1
|
Lee J, Ko H, Goo D, Sharma MK, Liu G, Shi H, Paneru D, Choppa VSR, Maertens B, Sol C, Kim WK. Effects of dietary supplementation with a polyherbal based product on sporozoites viability and on growth performance, lesion score, gut permeability, oocyst shedding count, tight junction, pro-inflammatory cytokine, and antioxidant enzyme in broiler chickens challenged with Eimeria spp. Poult Sci 2025; 104:105002. [PMID: 40073682 PMCID: PMC11946871 DOI: 10.1016/j.psj.2025.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Two in vivo and in vitro studies were conducted to investigate the effects of supplementation of a natural polyherbal mixture (PHM) manufactured from selected herbs in broiler chickens challenged with coccidiosis. For the in vitro trial, E. tenella and E. maxima sporozoites were used to test how PHM affected sporozoites viability at 24, 48, and 72 h. The treatments were as follows: negative control with phosphate buffered saline (NC-PBS), solvent control containing 1 % dimethyl sulfoxide (DMSO), salinomycin at 12 mg/kg with 1 % DMSO in PBS (SAL), and 500 mg/kg PHM in PBS (PHM). For the in vivo trial, a total of 288 0-day-old male Cobb 500 were randomly distributed into 3 treatments with 8 replicates, and study lasted for 28 days. Treatments were as follows: non-challenge control with a basal diet (NC), Eimeria spp. challenge with a basal diet (CC), and Eimeria spp. challenge with a basal diet containing 500 mg/kg of the PHM (PHM). Chickens in challenged groups were inoculated with 62,500 oocyst of E. acervulina, 12,500 oocyst of E. maxima and E. tenella on 14 days. In vitro results showed that PHM increased (P < 0.001) a Eimeria sporozoite reduction percentage. As for in vivo results, the PHM group had similar body weight gain, feed intake, and feed efficiency compared to the NC group. The use of PHM reduced fecal oocyst counts of E. tenella and E. maxima from 6 to 9 days post inoculation (DPI; P < 0.05). Moreover, PHM supplementation decreased duodenum and ceca lesion scores (P < 0.001). The PHM group also had reduced expression levels of claudin 1 (CLDN-1), interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the jejunum compared to the CC group (P < 0.01). In conclusion, the supplementation with 500 mg/kg of polyherbal mixture both in vitro and in vivo reduced the viability of E. tenella and E. maxima sporozoites, and this could explain that PHM effectively mitigated negative effects caused by the challenge with Eimeria spp., suggesting that it could be a dietary strategy to improve performance and gut health in broilers under coccidiosis.
Collapse
Affiliation(s)
- Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | | | | | - Cinta Sol
- Nuproxa Switzerland Ltd. Etoy. Switzerland
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA.
| |
Collapse
|
2
|
Ncho CM, Gupta V, Goel A, Jeong CM, Jung JY, Ha SY, Eom JU, Yang HS, Yang JK, Choi YH. Impact of dietary polyphenols from shredded, steam-exploded pine on growth performance, organ indices, meat quality, and cecal microbiota of broiler chickens. Poult Sci 2025; 104:105088. [PMID: 40154182 DOI: 10.1016/j.psj.2025.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
The chicken's gastrointestinal tract is home to complex and diverse microbial communities that can be manipulated to enhance health and productivity. Although polyphenols have recently attracted the attention of researchers due to their potent antioxidant capabilities, their impact on the gut microbiota remains largely unexplored. Hence, in this study, we conducted a comprehensive analysis of the effects of dietary supplementation with polyphenol-rich extract from shredded, steam-exploded pine particles (PSPP) on growth, meat quality, and gut microbial dynamics in broiler chickens. Supplementation of PSPP was found to significantly improve birds' FCR until the third week of the trial but only marginally affected meat quality. Based on metataxonomic analyses of the cecal microbiotas of broilers fed increasing concentrations of PSPP, dietary PSPP modulated the composition of the cecal microbiota of the birds with a concomitant increase of Bacteroidetes and a decrease in the Firmicutes population. Similar trends were observed for the proportions of Alistipes and Faecalibacterium at the genus level. Additionally, 43 unique bacterial species were detected in the cecal microbiome of birds fed with PSPP. However, microbial diversity did not vary significantly among treatment groups. A particularly interesting finding was the specialization observed in the microbiome of birds receiving PSPP supplementation. Microbial co-occurrence network analyses revealed substantial modifications in their network structure when compared to control birds. Families like Rikenellaceae and Eubacteriaceae were notably absent, and the number of microbial interactions was drastically lower in the PSPP-fed group. Microbial taxa modeling revealed that the impact of increasing dietary PSPP levels primarily affected genus-level taxa, showing a decreasing trend. Overall, this offers compelling evidence that continuous PSPP supplementation may not only alter the composition of intestinal microbes but also have a profound effect on the interactions among different microbial species. Conversely, PSPP had minimal effects on broilers' performance and meat quality.
Collapse
Affiliation(s)
- Chris Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Uk Eom
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han-Sul Yang
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
3
|
Khan IM, Gul H, Khan S, Nassar N, Khalid A, Swelum AA, Wang Z. Green tea polyphenol epigallocatechin-3-gallate mediates an antioxidant response via Nrf2 pathway in heat-stressed poultry: A review. Poult Sci 2025; 104:105071. [PMID: 40157268 DOI: 10.1016/j.psj.2025.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Heat stress is a critical challenge in the poultry industry. It arises when birds are exposed to elevated ambient temperatures beyond their thermoneutral zone, often exacerbated by high humidity and inadequate ventilation. This condition disrupts the birds' ability to maintain thermal homeostasis, leading to physiological and behavioral changes such as increased panting, reduced feed intake, and elevated water consumption. These responses aim to dissipate heat but often result in energy imbalances, oxidative stress, and impaired immune function. Green tea polyphenols (GTPs) mitigate heat stress in poultry birds by modulating oxidative stress pathways, primarily by scavenging reactive oxygen species (ROS) and enhancing antioxidant defense mechanisms. These pathways play a pivotal role in neutralizing ROS generated during oxidative stress, inflammation, and exposure to electrophilic compounds. This action helps restore cellular balance and enhances overall antioxidant defense mechanisms by converting harmful free radicals into less reactive molecules, such as water and oxygen. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant character in the activation of the enzymatic antioxidants network. It translocates to the nucleus upon activation, binds to antioxidant response elements (AREs) in the promoter regions of target genes, and upregulates the expression of key antioxidant enzymes. Therefore, the regulation of Nrf2 is considered a critical molecular marker in mitigating the effects of heat stress, as its activation enhances the expression of antioxidant and detoxification enzymes, protecting against oxidative damage and inflammation induced by elevated temperatures. This exploratory review summarizes the antioxidant mechanisms and anti-oxidative stress effects of GTPs in mitigating heat stress in poultry. It highlights the cytoprotective molecular basis of epigallocatechin-3-gallate (EGCG), particularly its role in modulating Nrf2-mediated cellular pathways, which enhance antioxidant defense systems and protect against oxidative damage.
Collapse
Affiliation(s)
| | - Haji Gul
- District Livestock Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Bernard B, Joshi H, Fan P. Menthol in Livestock: Unveiling Its Multifaceted Properties and Future Potential for Sustainable Agriculture. Int J Mol Sci 2025; 26:2679. [PMID: 40141321 PMCID: PMC11943448 DOI: 10.3390/ijms26062679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Menthol, the primary active compound in the widely cultivated peppermint plant (Mentha piperita), is well known for its use in human products such as topical analgesics and cold remedies. Menthol's cooling sensation and ability to locally modulate pain through interactions with transient receptor potential channels make it a valuable bioactive compound. In recent years, menthol's antimicrobial, anti-inflammatory, and antioxidative properties have drawn attention in the livestock industry as a natural alternative to synthetic antibiotics in feed additives. This review comprehensively examines the existing literature to assess menthol's effects on animal growth performance, product quality, immune function, gastrointestinal microbial ecosystems, and metabolism across various livestock species. Notably, menthol shows potential for improving feed efficiency, mitigating chronic inflammation and oxidative stress, inhibiting environmental and gastrointestinal pathogens, and enhancing calcium absorption. However, optimal dosages, treatment durations, synergies with other phytogenic compounds, and regulatory mechanisms require further investigation. Additionally, with increasing global temperatures and growing concerns about animal welfare, menthol's cooling, methane-reducing, and analgesic properties present promising opportunities for advancing sustainable livestock practices.
