1
|
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, Dargahi Z. Electrochemical and optical biosensors for the detection of E. Coli. Clin Chim Acta 2024; 565:119984. [PMID: 39401653 DOI: 10.1016/j.cca.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousof Karami
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Hassan Ghasem
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahmad Khosravi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mansoriyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Gonçalves C, Silveira L, Rodrigues J, Furtado R, Ramos S, Nunes A, Pista Â. Phenotypic and Genotypic Characterization of Escherichia coli and Salmonella spp. Isolates from Pigs at Slaughterhouse and from Commercial Pork Meat in Portugal. Antibiotics (Basel) 2024; 13:957. [PMID: 39452223 PMCID: PMC11505151 DOI: 10.3390/antibiotics13100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Foodborne diseases are a serious public health concern, and food-producing animals are a major source of contamination. Methods: The present study analysed Escherichia coli and Salmonella spp. isolated from faecal samples of 100 fattening pigs and from 52 samples of pork meat. Results: The results showed that the majority of the analysed meat samples were considered satisfactory in terms of microbiological quality (92.3% for E. coli and 94.2% for Salmonella spp.). Salmonella spp. was identified in 5.8% of the meat samples, whereas E. coli was detected in 89.5% of all samples (69.2% in meat and 100% in faecal samples). Furthermore, 1.9% of the faecal samples contained Shiga-toxin-producing E. coli and 3.9% contained enterotoxigenic E. coli. All sequenced isolates presented virulence genes for extraintestinal pathogenic E. coli. Moreover, 75.0% of E. coli isolates from meat and 71.8% from faeces samples showed antibiotic resistance, with 40.7% and 51.4%, respectively, being multidrug-resistant (MDR). The most prevalent resistances were to tetracycline, ampicillin, and sulfamethoxazole, and one E. coli isolate showed resistance to extended-spectrum β-lactamase. Conclusions: This study highlights the role of pigs as a potential source of human contamination and the importance of a One Health approach to ensure food safety and to promote public health.
Collapse
Affiliation(s)
- Carlota Gonçalves
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Department of Chemistry, Nova School of Science & Technology, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - João Rodrigues
- Laboratory of Microbiology, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Rosália Furtado
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Sónia Ramos
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal;
| | - Alexandra Nunes
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal;
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ângela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| |
Collapse
|
3
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
4
|
de Sousa DLC, de Souto Sobrinho JD, de Godoy BLV, Neto DA, Leandro GR, Casella T, de Azevedo SS, de Sousa Américo Batista Santos C. Multidrug-resistant Escherichia coli isolated from free-range chickens in the Caatinga biome. Vet Res Commun 2024; 48:3475-3481. [PMID: 39158807 DOI: 10.1007/s11259-024-10504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Antimicrobial-resistant Escherichia coli is a global health challenge from a One Health perspective. However, data on its emergence in the Caatinga biome are limited. This biome is exclusive to the Brazilian Northeast and offers unique epidemiological conditions that can influence the occurrence of infectious diseases and antimicrobial resistance. In this study, the carriage proportion, antimicrobial susceptibility, and population structure of cephalosporin-resistant E. coli were assessed in 300 cloacal swab samples of free-range chickens from three Brazilian states covered by the Caatinga biome. The results showed that 44 (14.7%) samples were positive for cephalosporin-resistant E. coli, and Paraíba state had the highest frequency of isolates (68.2%). Genes encoding cephotaximase-Munich or ampicillin class C (AmpC) enzymes were identified in 30 (68.2%) and 8 (18.2%) isolates, respectively, comprising 31 E. coli isolates. Overall, molecular typing by genome restriction using XbaI endonuclease followed by pulsed-field gel electrophoresis revealed four clusters from two properties of Paraíba state composed by extended-spectrum β-lactamase-producing and AmpC-producing E. coli carrying blaCTX-M-1-like and blaMIR-1/ACT-1 genes and belonging to different phylogenetic groups. There is a need to control antimicrobial resistance while taking into account the genetic diversity of the strains and their implications for animal and public health, especially in free-range chickens reared in the Brazilian Caatinga biome.
Collapse
Affiliation(s)
- Débora Luise Canuto de Sousa
- Postgraduate Program in Science and Animal Health, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, CEP 58708-110, PB, Brazil
| | - José Diniz de Souto Sobrinho
- Postgraduate Program in Science and Animal Health, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, CEP 58708-110, PB, Brazil
| | | | - Domingos Andrade Neto
- Postgraduate Program in Science and Animal Health, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, CEP 58708-110, PB, Brazil
| | - Giliel Rodrigues Leandro
- Postgraduate Program in Science and Animal Health, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, CEP 58708-110, PB, Brazil
| | - Tiago Casella
- São José do Rio Preto Medical School, São José do Rio Preto, São Paulo, Brazil
| | - Sérgio Santos de Azevedo
- Postgraduate Program in Science and Animal Health, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, CEP 58708-110, PB, Brazil
| | - Carolina de Sousa Américo Batista Santos
- Postgraduate Program in Science and Animal Health, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, CEP 58708-110, PB, Brazil.
| |
Collapse
|
5
|
Foysal M, Imam T, Das SB, Gibson JS, Mahmud R, Gupta SD, Fournié G, Hoque MA, Henning J. Association between antimicrobial usage and resistance on commercial broiler and layer farms in Bangladesh. Front Vet Sci 2024; 11:1435111. [PMID: 39268518 PMCID: PMC11390387 DOI: 10.3389/fvets.2024.1435111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Antimicrobial resistance has emerged as a significant health problem worldwide, including in Bangladesh, where chickens are an important protein source for human nutrition. One of the factors accelerating the development of antimicrobial resistance is the inappropriate use of antimicrobials on commercial chicken farms. A cross-sectional study was conducted in 2019 on 140 commercial chicken farms in the Chattogram district of Bangladesh to investigate the association between antimicrobial use and resistance in Escherichia coli and Salmonella spp. cultured from cloacal swabs of chickens and from the poultry shed environment. All E. coli and Salmonella spp. isolates were resistant to multiple antimicrobial classes, including those categorized as "Highest Priority Critically Important Antimicrobials" for human medicine. Notably, resistance was observed in E. coli isolates from farms that did not use these antimicrobial classes in the current production cycle. For example, although quinolones were not used on 43.9% of E. coli positive farms, 95.7% of these farms had quinolone-resistant E. coli isolates. The results of the path analysis revealed that there was a "direct effect" of the frequency of antimicrobial usage on "high" resistance, with resistance increasing when antimicrobials were administered more frequently (β = 0.28, p = 0.002). There was a "direct effect" of the purpose of antimicrobial use on "low" resistance, with resistance marginally decreasing when antimicrobials were administered solely for therapeutic use (β = -0.17, p = 0.062), but increasing when they were used prophylactically. Overall, the study results could be used to educate farmers on better practices for antimicrobial administration, and to guide government agencies to update policies on antimicrobial use and resistance surveillance in the poultry sector of Bangladesh.
Collapse
Affiliation(s)
- Mohammad Foysal
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tasneem Imam
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Shetu B Das
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Rashed Mahmud
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Suman D Gupta
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Guillaume Fournié
- Royal Veterinary College, University of London, London, United Kingdom
- INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, Marcy l'Etoile, France
| | - Md Ahasanul Hoque
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
6
|
Popov IV, Belkassem N, Schrijver R, Chebotareva IP, Chikindas ML, Ermakov AM, Venema K. Modulation of Poultry Cecal Microbiota by a Phytogenic Blend and High Concentrations of Casein in a Validated In Vitro Cecal Chicken Alimentary Tract Model. Vet Sci 2024; 11:377. [PMID: 39195831 PMCID: PMC11358970 DOI: 10.3390/vetsci11080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Phytogenic blends (PBs) consist of various bioactive plant-derived compounds that are used as growth promoters for farm animals. Feed additives based on PBs have beneficial effects on farm animals' production performance, health, and overall well-being, as well as positive modulating effects on gut microbiota. In this study, we used a validated in vitro cecal chicken alimentary tract model (CALIMERO-2) to evaluate the effects of a PB (a mix of components found in rosemary, cinnamon, curcuma, oregano oil, and red pepper), alone or in combination with casein (control), on poultry cecal microbiota. Supplementation with the PB significantly increased the abundance of bacteria associated with energy metabolism (Monoglobus) and growth performance in poultry (Lachnospiraceae UCG-010). The PB also decreased the abundance of opportunistic pathogens (Escherichia-Shigella) and, most importantly, did not promote other opportunistic pathogens, which indicates the safety of this blend for poultry. In conclusion, the results of this study show promising perspectives on using PBs as feed additives for poultry, although further in vivo studies need to prove these data.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Nouhaila Belkassem
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| | - Ruud Schrijver
- Animal Health Concepts BV, 8141 GN Heino, The Netherlands
| | - Iuliia P. Chebotareva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexey M. Ermakov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| |
Collapse
|
7
|
Richter L, Duvenage S, du Plessis EM, Msimango T, Dlangalala M, Mathavha MT, Molelekoa T, Kgoale DM, Korsten L. Genomic Evaluation of Multidrug-Resistant Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Irrigation Water and Fresh Produce in South Africa: A Cross-Sectional Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14421-14438. [PMID: 39101763 PMCID: PMC11325645 DOI: 10.1021/acs.est.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Escherichia coli, both commensal and pathogenic, can colonize plants and persist in various environments. It indicates fecal contamination in water and food and serves as a marker of antimicrobial resistance. In this context, 61 extended-spectrum β-lactamase (ESBL)-producing E. coli from irrigation water and fresh produce from previous studies were characterized using whole genome sequencing (Illumina MiSeq). The Center for Genomic Epidemiology and Galaxy platforms were used to determine antimicrobial resistance genes, virulence genes, plasmid typing, mobile genetic elements, multilocus sequence typing (MLST), and pathogenicity prediction. In total, 19 known MLST groups were detected among the 61 isolates. Phylogroup B1 (ST58) and Phylogroup E (ST9583) were the most common sequence types. The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The blaCTX-M-1, blaCTX-M-14, and blaCTX-M-15 ESBL genes were associated with mobile genetic elements, and all of the E. coli isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing E. coli from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.
Collapse
Affiliation(s)
- Loandi Richter
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Stacey Duvenage
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Food
and Markets Department, Natural Resources Institute, University of Greenwich, Chatham ME4 4TB, United
Kingdom
| | | | - Thabang Msimango
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Manana Dlangalala
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Muneiwa Tshidino Mathavha
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Tintswalo Molelekoa
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Degracious Moloko Kgoale
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Lise Korsten
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| |
Collapse
|
8
|
Guo J, Li Z, Zhang Y, Tian X, Shao L, Wang W. Comparative Study of the Antibacterial Effects of S-Nitroso-N-acetylcysteine and Sodium Nitrite against Escherichia coli and Their Application in Beef Sausages. Foods 2024; 13:2383. [PMID: 39123574 PMCID: PMC11311293 DOI: 10.3390/foods13152383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the antibacterial effects of S-nitroso-N-acetylcysteine (SNAC) and sodium nitrite (NaNO2) against Escherichia coli and their application in beef sausages. Both SNAC and NaNO2 demonstrated pH-responsive antibacterial activity, with SNAC showing greater efficacy than NaNO2 (p < 0.05) at the same pH (3, 5, and 7). The reactive oxygen species (ROS) and reactive nitrogen species (RNS) induced in E. coli by SNAC were significantly higher than those induced by NaNO2 (p < 0.05), and both ROS and RNS values increased as the pH decreased. In addition, a lower pH led to more pores on the E. coli cell surface and increased membrane permeability, resulting in a more pronounced inhibitory effect. When applied to a beef sausage, SNAC-treated sausages had significantly lower total colony counts and carbonyl content compared to NaNO2-treated ones (p < 0.05). Consequently, SNAC shows great potential as a replacement for NaNO2 in meat products.
