu Ke’an Technology Co., Ltd., Chengdu, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
- Mianyang Youxian Innovation Technology and Industrial Technology Research Institute, Mianyang, China
- *Correspondence: Lang Yan,
| |
Collapse
|
5
|
Hisham MB, Hashim AM, Mohd Hanafi N, Abdul Rahman N, Abdul Mutalib NE, Tan CK, Nazli MH, Mohd Yusoff NF. Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics. Sci Rep 2022; 12:7107. [PMID: 35501317 PMCID: PMC9061801 DOI: 10.1038/s41598-022-08819-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Silage produced in tropical countries is prone to spoilage because of high humidity and temperature. Therefore, determining indigenous bacteria as potential inoculants is important to improve silage quality. This study aimed to determine bacterial community and functional changes associated with ensiling using amplicon metagenomics and to predict potential bacterial additives associated with silage quality in the Malaysian climate. Silages of two forage crops (sweet corn and Napier) were prepared, and their fermentation properties and functional bacterial communities were analysed. After ensiling, both silages were predominated by lactic acid bacteria (LAB), and they exhibited good silage quality with significant increment in lactic acid, reductions in pH and water-soluble carbohydrates, low level of acetic acid and the absence of propionic and butyric acid. LAB consortia consisting of homolactic and heterolactic species were proposed to be the potential bacterial additives for sweet corn and Napier silage fermentation. Tax4fun functional prediction revealed metabolic pathways related to fermentation activities (bacterial division, carbohydrate transport and catabolism, and secondary metabolite production) were enriched in ensiled crops (p < 0.05). These results might suggest active transport and metabolism of plant carbohydrates into a usable form to sustain bacterial reproduction during silage fermentation, yielding metabolic products such as lactic acid. This research has provided a comprehensive understanding of bacterial communities before and after ensiling, which can be useful for desirable silage fermentation in Malaysia.
Collapse
Affiliation(s)
- Minhalina Badrul Hisham
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nursyuhaida Mohd Hanafi
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
| | - Norafizah Abdul Rahman
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Nur Elina Abdul Mutalib
- Institutes for Health Systems Research, National Institutes of Health Malaysia (NIH), 40170, Shah Alam, Selangor, Malaysia
| | - Chun Keat Tan
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Muhamad Hazim Nazli
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Fatihah Mohd Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Powell A, Wilder SL, Housh AB, Scott S, Benoit M, Powell G, Waller S, Guthrie JM, Schueller MJ, Ferrieri RA. Examining effects of rhizobacteria in relieving abiotic crop stresses using carbon-11 radiotracing. PHYSIOLOGIA PLANTARUM 2022; 174:e13675. [PMID: 35316539 PMCID: PMC9310733 DOI: 10.1111/ppl.13675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress-related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon-11 (t½ 20.4 min) to examine the metabolic and physiological responses of Zea mays to Azospirillum brasilense (HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of "new" carbon resources (as 11 C) and physiology including [11 C]-photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6-fold increase in foliar [11 C]-raffinose, a potent osmolyte. ICP-MS analyses revealed increased foliar Na+ levels at the expense of K+ . HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11 C]-raffinose levels while increasing [11 C]-sucrose and its translocation to the roots. Na+ levels remained elevated with inoculation, but K+ levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in "new" carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11 C]-glutamate, [11 C]-aspartate, and [11 C]-asparagine, a noted osmoprotectant. 11 CO2 fixation and [11 C]-photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re-instated normal root growth, reduced anthocyanin, boosted root starch, and returned 11 C-allocation levels back to those of unstressed plants.
Collapse
Affiliation(s)
- Avery Powell
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Stacy L. Wilder
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
| | - Alexandra B. Housh
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
| | - Stephanie Scott
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Mary Benoit
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Division of Plant Sciences and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Garren Powell
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Spenser Waller
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - James M. Guthrie
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
| | - Michael J. Schueller
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
| | - Richard A. Ferrieri
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
- Division of Plant Sciences and TechnologyUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
7
|
Clark TJ, Schwender J. Elucidation of Triacylglycerol Overproduction in the C 4 Bioenergy Crop Sorghum bicolor by Constraint-Based Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:787265. [PMID: 35251073 PMCID: PMC8892208 DOI: 10.3389/fpls.2022.787265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Upregulation of triacylglycerols (TAGs) in vegetative plant tissues such as leaves has the potential to drastically increase the energy density and biomass yield of bioenergy crops. In this context, constraint-based analysis has the promise to improve metabolic engineering strategies. Here we present a core metabolism model for the C4 biomass crop Sorghum bicolor (iTJC1414) along with a minimal model for photosynthetic CO2 assimilation, sucrose and TAG biosynthesis in C3 plants. Extending iTJC1414 to a four-cell diel model we simulate C4 photosynthesis in mature leaves with the principal photo-assimilatory product being replaced by TAG produced at different levels. Independent of specific pathways and per unit carbon assimilated, energy content and biosynthetic demands in reducing equivalents are about 1.3 to 1.4 times higher for TAG than for sucrose. For plant generic pathways, ATP- and NADPH-demands per CO2 assimilated are higher by 1.3- and 1.5-fold, respectively. If the photosynthetic supply in ATP and NADPH in iTJC1414 is adjusted to be balanced for sucrose as the sole photo-assimilatory product, overproduction of TAG is predicted to cause a substantial surplus in photosynthetic ATP. This means that if TAG synthesis was the sole photo-assimilatory process, there could be an energy imbalance that might impede the process. Adjusting iTJC1414 to a photo-assimilatory rate that approximates field conditions, we predict possible daily rates of TAG accumulation, dependent on varying ratios of carbon partitioning between exported assimilates and accumulated oil droplets (TAG, oleosin) and in dependence of activation of futile cycles of TAG synthesis and degradation. We find that, based on the capacity of leaves for photosynthetic synthesis of exported assimilates, mature leaves should be able to reach a 20% level of TAG per dry weight within one month if only 5% of the photosynthetic net assimilation can be allocated into oil droplets. From this we conclude that high TAG levels should be achievable if TAG synthesis is induced only during a final phase of the plant life cycle.