Collapse
Affiliation(s)
- Brandon Bernard
- Department of Biochemistry, Nutrition & Health Promotion, College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Himani Joshi
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS 39762, USA;
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
5
|
Al-Garadi MA, Alhotan RA, Hussein EO, Qaid MM, Suliman GM, Al-Badwi MA, Fazea EH, Olarinre IO. Effects of a natural phytogenic feed additive on broiler performance, carcass traits, and gut health under diets with optimal and reduced energy and amino acid density. Poult Sci 2025:105014. [PMID: 40102172 DOI: 10.1016/j.psj.2025.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025] Open
Abstract
Phytogenic feed additives are gaining attention as potential alternatives to enhance broiler growth performance and feed efficiency. The experiment investigated the effects of supplementing broiler diets over 35 days with two levels of Fibrafid (0.15 % and 0.25 %) under two dietary regimes: normal amino acid density and metabolizable energy (ME) levels (referred to as positive control diet plus Fibrafid: PC1+0.15 % or PC1+0.25 % Fibrafid) and diets with a 5 % reduction in amino acid density and a 1.5 % reduction in ME (referred to as negative control diet plus Fibrafid: NC1+0.15 % or NC1+0.25 % Fibrafid) on performance parameters and carcass attributes of Ross 308 broilers. These were compared to standard positive control diets (PC1 and PC2, without or with TURBO Grow) and negative control diets (NC1 and NC2, without or with TURBO Grow). Performance indicators were estimated during 0-9, 11-23, 24-35, and 0-35. On day 35, the carcass characteristics and jejunal histopathology were evaluated. Results demonstrated significant improvements in body weight gain and feed conversion ratio (FCR) with Fibrafid inclusion, particularly at 0.25 % over trail. Fibrafid supplementation compensated for reduced dietary energy and protein, leading to improved growth performance, and gizzard and Bursa weights compared to negative control diets. Compared to NC1, the PC1+0.25 % Fibrafid show a significant improvement in jejunal villus morphology, leading to an increase in villus width, height, surface area, and goblet cell density by 5.3 %, 4.8 %, 12.5 %, and 56.7 % respectively. In conclusion, Fibrafid supplementation positively impacts growth performance and intestinal structure, potentially improving nutrient absorption, and jejunal integrity in broilers, proving Fibrafid's promise as a viable option in modern poultry nutrition.
Collapse
Affiliation(s)
- Maged A Al-Garadi
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rashed A Alhotan
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Elsayed O Hussein
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Qaid
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Gamaleldin M Suliman
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed A Al-Badwi
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Esam H Fazea
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Isiaka O Olarinre
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Yang J, Jia W, Zhang B, Sun S, Dou X, Wu Q, Wang Y, Li Y, Ma W, Ren G, Zhang X, Wang Y. Effects of Diet Xylooligosaccharide Supplementation on Growth Performance, Carcass Characteristics, and Meat Quality of Hu Lambs. Foods 2025; 14:656. [PMID: 40002100 PMCID: PMC11854800 DOI: 10.3390/foods14040656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we examined the effect of xylooligosaccharide (XOS) supplementation on the growth performance, carcass characteristics, and meat quality of Hu lambs. In total, 60 Hu lambs (two months old and weighing 17.32 ± 0.81 kg) were randomly assigned to four treatment groups, each with three replicates and five lambs per replicate. The lambs were fed basal diets supplemented with 0, 1.5, 3, or 4.5 g/kg XOSs in a basal diet for 60 days, with the groups designated XOS0%, XOS1.5%, XOS3%, and XOS4.5%, respectively. The results revealed, compared to theXOS0% group, the XOS3% group presented a lower F:G during 31 to 45 d (p = 0.06). By the 60th day, the body length indices of groups XOS3% and XOS4.5% increased compared to the XOS0% group, with a significant increase observed in group XOS4.5% (p < 0.05). Additionally, the GR values of the XOS1.5%, XOS3%, and XOS4.5% groups increased significantly, and the rumen fluid pH values of the XOS3% and XOS4.5% groups increased significantly (p < 0.01). The crude fat content in the XOS1.5% and XOS4.5% groups were significantly lower (p < 0.05). The hardness, adhesiveness, elasticity, cohesiveness, and chewiness of the mutton in the XOS1.5%, XOS3%, and XOS4.5% groups were increased, although the differences were not statistically significant (p > 0.05). Correlation analysis indicates that there is a significant correlation between growth performance, carcass traits, and meat quality (p < 0.05). The factors influencing meat quality originate from the growth period and the slaughtering phase, which can be attributed to the effects of xylooligosaccharides. In conclusion, XOS had positive effects on the growth performance, carcass characteristics, and meat quality of Hu lambs. The comprehensive effect of group XOS3% was best. Considering the production cost, the 3 g/kg XOSs is identified as the optimal supplementation level for sheep.
Collapse
Affiliation(s)
- Jiaxin Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Wanhang Jia
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Binglei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Saiyi Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Xueru Dou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Guoyan Ren
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Xiaoyin Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (W.J.); (B.Z.); (S.S.); (X.D.); (Q.W.); (Y.L.); (W.M.); (X.Z.); (Y.W.)
| |
Collapse
|
7
|
Majekodunmi BC, Wheto M, Oke OE, Akinjute OF, Ojoawo HT, Chika CR, Adekunle OM, Adeyeri YO, Abioja MO. Thermoregulatory Response, Growth Performance and Organ Weights of FUNAAB-Alpha Chicken Genotypes Administered Sweet Citrus Peel Powder. J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39898408 DOI: 10.1111/jpn.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Thermoregulatory response and growth performance of FUNAAB-Alpha chickens administered sweet citrus peel powder (SCPP) were investigated in a twelve weeks experiment. A total of 360 1-day-old FUNAAB Alpha chicks were used for the study, comprising 120 birds per genotype: Normal feather (NF), Naked neck (NN) and Frizzle feather (FF). Birds were randomly allotted into 12 treatment groups: NF: 0 g, 3 g, 6 g and 9 g of SCPP, NN: 0 g, 3 g, 6 g and 9 g of SCPP, FF: 0 g, 3 g, 6 g and 9 g of SCPP. Each treatment was replicated thrice with 10 birds per replicate. No (p > 0.05) interactive and main effect of genotype and dosage of SCPP was observed on the Rectal temperature, Skin temperatures under wing and of the breast among the treatments. Similar (p > 0.05) interactive effect was observed on the respiratory rate (RR), however, higher (p < 0.001) RR was recorded in NN and FF compared with NF. Birds in the control group had the highest (p < 0.005) RR compared with birds administered 3 g and 9 g of SCPP/L of water. Interaction and main effect of SCPP dosage on heterophil (H), lymphocyte (L) and heterophil lymphocyte ratio (H/L) were not significant (p > 0.05) across the treatment groups. However, genotype significantly (p < 0.000) influenced H, L and H/L. The FF and NN had significantly (p < 0.000) lower H/L compared with the NF. Higher (p < 0.000) weight gain (WG) was observed in FF and NN compared to NF chickens. Significantly (p < 0.020) lower FCR was observed in 6 g/L (2.26), 3 g/L (2.65) and 9 g/L (2.66) of FF compared with NF on 9 g/L (4.03). Dosage of SCPP significantly (p < 0.001) influenced the relative weights of the intestine. In conclusion, lower H/L, higher WG and better FCR were observed in the NN and FF genotypes with the best FCR recorded at 6 g SCPP/L of water.
Collapse
Affiliation(s)
| | - Mathew Wheto
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Henry Temitope Ojoawo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Chinedu Ruth Chika
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | | | | |
Collapse
|
8
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
D’Alessandro AG, Di Luca A, Desantis S, Martemucci G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals (Basel) 2025; 15:308. [PMID: 39943078 PMCID: PMC11816074 DOI: 10.3390/ani15030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Phenolic antioxidant intake is encouraged to prevent oxidative damage, and antioxidant synergy is considered an advantage in adding polyphenols from varied plants. This study investigated the antioxidant and synergistic interactions among olive leaf (OL), bay laurel (BL), and rosemary (RL) leaf powder mixture (LPM: OL + BL + RL), using in vitro chemical tests [TPC, ORAC, TEAC-ABTS, FRAP; combination index (CI)], and in vivo validation on blood oxidative status, metabolic profile, and intestinal histomorphology in laying hens. The in vitro study indicated a whole higher antioxidant capacity for the LPM than respective single/double-leave combinations. The LPM CI value (IC50, 0.60) indicated a synergistic effect compared to the binary combinations. Thus, the LPM was validated in vivo through dietary supplementation on sixty Lohmann Brown hens (30 weeks old), reared in an indoor-outdoor rearing system divided. The hens were allocated into two experimental groups (n. 30): basal control diet group; and diet supplemented group with 6 g/kg feed of LPM) containing OL, BL, and RL (respectively, at 65.7%:18.9%:15.4%), for 60 days. The LPM improved (p < 0.05) the oxidative status (TAS, FRAP; ROMs, TBARs) and vitamin E level, metabolic and immunological profiles, and it induced region-specific changes in the morphology and carbohydrate composition of mucins along intestinal tracts of the animals. These findings could provide a valuable strategy for identifying synergistic combinations in functional feed formulations for laying hens.