Collapse
Affiliation(s)
- Jingjing Guo
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiyi Li
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yujun Zhang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lele Shao
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenhang Wang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Donkor ES, Odoom A, Osman AH, Darkwah S, Kotey FCN. A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics (Basel) 2024; 13:662. [PMID: 39061344 PMCID: PMC11274323 DOI: 10.3390/antibiotics13070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a global health threat, with lower-middle-income countries bearing a disproportionate burden. Surveillance of AMR under a One Health framework is needed to elucidate the associations among clinical, animal, and environmental AMR. This review aimed to describe the state of AMR in Ghana, focusing on One Health. METHOD This review utilized the PRISMA guidelines and major databases to systematically search and analyze AMR in Ghana published from 1 January 2014 to 1 May 2023. RESULTS Out of the 48 articles that met the inclusion criteria, 28 studies were conducted on humans, 14 studies involved animals, and 6 studies focused on the environment. A total of 48 different pathogens were identified across the human, animal, and environmental sectors, with the most common being Escherichia coli (67%, n = 32), Klebsiella spp. (52%, n = 25), Pseudomonas spp. (40%, n = 19), and Salmonella spp. (38%, n = 18). Generally, a high prevalence of antibiotic resistance was observed among various bacterial species across the sectors. These bacteria exhibited resistance to commonly used antibiotics, with resistance to ampicillin and tetracycline exceeding 80%, and multidrug resistance (MDR) ranging from 17.6% in Shigella spp. to 100% in Acinetobacter spp. CONCLUSION This review reaffirms the significant challenge of AMR in Ghana, with a high prevalence observed in the human, animal, and environmental sectors. Key pathogens (e.g., Staphylococcus aureus and Escherichia coli) found across the sectors emphasize the urgent need for a One Health approach to tackle AMR in Ghana.
Collapse
Affiliation(s)
- Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (A.O.); (A.-H.O.); (S.D.); (F.C.N.K.)
| | | | | | | | | |
Collapse
|
10
|
Liu X, Peng X, Li H. Escherichia coli Activate Extraintestinal Antibody Response and Provide Anti-Infective Immunity. Int J Mol Sci 2024; 25:7450. [PMID: 39000557 PMCID: PMC11242715 DOI: 10.3390/ijms25137450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The effects of intestinal microflora on extraintestinal immune response by intestinal cytokines and metabolites have been documented, but whether intestinal microbes stimulate serum antibody generation is unknown. Here, serum antibodies against 69 outer membrane proteins of Escherichia coli, a dominant bacterium in the human intestine, are detected in 141 healthy individuals of varying ages. Antibodies against E. coli outer membrane proteins are determined in all serum samples tested, and frequencies of antibodies to five outer membrane proteins (OmpA, OmpX, TsX, HlpA, and FepA) are close to 100%. Serum antibodies against E. coli outer membrane proteins are further validated by Western blot and bacterial pull-down. Moreover, the present study shows that OstA, HlpA, Tsx, NlpB, OmpC, YfcU, and OmpA provide specific immune protection against pathogenic E. coli, while HlpA and OmpA also exhibit cross-protection against Staphylococcus aureus infection. These finding indicate that intestinal E. coli activate extraintestinal antibody responses and provide anti-infective immunity.
Collapse
Affiliation(s)
| | - Xuanxian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou 510275, China;
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
11
|
Ebrahem AF, El-Demerdash AS, Orady RM, Nabil NM. Modulatory Effect of Competitive Exclusion on the Transmission of ESBL E. coli in Chickens. Probiotics Antimicrob Proteins 2024; 16:1087-1098. [PMID: 37277569 PMCID: PMC11126521 DOI: 10.1007/s12602-023-10095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
The extensive use of antimicrobial agents in broiler farms causes the emergence of antimicrobial resistance of E. coli producing severe economic losses to the poultry industry; therefore, monitoring the transmission of ESBL E. coli is of great significance throughout broiler farms. For this reason, we investigated the efficiency of competitive exclusion (CE) products to control the excretion and transmission of ESBL-producing E. coli in broiler chickens. Three hundred samples from 100 broiler chickens were screened for the incidence of E. coli by standard microbiological techniques. The overall isolation percentage was 39% and differentiated serologically into ten different serotypes: O158, O128, O125, O124, O91, O78, O55, O44, O2, and O1. The isolates represented absolute resistance to ampicillin, cefotaxime, and cephalexin. The effectiveness of CE (commercial probiotic product; Gro2MAX) on ESBL-producing E. coli (O78) isolate transmission and excretion was studied in vivo. The results showed that the CE product has interesting properties, making it an excellent candidate for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm, adhesins, and toxin-associated genes loci. The histopathological findings demonstrated the capability of CE in repairing internal organ tissues. Our outcomes suggested that the administration of CE (probiotic products) in broiler farms could be a safe and alternative approach to control the transmission of ESBL-producing virulent E. coli in broiler chickens.
Collapse
Affiliation(s)
- Amera F Ebrahem
- Agricultural Research Center, Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, P.O. 12618, Gamasa, Egypt
| | - Azza S El-Demerdash
- Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), P.O. 44516, Zagazig, Egypt.
| | - Rania M Orady
- Agricultural Research Center, Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, P.O. 12618, Gamasa, Egypt
| | - Nehal M Nabil
- Agricultural Research Center, Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, P.O. 12618, Gamasa, Egypt
| |
Collapse
|
12
|
Hailu W, Alemayehu H, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Escherichia coli isolates from vegetable farms in Addis Ababa, Ethiopia: Antimicrobial susceptibility profile and associated resistance genetic markers. Food Sci Nutr 2024; 12:4122-4132. [PMID: 38873492 PMCID: PMC11167155 DOI: 10.1002/fsn3.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The use of animal manure to fertilize soil is an emerging concern contributing to the transfer of antimicrobial-resistant pathogens to vegetables. Hence, assessing antimicrobial susceptibility profile of Escherichia coli in vegetable farms is essential to design appropriate interventions against antimicrobial resistance (AMR) in the food chain. This study assessed antimicrobial resistance profile and associated genetic markers among E. coli isolated from vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 1044 samples were collected using convenience sampling: soil (n = 271), manure (n = 375), and vegetables (n = 398) from 81 vegetable farms in Addis Ababa, Ethiopia. Antimicrobial susceptibility test was conducted for 100 E. coli isolates and antimicrobial resistance genes (ARGs) were tested by polymerase chain reaction (PCR). Of the 1044 collected samples, 25.3% were positive for E. coli, with significantly higher prevalence in the manure sample and samples collected from Akaki Kality sub-city (p < .05). The highest resistance rate was recorded for tetracycline (72%), followed by streptomycin (63%), and sulfamethoxazole +trimethoprim (56%). Multidrug resistance was detected in 61% of the E. coli isolates. The aac(3)-IV (76.9%), bla TEM (65.4%), aadA (60.3%), tet(A) (58.3%), and sulI (51.7%) were the commonly detected resistance genes. The current study showed a high burden of antimicrobial resistance among E. coli isolated from manure-amended vegetable farms, with potential of playing a significant role in the dissemination of antimicrobial resistance in the food chain. Efforts should be made to reduce the burden of resistant organisms and ARGs through prudent use of antimicrobials in livestock and application of appropriate composting techniques before using manure as fertilizer.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
- College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Lulit Hailu
- Ethiopian Public Health InstituteAddis AbabaEthiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Gireesh Rajashekara
- Global One Health initiative (GOHi)The Ohio State UniversityColumbusOhioUSA
- Department of Animal Sciences, College of Food, Agricultural, and Environmental SciencesThe Ohio State UniversityWoosterOhioUSA
| | - Wondwossen A. Gebreyes
- Global One Health initiative (GOHi)The Ohio State UniversityColumbusOhioUSA
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Tadesse Eguale
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
- Ohio State Global One HealthAddis AbabaEthiopia
| |
Collapse
|
13
|
Mustafa K, Iqbal N, Ahmad S, Iqbal S, Rezakazemi M, Verpoort F, Kanwal J, Musaddiq S. Highly efficient aramid fiber supported polypropylene membranes modified with reduced graphene oxide based metallic nanocomposites: antimicrobial and antiviral capabilities. RSC Adv 2024; 14:16421-16431. [PMID: 38769958 PMCID: PMC11104733 DOI: 10.1039/d4ra00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Polypropylene hybrid polymeric membranes with aramid support have been fabricated using Thermally Induced Phase Separation (TIPS). Different modifying materials, such as metallic nanoparticles and reduced graphene oxide (rGO), improve the properties of these membranes. The nanomaterials and the fabricated membranes have been characterized with FTIR spectrometer, SEM and UV-Vis Spectrophotometer. Following that, the disinfection capabilities of the fabricated hybrid membranes were investigated. The antibacterial capability of the membranes is established through the testing of the membranes against bacterial strains S. aureus and E. coli, whereas the antiviral evaluation of the membranes was made against H9N2 and IBV strains. This research aims to develop advanced hybrid membranes that effectively disinfect water by incorporating novel nanomaterials and optimizing fabrication techniques.
Collapse
Affiliation(s)
- Kiran Mustafa
- Department of Chemistry, The Women University Multan 66000 Pakistan
- Govt. Graduate College (W), Higher Education Department Khanewal Punjab Pakistan
| | - Nadeem Iqbal
- Director Microtech Chemicals and Minerals Kasur 55050 Punjab Pakistan
| | - Sajjad Ahmad
- Pakistan Council of Research in Water Resources, Ministry of Water Resources Islamabad Pakistan
| | - Sadia Iqbal
- Department of Chemistry, The Women University Multan 66000 Pakistan
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology Shahrood 9WVR+757 Iran
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
- National Research Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk the Russian Federation
| | - Javaria Kanwal
- Department of Chemistry, The Women University Multan 66000 Pakistan
| | - Sara Musaddiq
- Department of Chemistry, The Women University Multan 66000 Pakistan
| |
Collapse
|
14
|
Crippa C, De Cesare A, Lucchi A, Parisi A, Manfreda G, Pasquali F. Occurrence and genomic characterization of antimicrobial-resistant and potential pathogenic Escherichia coli from Italian artisanal food productions of animal origin. Ital J Food Saf 2024; 13:12205. [PMID: 38846048 PMCID: PMC11154171 DOI: 10.4081/ijfs.2024.12205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 06/09/2024] Open
Abstract
Escherichia coli can harbor a broad repertoire of virulence and antimicrobial resistance (AMR) genes, which can be exchanged across the human gastrointestinal microflora, thus posing a public health risk. In this study, 6 batches of artisanal soft cheese and a 6-month ripened fermented dried sausage were investigated to assess the occurrence, phylogeny, and genomic traits (AMR, virulence, and mobilome) of E. coli. 30 and 3 strains isolated from salami and cheese food chains, respectively, were confirmed as E. coli by whole genome sequencing. The accumulation of single nucleotide polymorphism differences within small clusters of strains encompassing batches or processing stages, combined with high serotype and phylogroup diversity, suggested the occurrence of different contamination phenomena among the facilities. A total of 8 isolates harbored plasmid-mediated resistance genes, including one cheese strain that carried an IncQ1 plasmid carrying AMR determinants to macrolides [mph(B)], sulfonamides (sul1, sul2), trimethoprim (dfrA1), and aminoglycosides [aph(3")-Ib and aph(6)-Id]. A pool of virulence-associated genes in the class of adhesion, colonization, iron uptake, and toxins, putative ColV-positive iron uptake systems sit, iro, or iuc (8 salami and 2 cheese), plasmid-encoded hemolysin operon hlyABCD (one salami), and potential atypical enteropathogenic E. coli (3 salami environment) were reported. Overall, our findings underscore the importance of routine surveillance of E. coli in the artisanal food chain to prevent the dissemination of AMR and virulence.