Collapse
Affiliation(s)
- Teresa J. Clark
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, United States
| |
Collapse
|
8
|
Gill RA, Ahmar S, Ali B, Saleem MH, Khan MU, Zhou W, Liu S. The Role of Membrane Transporters in Plant Growth and Development, and Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:12792. [PMID: 34884597 PMCID: PMC8657488 DOI: 10.3390/ijms222312792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The proteins of membrane transporters (MTs) are embedded within membrane-bounded organelles and are the prime targets for improvements in the efficiency of water and nutrient transportation. Their function is to maintain cellular homeostasis by controlling ionic movements across cellular channels from roots to upper plant parts, xylem loading and remobilization of sugar molecules from photosynthesis tissues in the leaf (source) to roots, stem and seeds (sink) via phloem loading. The plant's entire source-to-sink relationship is regulated by multiple transporting proteins in a highly sophisticated manner and driven based on different stages of plant growth and development (PG&D) and environmental changes. The MTs play a pivotal role in PG&D in terms of increased plant height, branches/tiller numbers, enhanced numbers, length and filled panicles per plant, seed yield and grain quality. Dynamic climatic changes disturbed ionic balance (salt, drought and heavy metals) and sugar supply (cold and heat stress) in plants. Due to poor selectivity, some of the MTs also uptake toxic elements in roots negatively impact PG&D and are later on also exported to upper parts where they deteriorate grain quality. As an adaptive strategy, in response to salt and heavy metals, plants activate plasma membranes and vacuolar membrane-localized MTs that export toxic elements into vacuole and also translocate in the root's tips and shoot. However, in case of drought, cold and heat stresses, MTs increased water and sugar supplies to all organs. In this review, we mainly review recent literature from Arabidopsis, halophytes and major field crops such as rice, wheat, maize and oilseed rape in order to argue the global role of MTs in PG&D, and abiotic stress tolerance. We also discussed gene expression level changes and genomic variations within a species as well as within a family in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.A.); (M.H.S.)
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.A.); (M.H.S.)
| | - Muhammad Umar Khan
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Weijun Zhou
- Institute of Crop Science, The Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China;
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| |
Collapse
|
9
|
Coussement JR, Villers SLY, Nelissen H, Inzé D, Steppe K. Turgor-time controls grass leaf elongation rate and duration under drought stress. PLANT, CELL & ENVIRONMENT 2021; 44:1361-1378. [PMID: 33373049 DOI: 10.1111/pce.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The process of leaf elongation in grasses is characterized by the creation and transformation of distinct cell zones. The prevailing turgor pressure within these cells is one of the key drivers for the rate at which these cells divide, expand and differentiate, processes that are heavily impacted by drought stress. In this article, a turgor-driven growth model for grass leaf elongation is presented, which combines mechanistic growth from the basis of turgor pressure with the ontogeny of the leaf. Drought-induced reductions in leaf turgor pressure result in a simultaneous inhibition of both cell expansion and differentiation, lowering elongation rate but increasing elongation duration due to the slower transitioning of cells from the dividing and elongating zone to mature cells. Leaf elongation is, therefore, governed by the magnitude of, and time spent under, growth-enabling turgor pressure, a metric which we introduce as turgor-time. Turgor-time is able to normalize growth patterns in terms of varying water availability, similar to how thermal time is used to do so under varying temperatures. Moreover, additional inclusion of temperature dependencies within our model pioneers a novel concept enabling the general expression of growth regardless of water availability or temperature.