Collapse
Affiliation(s)
- Angela Gabriella D’Alessandro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanni Martemucci
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| |
Collapse
|
10
|
Zhou YH, Liu XP, Gu XM, Lv HX, Yang Y, Cai ZX, Di B, Wang CK, Gao YY, Jin L. Effects of Dietary Nano-Composite of Copper and Carbon on Antioxidant Capacity, Immunity, and Cecal Microbiota of Weaned Ira White Rabbits. Animals (Basel) 2025; 15:184. [PMID: 39858184 PMCID: PMC11758615 DOI: 10.3390/ani15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
This experiment investigated the effects of dietary supplementation with nano-composites of copper and carbon (NCCC) on antioxidants, immune functions, and the cecum microbiota of weaned Ira white rabbits. A total of 240 weaned 35-day-old Ira white rabbits were randomly allocated to five dietary treatments (n = 6 per treatment, each replicate consisted of eight rabbits) that included the control group (CON) with a basal diet, the SAL group with 60 mg/kg salinomycin (SAL) in addition to the basal diet, and the NCCC I, II, III groups, which were supplemented with 50, 100, and 200 mg/kg NCCC, respectively, in addition to the basal diet. The test lasted for 28 d. The results showed that dietary NCCC supplementation increased the liver Cu/Zn-SOD content and up-regulated the gene expression of Cu/Zn-SOD (p < 0.05), while also reducing the content of MDA in the liver and enhancing the antioxidant capacity of Ira white rabbits. Moreover, the NCCC diet supplementation reduced the content of IL-6 and down-regulated the relative expression of IL-6 and IL-1β genes in the jejunum of Ira white rabbits (p < 0.05). In addition, the metagenomic analysis of 16 S rRNA showed significant differences in the cecal microbial structure of weaned Ira white rabbits in the NCCC III group compared with the CON, NCCC I, and NCCC II groups (p < 0.05). Firmicutes and Bacteroidetes were the dominant phyla of cecal microorganisms in weaned Ira rabbits in the NCCC diet groups. The dominant genera included unidentified Eubacteriaceae, unclassified Lachnospiraceae, Christensenellaceae, and Ruminococcus. Furthermore, the relative abundance of Ruminococcus in the NCCC I and II groups was lower than that in the CON group in the cecum of Ira white rabbits (p < 0.05). In summary, our results showed that diet supplementation with NCCC could enhance the antioxidant capacity in the liver, alleviate intestinal inflammation, and regulate the structure of intestinal flora, improving the health of Ira white rabbits.
Collapse
Affiliation(s)
- Ying-Huan Zhou
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Xiao-Ping Liu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Xiao-Ming Gu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Hai-Xuan Lv
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Yun Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Zai-Xing Cai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Bin Di
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.-H.Z.); (X.-P.L.); (X.-M.G.); (H.-X.L.); (Y.Y.); (Z.-X.C.); (B.D.); (C.-K.W.)
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Eldeeb FA, Noseer EA, Abdelazeem S, Ali E, Basher AW, Abdalla MAA, Ibrahim HH. Effect of dietary supplementation of Lawsonia inermis and Acacia nilotica extract on growth performance, intestinal histopathology, and antioxidant status of broiler chickens challenged with coccidiosis. BMC Vet Res 2025; 21:2. [PMID: 39762829 PMCID: PMC11702094 DOI: 10.1186/s12917-024-04409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Avian coccidiosis is one of the many disorders that seriously harm birds' digestive systems. Nowadays the light is shed on using Phytochemical/herbal medicines as alternative natural anti-coccidial chemical-free standards. Consequently, this study aimed to investigate the impact of lawsonia inermis powder (LIP), and Acacia nilotica aqueous extract (ANAE), on growth performance, serum biochemical, antioxidant status, cytokine biomarkers, total oocyst count and intestinal histopathology of broiler chickens challenged with coccidiosis. Two hundred and forty-one-day-old Ross chicks were randomly distributed into 8 groups, four were challenged with coccidia, while the other four were unchallenged. Each group consisted of 3 replicates of 10 chicks each. The birds were challenged with Eimeria species orally on day 14 of age. Group 1B was unchallenged, and Group 2 A was challenged with coccidiosis and both were fed the basic diet without additives. Groups 3 A, 4 A, and 5 A were challenged and fed on the basic diet supplemented with LIP (40 g/kg of diet), ANAE (5 g/kg of diet), and LIP + ANAE combination, respectively. Groups 3B, 4B, and 5B were unchallenged and fed on the basic diet supplemented with LIP (40 g/kg of diet) and ANAE (5 g/kg of diet) and LIP + ANAE combination, respectively. The best results of growth performance parameters were recorded in G5B, and G5A followed by the group fed on ANAE and then the group fed on LIP compared with the control. All challenged broilers had higher aspartate aminotransferase (AST), alanine transaminase (ALT), urea, creatinine, glucose, MDA, IL-4 &TNF-α levels compared to all unchallenged broilers. Challenged broilers had lower serum cholesterol, triglycerides, total protein, albumin, globulin, SOD, GPX & IL-10 levels compared to non-challenged broilers. Histopathological examination of the small intestine and cecum of challenged treated groups with LIP + ANAE showed good mucosal integrity, few leukocytes infiltration, and low total oocyst count in broilers manure, followed by ANAE then LIP groups. In conclusion, dietary supplementation of lawsonia inermis powder and Acacia nilotica aqueous extract either alone or in combination had positive effects on broiler performance, blood metabolites, antioxidant status, cellular response, and intestinal morphology during the exposure to Eimeria spp. as a potential natural anti-coccidial.
Collapse
Affiliation(s)
- Fares A Eldeeb
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Enas A Noseer
- Department of Biochemistry, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Shimaa Abdelazeem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Esraa Ali
- Department of parasitology, Animal Health Research Institute (AHRI), Agricultural Research Centre (ARC), Qena branch, Qena, Egypt
| | - Asmaa W Basher
- Department of pharmacology, Faculty of Veterinary Medicine, South valley University, Qena, Egypt
| | - M A A Abdalla
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hytham H Ibrahim
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
12
|
Aminullah N, Mostamand A, Zahir A, Mahaq O, Azizi MN. Phytogenic feed additives as alternatives to antibiotics in poultry production: A review. Vet World 2025; 18:141-154. [PMID: 40041511 PMCID: PMC11873379 DOI: 10.14202/vetworld.2025.141-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/19/2024] [Indexed: 03/06/2025] Open
Abstract
The overuse of antimicrobials in food-producing animals, particularly poultry, has led to growing concerns about multidrug microbial resistance, posing significant risks to both animal and human health. Subtherapeutic doses of antibiotics have traditionally been used to enhance growth and improve economic efficiency in poultry farming. However, these practices have facilitated the emergence of resistant microbial strains, threatening global health security and prompting a search for sustainable alternatives. This review highlights the significance of phytogenic as feed additives (PFAs) as promising substitutes for antibiotic as feed additives (AFAs) in poultry production. PFAs, derived from plant-based compounds, exhibit multiple beneficial properties, including antimicrobial, antioxidative, anti-inflammatory, and immune-modulatory effects. Moreover, they offer the potential to produce high-quality organic poultry products while reducing the likelihood of microbial resistance. Despite these advantages, inconsistent results among studies underscore the importance of standardized approaches to maximize their efficacy. This review aims to evaluate the current status of antibiotic use in poultry farming globally, explore the properties and mechanisms of PFAs, and assess their potential as viable alternatives to antibiotics. By consolidating available knowledge, this review provides insights into the benefits and challenges associated with PFAs, offering guidance for future research and practical applications in sustainable poultry production.
Collapse
Affiliation(s)
- Noor Aminullah
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Allauddin Mostamand
- Department of Animal Husbandry, Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Obaidullah Mahaq
- Department of Animal Nutrition and Production, Faculty of Agriculture, Afghan International Islamic University, Kabul 1004, Afghanistan
| | - Mohammad Naeem Azizi
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| |
Collapse
|
13
|
El-Abbasy MM, Aldhalmi AK, Ashour EA, Bassiony SS, Kamal M, Alqhtani AH, Abou-Kassem DE, Elolimy AA, Abd El-Hack ME, Swelum AA. Enhancing broiler growth and carcass quality: impact of diets enriched with Moringa oleifera leaf powder conjugated with zinc nanoparticles. Poult Sci 2025; 104:104519. [PMID: 39693963 PMCID: PMC11720603 DOI: 10.1016/j.psj.2024.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
This study evaluated the effects of Moringa oleifera leaf powder extract stabilized with zinc nanoparticles (ZnNPs-MLPE) as a natural growth promoter in broiler diets. Randomly assigned 264 one-day-old Ross 308 chicks to four different feeding treatments, with each group being subdivided into six replicates, each comprising 11 unsexed chicks. The control group was fed a basic diet without additives, while the experimental groups were supplemented with 1.0, 2.0, or 3.0 cm³ of ZnNPs-MLPE/L of diet. The findings demonstrated that 2.0 and 3.0 cm³/L ZnNPs-MLPE supplementation significantly enhanced live body weight (LBW) and weight gain (BWG). Feed intake (FI) and feed conversion ratio (FCR) did not show significant differences between the treated groups and the control, indicating that the additive did not negatively affect feed efficiency. However, an increase in abdominal fat was noted in the ZnNPs-MLPE treatments relative to the control. Blood analysis revealed that the ZnNPs-MLPE groups had significantly lower levels of "total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), and alanine transaminase (ALT) compared to the control group. In contrast, total protein (TP), albumin, and the albumin/globulin (A/G) ratio" were higher in the ZnNPs-MLPE groups. Immunoglobulins IgY and IgM, as well as superoxide dismutase (SOD) levels, were elevated. Malondialdehyde (MDA) levels were reduced, indicating improved antioxidant capacity and immune function in the ZnNPs-MLPE-treated groups. In conclusion, supplementation with ZnNPs-MLPE at 2.0 and 3.0 cm³/L positively impacted broiler growth efficiency, antioxidant capacity, and immunological functionality. These findings support the potential of ZnNPs-MLPE as an effective natural growth enhancer for producing healthier poultry products.