Collapse
Affiliation(s)
- Cecilia Crippa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna
| | - Alex Lucchi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Puglia and Basilicata, Bari, Italy
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia
| |
Collapse
|
15
|
Ribeiro LF, Nespolo NM, Rossi GAM, Fairbrother JM. Exploring Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Food-Producing Animals and Animal-Derived Foods. Pathogens 2024; 13:346. [PMID: 38668301 PMCID: PMC11054374 DOI: 10.3390/pathogens13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobials serve as crucial treatments in both veterinary and human medicine, aiding in the control and prevention of infectious diseases. However, their misuse or overuse has led to the emergence of antimicrobial resistance, posing a significant threat to public health. This review focuses on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and their associated food products, which contribute to the proliferation of antimicrobial-resistant strains. Recent research has highlighted the presence of ESBL-producing E. coli in animals and animal-derived foods, with some studies indicating genetic similarities between these isolates and those found in human infections. This underscores the urgent need to address antimicrobial resistance as a pressing public health issue. More comprehensive studies are required to understand the evolving landscape of ESBLs and to develop strategic public health policies grounded in the One Health approach, aiming to control and mitigate their prevalence effectively.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, s/n, Jardim Zenith, Monte Carmelo 38500-000, Minas Gerais State, Brazil;
| | - Natália Maramarque Nespolo
- Federal University of São Carlos (UFSCar), Rod. Washington Luís, s/n—Monjolinho, São Carlos 13565-905, São Paulo State, Brazil;
| | - Gabriel Augusto Marques Rossi
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, Espírito Santo State, Brazil;
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
16
|
Silva A, Silva V, Tavares T, López M, Rojo-Bezares B, Pereira JE, Falco V, Valentão P, Igrejas G, Sáenz Y, Poeta P. Rabbits as a Reservoir of Multidrug-Resistant Escherichia coli: Clonal Lineages and Public Health Impact. Antibiotics (Basel) 2024; 13:376. [PMID: 38667052 PMCID: PMC11047531 DOI: 10.3390/antibiotics13040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, including extended-spectrum β-lactamases (ESBL)-producing strains, poses a global health threat due to multidrug resistance, compromising food safety and environmental integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial agents compared to other food-producing animals. The European Union is facing challenges in rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity, and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit farming industry. Resistance to critically antibiotics was observed, with high levels of resistance to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9), followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10 clones exhibiting significant resistance to various categories of antibiotics and harboring different resistance genes were detected. ST457 and ST2325 were important sequence types due to their association with ESBL-E. coli isolates and have been widely distributed in a variety of environments and host species. The strains evaluated showed a high capacity for biofilm formation, which varied when they were grouped by the number of classes of antibiotics to which they showed resistance (i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit farming through interdisciplinary collaboration of human, animal, and environmental health. Our findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming emphasizes the urgent need to establish active surveillance systems.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Tavares
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- José Azevedo Monteiro, Lda., Rua do Campo Grande 309, 4625-679 Vila Boa do Bispo, Portugal
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Virgílio Falco
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
17
|
Muñoz-Muñoz PLA, Terán-Ramírez C, Mares-Alejandre RE, Márquez-González AB, Madero-Ayala PA, Meléndez-López SG, Ramos-Ibarra MA. Surface Engineering of Escherichia coli to Display Its Phytase (AppA) and Functional Analysis of Enzyme Activities. Curr Issues Mol Biol 2024; 46:3424-3437. [PMID: 38666945 PMCID: PMC11048855 DOI: 10.3390/cimb46040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Escherichia coli phytase (AppA) is widely used as an exogenous enzyme in monogastric animal feed mainly because of its ability to degrade phytic acid or its salt (phytate), a natural source of phosphorus. Currently, successful recombinant production of soluble AppA has been achieved by gene overexpression using both bacterial and yeast systems. However, some methods for the biomembrane immobilization of phytases (including AppA), such as surface display on yeast cells and bacterial spores, have been investigated to avoid expensive enzyme purification processes. This study explored a homologous protein production approach for displaying AppA on the cell surface of E. coli by engineering its outer membrane (OM) for extracellular expression. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of total bacterial lysates and immunofluorescence microscopy of non-permeabilized cells revealed protein expression, whereas activity assays using whole cells or OM fractions indicated functional enzyme display, as evidenced by consistent hydrolytic rates on typical substrates (i.e., p-nitrophenyl phosphate and phytic acid). Furthermore, the in vitro results obtained using a simple method to simulate the gastrointestinal tract of poultry suggest that the whole-cell biocatalyst has potential as a feed additive. Overall, our findings support the notion that biomembrane-immobilized enzymes are reliable for the hydrolysis of poorly digestible substrates relevant to animal nutrition.
Collapse
Affiliation(s)
- Patricia L. A. Muñoz-Muñoz
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Celina Terán-Ramírez
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Biochemical Sciences Graduate Program (Doctorate Studies), National Autonomous University of Mexico, Cuernavaca 62210, MOR, Mexico
| | - Rosa E. Mares-Alejandre
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Ariana B. Márquez-González
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Biological and Biomedical Sciences Graduate Program (Doctorate Studies), University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo A. Madero-Ayala
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Science and Engineering Graduate Program (Doctorate Studies), Autonomous University of Baja California, Tijuana 22390, BCN, Mexico
| | - Samuel G. Meléndez-López
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Marco A. Ramos-Ibarra
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| |
Collapse
|
18
|
Silva A, Silva V, Dapkevicius MDLE, Azevedo M, Cordeiro R, Pereira JE, Valentão P, Falco V, Igrejas G, Caniça M, Poeta P. Unveiling Antibiotic Resistance, Clonal Diversity, and Biofilm Formation in E. coli Isolated from Healthy Swine in Portugal. Pathogens 2024; 13:305. [PMID: 38668260 PMCID: PMC11054063 DOI: 10.3390/pathogens13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, a commensal microorganism found in the gastrointestinal tract of human and animal hosts, plays a central role in agriculture and public health. Global demand for animal products has promoted increased pig farming, leading to growing concerns about the prevalence of antibiotic-resistant E. coli strains in swine populations. It should be noted that a significant portion of antibiotics deployed in swine management belong to the critically important antibiotics (CIA) class, which should be reserved for human therapeutic applications. This study aimed to characterize the prevalence of antibiotic resistance, genetic diversity, virulence characteristics, and biofilm formation of E. coli strains in healthy pigs from various farms across central Portugal. Our study revealed high levels of antibiotic resistance, with resistance to tetracycline, ampicillin, tobramycin, and trimethoprim-sulfamethoxazole. Multidrug resistance is widespread, with some strains resistant to seven different antibiotics. The ampC gene, responsible for broad-spectrum resistance to cephalosporins and ampicillin, was widespread, as were genes associated with resistance to sulfonamide and beta-lactam antibiotics. The presence of high-risk clones, such as ST10, ST101, and ST48, are a concern due to their increased virulence and multidrug resistance profiles. Regarding biofilm formation, it was observed that biofilm-forming capacity varied significantly across different compartments within pig farming environments. In conclusion, our study highlights the urgent need for surveillance and implementation of antibiotic management measures in the swine sector. These measures are essential to protect public health, ensure animal welfare, and support the swine industry in the face of the growing global demand for animal products.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- IITAA—Institute of Agricultural and Environmental Research and Technology, University of the Azores (UAc), 9700-042 Angra do Heroísmo, Portugal
| | - Mónica Azevedo
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4049-021 Porto, Portugal; (M.A.)
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto, 2829-516 Caparica, Portugal; (P.V.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto, 2829-516 Caparica, Portugal; (P.V.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4049-021 Porto, Portugal; (M.A.)
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
19
|
Cornu Hewitt B, Smit LAM, van Kersen W, Wouters IM, Heederik DJJ, Kerckhoffs J, Hoek G, de Rooij MMT. Residential exposure to microbial emissions from livestock farms: Implementation and evaluation of land use regression and random forest spatial models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123590. [PMID: 38387543 DOI: 10.1016/j.envpol.2024.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest (RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 (±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in future epidemiological studies. Consequently, this will provide valuable insights into the public health implications of exposure to specific microbial agents.
Collapse
Affiliation(s)
- Beatrice Cornu Hewitt
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands.
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Warner van Kersen
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Zwolschen JW, Vos AP, Ariëns RMC, Schols HA. In vitro batch fermentation of (un)saturated homogalacturonan oligosaccharides. Carbohydr Polym 2024; 329:121789. [PMID: 38286556 DOI: 10.1016/j.carbpol.2024.121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Pectin, predominantly present within plant cell walls, is a dietary fiber that potentially induces distinct health effects depending on its molecular structure. Such structure-dependent health effects of pectin-derived galacturonic acid oligosaccharides (GalA-OS) are yet largely unknown. This study describes the influence of methyl-esterification and ∆4,5-unsaturation of GalA-OS through defined sets of GalA-OS made from pectin using defined pectinases, on the fermentability by individual fecal inocula. The metabolite production, OS utilization, quantity and size, methyl-esterification and saturation of remaining GalA-OS were monitored during the fermentation of GalA-OS. Fermentation of all GalA-OS predominantly induced the production of acetate, butyrate and propionate. Metabolization of unsaturated GalA-OS (uGalA-OS) significantly increased butyrate formation compared to saturated GalA-OS (satGalA-OS), while satGalA-OS significantly increased propionate formation. Absence of methyl-esters within GalA-OS improved substrate metabolization during the first 18 h of fermentation (99 %) compared to their esterified analogues (51 %). Furthermore, HPAEC and HILIC-LC-MS revealed accumulation of specific methyl-esterified GalA-OS, confirming that methyl-esterification delays fermentation. Fermentation of structurally distinct GalA-OS results in donor specific microbiota composition with uGalA-OS specifically stimulating the butyrate-producer Clostridium Butyricum. This study concludes that GalA-OS fermentation induces highly structure-dependent changes in the gut microbiota, further expanding their potential use as prebiotics.