Collapse
Affiliation(s)
- Jonas R Coussement
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Selwyn L Y Villers
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Shah AN, Tanveer M, Abbas A, Yildirim M, Shah AA, Ahmad MI, Wang Z, Sun W, Song Y. Combating Dual Challenges in Maize Under High Planting Density: Stem Lodging and Kernel Abortion. FRONTIERS IN PLANT SCIENCE 2021; 12:699085. [PMID: 34868101 PMCID: PMC8636062 DOI: 10.3389/fpls.2021.699085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 05/09/2023]
Abstract
High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mehmet Yildirim
- Department of Field Crop, Faculty of Agriculture, Dicle University, Diyarbakir, Turkey
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | | | - Zhiwei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Weiwei Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Youhong Song
| |
Collapse
|
11
|
Ben Mariem S, González-Torralba J, Collar C, Aranjuelo I, Morales F. Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1636. [PMID: 33255440 PMCID: PMC7760076 DOI: 10.3390/plants9121636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022]
Abstract
The availability and management of N are major determinants of crop productivity, but N excessive use has an associated agro-ecosystems environmental impact. The aim of this work was to investigate the influence of N fertilization on yield and grain quality of 6 durum wheat genotypes, selected from 20 genotypes as high- and low-yielding genotypes. Two N levels were applied from anthesis to maturity: high (½ Hoagland nutrient solution) and low (modified ½ Hoagland with one-third of N). Together with the agronomic characterization, grain quality analyses were assessed to characterize carbohydrates concentration, mineral composition, glutenin and gliadin concentrations, polyphenol profile, and anti-radical activity. Nitrogen supply improved wheat grain yield with no effect on thousand-grain weight. Grain soluble sugars and gluten fractions were increased, but starch concentration was reduced, under high N. Mineral composition and polyphenol concentrations were also improved by N application. High-yielding genotypes had higher grain carbohydrates concentrations, while higher concentrations in grain minerals, gluten fractions, and polyphenols were recorded in the low-yielding ones. Decreasing the amount of N to one-third ensured a better N use efficiency but reduced durum wheat agronomic and quality traits.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (J.G.-T.); (I.A.)
| | - Jon González-Torralba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (J.G.-T.); (I.A.)
| | - Concha Collar
- Cereals and Cereal-Based Products, Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avda. Catedrático Agustín Escardino, 7, 46980 Paterna, Spain;
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (J.G.-T.); (I.A.)
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (J.G.-T.); (I.A.)
| |
Collapse
|
12
|
Al-Sheikh Ahmed S, Zhang J, Farhan H, Zhang Y, Yu Z, Islam S, Chen J, Cricelli S, Foreman A, den Ende WV, Ma W, Dell B. Diurnal Changes in Water Soluble Carbohydrate Components in Leaves and Sucrose Associated TaSUT1 Gene Expression during Grain Development in Wheat. Int J Mol Sci 2020; 21:ijms21218276. [PMID: 33167324 PMCID: PMC7663803 DOI: 10.3390/ijms21218276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
In plant tissues, sugar levels are determined by the balance between sugar import, export, and sugar synthesis. So far, water soluble carbohydrate (WSC) dynamics have not been investigated in a diurnal context in wheat stems as compared to the dynamics in flag leaves during the terminal phases of grain filling. Here, we filled this research gap and tested the hypothesis that WSC dynamics interlink with gene expression of TaSUT1. The main stems and flag leaves of two genotypes, Westonia and Kauz, were sampled at four hourly intervals over a 24 h period at six developmental stages from heading to 28 DAA (days after anthesis). The total levels of WSC and WSC components were measured, and TaSUT1 gene expression was quantified at 21 DAA. On average, the total WSC and fructan levels in the stems were double those in the flag leaves. In both cultivars, diurnal patterns in the total WSC and sucrose were detected in leaves across all developmental stages, but not for the fructans 6-kestose and bifurcose. However, in stems, diurnal patterns of the total WSC and fructan were only found at anthesis in Kauz. The different levels of WSC and WSC components between Westonia and Kauz are likely associated with leaf chlorophyll levels and fructan degradation, especially 6-kestose degradation. High correlation between levels of TaSUT1 expression and sucrose in leaves indicated that TaSUT1 expression is likely to be influenced by the level of sucrose in leaves, and the combination of high levels of TaSUT1 expression and sucrose in Kauz may contribute to its high grain yield under well-watered conditions.
Collapse
Affiliation(s)
- Sarah Al-Sheikh Ahmed
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Jingjuan Zhang
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
- Correspondence: (J.Z.); (B.D.)
| | - Hussein Farhan
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Yingquan Zhang
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Zitong Yu
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Shahidul Islam
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Jiansheng Chen
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Sanda Cricelli
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; (S.C.); (A.F.)
| | - Andrew Foreman
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; (S.C.); (A.F.)
| | | | - Wujun Ma
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Bernard Dell
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
- Correspondence: (J.Z.); (B.D.)
| |
Collapse
|