Collapse
Affiliation(s)
| | - Ahmed K Aldhalmi
- College of Pharmacy, Al- Mustaqbal University, 51001 Babylon, Iraq
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Samar S Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Diaa E Abou-Kassem
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Egypt
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates;; Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt..
| | | | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Marchetti L, Rebucci R, Lanzoni D, Giromini C, Aidos L, Di Giancamillo A, Cremonesi P, Biscarini F, Castiglioni B, Bontempo V. Dietary supplementation with a blend composed of carvacrol, tannic acid derived from Castanea sativa and Glycyrrhiza glabra, and glycerides of medium chain fatty acids for weanling piglets raised in commercial farm. Vet Res Commun 2024; 48:3773-3791. [PMID: 39269670 PMCID: PMC11538194 DOI: 10.1007/s11259-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study aimed to evaluate the dietary administration of a blend composed of carvacrol, tannic acid derived from Castanea sativa mill and Glycyrrhiza glabra, medium chain fatty acids (MCFAs) glycerides for weanling piglets. An in vitro digestion followed by total phenolic content (TPC) and total antioxidant activity (TAC) assessment was performed before the in vivo application. At weaning, a total of 210 piglets were randomly allocated to two experimental treatments (7 replicates/15 piglets for each replicate). Control group (CTR) was fed a standard basal diet while the treated group (T) was fed the basal diet mixed with 1.500 mg/kg of blend. After in vitro digestion, TPC and TAC evidenced peaks at the end of oral and gastric phases in comparison to the intestinal one in line with the high content of phenolic compound (P < 0.05). Treatment conditioned body weight and average daily gain (P < 0.05), fecal score on 6, 7, and 8 d after weaning (P < 0.05). At 35d, the T group showed a decrease in salivary cortisol compared to CTR (P < 0.05). Duodenum and jejunum sections of T piglets revealed higher villi (P < 0.05), deeper crypts (P < 0.01), and increased V/C ratio (P < 0.01). CTR showed a higher expression of duodenal Occludin (P < 0.05). Jejunal E-cadherin and Occludin were more expressed in T jejunum sections (P < 0.05). Twelve differentially abundant genera were identified in T group caecal samples. Potentially harmful Clostridium sensu stricto 13 was reduced by the treatment (P < 0.05). In conclusion, the tested blend positively affected salivary stress markers and the gut health of weaned piglets.
Collapse
Affiliation(s)
- Luca Marchetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy.
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20100, Italy
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Filippo Biscarini
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Valentino Bontempo
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| |
Collapse
|
15
|
Kober L, Strauch SM, Schwab S, Becker AM, Erzinger GS, Castiglione K. Hop as a phytogenic alternative to antibiotic growth promoters in poultry production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39360504 DOI: 10.1002/jsfa.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
With the rapid growth of the world's population, the demand for food is also increasing. Poultry accounts for 40% of the global meat sector and therefore represents a significant area for further growth. One starting point for increasing production is to refine the composition of feed to improve the efficiency of growth and nutrient utilization, prevent disease and at the same time reduce environmental impact. Similar considerations have led to the long-standing sub-therapeutic use of antibiotics as growth promoters in animal husbandry, which is associated with the threat of rising antimicrobial resistances and the resulting consequences for human and animal health. In order to circumvent these drawbacks, an increasing number of alternative feed additives are becoming more prevalent. The use of phytogenic feed additives, which includes hops (Humulus lupulus), is regarded as a viable alternative. In addition to its natural availability, hops have been demonstrated to exhibit antimicrobial effects and there is increasing evidence of growth-promoting effects in vivo. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Luisa Kober
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian M Strauch
- Postgraduate Program in Health and Environment, University of the Region of Joinville - UNIVILLE, Joinville, Brazil
| | - Stefan Schwab
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna M Becker
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gilmar S Erzinger
- Postgraduate Program in Health and Environment, University of the Region of Joinville - UNIVILLE, Joinville, Brazil
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Pontes KM, Del Vesco AP, Khatlab ADS, Lima Júnior JWR, Cangianelli GH, López JCC, Stivanin TE, Bastos MS, Santana TP, Gasparino E. Effects of inclusion of the blend of essential oils, organic acids, curcumin, tannins, vitamin E, and zinc in the maternal diet, and of incubation temperature on early and late development of quail. Poult Sci 2024; 103:104022. [PMID: 39068694 PMCID: PMC11332855 DOI: 10.1016/j.psj.2024.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
The maternal diet and egg incubation temperature are some of the factors that can influence the embryonic development and performance of the newly chicks at 15 d of age. This study evaluated the effects of adding a blend of organic acids, essential oils, curcumin, tannins, vitamin E, and zinc microencapsulated in to the diet of female quails (Coturnix coturnix japonica) on their productive, reproductive performance and redox parameters of their eggs and the interaction of maternal diet × incubation temperature on embryo (E16 and E18) and chicks development. At 98 d of age, 64 female quails with a mean body weight of 150 g ± 0.5 were distributed into two treatments: a Basal diet or a diet supplemented with blend (Sannimix). The eggs from each female were incubated at 37.5°C (Control) and 38.5°C (High Temperature) throughout the incubation period. After hatching, chicks were distributed in a 2 (maternal diet) × 2 (incubation temperature) factorial design. Female quails supplemented with Sannimix showed better productive and reproductive performance and produced higher-quality embryos. Their offspring had greater weight at hatch and at 15 d of age. The eggs and offspring of supplemented with Sannimix female quails showed better oxidative stability. At E16 and E18, High Temperature increased yolk sac utilization and gene expression of the growth hormone receptor (GHR). At E16, embryos from supplemented with Sannimix female quail had higher expression of insulin-like growth factor type I (IGFI) and heat shock protein 70 kDa genes. At 15 d of age, highest expression of the GHR and IGFI genes was observed in chicks from female quails fed the Sannimix diet, regardless of incubation temperature. Regarding the maternal diet × incubation temperature an improved result was observed for chicks from female quails fed with Sannimix even when eggs are exposed to High Temperature during the incubation. The supplementation of quail diets with blend Sannimix improves productive and reproductive performance, egg quality and their embryos, as well as their offspring quality.
Collapse
Affiliation(s)
- Keila Mileski Pontes
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Ana Paula Del Vesco
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Angélica de Souza Khatlab
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - José Wellington Rodrigues Lima Júnior
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Gabriela Hernandes Cangianelli
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Jessica Carolina Camargo López
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Tádia Emanuele Stivanin
- Graduate Program in Animal Science, Faculty of Agricultural and Veterinary Sciences/Paulista State University "Júlio de Mesquita Filho", Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Marisa Silva Bastos
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Thaís Pacheco Santana
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Eliane Gasparino
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
17
|
Taghizadeh M, Esmaeili H, Vakili R. Cholecalciferol combined with Satureja rechingeri essential oils improves growth performance and immune response of broiler chickens. Vet Med Sci 2024; 10:e1587. [PMID: 39136499 PMCID: PMC11320753 DOI: 10.1002/vms3.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Vitamin D possesses an important role in the maintenance and health of broiler chickens. Herbal essential oils (EOs) have been proposed as a suitable alternative to chemical drugs in intensive production management systems for better performance of broilers with slight side effects and admirable therapeutic properties. OBJECTIVES This experiment was conducted to investigate the effects of feeding cholecalciferol (VD) in combination of Satureja rechingeri EO (SREO) on growth performance, haematological indicators and immunological response of broilers. METHODS A total of 540 1-day-old mixed-sex broiler chickens (Ross 308) were used in a completely randomized design with a 3 × 3 factorial arrangement of treatments. Experimental treatments included different concentrations of cholecalciferol (VD) (0, 2000 and 4000 IU/kg = 0, 0.05 and 0.1 mg/kg) and SREO (0, 200 and 400 mg/kg) on growth performance, haematological indicators and immunological responses of broiler chickens were investigated. RESULTS The results showed that the chicken fed diet supplemented with 0.1 mg/kg VD (VD0.1) in combination of 200 mg/kg SREO (SREO200) increased the feed intake during the overall and first 14-day periods of the trial when compared with other dietary treatments. Interaction of VD0.1 × SREO200 led to more body weight gain (BWG) in the grower and finisher phases than all other feed treatment groups. The blood level of lymphocyte at day 42, heterophil at days 28 and 42 and heterophil/lymphocyte (H/L) ratio at 14 and 28 days of age were affected by VD0.1 + SREO200 in comparison with VD0 + SREO0 group. Feeding VD and/or SREO decreased triglyceride, cholesterol and low-density lipoprotein concentrations at days 28 and 42 of the study, especially in VD0.1 + SREO200 treatment. Feeding VD0.1 + SREO200 also resulted in higher serum status of immunoglobulin M, lysozymes and phagocytic percentage among all treatments. CONCLUSION Considering the outcomes, it is suggested that the combination of suitable concentration of VD and EO of the plant had favourable effects on the immune system and performance criteria of broiler chickens.