Collapse
Affiliation(s)
- J W Zwolschen
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - A P Vos
- Wageningen Food & Biobased Research, Wageningen, the Netherlands
| | - R M C Ariëns
- Wageningen Food & Biobased Research, Wageningen, the Netherlands
| | - H A Schols
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
21
|
Grinevich D, Harden L, Thakur S, Callahan B. Serovar-level identification of bacterial foodborne pathogens from full-length 16S rRNA gene sequencing. mSystems 2024; 9:e0075723. [PMID: 38319092 PMCID: PMC10949465 DOI: 10.1128/msystems.00757-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
The resolution of variation within species is critical for interpreting and acting on many microbial measurements. In the key foodborne pathogens Salmonella and Escherichia coli, the primary subspecies classification scheme used is serotyping: differentiating variants within these species by surface antigen profiles. Serotype prediction from whole-genome sequencing (WGS) of isolates is now seen as comparable or preferable to traditional laboratory methods where WGS is available. However, laboratory and WGS methods depend on an isolation step that is time-consuming and incompletely represents the sample when multiple strains are present. Community sequencing approaches that skip the isolation step are, therefore, of interest for pathogen surveillance. Here, we evaluated the viability of amplicon sequencing of the full-length 16S rRNA gene for serotyping Salmonella enterica and E. coli. We developed a novel algorithm for serotype prediction, implemented as an R package (Seroplacer), which takes as input full-length 16S rRNA gene sequences and outputs serovar predictions after phylogenetic placement into a reference phylogeny. We achieved over 89% accuracy in predicting Salmonella serotypes on in silico test data and identified key pathogenic serovars of Salmonella and E. coli in isolate and environmental test samples. Although serotype prediction from 16S rRNA gene sequences is not as accurate as serotype prediction from WGS of isolates, the potential to identify dangerous serovars directly from amplicon sequencing of environmental samples is intriguing for pathogen surveillance. The capabilities developed here are also broadly relevant to other applications where intraspecies variation and direct sequencing from environmental samples could be valuable.IMPORTANCEIn order to prevent and stop outbreaks of foodborne pathogens, it is important that we can detect when pathogenic bacteria are present in a food or food-associated site and identify connections between specific pathogenic bacteria present in different samples. In this work, we develop a new computational technology that allows the important foodborne pathogens Escherichia coli and Salmonella enterica to be serotyped (a subspecies level classification) from sequencing of a single-marker gene, and the 16S rRNA gene often used to surveil bacterial communities. Our results suggest current limitations to serotyping from 16S rRNA gene sequencing alone but set the stage for further progress that we consider likely given the rapid advance in the long-read sequencing technologies and genomic databases our work leverages. If this research direction succeeds, it could enable better detection of foodborne pathogens before they reach the public and speed the resolution of foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Dmitry Grinevich
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
22
|
Mitra SD, Shome R, Bandopadhyay S, Geddam S, Kumar AMP, Murugesan D, Shome A, Shome BR. Genetic insights of antibiotic resistance, pathogenicity (virulence) and phylogenetic relationship of Escherichia coli strains isolated from livestock, poultry and their handlers - a one health snapshot. Mol Biol Rep 2024; 51:404. [PMID: 38456953 DOI: 10.1007/s11033-024-09354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Pathogenic and non-pathogenic strains of Escherichia coli harbouring antibiotic resistance genes (ARGs) from any source (clinical samples, animal settings, or environment) might be transmitted and contribute to the spread and increase of antibiotic resistance in the biosphere. The goal of this study was to investigate the genome to decipher the repertoire of ARGs, virulence genes carried by E. coli strains isolated from livestock, poultry, and their handlers (humans), and then unveil the genetic relatedness between the strains. METHODS Whole genome sequencing was done to investigate the genetic makeup of E. coli isolates (n = 20) [swine (n = 2), cattle (n = 2), sheep (n = 4), poultry (n = 7), and animal handlers (n = 5)] from southern India. The detection of resistome, virulome, biofilm forming genes, mobile genetic elements (MGE), followed by multilocus sequence typing (MLST) and phylogenetic analyses, were performed. RESULTS E. coli strains were found to be multi drug resistant, with a resistome encompassing > 20 ARGs, the virulome-17-22 genes, and > 20 key biofilm genes. MGE analysis showed four E. coli isolates (host: poultry, swine and cattle) harbouring composite transposons with ARGs/virulence genes (blaTEM, dfr, qnr/nleB, tir, eae,and esp) with the potential for horizontal transfer. MLST analyses revealed the presence of ST937 and ST3107 in both livestock/poultry and their handlers. Phylogenomic analyses with global E. coli isolates (human/livestock/poultry hosts) showed close relatedness with strains originating from different parts of the world (the United States, China, etc.). CONCLUSION The current study emphasizes the circulation of strains of pathogenic sequence types of clinical importance, carrying a diverse repertoire of genes associated with antibiotic resistance, biofilm formation and virulence properties in animal settings, necessitating immediate mitigation measures to reduce the risk of spread across the biosphere.
Collapse
Affiliation(s)
- Susweta Das Mitra
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
- Department of Biotechnology School of Basic and Applied Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bengaluru, Karnataka, 560078, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - Satarupa Bandopadhyay
- Department of Biotechnology School of Basic and Applied Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bengaluru, Karnataka, 560078, India
| | - Sujatha Geddam
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - A M Praveen Kumar
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - Devi Murugesan
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - Arijit Shome
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India.
| |
Collapse
|
23
|
Muthusamy R, Mahesh S, Travasso C. Antibiotic Profiling of E. coli Borne UTI Infection in Tertiary Healthcare Settings. Cureus 2024; 16:e56632. [PMID: 38646249 PMCID: PMC11032086 DOI: 10.7759/cureus.56632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction In general, with frequent recurrence of urinary tract infections (UTIs), long-term antibiotic therapy is stipulated at a low dose. With this type of situation and with easy access to several classes of antibiotics in tertiary health care settings, the use of such drugs results in the development of resistant bacteria in patients. Escherichia coli is a frequent cause of UTI observed. Hence, it was proposed in the present study to assess the antimicrobial resistance status of E. coli in UTI-infected patients. Methods This study was conducted among female patients diagnosed with UTI. About 80 urine samples were collected in an aseptic condition, Under the process of culture identification 44 samples were found to be positive for UTI infection. The positive samples were plated on blood agar. Out of 44 samples, 18 samples were found to be positive, and 26 samples were negative for E. coli infection. The 18 samples were screened on MALDI-TOF for identification. Further, the samples were assessed for susceptibility to antibiotic medication within the study area. Result The study identified different strains of E. coli, and the CHB gene E. coli was found in eight samples. The sample showed pink oval-round spots in the culture medium and was resistant to nitrofurantoin, cephalosporin, and cephalexin antibiotics. Hence, antimicrobial susceptibility tests are necessary for managing and treating bacterial E. coli infections. Conclusion E. coli is a common bacterium found in the vaginal region of patients, suggesting a potential infection. E. coli can be associated with UTIs in women. The results from this study conclude that E. coli is rapidly becoming multidrug-resistant, as only higher antibiotics can inhibit its growth. To effectively manage infections caused by E. coli proper diagnosis, laboratory testing, and antibiotic treatment are required.
Collapse
Affiliation(s)
- Raman Muthusamy
- Microbiology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Saisri Mahesh
- Medicine, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Christy Travasso
- Microbiology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
24
|
Dewi RR, Nuryawan A, Jajere SM, Sihombing JM, Tambunan IJ. Antimicrobial resistance profiles of Escherichia coli derived from an integrated agroforestry-livestock system in Deli Serdang Regency, Indonesia. Vet World 2024; 17:690-699. [PMID: 38680150 PMCID: PMC11045535 DOI: 10.14202/vetworld.2024.690-699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/05/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Antimicrobial resistance (AMR) has become a significant global concern. Epidemiological data do not provide a robust description of the potential risks associated with AMR in the integrated agroforestry-livestock systems in Indonesia. Thus, the present study investigated the phenotypic and multidrug resistance (MDR) profiles of Escherichia coli strains isolated from the feces of livestock raised in the agro-silvopastoral system in Deli Serdang Regency, North Sumatra Province. Materials and Methods A standard microbiological culture procedure was followed to isolate the organism and test antibiotic susceptibility using the Kirby-Bauer disk diffusion protocol. Furthermore, the multiple antibiotic resistance index was determined. Univariate analysis was conducted to identify the risk factors associated with AMR. Results The vast majority (77.5%) of livestock farmers were aged >30 years. All farmers were men and had no higher education (100% of them). The majority of the animal species managed were cattle and goats (37.5% each) and the livestock grazing pasture system (67.5%). In addition, the majority of farmers reported high antimicrobial use on their farms (87.5%). Of the samples (n = 142) analyzed, n = 70 were positive, with an overall prevalence of 44.4%. The species-specific prevalences of E. coli were 32.5%, 47.8%, and 50% in buffalo, goat, and cattle, respectively. Ampicillin and tetracyclines exhibited high resistance levels among the studied animal species. A relatively lower MDR for E. coli was associated with grazing on the pasture. Conclusion The findings from the current study provide baseline epidemiological information for future robust studies aimed at elucidating the drivers and patterns of AMR in agro-silvopastoral systems in the study area or elsewhere.
Collapse
Affiliation(s)
- Rita Rosmala Dewi
- Department of Animal Husbandry, Faculty of Science and Technology, Universitas Tjut Nyak Dhien, Medan, Indonesia
| | - Arif Nuryawan
- Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Medan, Indonesia
| | - Saleh Mohammed Jajere
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Juli Mutiara Sihombing
- Department of Animal Husbandry, Faculty of Science and Technology, Universitas Tjut Nyak Dhien, Medan, Indonesia
| | - Ika Julianti Tambunan
- Department of Pharmacy, Faculty of Pharmacy, Universitas Tjut Nyak Dhien, Medan, Indonesia
| |
Collapse
|
25
|
Brás A, Braz M, Martinho I, Duarte J, Pereira C, Almeida A. Effect of Bacteriophages against Biofilms of Escherichia coli on Food Processing Surfaces. Microorganisms 2024; 12:366. [PMID: 38399770 PMCID: PMC10892694 DOI: 10.3390/microorganisms12020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial adhesion to food processing surfaces is a threat to human health, as these surfaces can serve as reservoirs of pathogenic bacteria. Escherichia coli is an easily biofilm-forming bacterium involved in surface contamination that can lead to the cross-contamination of food. Despite the application of disinfection protocols, contamination through food processing surfaces continues to occur. Hence, new, effective, and sustainable alternative approaches are needed. Bacteriophages (or simply phages), viruses that only infect bacteria, have proven to be effective in reducing biofilms. Here, phage phT4A was applied to prevent and reduce E. coli biofilm on plastic and stainless steel surfaces at 25 °C. The biofilm formation capacity of phage-resistant and sensitive bacteria, after treatment, was also evaluated. The inactivation effectiveness of phage phT4A was surface-dependent, showing higher inactivation on plastic surfaces. Maximum reductions in E. coli biofilm of 5.5 and 4.0 log colony-forming units (CFU)/cm2 after 6 h of incubation on plastic and stainless steel, respectively, were observed. In the prevention assays, phage prevented biofilm formation in 3.2 log CFU/cm2 after 12 h. Although the emergence of phage-resistant bacteria has been observed during phage treatment, phage-resistant bacteria had a lower biofilm formation capacity compared to phage-sensitive bacteria. Overall, the results suggest that phages may have applicability as surface disinfectants against pathogenic bacteria, but further studies are needed to validate these findings using phT4A under different environmental conditions and on different materials.
Collapse
Affiliation(s)
| | | | | | | | - Carla Pereira
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| | - Adelaide Almeida
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| |
Collapse
|
26
|
Andretta M, Tavares RDM, Fusieger A, Yamatogi RS, Nero LA. Agreement of methods to assess antimicrobial susceptibility using Escherichia coli isolates as target models. Lett Appl Microbiol 2024; 77:ovae009. [PMID: 38285611 DOI: 10.1093/lambio/ovae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Antimicrobial susceptibility tests (AST) conducted in vitro offer a range of methods to assess the antimicrobial resistance (AMR) of microorganisms. Escherichia coli, a widely distributed bacterium, is closely linked to the issue of AMR. In this way, the present study aimed to assess the agreement among different in vitro AST methods, including disk diffusion in agar, broth dilution, and agar dilution method. A total of 100 E. coli isolates were analyzed for their resistance levels against six antibiotics: amoxicillin, ceftiofur, ciprofloxacin, chloramphenicol, tetracycline, and sulfamethoxazole + trimethoprim, using the aforementioned AST methods. Standard breakpoint values were employed to classify isolates as resistant, intermediate, or susceptible, and comparisons among the AST methods were conducted by McNemar's test (P < .05). The obtained data demonstrated equivalence among the AST methods, highlighting the reliability of these standardized classical methodologies. This standardization aids in preventing the inappropriate use of antimicrobials and the dissemination of antimicrobial-resistant microorganisms.