Collapse
Affiliation(s)
| | - Hassan Esmaeili
- Department of AgricultureMedicinal Plants and Drugs Research InstituteShahid Beheshti UniversityTehranIran
| | - Reza Vakili
- Animal Science DepartmentKashmar BranchIslamic Azad UniversityKashmarIran
| |
Collapse
|
18
|
Chen CC, Lin CY, Lu HY, Liou CH, Ho YN, Huang CW, Zhang ZF, Kao CH, Yang WC, Gong HY. Transcriptomics and gut microbiome analysis of the edible herb Bidens pilosa as a functional feed additive to promote growth and metabolism in tilapia (Oreochromis spp.). BMC Genomics 2024; 25:785. [PMID: 39138417 PMCID: PMC11323441 DOI: 10.1186/s12864-024-10674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.
Collapse
Affiliation(s)
- Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Yen Lin
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yun Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chyng-Hwa Liou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhong-Fu Zhang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Hsin Kao
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Yi Gong
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
19
|
Zha P, Liu W, Zhou Y, Chen Y. Protective effects of chlorogenic acid on the intestinal barrier of broiler chickens: an immunological stress model study. Poult Sci 2024; 103:103949. [PMID: 38917604 PMCID: PMC11251075 DOI: 10.1016/j.psj.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3β, as well as the translocation of nuclear β-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
20
|
Pasaribu T, Sinurat AP, Silalahi M, Lase JA. Phytogenic cocktails fed in different feeding regimes as alternatives to antibiotics for improving performance, intestinal microbial, and carcass characteristics of slow growth chickens. Vet World 2024; 17:1423-1429. [PMID: 39185039 PMCID: PMC11344117 DOI: 10.14202/vetworld.2024.1423-1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The phytogenic cocktail (PC) is a unique combination of natural plant extracts consisting of coconut shell smoke, clove leaf extract, and mangosteen rind extract, predominantly containing phenol, eugenol, and α-mangostin. Chicken performance can be improved by its antibacterial properties. This study aimed to test PC as a replacement for antibiotic growth promoters (AGPs), assessing its impact on performance, intestinal microbes, and carcass traits in slow growth KUB chickens. Materials and Methods Two hundred and forty KUB chicks were distributed randomly to five dietary groups. Each group constituted six replicates, one replicate contained eight chicks. The treatments included the control diet (CD) with no additives, CD with 50 ppm Zinc bacitracin as an additive (AGPs), CD paired with 198 mL PC/ton feed provided for the initial 12 weeks (PC1), CD with 198 mL PC/ton feed given for the first 4 weeks (PC2), and CD supplied with 198 mL PC/ton feed for the first 8 weeks (PC3). Performance and mortality indicators were assessed during the feeding stage up to 12 weeks of age, while intestinal total microbial count and carcass characteristics were determined at 12 weeks. Duncan's multiple-range test identified differences among the treatments in the randomized experiment. Results The AGPs group weighed significantly more (p < 0.05) than PC2 but not significantly different (p > 0.05) from Control, PC1, and PC3 at 4 weeks. At 8 weeks, there was no significant difference (p > 0.05) in the body weight (BW) between the AGP, CD, and PC groups. The AGPs group had a significantly greater BW than PC1 and PC2 at 12 weeks (p < 0.05), but was comparable to CD and PC3 (p > 0.05). During the starter phase (0-4 weeks), dietary addition of AGPs or PCs significantly reduced feed intake (p < 0.05); however, no significant effect (p > 0.05) was observed during the later feeding periods (0-8 or 0-12 weeks). During the starter period, PC3 yielded the best feed conversion ratio, slightly surpassing AGPs and significantly (p < 0.05) outperforming CD. No significant variations (p > 0.05) were detected in the carcasses among the treatments. The reduction of abdominal fat relative weight was significant (p < 0.05) during the first 8 weeks of PC feeding. After the 12-week trial, no significant difference (p > 0.05) was observed in the proportionate weights of the crop, proventriculus, gizzard, pancreas, cecum, spleen, bursa of Fabricius, heart, and liver. The reduction in the intestinal microbe population due to AGPs or PC was not statistically significant (p > 0.05). About 100% viability was confirmed by the absence of mortality throughout the study. Conclusion PC supplementation in KUB chicken feed enhances their performance. The optimal feeding regimes were effective during the first 8 weeks of age. In the 0-4 week time frame, feeding the PC to the chicken worsened performance whereas no improvement was observed in the 0-12 week period. The application enhanced weight loss, feed efficiency, and reduced abdominal fat. Based on the research findings, the PC can replace AGPs as a feed additive due to comparable or superior improvement results.
Collapse
Affiliation(s)
- Tiurma Pasaribu
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Arnold P. Sinurat
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Marsudin Silalahi
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| | - Jonathan Anugrah Lase
- Research Center for Animal Husbandry, National Research and Innovation Agency, Cibinong Science Center, Cibinong-Bogor 16915, West Java, Indonesia
| |
Collapse
|
21
|
Zhang J, Mao Z, Zheng J, Sun C, Xu G. The Effects of Different Doses of Canthaxanthin in the Diet of Laying Hens on Egg Quality, Physical Characteristics, Metabolic Mechanism, and Offspring Health. Int J Mol Sci 2024; 25:7154. [PMID: 39000258 PMCID: PMC11241014 DOI: 10.3390/ijms25137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve the above issues in detail, our study was conducted with a control group (C group), a low-dose canthaxanthin group (L group), and a high-dose canthaxanthin group (H group), each fed for a period of 40 days. Production performance was monitored during the experiment, in which L and H groups showed a significant increase in ADFI. Eggs were collected for quality analysis, revealing no significant differences in qualities except for yolk color (YC). The YC of the C group almost did not change, ranging from 6.08 to 6.20; however, the trend in YC change in other groups showed an initial intense increase, followed by a decrease, and eventually reached dynamic equilibrium. By detecting the content of canthaxanthin in the yolk, the YC change trend was found to be correlated with canthaxanthin levels in the yolk. The content of unsaturated fatty acid increased slightly in L and H groups. Following the incubation period, the physical characteristics and blood biochemical indices of chicks were evaluated. It was observed that the shank color of chicks in the L and H groups was significantly higher than that in the C group at birth. However, by the 35th day, there were no significant differences in shank color among the three groups. Further investigation into the metabolic mechanism involving canthaxanthin revealed that the substance underwent incomplete metabolism upon entering the body, resulting in its accumulation as well as metabolic by-product accumulation in the yolk. In summary, this study highlighted the importance of understanding canthaxanthin's role in production performance, egg quality, and offspring health, providing valuable insights for breeders to optimize feeding strategies.
Collapse
Affiliation(s)
| | | | | | | | - Guiyun Xu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (Z.M.); (J.Z.); (C.S.)
| |
Collapse
|
22
|
Wang J, Deng L, Chen M, Che Y, Li L, Zhu L, Chen G, Feng T. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:244-264. [PMID: 38800730 PMCID: PMC11127233 DOI: 10.1016/j.aninu.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 05/29/2024]
Abstract
The use of antibiotics in animal production raises great public safety concerns; therefore, there is an urgent need for the development of substitutes for antibiotics. In recent decades, plant-derived feed additives have been widely investigated as antibiotic alternatives for use in animal health and production because they exert multiple biological functions and are less likely to induce resistance development. This review summarizes the research history and classification of phytogenic feed additives and their main functions, potential modes of action, influencing factors, and potential negative effects. Further, we highlight the challenges in developing sustainable, safe, and affordable plant-derived antibiotic alternatives for use in livestock production.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lufang Deng
- Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing 101105, China
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuyan Che
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Longlong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
23
|
Kiskinis K, Mantzios T, Economou V, Petridou E, Tsitsos A, Patsias A, Apostolou I, Papadopoulos GA, Giannenas I, Fortomaris P, Tsiouris V. The In Vitro Antibacterial Activity of Phytogenic and Acid-Based Eubiotics against Major Foodborne Zoonotic Poultry Pathogens. Animals (Basel) 2024; 14:1611. [PMID: 38891658 PMCID: PMC11171102 DOI: 10.3390/ani14111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of the study was to investigate in vitro the antibacterial activity of 8 commercial drinking water additives against major zoonotic poultry pathogens (Campylobacter spp., Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and Listeria spp.). We tested two essential oil-based phytogenics (Phyto CSC Liquide B, AEN 350 B Liquid), two acid-based eubiotics (Salgard® liquid, Intesti-Flora), and four blends of essential oils and organic acids (ProPhorceTM SA Exclusive, Herbal acid, Rigosol-N and Eubisan 3000). The antibacterial activity was determined by estimating the minimum inhibitory concentration (MIC) using a microdilution method. The MICs of the products against Campylobacter spp. ranged from 0.071% to 0.568% v/v, in which Herbal acid, a blend rich in lactic and phosphoric acids, also containing thyme and oregano oils, exhibited the highest efficacy (MIC: 0.071% v/v) against all the tested strains. The MICs of the tested products against Escherichia coli ranged between 0.071% and 1.894% v/v. Specifically, the MIC of Rigosol-N, a blend of high concentrations of lactic and acetic acid, was 0.142% v/v for both tested strains, whereas the MICs of Intesti-Flora, a mixture rich in lactic and propionic acid, ranged from 0.284% to 0.568% v/v. The MICs of the products against Salmonella Typhimurium were between 0.095% and 1.894% v/v. Specifically, the MIC of Eubisan 3000, a blend rich in oregano oil, was 0.284% v/v. The MICs against Staphylococcus aureus were between 0.142% and 9.090% v/v. The MICs of Phyto CSC Liquide B, which is rich in trans-cinnamaldehyde, were between 3.030% and 9.090% v/v, showing the highest MIC values of all tested products. Finally, the MIC values of the tested commercial products against Listeria spp. were 0.095% to 3.030% v/v. The MICs of ProPhorceTM SA Exclusive, a highly concentrated blend of formic acid and its salts, were 0.095-0.142% v/v against Listeria spp., while the MICs of AEN 350 B Liquid were between 0.284% and 1.894% exhibiting high Listeria spp. strain variability. In conclusion, all the selected commercial products exhibited more or less antibacterial activity against pathogenic bacteria and, thus, can be promising alternatives to antibiotics for the control of zoonotic poultry pathogens and the restriction of antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| | - Vangelis Economou
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.E.); (A.T.)
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anestis Tsitsos
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.E.); (A.T.)
| | - Apostolos Patsias
- Agricultural Poultry Cooperation of Ioannina “PINDOS”, Rodotopi, 45500 Ioannina, Greece;
| | - Ioanna Apostolou
- National Reference Laboratory (NRL) for Campylobacter, Veterinary Laboratory of Ioannina, 45221 Ioannina, Greece;
| | - Georgios A. Papadopoulos
- Laboratory of Animal Science, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.A.P.); (P.F.)
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Paschalis Fortomaris
- Laboratory of Animal Science, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.A.P.); (P.F.)
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| |
Collapse
|
24
|
Do ADT, Anthney A, Alharbi K, Asnayanti A, Meuter A, Alrubaye AAK. Assessing the Impact of Spraying an Enterococcus faecium-Based Probiotic on Day-Old Broiler Chicks at Hatch on the Incidence of Bacterial Chondronecrosis with Osteomyelitis Lameness Using a Staphylococcus Challenge Model. Animals (Basel) 2024; 14:1369. [PMID: 38731373 PMCID: PMC11083080 DOI: 10.3390/ani14091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) lameness is a bone disease characterized by the translocation of bacteria from the gastrointestinal tract, which colonize microfractures in broiler leg bones caused by rapid animal growth rate and weight gain, resulting in lameness. As such, BCO lameness represents a significant challenge for the poultry industry. This study aims to evaluate the effect of spraying broiler chicks on d0 at hatch with an Enterococcus faecium probiotic on the incidence of BCO-induced lameness, utilizing a Staphylococcus aureus challenge model. There were four treatments: (1) negative control (no probiotic + no challenge, NC); (2) positive control (no probiotic + challenge, PC); (3) low dosage (4.0 × 108 CFU/chick + challenge, LOW); and (4) high dosage (2.0 × 109 CFU/chick + challenge, HIGH). On d5, groups two through four were challenged with Staphylococcus aureus through the drinking water at a concentration of 1.0 × 105 CFU/mL. Cumulative lameness incidence was determined through daily evaluations and necropsies conducted on lame birds starting from d22. Data were subjected to a binomial general regression analysis (significant p < 0.05). On d56, the PC group exhibited the highest cumulative lameness incidence (58.0%; p < 0.05), followed by LOW (36.0%), HIGH (28.7%), and NC groups (25.3%), respectively. These results suggest early probiotic application at day-of-hatch successfully reduced the incidence of lameness in challenged birds, thus contributing to understanding of efficient and sustainable broiler production.
Collapse
Affiliation(s)
- Anh Dang Trieu Do
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (A.D.T.D.); (K.A.); (A.A.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Amanda Anthney
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (A.D.T.D.); (K.A.); (A.A.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (A.D.T.D.); (K.A.); (A.A.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- National Agency of Drug and Food Control, Jakarta 10520, Indonesia
| | - Antoine Meuter
- Animal and Plant Health & Nutrition, Novonesis, 2970 Hørsholm, Denmark;
| | - Adnan Ali Khalaf Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (A.D.T.D.); (K.A.); (A.A.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
25
|
Biswas S, Ahn JM, Kim IH. Assessing the potential of phytogenic feed additives: A comprehensive review on their effectiveness as a potent dietary enhancement for nonruminant in swine and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:711-723. [PMID: 38264830 DOI: 10.1111/jpn.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024]
Abstract
Phytogenic feed additives (PFAs) often referred to as phytobiotics or botanical feed additives, are natural compounds derived from various plants, herbs, spices and other botanical sources. These feed additives are intended to serve a variety of purposes, including an immune system regulator, an antimicrobial, an antimutagenic, an antioxidant and a growth promoter. They are composed of bioactive compounds extracted from plants, including essential oils, polyphenols, terpenoids and flavonoids. They are mostly utilized as substitute antibiotic growth promoters in nonruminant (swine and poultry) livestock production, owing to the prohibition of antibiotic usage in the feed industry. It has been thoroughly examined to ascertain their impact on intestinal health and activity, correlation with animals' effective health and well-being, productivity, food security and environmental impact. The potential uses of these feed additives depend on the properties of herbs, the comprehension of their principal and secondary components, knowledge of their mechanisms of action, the safety of animals and the products they produce. They are gaining recognition as effective and sustainable tools for promoting animal health and performance while reducing the reliance on antibiotics in nonruminant nutrition. Their natural origins, multifaceted benefits and alignment with consumer preferences make them a valuable addition to modern animal farming process. However, because of their inconsistent effects and inadequate knowledge of the mechanisms of action, their usage as a feed additive has been limited. This review offers a comprehensive assessment of the applications of PFAs as an effective feed supplement in swine and poultry nutrition. In summary, this comprehensive review provides current knowledge, identifies gaps in research and emphasizes the potential of phytogenic additives to foster sustainable and healthier livestock production systems while addressing the global concerns associated with antibiotic use in livestock farming.
Collapse
Affiliation(s)
- Sarbani Biswas
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| | - Je M Ahn
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| |
Collapse
|
26
|
Huang J, Guo F, Abbas W, Hu Z, Liu L, Qiao J, Bi R, Xu T, Zhang K, Huang J, Guo Y, Wang Z. Effects of microencapsulated essential oils and organic acids preparation on growth performance, slaughter characteristics, nutrient digestibility and intestinal microenvironment of broiler chickens. Poult Sci 2024; 103:103655. [PMID: 38537402 PMCID: PMC11067778 DOI: 10.1016/j.psj.2024.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 05/01/2024] Open
Abstract
To develop effective antibiotics alternatives is getting more and more important to poultry healthy production. The study investigated the effects of a microencapsulated essential oils and organic acids preparation (EOA) on growth performance, slaughter performance, nutrient digestibility and intestinal microenvironment of broilers. A total of 624 1-day-old male Arbor Acres broilers were randomly divided into 6 groups including the control group (T1) fed with basal diet, the antibiotic group (T2) supplemented with basal diet with 45 mg/kg bacitracin methylene disalicylate (BMD), and 4 inclusion levels of EOA-treated groups (T3, T4, T5, T6 groups) chickens given basal diet with 200, 400, 600, and 800 mg EOA/kg of diet, respectively. Results showed that compared with the control, the 200 mg/kg EOA group increased average daily gain (ADG) and average body weight (ABW) during the early stage (P < 0.05). EOA addition decreased crypt depth of the ileum (P < 0.05), but villus height to crypt depth ratio was increased by EOA addition at 200 and 400 mg/kg at d 21 (P < 0.05). Compared with the control, dietary addition EOA at 200, 400 and 600 mg/kg increased the lipase activity in the duodenum at d 21 (P < 0.05). Increased lactic acid bacteria population was found in cecal digesta of the 400 mg/kg EOA group at d 21 (P < 0.05), and higher concentration of butyric acid level was observed in cecal digesta at d 21 and d 42 in the 200 mg/kg EOA group compared with the control (P < 0.05). RT-PCR analysis found that dietary EOA addition decreased the gene expression of IL-1β, COX-2 and TGF-β4 in the ileum at d 21 (P < 0.05), while only the 200 mg/kg EOA increased the gene expression of IL-10, TGF-β4, Claudin-1, ZO-1, CATH-1, CATH-3, AvBD-1, AvBD-9 and AvBD-12 in the ileum at d 42 (P < 0.05) compared with the control. In summary, adding 200 mg/kg and 400 mg/kg of the EOA to the diet could improve the growth performance and intestinal microenvironment through improving intestinal morphology, increasing digestive enzymes activity and cecal lactic acid bacteria abundance and butyric acid content, improving intestinal barrier function as well as maintaining intestinal immune homeostasis. The improving effect induced by EOA addition in the early growth stage was better than that in the later growth stage. Overall, the EOA product might be an effective antibiotic alternative for broiler industry.