Collapse
Affiliation(s)
- Milimani Andretta
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Rafaela de Melo Tavares
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Andressa Fusieger
- InovaLeite-Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Ricardo Seiti Yamatogi
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Luís Augusto Nero
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
27
|
Rhea S, Gensler C, Atlaw N, Pairis-Garcia M, Lewbart GA, Valentine A, Cruz M, Castillo P, Vélez A, Trueba G, Jacob ME. Presence of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Food-Producing and Companion Animals and Wildlife on Small-Holder Farms of Floreana Island, Galápagos Islands. Vector Borne Zoonotic Dis 2024; 24:36-45. [PMID: 38011616 DOI: 10.1089/vbz.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Antimicrobial resistance (AR) has led to increasing human and animal morbidity and mortality and negative consequences for the environment. AR among Escherichia coli (EC) is on the rise, with serious concerns about extended-spectrum β-lactamase-producing E. coli (ESBL-EC). In the Galápagos Islands, where antimicrobials are available without a prescription, growing demands for food production can drive antimicrobial use. Food producing animals are at the interface of wildlife and environmental health on the smallest human-inhabited Galápagos Island, Floreana. We sought to determine if ESBL-EC were present in Floreana Island farm animal species and nearby wildlife and the relatedness of ESBL-EC isolates identified. Materials and Methods: During July 4-5, 2022, we visited 8 multispecies farms, representing 75% of food-producing animal production on Floreana, and collected 227 fecal samples from farm animals and wildlife. Each sample was plated on MacConkey agar supplemented with cefotaxime (4 μg/mL). Results: ESBL-EC was isolated from 20 (9%) fecal samples collected from pigs (N = 10), chickens (N = 6), wildlife (N = 3), and dog (N = 1). All ESBL-EC isolates were from samples taken at three (38%) of the eight farms. Fifteen (75%) of the ESBL-EC isolates were from a single farm. All ESBL-EC isolates were multidrug resistant. The most prevalent ESBL genes belonged to the blaCTX-M group. Among the typeable isolates from the farm with the largest proportion of ESBL-EC isolates (N = 14), we observed nine unique pulsed-field gel electrophoresis (PFGE) patterns, with identical patterns present across pig and chicken isolates. PFGE patterns in the three farms with ESBL-EC isolates were different. Conclusions: These results lend support for future routine AR monitoring activities at the livestock-wildlife interface in Galápagos to characterize potential interspecies transmission of AR bacteria and AR genes in this unique protected ecosystem, and the related human, animal, and environmental health impacts, and to formulate interventions to reduce AR spread in this setting.
Collapse
Affiliation(s)
- Sarah Rhea
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Catherine Gensler
- Department of Agricultural and Human Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Nigatu Atlaw
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Monique Pairis-Garcia
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Gregory A Lewbart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Galápagos Science Center, Universidad San Francisco de Quito (USFQ) and The University of North Carolina (UNC) at Chapel Hill, San Cristóbal Island, Ecuador
| | - Alyssa Valentine
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Marilyn Cruz
- Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos, Puerto Ayora, Ecuador
| | - Paulina Castillo
- Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos, Puerto Ayora, Ecuador
| | - Alberto Vélez
- Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos, Puerto Ayora, Ecuador
| | - Gabriel Trueba
- Galápagos Science Center, Universidad San Francisco de Quito (USFQ) and The University of North Carolina (UNC) at Chapel Hill, San Cristóbal Island, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Megan E Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
28
|
Malavez Y, Nieves-Miranda SM, Loperena Gonzalez PN, Padin-Lopez AF, Xiaoli L, Dudley EG. Exploring Antimicrobial Resistance Profiles of E. coli Isolates in Dairy Cattle: A Baseline Study across Dairy Farms with Varied Husbandry Practices in Puerto Rico. Microorganisms 2023; 11:2879. [PMID: 38138023 PMCID: PMC10745463 DOI: 10.3390/microorganisms11122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial treatment in livestock can contribute to the emergence and spread of antimicrobial-resistant (AMR) microorganisms. Despite substantial surveillance of AMR bacteria in the continental United States, the prevalence of these AMR organisms in U.S. territories, such as Puerto Rico, remains understudied. The goals of this research included obtaining baseline data on the antimicrobial profile of E. coli isolates from Puerto Rico dairy farms with different husbandry practices. Seventy-nine fecal samples were collected from two types of conventional dairy farms: those that fed calves with tank milk and those that fed calves with waste milk. These samples were collected from the animals' rectums, culture, and subsequently confirmed through biochemical tests. Out of these samples, 32 isolates were analyzed phenotypically and genotypically to elucidate their AMR profiles. The results underscore a discrepancy in the occurrence of antimicrobial resistance genes between calves and adult cattle. Notably, waste milk-fed calves exhibited a significantly higher prevalence of antibiotic-resistant E. coli when compared to their tank milk-fed counterparts. These disparities emphasize the need for more comprehensive investigations to determine causative factors. These results underscore the urgency of comprehensive strategies to raise awareness about how management practices influence antimicrobial resistance, shifting the focus from treatment to prevention.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
- Department of Biology, Industrial Biotechnology Program, University of Puerto Rico, Mayagüez, PR 00681, USA
- Department of Animal Sciences, Agricultural Experimental Station, University of Puerto Rico, Mayagüez, PR 00681, USA
| | - Sharon M. Nieves-Miranda
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Paola N. Loperena Gonzalez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Adrian F. Padin-Lopez
- Department of Natural Sciences, University of Puerto Rico, Aguadilla, PR 00603, USA; (S.M.N.-M.); (A.F.P.-L.)
| | - Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA (E.G.D.)
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA (E.G.D.)
- E. coli Reference Center, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
29
|
Guibert F, Espinoza K, Taboada-Blanco C, Alonso CA, Oporto R, Castillo AK, Rojo-Bezares B, López M, Sáenz Y, Pons MJ, Ruiz J. Traditional marketed meats as a reservoir of multidrug-resistant Escherichia coli. Int Microbiol 2023:10.1007/s10123-023-00445-y. [PMID: 37995017 DOI: 10.1007/s10123-023-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
This study aimed to analyze Escherichia coli from marketed meat samples in Peru. Sixty-six E. coli isolates were recovered from 21 meat samples (14 chicken, 7 beef), and antimicrobial resistance levels and the presence of mechanisms of antibiotic resistance, as well as clonal relationships and phylogeny of colistin-resistant isolates, were established. High levels of antimicrobial resistance were detected, with 93.9% of isolates being multi-drug resistant (MDR) and 76.2% of samples possessing colistin-resistant E. coli; of these, 6 samples from 6 chicken samples presenting mcr-1-producer E. coli. Colistin-resistant isolates were classified into 22 clonal groups, while phylogroup A (15 isolates) was the most common. Extended-spectrum β-lactamase- and pAmpC-producing E. coli were found in 18 and 8 samples respectively, with blaCTX-M-55 (28 isolates; 16 samples) and blaCIT (8 isolates; 7 samples) being the most common of each type. Additionally, blaCTX-M-15, blaCTX-M-65, blaSHV-27, blaOXA-5/10-like, blaDHA, blaEBC and narrow-spectrum blaTEM were detected. In addition, 5 blaCTX-M remained unidentified, and no sought ESBL-encoding gene was detected in other 6 ESBL-producer isolates. The tetA, tetE and tetX genes were found in tigecycline-resistant isolates. This study highlights the presence of MDR E. coli in Peruvian food-chain. The high relevance of CTX-M-55, the dissemination through the food-chain of pAmpC, as well as the high frequency of unrelated colistin-resistant isolates is reported.
Collapse
Affiliation(s)
- Fernando Guibert
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Clara Taboada-Blanco
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Carla A Alonso
- Servicio de Análisis Clínicos, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain
| | - Rosario Oporto
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Angie K Castillo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Maria J Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| |
Collapse
|
30
|
Brătfelan DO, Tabaran A, Colobatiu L, Mihaiu R, Mihaiu M. Prevalence and Antimicrobial Resistance of Escherichia coli Isolates from Chicken Meat in Romania. Animals (Basel) 2023; 13:3488. [PMID: 38003106 PMCID: PMC10668644 DOI: 10.3390/ani13223488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The current study was conducted in order to analyze the prevalence of Escherichia coli (E. coli) in samples of chicken meat (100 chicken meat samples), as well as to evaluate the antimicrobial susceptibility of these isolates. A total of 30 samples were positive for E. coli among the collected chicken samples. Most isolates proved to be highly resistant to tetracycline (80%), ampicillin (80%), sulfamethoxazole (73.33%), chloramphenicol (70%) and nalidixic acid (60%). Strong resistance to ciprofloxacin (56.66%), trimethoprim (50%), cefotaxime (46.66%), ceftazidime (43.33%) and gentamicin (40%) was also observed. Notably, one E. coli strain also proved to be resistant to colistin. The antimicrobial resistance determinants detected among the E. coli isolates recovered in our study were consistent with their resistance phenotypes. Most of the isolates harbored the tetA (53.33%), tetB (46.66%), blaTEM (36.66%) and sul1 (26.66%) genes, but also aadA1 (23.33%), blaCTX (16.66%), blaOXA (16.66%), qnrA (16.66%) and aac (10%). In conclusion, to the best of our knowledge, this is among the first studies analyzing the prevalence and antimicrobial resistance of E. coli strains isolated from chicken meat in Romania and probably the first study reporting colistin resistance in E. coli isolates recovered from food sources in our country.
Collapse
Affiliation(s)
- Dariana Olivia Brătfelan
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Alexandra Tabaran
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Liora Colobatiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Department of Management, Faculty of Economic Sciences and Business Administration, Babes Bolyai University, Mihail Kogalniceanu Street No.1, 400084 Cluj-Napoca, Romania;
| | - Marian Mihaiu
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| |
Collapse
|
31
|
Panda S, Hajra S, Kim HG, Jeong H, Achary PGR, Hong S, Dudem B, Silva SRP, Vivekananthan V, Kim HJ. Carbohydrate-protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor. J Mater Chem B 2023; 11:10147-10157. [PMID: 37849354 DOI: 10.1039/d3tb01820b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (E. coli) in the environment is showcased herein. In this system, D-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate-protein interaction mechanism. The adsorption capacity of D-mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 μA and 5 μA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
| | - Hang Gyeom Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
| | - Haejin Jeong
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - P G R Achary
- Department of Chemistry, Siksha O Anusandhan University, Bhubaneswar-751030, India
| | - Seonki Hong
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - Bhaskar Dudem
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, England, UK.
| | - S Ravi P Silva
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, England, UK.
| | - Venkateswaran Vivekananthan
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, England, UK.
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh-522302, India
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea.
- Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, South Korea
| |
Collapse
|
32
|
Dankittipong N, Alderliesten JB, Van den Broek J, Dame-Korevaar MA, Brouwer MSM, Velkers FC, Bossers A, de Vos CJ, Wagenaar JA, Stegeman JA, Fischer EAJ. Comparing the transmission of carbapenemase-producing and extended-spectrum beta-lactamase-producing Escherichia coli between broiler chickens. Prev Vet Med 2023; 219:105998. [PMID: 37647719 DOI: 10.1016/j.prevetmed.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to public health, because of their resistance to clinically important carbapenem antibiotics. The emergence of CPE in meat-producing animals is particularly worrying because consumption of meat contaminated with resistant bacteria comparable to CPE, such as extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, contributed to colonization in humans worldwide. Currently, no data on the transmission of CPE in livestock is available. We performed a transmission experiment to quantify the transmission of CPE between broilers to fill this knowledge gap and to compare the transmission rates of CPE and other antibiotic-resistant E. coli. A total of 180 Ross 308 broiler chickens were distributed over 12 pens on the day of hatch (day 0). On day 5, half of the 10 remaining chickens in each pen were orally inoculated with 5·102 colony-forming units of CPE, ESBL, or chloramphenicol-resistant E. coli (catA1). To evaluate the effect of antibiotic treatment, amoxicillin was given twice daily in drinking water in 6 of the 12 pens from days 2-6. Cloacal swabs of all animals were taken to determine the number of infectious broilers. We used a Bayesian hierarchical model to quantify the transmission of the E. coli strains. E. coli can survive in the environment and serve as a reservoir. Therefore, the susceptible-infectious transmission model was adapted to account for the transmission of resistant bacteria from the environment. In addition, the caecal microbiome was analyzed on day 5 and at the end of the experiment on day 14 to assess the relationship between the caecal microbiome and the transmission rates. The transmission rates of CPE were 52 - 68 per cent lower compared to ESBL and catA1, but it is not clear if these differences were caused by differences between the resistance genes or by other differences between the E. coli strains. Differences between the groups in transmission rates and microbiome diversity did not correspond to each other, indicating that differences in transmission rates were probably not caused by major differences in the community structure in the caecal microbiome. Amoxicillin treatment from day 2-6 increased the transmission rate more than three-fold in all inoculums. It also increased alpha-diversity compared to untreated animals on day 5, but not on day 14, suggesting only a temporary effect. Future research could incorporate more complex transmission models with different species of resistant bacteria into the Bayesian hierarchical model.