Collapse
Affiliation(s)
- Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianing Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaichen Zhang
- Shandong Heyi Food Co., Ltd., Zaozhuang City, Shandong Province, China
| | - Jinyu Huang
- Shanghai Meinong Biotechnology Co., Ltd., Shanghai, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
27
|
Nurgaliyev B, Kushmukhanov Z, Kereyev AK, Taubaev U, Sengaliyev Y, Bayantassova S, Abirova I, Satybaev B, Kozhayeva A, Abdrakhmanov R, Paritova A, Zhumabaev A. The efficacy of licorice root extract on meat amino acid, fatty acid, vitamin, and mineral composition and productivity of quail. Vet World 2024; 17:1017-1025. [PMID: 38911091 PMCID: PMC11188887 DOI: 10.14202/vetworld.2024.1017-1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Poultry meat is an excellent animal protein source accessible to many low-income families in developing countries. It is also part of a balanced diet and contains valuable nutrients necessary for maintaining human health. The poultry sector implements improved processes to increase the quality and nutritional value of poultry meat. This study aimed to determine the influence of licorice root extract on the amino acid, fatty acid, vitamin, mineral composition, nutritional value, and productivity of quail meat. Materials and Methods Two groups were formed from Japanese quails: A control group and one experimental group, each consisting of 50 individuals. Quails from both the experimental and control groups received the same complete diet. Quails in the experimental group had licorice root extract added to their water at a dosage of 10 g/L, starting from the age of 3 days to 42 days of growth. At 42 days of age, 30 birds from each group were slaughtered to examine their meat productivity and chemical composition. The quail carcasses were analyzed for the following parameters: Live weight, carcass weight, nutritional value, mineral substances, vitamin content, fatty acid composition, amino acid composition, and amino acid score. Results This study demonstrated that quails in the experimental group receiving water with licorice extract exhibited higher indicators than those in the control group. Calcium (21.05%), magnesium (20.83%), and phosphorus (23.53%) were the most elevated mineral substances in the meat of the experimental birds. Vitamins E (22.22%) and C (20.0%) showed the greatest increase in vitamin content. The fatty acid composition parameters 17:0 margaric acid (8.16%), 18:3 linolenic acid (6.25%), and 20:4 arachidonic acid (4.49%) showed the highest increase. There was a clear increase in the amino acids valine (4.61%), lysine (4.32%), threonine (5.99%), tryptophan (4.87%), phenylalanine (5.87%), and cysteine (14.17%). The application of licorice root extract also positively impacted the amino acid score of quail meat, except for leucine, which remained within the range compared with the control group. Quails in the experimental group weighed 7.96% more live weight before slaughter than the controls. Moreover, the carcass weight was in favor of the experimental group (8.59%). Conclusion The use of licorice root extract positively influences the quality and biological value of quail meat. Data on amino acids, fatty acids, vitamins, trace elements, and other important components of quail meat will significantly expand our understanding of the biological value of licorice root extract. These findings can be used in the formulation of balanced diets for children and adults and highlight the importance of this issue.
Collapse
Affiliation(s)
- Birzhan Nurgaliyev
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Zhenis Kushmukhanov
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Abzal Kenesovich Kereyev
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Utegen Taubaev
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Yerbol Sengaliyev
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Svetlana Bayantassova
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Ilana Abirova
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Berik Satybaev
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Aigerim Kozhayeva
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Rinat Abdrakhmanov
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| | - Assel Paritova
- Department of Veterinary Sanitation, Faculty of Veterinary and Animal Husbandry Technology, Saken Seifullin Kazakh Agro-Technical Research University, Astana 010011, Republic of Kazakhstan
| | - Askhat Zhumabaev
- Department of Veterinary and Biological Safety, Institute of Veterinary Medicine and Animal Husbandry, West Kazakhstan Agrarian and Technical University named after Zhangir khan, Uralsk 090009, Republic of Kazakhstan
| |
Collapse
|
28
|
Xu D, Wang X, Shi W, Bao Y. Lonicera flos and Curcuma longa L. extracts improve growth performance, antioxidant capacity and immune response in broiler chickens. Front Vet Sci 2024; 11:1388632. [PMID: 38681856 PMCID: PMC11045969 DOI: 10.3389/fvets.2024.1388632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Alternatives to antibiotics are urgently needed to maintain broiler growth and health. The present study was conducted to evaluate the effects of Lonicera flos and Curcuma longa L. extracts (LCE) as antibiotic substitutes on growth performance, antioxidant capacity and immune response in broilers. A total of 480 one-day-old female broilers (WOD168) were allocated to 3 treatments with 5 replicates of 32 birds for 35 days. The 3 treatments were: an antibiotic-free basal diet (control, CON), CON +50 mg/kg spectinomycin hydrochloride and 25 mg/kg lincomycin hydrochloride (ANT), CON +500 mg/kg LCE (LCE). During the entire experimental period, supplementation of ANT and LCE increased (p < 0.01) average daily gain (ADG) and decreased (p < 0.05) feed conversion ratio (FCR), thereby resulting in greater final body weight (BW) compared with CON. Dietary LCE supplementation increased (p < 0.05) serum (glutathione peroxidase) GSH-Px, (superoxide dismutase) SOD and total antioxidant capacity (T-AOC) activities, and decreased (p < 0.05) serum malonaldehyde (MDA) concentration at day 35 compared with CON. There was no significant difference in serum catalase (CAT) activity among treatments. Birds in LCE group had lower (p < 0.05) MDA concentration and higher SOD activity in liver than those in CON and ANT groups at day 35. Birds in LCE group had higher (p < 0.05) phagocytic index and serum antibody titers to Newcastle disease virus (NDV) than those in CON group. Lower (p < 0.05) concentrations of pro-inflammatory cytokines and higher (p < 0.05) concentrations of anti-inflammatory cytokines in serum and liver were observed in birds fed LCE diet than those fed CON diet. In conclusion, dietary supplementation of LCE improved growth performance by enhancing antioxidant capacity, strengthening immune system and alleviating inflammation, which has potential as antibiotic alternatives.
Collapse
Affiliation(s)
- Dahai Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
- Hebei Provincial Traditional Chinese Veterinary Medicine Technology Innovation Center, Baoding, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
| |
Collapse
|
29
|
Balenović M, Janječić Z, Savić V, Kasap A, Popović M, Šimpraga B, Sokolović M, Bedeković D, Kiš G, Zglavnik T, Špoljarić D, Krstulović F, Listeš I, Zelenika TA. Immunostimulatory and Antibacterial Effects of Cannabis sativa L. Leaves on Broilers. Animals (Basel) 2024; 14:1159. [PMID: 38672306 PMCID: PMC11047609 DOI: 10.3390/ani14081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to evaluate the effect of dried Cannabis sativa L. leaves as a phytogenic mixture added to broiler feed on CD4+ and CD8+ T lymphocyte subpopulations, Newcastle disease virus (NDV) antibody titres, and the presence of E. coli in faecal samples. The study was conducted on 100 male Ross 308 broilers, divided into four groups of 25 broilers, for a 42-day research period. The groups were housed separately in boxes on a litter of softwood shavings and were fed starter mixture from day 1 to day 21 and finisher mixture from day 22 to day 42. Industrial hemp (C. sativa) was grown in the Crkvina area, Croatia (latitude: 45°18'46.8″ N; longitude: 15°31'30″ E). The hemp leaves were manually separated, sun-dried, and ground to a powder. The mixture offered to the control group did not contain cannabis leaves, whereas the three experimental groups received mixtures containing mixed cannabis leaves in a quantity of 10 g/kg, 20 g/kg, or 30 g/kg (E_10, E_20, and E_30, respectively). The mean NDV antibody level was uniform in all study groups until post-vaccination day 14 and increased comparably with time. The percentage of CD4+ and CD8+ lymphocytes in the peripheral blood subpopulation showed statistically significant differences (p < 0.001) in the E_20 group as compared with the control group and both the E_10 and E_30 groups throughout the study period. As the broiler age increased, the CD4+-to-CD8+ ratios also increased and were statistically significant (p < 0.0001) on day 42 in all experimental groups as compared to the control group. Comparing the control group with the experimental groups indicated that the bacterial count was lower in broiler groups having received feed with the addition of 20 g/kg and 30 g/kg C. sativa leaves. In conclusion, the C. sativa leaves were found to elicit a favourable immunomodulatory effect on cell-mediated and humoral immune responses in broilers via increased CD4+ and CD8+ lymphocyte subpopulations and higher CD4+:CD8+ cell ratios, thus indicating enhanced immune function capacity. In addition, C. sativa leaves may have complementary effects on the broiler post-vaccination immune response, increase broilers' resistance to infectious diseases, reduce the effect of stress associated with vaccination, and improve broiler health and welfare.