Collapse
Affiliation(s)
- Natcha Dankittipong
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jesse B Alderliesten
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jan Van den Broek
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - M Anita Dame-Korevaar
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Michael S M Brouwer
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Francisca C Velkers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Alex Bossers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Clazien J de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - J Arjan Stegeman
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands.
| |
Collapse
|
33
|
Borges KA, Furian TQ, de Brito BG, de Brito KCT, da Rocha DT, Salle CTP, Moraes HLDS, do Nascimento VP. Characterization of avian pathogenic Escherichia coli isolates based on biofilm formation, ESBL production, virulence-associated genes, and phylogenetic groups. Braz J Microbiol 2023; 54:2413-2425. [PMID: 37344657 PMCID: PMC10485228 DOI: 10.1007/s42770-023-01026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Escherichia coli is a part of both animal and human commensal microbiota. Avian pathogenic E. coli (APEC) is responsible for colibacillosis in poultry, an economically important disease. However, the close similarities among APEC isolates make it difficult to differentiate between pathogenic and commensal bacteria. The aim of this study was to determine phenotypic and molecular characteristics of APEC isolates and to compare them with their in vivo pathogenicity indices. A total of 198 APEC isolates were evaluated for their biofilm-producing ability and extended-spectrum β-lactamase (ESBL) production phenotypes. In addition, 36 virulence-associated genes were detected, and the isolates were classified into seven phylogenetic groups using polymerase chain reaction. The sources of the isolates were not associated with biofilms, ESBL, genes, or phylogroups. Biofilm and ESBL production were not associated with pathogenicity. Group B2 had the highest pathogenicity index. Groups B2 and E were positively associated with high-pathogenicity isolates and negatively associated with low-pathogenicity isolates. In contrast, groups A and C were positively associated with apathogenic isolates, and group B1 was positively associated with low-pathogenicity isolates. Some virulence-associated genes showed positive or negative associations with specific phylogenetic groups. None of the individual techniques produced results that correlated with the in vivo pathogenicity index. However, the combination of two techniques, namely, detection of virulence-associated genes and the phylogenetic groups, could help the classification of the isolates as pathogenic or commensal.
Collapse
Affiliation(s)
- Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Benito Guimarães de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | - Kelly Cristina Tagliari de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | | | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| |
Collapse
|
34
|
Mudenda S, Bumbangi FN, Yamba K, Munyeme M, Malama S, Mukosha M, Hadunka MA, Daka V, Matafwali SK, Siluchali G, Mainda G, Mukuma M, Hang’ombe BM, Muma JB. Drivers of antimicrobial resistance in layer poultry farming: Evidence from high prevalence of multidrug-resistant Escherichia coli and enterococci in Zambia. Vet World 2023; 16:1803-1814. [PMID: 37859964 PMCID: PMC10583887 DOI: 10.14202/vetworld.2023.1803-1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Inappropriate use of antimicrobials exacerbates antimicrobial resistance (AMR) in the poultry sector. Information on factors driving AMR in the layer poultry sector is scarce in Zambia. This study examined the drivers of AMR in the layer poultry sector in the Lusaka and Copperbelt Provinces of Zambia. Materials and Methods This cross-sectional study employed a structured questionnaire in 77 layer poultry farms in the provinces of Lusaka and Copperbelt, Zambia, from September 2020 to April 2021. Data analysis was conducted using Stata version 16.1. Antimicrobial resistance was defined as the presence of multidrug resistance (MDR) isolates. Multivariable regression analysis was used to identify drivers of AMR. Results In total, 365 samples were collected, from which 339 (92.9%) Escherichia coli and 308 (84.4%) Enterococcus spp. were isolated. Multidrug resistance was identified in 39% of the E. coli and 86% of the Enterococcus spp. The overall prevalence of AMR in layer poultry farms was 51.7% (95% confidence interval [CI]: 40.3%-63.5%). Large-scale farmers (Adjusted odds ratio [AOR] = 0.20, 95% CI: 0.04%-0.99%) than small-scale and farmers who were aware of AMR than those who were unaware (AOR = 0.26, 95% CI: 0.08%-0.86%) were less likely to experience AMR problems. Conclusion This study found a high prevalence of AMR in layer poultry farming linked to the type of farm management practices and lack of AMR awareness. Evidence of high MDR in our study is of public health concern and requires urgent attention. Educational interventions must increase AMR awareness, especially among small- and medium-scale poultry farmers.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine and Clinical Sciences, School of Medicine, Eden University, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sydney Malama
- Department of Pathology and Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Scott Kaba Matafwali
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Food and Agriculture Organization (FAO) of the United Nations, House No. 5 Chaholi, off Addis Ababa drive, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Bernard Mudenda Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
35
|
Tariq A, Salman M, Mustafa G, Tawab A, Naheed S, Naz H, Shahid M, Ali H. Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: An in vitro and in silico approach. PLoS One 2023; 18:e0289723. [PMID: 37561679 PMCID: PMC10414564 DOI: 10.1371/journal.pone.0289723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Lactic acid bacteria are known to produce numerous antibacterial metabolites that are active against various pathogenic microbes. In this study, bioactive metabolites from the cell free supernatant of Loigolactobacillus coryniformis BCH-4 were obtained by liquid-liquid extraction, using ethyl acetate, followed by fractionation, using silica gel column chromatography. The collected F23 fraction effectively inhibited the growth of pathogenic bacteria (Escherichia coli, Bacillus cereus, and Staphylococcus aureus) by observing the minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). The evaluated values of MIC were 15.6 ± 0.34, 3.9 ± 0.59, and 31.2 ± 0.67 μg/mL and MBC were 15.6 ± 0.98, 7.8 ± 0.45, and 62.5 ± 0.23 μg/mL respectively, against the above-mentioned pathogenic bacteria. The concentration of F23 fraction was varying from 1000 to 1.9 μg/mL. Furthermore, the fraction also exhibited sustainable biofilm inhibition. Using the Electrospray Ionization Mass Spectrometry (ESI-MS/MS), the metabolites present in the bioactive fraction (F23), were identified as phthalic acid, myristic acid, mangiferin, 16-hydroxylpalmatic acid, apigenin, and oleandomycin. By using in silico approach, docking analysis showed good interaction of identified metabolites and receptor proteins of pathogenic bacteria. The present study suggested Loigolactobacillus coryniformis BCH-4, as a promising source of natural bioactive metabolites which may receive great benefit as potential sources of drugs in the pharmacological sector.
Collapse
Affiliation(s)
- Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Applied Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hafsa Naz
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Misbah Shahid
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C,PIEAS), Faisalabad, Pakistan
| |
Collapse
|
36
|
Kabantiyok D, Gyang MD, Agada GO, Ogundeji A, Nyam D, Uhiara UG, Abiayi E, Dashe Y, Ngulukun S, Muhammad M, Adegboye OA, Emeto TI. Analysis of Retrospective Laboratory Data on the Burden of Bacterial Pathogens Isolated at the National Veterinary Research Institute Nigeria, 2018-2021. Vet Sci 2023; 10:505. [PMID: 37624292 PMCID: PMC10459836 DOI: 10.3390/vetsci10080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Farm animals harbour bacterial pathogens, which are often viewed as important indicators of animal health and determinants of food safety. To better understand the prevalence and inform treatment, we audited laboratory data at the Bacteriology Laboratory of the NVRI from 2018-2021. Antibiotics were classified into seven basic classes: quinolones, tetracyclines, beta-lactams, aminoglycosides, macrolides, nitrofuran, and cephalosporins. Trends were analysed using a generalised linear model with a log link function for the Poisson distribution, comparing proportions between years with an offset to account for the variability in the total number of organisms per year. Avian (73.18%) samples were higher than any other sample. The major isolates identified were Escherichia. coli, Salmonella spp., Klebsiella spp., Staphylococcus spp., Proteus spp., and Pseudomonas spp. We found that antimicrobial resistance to baseline antibiotics increased over the years. Of particular concern was the increasing resistance of Klebsiella spp. to cephalosporins, an important second-generation antibiotic. This finding underscores the importance of farm animals as reservoirs of pathogens harbouring antimicrobial resistance. Effective biosecurity, surveillance, and frugal use of antibiotics in farms are needed because the health of humans and animals is intricately connected.
Collapse
Affiliation(s)
- Dennis Kabantiyok
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Moses D. Gyang
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Godwin O. Agada
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Alice Ogundeji
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Daniel Nyam
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Uchechi G. Uhiara
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Elmina Abiayi
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Yakubu Dashe
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Sati Ngulukun
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Maryam Muhammad
- Diagnostic Laboratory Services Division, National Veterinary Research Institute NVRI, PMB 01, Vom 930010, Nigeria
| | - Oyelola A. Adegboye
- Menzies School of Public Health, Charles Darwin University, Casuarina, NT 0811, Australia
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
37
|
Kasanga M, Kwenda G, Wu J, Kasanga M, Mwikisa MJ, Chanda R, Mupila Z, Yankonde B, Sikazwe M, Mwila E, Shempela DM, Solochi BB, Phiri C, Mudenda S, Chanda D. Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms 2023; 11:1951. [PMID: 37630511 PMCID: PMC10459584 DOI: 10.3390/microorganisms11081951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a public health problem threatening human, animal, and environmental safety. This study assessed the AMR profiles and risk factors associated with Escherichia coli in hospital and environmental settings in Lusaka, Zambia. This cross-sectional study was conducted from April 2022 to August 2022 using 980 samples collected from clinical and environmental settings. Antimicrobial susceptibility testing was conducted using BD PhoenixTM 100. The data were analysed using SPSS version 26.0. Of the 980 samples, 51% were from environmental sources. Overall, 64.5% of the samples tested positive for E. coli, of which 52.5% were from clinical sources. Additionally, 31.8% were ESBL, of which 70.1% were clinical isolates. Of the 632 isolates, 48.3% were MDR. Most clinical isolates were resistant to ampicillin (83.4%), sulfamethoxazole/trimethoprim (73.8%), and ciprofloxacin (65.7%) while all environmental isolates were resistant to sulfamethoxazole/trimethoprim (100%) and some were resistant to levofloxacin (30.6%). The drivers of MDR in the tested isolates included pus (AOR = 4.6, CI: 1.9-11.3), male sex (AOR = 2.1, CI: 1.2-3.9), and water (AOR = 2.6, CI: 1.2-5.8). This study found that E. coli isolates were resistant to common antibiotics used in humans. The presence of MDR isolates is a public health concern and calls for vigorous infection prevention measures and surveillance to reduce AMR and its burdens.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Jian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Maika Kasanga
- Department of Pharmacy, University Teaching Hospital, Lusaka 50110, Zambia;
| | - Mark J. Mwikisa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Raphael Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| | - Zachariah Mupila
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Baron Yankonde
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Mutemwa Sikazwe
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Enock Mwila
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Doreen M. Shempela
- Churches Health Association of Zambia, Lusaka 34511, Zambia
- Department of Laboratory and Research, Central University of Nicaragua, Managua 12104, Nicaragua
| | - Benjamin B. Solochi
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Christabel Phiri
- Department of Microbiology, School of Public Health, University of Zambia, Lusaka 10101, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Research and Surveillance Technical Working Group, Zambia National Public Health Institute, Lusaka 10101, Zambia
| | - Duncan Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| |
Collapse
|
38
|
Awosile B, Fritzler J, Levent G, Rahman MK, Ajulo S, Daniel I, Tasnim Y, Sarkar S. Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes. Pathogens 2023; 12:929. [PMID: 37513776 PMCID: PMC10383658 DOI: 10.3390/pathogens12070929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 16 Escherichia coli isolates-with reduced susceptibility to ceftazidime and imipenem-that were recovered from the fecal samples of coyotes and wild hogs from West Texas, USA. Whole-genome sequencing data analyses revealed distinct isolates with a unique sequence type and serotype designation. Among 16 isolates, 4 isolates were multidrug resistant, and 5 isolates harbored at least 1 beta-lactamase gene (blaCMY-2, blaCTX-M-55, or blaCTX-M-27) that confers resistance to beta-lactam antimicrobials. Several isolates carried genes conferring resistance to tetracyclines (tet(A), tet(B), and tet(C)), aminoglycosides (aac(3)-IId, ant(3″)-Ia, aph(3')-Ia, aph(3″)-lb, aadA5, and aph(6)-ld), sulfonamides (sul1, sul2, and sul3), amphenicol (floR), trimethoprim (dfrA1 and dfrA17), and macrolide, lincosamide, and streptogramin B (MLSB) agents (Inu(F), erm(B), and mph(A)). Nine isolates showed chromosomal mutations in the promoter region G of ampC beta-lactamase gene, while three isolates showed mutations in gyrA, parC, and parE quinolone resistance-determining regions, which confer resistance to quinolones. We also detected seven incompatibility plasmid groups, with incF being the most common. Different types of virulence genes were detected, including those that enhance bacterial fitness and pathogenicity. One blaCMY-2 positive isolate (O8:H28) from a wild hog was also a Shiga toxin-producing E. coli and was a carrier of the stx2A virulence toxin subtype. We report the detection of blaCMY-2, blaCTX-M-55, and blaCTX-M-27 beta-lactamase genes in E. coli from coyotes for the first time. This study demonstrates the importance of wildlife as reservoirs of important multi-drug-resistant bacteria and provides information for future comparative genomic analysis with the limited literature on antimicrobial resistance dynamics in wildlife such as coyotes.
Collapse
Affiliation(s)
- Babafela Awosile
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Gizem Levent
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Md Kaisar Rahman
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Samuel Ajulo
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yamima Tasnim
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Sumon Sarkar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
39
|
Grinevich D, Harden L, Thakur S, Callahan BJ. Serovar-level Identification of Bacterial Foodborne Pathogens From Full-length 16S rRNA Gene Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546915. [PMID: 37425822 PMCID: PMC10327058 DOI: 10.1101/2023.06.28.546915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The resolution of variation within species is critical for interpreting and acting on many microbial measurements. In the key foodborne pathogens Escherichia coli and Salmonella, the primary sub-species classification scheme used is serotyping: differentiating variants within these species by surface antigen profiles. Serotype prediction from whole-genome sequencing (WGS) of isolates is now seen as comparable or preferable to traditional laboratory methods where WGS is available. However, laboratory and WGS methods depend on an isolation step that is time-consuming and incompletely represents the sample when multiple strains are present. Community sequencing approaches that skip the isolation step are therefore of interest for pathogen surveillance. Here we evaluated the viability of amplicon sequencing of the full-length 16S rRNA gene for serotyping S. enterica and E. coli. We developed a novel algorithm for serotype prediction, implemented as an R package (Seroplacer), which takes as input full-length 16S rRNA gene sequences and outputs serovar predictions after phylogenetic placement into a reference phylogeny. We achieved over 89% accuracy in predicting Salmonella serotypes on in silico test data, and identified key pathogenic serovars of Salmonella and E. coli in isolate and environmental test samples. Although serotype prediction from 16S sequences is not as accurate as serotype prediction from WGS of isolates, the potential to identify dangerous serovars directly from amplicon sequencing of environmental samples is intriguing for pathogen surveillance. The capabilities developed here are also broadly relevant to other applications where intra-species variation and direct sequencing from environmental samples could be valuable.
Collapse
Affiliation(s)
- Dmitry Grinevich
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Benjamin J Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
40
|
Silva A, Silva V, Pereira JE, Maltez L, Igrejas G, Valentão P, Falco V, Poeta P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics (Basel) 2023; 12:1061. [PMID: 37370379 DOI: 10.3390/antibiotics12061061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli are one of the most important pathogenic bacteria readily found in the livestock and widely studied as an indicator that carries drug-resistant genes between humans, animals, and the environment. The use of antimicrobials in the food chain, particularly in food-producing animals, is recognized as a significant contributor to the development and spread of antimicrobial resistance (AMR) and resistance genes can be transferred from the farm through the food-chain. The objective of this review is to highlight the background of the antimicrobials use in food-producing animals, more specifically, to study clonal lineages and the resistance profiles observed in E. coli, as well as in extended spectrum beta-lactamases (ESBL) producing E. coli, in a set of food-production animals with greater relevance in food consumption, such as pigs, poultry, cattle, fish farming and rabbits. Regarding the prevalence of ESBL-producing E. coli among farm animals, high-to-moderate prevalence was observed, and the highest resistance rates to tetracycline and ampicillin was detected in different farms in all geographic regions. Worldwide pandemic clones and high-risk zoonotic E. coli clones have been identified in most food-producing animals, and some of these clones are already disseminated in different niches, such as the environment and humans. A better understanding of the epidemiology of E. coli and ESBL-producing E. coli in livestock is urgently needed. Animal production is one of the major causes of the antibiotic resistance problem worldwide and a One Health approach is needed.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
41
|
Mandujano A, Cortés-Espinosa DV, Vásquez-Villanueva J, Guel P, Rivera G, Juárez-Rendón K, Cruz-Pulido WL, Aguilera-Arreola G, Guerrero A, Bocanegra-García V, Martínez-Vázquez AV. Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Food-Producing Animals in Tamaulipas, Mexico. Antibiotics (Basel) 2023; 12:1010. [PMID: 37370329 DOI: 10.3390/antibiotics12061010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing E. coli has become an important global problem for the public health sector. This study aims to investigate the E. coli antimicrobial resistance profile among living food-producing animals in Tamaulipas, Mexico. A total of 200 fecal samples were collected from bovines, pigs, chickens and sheep. A total of 5.0% of the strains were phenotypically confirmed as ESBL producers. A high percentage of phenotypic antimicrobial resistance was observed against gentamicin (93.3%), tetracycline (86.6%) and streptomycin (83.3%). The gentamicin-resistant strains showed MDR, distributed among 27 resistance patterns to different antimicrobials. The antimicrobial resistance gene tet(A) was detected in 73.3% of isolates, aadA1 in 60.0% and sul2 in 43.3% of strains. The blaCTX-M gene was found in 23.3% of strains. The virulence gene hlyA was detected in 43.3% of isolates; stx1 and stx2 were not detected in any strain. The phylotyping indicated that the isolates belonged to groups A (33.3%), B1 (16.6%), B2 (40.0%) and D (10.0%). These results show that food-producing animals might be a reservoir of ESBL-producing bacteria and may play a role in their spread.
Collapse
Affiliation(s)
- Antonio Mandujano
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | | | - José Vásquez-Villanueva
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria C.P. 87274, Mexico
| | - Paulina Guel
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | - Karina Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | | | | | - Abraham Guerrero
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Centro de Investigación en Alimentación y Desarrollo (CIAD), Mazatlán C.P. 82100, Mexico
| | | | | |
Collapse
|
42
|
Ashraf D, Ombarak RA, Samir A, Abdel-Salam AB. Characterization of multidrug-resistant potential pathogens isolated from milk and some dairy products in Egypt. J Adv Vet Anim Res 2023; 10:275-283. [PMID: 37534087 PMCID: PMC10390681 DOI: 10.5455/javar.2023.j679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Objective This study aimed to explore the incidence and antimicrobial resistance (AMR) of Escherichia coli, Staphylococcus aureus, and Bacillus cereus in raw milk and some Egyptian dairy products, namely Kariesh cheese and rice with milk. Material and Methods 112 samples (70 raw milk, 30 Kariesh cheese, and 12 rice with milk) were randomly collected from different districts in Cairo and Giza, Egypt. The samples were examined for E. coli, S. aureus, and B. cereus presence. The susceptibility of the obtained isolates was tested against 11 antimicrobials using the disk diffusion method, and further, the presence of AMR genes was examined. Results The incidences of E. coli, S. aureus, and B. cereus were 69.64%, 12.5%, and 16.7% in the examined samples, respectively. The antibiogram indicated that E. coli isolates (n = 60) were resistant to gentamycin (73.33%), ampicillin (AM, 53.3%), and cefotaxime (CTX, 16.66%). Multidrug-resistant (MDR) E. coli strains (n = 5) were tested for β-lactams resistance genes. blaTEM was detected in all isolates, and two of them additionally carried blaCTX-M. Staphylococcus aureus isolates (n = 10) were resistant to AM (100%), followed by tetracycline (TE), CTX, and gentamycin (60% each). All MDR S. aureus strains (n = 4) carried blaZ and tetK, and three of them additionally carried aac(6')-aph (2''). Bacillus cereus isolates (n = 30) showed resistance to AM (100%), amoxicillin (20%), and TE (6.66%). bla and tetA genes were detected in all MDR B. cereus isolates (n = 6). Conclusion Our findings denote the high incidence of potential health hazards in raw milk and some of its products and the existence of AMR bacteria, including MDR strains, which can cause human illnesses that are difficult to treat.
Collapse
Affiliation(s)
- Dina Ashraf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rabee A. Ombarak
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ayah B. Abdel-Salam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Fonseca M, Heider LC, Stryhn H, McClure JT, Léger D, Rizzo D, Warder L, Dufour S, Roy JP, Kelton DF, Renaud D, Barkema HW, Sanchez J. Intramammary and systemic use of antimicrobials and their association with resistance in generic Escherichia coli recovered from fecal samples from Canadian dairy herds: A cross-sectional study. Prev Vet Med 2023; 216:105948. [PMID: 37263090 DOI: 10.1016/j.prevetmed.2023.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Antimicrobial resistance (AMR) in animals, including dairy cattle, is a significant concern for animal and public health worldwide. In this study, we used data collected through the Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR) to: (1) describe the proportions of AMR in fecal E. coli, and (2) investigate the relationship between antimicrobial use (AMU) (intramammary and systemic routes, while accounting for confounding by other variables) and AMR/multidrug resistance (MDR - resistance to ≥ 3 antimicrobial classes) in fecal E. coli from Canadian dairy farms. We hypothesized that an increase of the AMU was associated with an increase in AMR in E. coli isolates. A total of 140 dairy farms across five provinces in Canada were included in the study. Fecal samples from pre-weaned calves, post-weaned heifers, lactating cows, and farm manure storage were cultured, and E. coli isolates were identified using MALDI-TOF MS. The minimum inhibitory concentrations (MIC) to 14 antimicrobials were evaluated using a microbroth dilution methodology. AMU was quantified in Defined Course Dose (DCD - the dose for a standardized complete treatment course on a standard size animal) and converted to a rate indicator - DCD/100 animal-years. Of 1134 fecal samples collected, the proportion of samples positive for E. coli in 2019 and 2020 was 97.1% (544/560) and 94.4% (542/574), respectively. Overall, 24.5% (266/1086) of the E. coli isolates were resistant to at least one antimicrobial. Resistance towards tetracycline was commonly observed (20.7%), whereas resistance to third-generation cephalosporins, fluoroquinolones, and carbapenems was found in 2.2%, 1.4%, and 0.1% of E. coli isolates, respectively. E. coli isolates resistant to two or ≥ 3 antimicrobial classes (MDR) was 2.7% and 15%, respectively. Two multilevel models were built to explore risk factors associated with AMR with AMU being the main exposure. Systemic AMU was associated with increased E. coli resistance. For an increase in systemic AMU equivalent to its IQR, the odds of resistance to any antimicrobial in the model increased by 18%. Fecal samples from calves had higher odds of being resistant to any antimicrobial when compared to other production ages and farm manure storage. The samples collected in 2020 were less likely to be resistant when compared to samples collected in 2019. Compared to previous studies in dairy cattle in North America, AMR in E. coli was lower.
Collapse
Affiliation(s)
- Mariana Fonseca
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Luke C Heider
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Henrik Stryhn
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada
| | - J Trenton McClure
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada
| | - David Léger
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - Daniella Rizzo
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - Landon Warder
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Simon Dufour
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Javier Sanchez
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
44
|
Saeed MA, Saqlain M, Waheed U, Ehtisham-Ul-Haque S, Khan AU, Rehman AU, Sajid M, Atif FA, Neubauer H, El-Adawy H. Cross-Sectional Study for Detection and Risk Factor Analysis of ESBL-Producing Avian Pathogenic Escherichia coli Associated with Backyard Chickens in Pakistan. Antibiotics (Basel) 2023; 12:antibiotics12050934. [PMID: 37237837 DOI: 10.3390/antibiotics12050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The increasing incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia (E.) coli in backyard chicken farming in Pakistan is of serious concern. This study aimed to assess the prevalence, antimicrobial resistance patterns and risk factors associated with ESBL avian pathogenic E. coli (APEC) isolated from backyard chickens in the Jhang district, Punjab, Pakistan. In total, 320 cloacal swabs were collected from four breeds of backyard chicken (Aseel, Golden, Misri and Necked Neck). ESBL E. coli were phenotypically identified using double disc synergy test (DDST) and corresponding genes were confirmed by multiplex polymerase chain reaction (mPCR). Out of the 320 samples, 164 (51.3%) were confirmed as E. coli, while 74 (45.1%) were characterized as ESBL E. coli. The frequency of isolation of ESBL E. coli was highest in Aseel chickens (35.1%). Of the 164 confirmed E. coli, 95.1%, 78.6%, 76.8%, 71.3%, 70.1%, 68.9%, 60.4% and 57.3% were resistant against tylosin, doxycycline, cefotaxime, enrofloxacin, colistin, trimethoprim/sulfamethoxazole, chloramphenicol and gentamicin, respectively. The ESBL gene types detected and their corresponding proportions were blaCTX-M (54.1 %, 40/74), blaTEM, (12.2%, 9/74) and co-existence (blaCTX-M and blaTEM) were shown in 33.8% (25/74). The blaCTX-M gene sequence showed homology to blaCTX-M-15 from clinical isolates. The mean multiple antibiotic resistance index (MARI) was found to be higher among ESBL E. coli (0.25) when compared to non-ESBL E. coli (0.17). Both free-range husbandry management system (p = 0.02, OR: 30.00, 95% CI = 1.47-611.79) and high antimicrobial usage in the last 6 months (p = 0.01, OR: 25.17, 95% CI = 1.81-348.71) were found significantly associated with isolation of ESBL-producing E. coli in the tested samples using binary logistic regression analysis. This study confirmed the potential of backyard chickens as a reservoir for ESBL E. coli in the Jhang district, Punjab, Pakistan.
Collapse
Affiliation(s)
- Muhammad Adnan Saeed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Muhammad Saqlain
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Syed Ehtisham-Ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Aman Ullah Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Muhammad Sajid
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Farhan Ahmad Atif
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| |
Collapse
|
45
|
Saif NA, Hashem YA, Amin HM, Aziz RK. In Silico and In Vitro Investigation of the Distribution and Expression of Key Genes in the Fucose Operon of Escherichia coli. Microorganisms 2023; 11:1265. [PMID: 37317239 DOI: 10.3390/microorganisms11051265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
Many gut bacteria degrade polysaccharides, providing nutritional advantages to their hosts. Fucose, a mucin degradation product, was suggested as a communication molecule between the resident microbiota and external pathogens. However, the precise role and variants of the fucose utilization pathway remain to be elucidated. Here, we computationally and experimentally investigated the fucose utilization operon of E. coli. While the operon is conserved among E. coli genomes, a variant pathway, in which an ABC transporter system replaces the fucose permease gene (fucP), was computationally identified in 50 out of 1058 genomes. Comparative genomics and subsystems analysis results were confirmed by polymerase chain reaction-based screening of 40 human E. coli isolates, which indicated the conservation of fucP in 92.5% of the isolates (vs. 7.5% of its suggested alternative, yjfF). The in silico predictions were confirmed by in vitro experiments comparing the growth of E. coli strains K12, BL21, and isogenic fucose-utilization K12 mutants. Additionally, fucP and fucI transcripts were quantified in E. coli K12 and BL21, after in silico analysis of their expression in 483 public transcriptomes. In conclusion, E. coli utilizes fucose by two pathway variants, with measurable transcriptional differences. Future studies will explore this variation's impact on signaling and virulence.
Collapse
Affiliation(s)
- Nehal A Saif
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Yomna A Hashem
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Heba M Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo 11617, Egypt
| |
Collapse
|
46
|
Pereira JAM, Berenguer CV, Câmara JS. Delving into Agri-Food Waste Composition for Antibacterial Phytochemicals. Metabolites 2023; 13:metabo13050634. [PMID: 37233675 DOI: 10.3390/metabo13050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The overuse of antibiotics in the healthcare, veterinary, and agricultural industries has led to the development of antimicrobial resistance (AMR), resulting in significant economic losses worldwide and a growing healthcare problem that urgently needs to be solved. Plants produce a variety of secondary metabolites, making them an area of interest in the search for new phytochemicals to cope with AMR. A great part of agri-food waste is of plant origin, constituting a promising source of valuable compounds with different bioactivities, including those against antimicrobial resistance. Many types of phytochemicals, such as carotenoids, tocopherols, glucosinolates, and phenolic compounds, are widely present in plant by-products, such as citrus peels, tomato waste, and wine pomace. Unveiling these and other bioactive compounds is therefore very relevant and could be an important and sustainable form of agri-food waste valorisation, adding profit for local economies and mitigating the negative impact of these wastes' decomposition on the environment. This review will focus on the potential of agri-food waste from a plant origin as a source of phytochemicals with antibacterial activity for global health benefits against AMR.
Collapse
Affiliation(s)
- Jorge A M Pereira
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Cristina V Berenguer
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
47
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
48
|
Benlabidi S, Raddaoui A, Lengliz S, Cheriet S, Hynds P, Achour W, Ghrairi T, Abbassi MS. Occurrence of High-Risk Clonal Lineages ST58, ST69, ST224, and ST410 among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Free-Range Chickens ( Gallus gallus domesticus) in a Rural Region in Tunisia. Genes (Basel) 2023; 14:genes14040875. [PMID: 37107633 PMCID: PMC10138121 DOI: 10.3390/genes14040875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial-resistant Escherichia coli isolates have emerged in various ecologic compartments and evolved to spread globally. We sought to (1.) investigate the occurrence of ESBL-producing E. coli (ESBL-Ec) in feces from free-range chickens in a rural region and (2.) characterize the genetic background of antimicrobial resistance and the genetic relatedness of collected isolates. Ninety-five feces swabs from free-range chickens associated with two households (House 1/House 2) in a rural region in northern Tunisia were collected. Samples were screened to recover ESBL-Ec, and collected isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, and molecular typing (pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST)). Overall, 47 ESBL-Ec were identified, with the following genes detected: 35 blaCTX-M-1, 5 blaCTX-M-55, 5 blaCTX-M-15, 1 blaSHV-2, and 1 blaSHV-12. Resistance to fluoroquinolones, tetracycline, sulfonamides, and colistin was encoded by aac(6')-Ib-cr (n = 21), qnrB (n = 1), and qnrS (n = 2); tetA (n = 17)/tetB (n = 26); sul1 (n = 29)/sul2 (n = 18); and mcr-2 (n = 2) genes, respectively. PFGE and MLST identified genetic homogeneity of isolates in House 1; however, isolates from House 2 were heterogeneous. Notably, among nine identified sequence types, ST58, ST69, ST224, and ST410 belong to pandemic high-risk clonal lineages associated with extrapathogenic E. coli. Minor clones belonging to ST410 and ST471 were shared by chickens from both households. The virulence genes fyuA, fimH, papGIII, and iutA were detected in 35, 47, 17, and 23 isolates, respectively. Findings indicate a high occurrence of ESBL-Ec in free-range chickens and highlight the occurrence of pandemic zoonotic clones.
Collapse
Affiliation(s)
- Saloua Benlabidi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Sana Lengliz
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Materials, Molecules and Application LR11ES22, Preparatory Institute for Scientific and Technical Studies, University of Carthage, Tunis 1054, Tunisia
| | - Sarah Cheriet
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Research Laboratory 'Antimicrobial Resistance' LR18ES39, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
49
|
β-Lactamase Genes ( blaCTX-M, blaSHV, blaTEM, blaOXA1 and blaOXA2) and Phylogenetic Groups in ESBL Producing Commensal Escherichia coli Isolated from Faecal Samples from Dairy Farm in the Municipality of Debar. MACEDONIAN VETERINARY REVIEW 2023. [DOI: 10.2478/macvetrev-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Abstract
β-lactamases are a diverse class of enzymes produced by bacteria that present a major cause for resistance to β-lactams. In this study we analysed 159 fecal samples from dairy cows, for the presence of presumptive ESBL, AmpC, and carbapenemase-producing E. coli. Phylotyping was done using Clermont phylo-typing method, targeting arpA, ChuA, and YjaA genes, along with the DNA fragment TspE4.C2. Convetional PCR method was used to confirm the presence of bla genes among 39 phenotypically confirmed ESBL producing E. coli. The results showed presence of CTX-M, SHV, TEM and OXA1 bla genes in 28 (71.79%), 1 (2.56%), 29 (74.35%), 2 (5.12%) of isolates, respectively Twenty (51.28%) isolates showed presence of both blaCTX-M and TEM genes. The strain that carried the blaSHV gene was found to carry blaTEM gene as well, while one of the strains that carried blaOXA1 gene was also carrying blaCTX-M and TEM gene. The ration between isolates and phylo-groups was as follows: 9 (23.07%) strains were assigned to phyllo-group D; 14 (35.89%) to phyllo-group B; 16 (41.02%) to phyllo-group A. Out of the 39 strains where bla genes were identified, 29 (74.35%) were categorized as multi drug resistant.
Collapse
|
50
|
Altaf S, Alkheraije KA. Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals. Front Vet Sci 2023; 10:1148964. [PMID: 36950535 PMCID: PMC10025400 DOI: 10.3389/fvets.2023.1148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial pathogens of animals impact food production and human health globally. Food animals act as the major host reservoirs for pathogenic bacteria and thus are highly prone to suffer from several endemic infections such as pneumonia, sepsis, mastitis, and diarrhea, imposing a major health and economical loss. Moreover, the consumption of food products of infected animals is the main route by which human beings are exposed to zoonotic bacteria. Thus, there is excessive and undue administration of antibiotics to fight these virulent causative agents of food-borne illness, leading to emergence of resistant strains. Thus, highprevalence antibiotic-resistant resistant food-borne bacterial infections motivated the researchers to discover new alternative therapeutic strategies to eradicate resistant bacterial strains. One of the successful therapeutic approach for the treatment of animal infections, is the application of cell membrane-coated nanoparticles. Cell membranes of several different types of cells including platelets, red blood cells, neutrophils, cancer cells, and bacteria are being wrapped over the nanoparticles to prepare biocompatible nanoformulations. This diversity of cell membrane selection and together with the possibility of combining with an extensive range of nanoparticles, has opened a new opportunistic window for the development of more potentially effective, safe, and immune evading nanoformulations, as compared to conventionally used bare nanoparticle. This article will elaborately discuss the discovery and development of novel bioinspired cell membrane-coated nanoformulations against several pathogenic bacteria of food animals such as Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Campylobacter jejuni, Helicobacter pylori, and Group A Streptococcus and Group B Streptococcus.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|