Collapse
Affiliation(s)
- Mirta Balenović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Zlatko Janječić
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Vladimir Savić
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Ante Kasap
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Maja Popović
- Department of Veterinary Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia
| | - Borka Šimpraga
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Marijana Sokolović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Dalibor Bedeković
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Goran Kiš
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Tihomir Zglavnik
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Daniel Špoljarić
- Department of Veterinary Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia
| | - Fani Krstulović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Irena Listeš
- Regional Veterinary Institute Split, Croatian Veterinary Institute, Poljička Cesta 33, 21000 Split, Croatia
| | - Tajana Amšel Zelenika
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| |
Collapse
|
30
|
Mullenix GJ, Greene ES, Ramser A, Maynard C, Dridi S. Effect of a microencapsulated phyto/phycogenic blend supplementation on growth performance, processing parameters, meat quality, and sensory profile in male broilers. Front Vet Sci 2024; 11:1382535. [PMID: 38605922 PMCID: PMC11007207 DOI: 10.3389/fvets.2024.1382535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Powered by consumer taste, value, and preferences, natural products including phytogenics and algae are increasingly and separately used in the food systems where they have been reported to improve growth performance in poultry and livestock. The present study aimed to determine the effects of a new feed additive, microencapsulated NUQO© NEX, which contains a combination of phytogenic and phycogenic, on broiler growth performance, blood chemistry, bone health, meat quality and sensory profile. Male Cobb500 chicks (n = 1,197) were fed a 3-phase feeding intervals; 1-14d starter, 15-28d grower, and 29-40d finisher. The dietary treatments included a corn-soy basal Control (CON), basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 28d then 75 g/ton from d 28 to 40 (NEX75), and basal diet supplemented with NUQO© NEX at 100 g/ton from 1 to 40d (NEX100). The NEX100 supplemented birds had 62 g more BWG increase and 2.1-point improvement in FCR compared with CON in the finisher and overall growth phase (p < 0.05), respectively. Day 40 processing body weights and carcass weights were heavier for the NEX100 supplemented birds (p < 0.05). The incidences of muscle myopathies were also higher in NEX treatments, which could be associated with the heavier weights, but the differences were not detected to be significant. The NEX75 breast filets had more yellowness than other dietary treatments (p = 0.003) and the NEX 100 treatment reduced the levels of breast filet TBARS at 7 days-post harvest (p = 0.053). Finally, both NEX treatments reduced the incidence of severe bone (tibia and femur) lesions. In conclusion, the supplementation of the phytogenic NUQO© NEX improved finisher performance parameters, whole phase FCR, processing carcass weights, and breast filet yellowness, at varying inclusion levels.
Collapse
Affiliation(s)
| | | | | | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
31
|
Sharma MK, Kim WK. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals (Basel) 2024; 14:1015. [PMID: 38612254 PMCID: PMC11010854 DOI: 10.3390/ani14071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian coccidiosis, despite advancements in management, nutrition, genetics, and immunology, still remains the most impactful disease, imposing substantial economic losses to the poultry industry. Coccidiosis may strike any avian species, and it may be mild to severe, depending on the pathogenicity of Eimeria spp. and the number of oocysts ingested by the bird. Unlike broilers, low emphasis has been given to laying hens. Coccidiosis in laying hens damages the gastrointestinal tract and causes physiological changes, including oxidative stress, immunosuppression, and inflammatory changes, leading to reduced feed intake and a drastic drop in egg production. Several countries around the world have large numbers of hens raised in cage-free/free-range facilities, and coccidiosis has already become one of the many problems that producers have to face in the future. However, limited research has been conducted on egg-laying hens, and our understanding of the physiological changes following coccidiosis in hens relies heavily on studies conducted on broilers. The aim of this review is to summarize the effect of coccidiosis in laying hens to an extent and correlate it with the physiological changes that occur in broilers following coccidiosis. Additionally, this review tries to explore the nutritional strategies successfully used in broilers to mitigate the negative effects of coccidiosis in improving the gut health and performance of broilers and if they can be used in laying hens.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
32
|
Moore RJ. Necrotic enteritis and antibiotic-free production of broiler chickens: Challenges in testing and using alternative products. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:288-298. [PMID: 38371475 PMCID: PMC10869589 DOI: 10.1016/j.aninu.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 02/20/2024]
Abstract
The global trend towards raising broiler chickens without the use of in-feed antibiotics (IFAs) means that there is an ongoing need to develop alternative treatments capable of delivering the benefits that IFAs previously provided. IFAs supported the productivity performance of chickens and played a key role in maintaining their health. Necrotic enteritis (NE) is an important disease of broilers that affects health, productivity, and welfare, and was previously well controlled by IFAs. However, with the reduction in IFA use, NE is resurgent in some countries. Vaccines and various feed additives, including pre-, pro-, and postbiotics, phytobiotics, fatty acids, and phage therapies have been introduced as alternative methods of NE control. While some of these feed additives have specific activity against the NE pathogen, Clostridium perfringens, most have the more general goal of reinforcing gut health. Extensive reviews of the effects of many of these feed additives on gut health have been published recently. Hence, rather than cover previously well reviewed areas of research this review focuses on the challenges and pitfalls in undertaking experimental assessment of alternative NE treatments and translating laboratory research to real world commercial production settings. The review is based on the author's particular experience, reading, thoughts, and analysis of the available information and inevitably presents a particular understanding that is likely to be at odds with others thinking on these issues. It is put forward to stimulate thinking and discussion on the issues covered.
Collapse
Affiliation(s)
- Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
33
|
Djilianov D, Moyankova D, Mladenov P, Topouzova-Hristova T, Kostadinova A, Staneva G, Zasheva D, Berkov S, Simova-Stoilova L. Resurrection Plants-A Valuable Source of Natural Bioactive Compounds: From Word-of-Mouth to Scientifically Proven Sustainable Use. Metabolites 2024; 14:113. [PMID: 38393005 PMCID: PMC10890500 DOI: 10.3390/metabo14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Resurrection plant species are a group of higher plants whose vegetative tissues are able to withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from being a model system for studying desiccation tolerance, resurrection plant species appear to be a valuable source of metabolites, with various areas of application. A significant number of papers have been published in recent years with respect to the extraction and application of bioactive compounds from higher resurrection plant species in various test systems. Promising results have been obtained with respect to antioxidative and antiaging effects in various test systems, particularly regarding valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and propose potential mechanisms of action of myconoside-a predominant secondary compound in the European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the sustainable use of natural products derived from resurrection plants.
Collapse
Affiliation(s)
- Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski', 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 21 Bldg. Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| |
Collapse
|
34
|
Bonetti A, Tugnoli B, Ghiselli F, Markley G, Cooper E, Piva A, Stahl CH, Grilli E. A microencapsulated blend of botanicals supports weaning piglets during a lipopolysaccharide challenge by modulating liver inflammation and intestinal integrity. J Anim Sci 2024; 102:skae277. [PMID: 39289925 PMCID: PMC11465407 DOI: 10.1093/jas/skae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
This study examined the action of a blend of botanicals (BOT) against lipopolysaccharide (LPS)-induced inflammation on cultured hepatocytes and weaning piglets. In vitro studies examined HepG2 cells treated with BOT and challenged with Escherichiacoli LPS for 8 d. BOT treatment reduced IL-6 concentration in cell culture media across time (P < 0.05) and decreased pro-inflammatory cytokine expression on days 1 and 8 of experiment (TNFα, IL-1β; P < 0.05). BOT also increased the expression of antioxidant enzymes (GPX-2, SOD, CAT) on day 8 (P < 0.05), which was supported by lowered reactive oxygen species concentration after LPS challenge (P < 0.1). The in vivo study was conducted with 72 weaning pigs, allotted into 24 pens and divided into 3 groups: a negative control (CTR-, basal diet), a challenged control (CTR+) that received an intraperitoneal injection of E. coli O55:B5 LPS on days 14 and 16, and a challenged treated group which received a diet containing 1.5 g/kg of microencapsulated BOT (BOT+) for the whole duration of the study. Growth performance was determined weekly and, on days 21 (1 animal per pen) and 28 (remaining animals), pigs were sacrificed to collect liver and jejunal tissues. After the challenge, BOT+ pigs had increased BW on days 21 (P < 0.05) and 28 (P < 0.1) compared to CTR+. Similar improvements in average daily gain and FCR on days 14 to 21 (P < 0.05) and 21 to 28 (P < 0.1) were also seen in BOT+ group. In the liver, compared to CTR+ pigs, BOT+ pigs had downregulated expression of TLR-4, IL-6, IFN-γ on day 21 (P < 0.05), and TLR-4, TNF-α, IL-8 on day 28 (P < 0.05). BOT+ also increased GPX-2 expression on days 21 and 28 (P < 0.05), while also upregulating SOD-1 and SOD-2 on day 21 (P < 0.05) and CAT on day 28 (P < 0.05) compared to CTR+. In the jejunum, BOT+ reduced inflammation by affecting cytokine expression (P < 0.05) and increasing the expression of tight-junction proteins, ZO-1 on day 21 and CLD-1 on day 28 (P < 0.05). Furthermore, BOT+ pigs had lower crypt depth on days 21 (P < 0.1) and 28 (P < 0.05), and increased villi-to-crypt ratio on days 21 and 28 (P < 0.05). By day 28, BOT+ intestinal measurements were restored to values similar to the CTR-. Finally, BOT+ also reduced mast cell activation on day 21 (P < 0.05) compared to CTR+. Considering all the findings, BOT controlled inflammatory activation and oxidative stress in liver cells, enhanced intestinal integrity, and as a result improved the growth performance of weaning piglets challenged with LPS.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | | | | | - Grace Markley
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, MD, USA
| | - Elizabeth Cooper
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, MD, USA
| | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Chad H Stahl
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, MD, USA
- Vetagro Inc., Chicago 60603, IL, USA
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Bologna, Italy
- Vetagro Inc., Chicago 60603, IL, USA
| |
Collapse
|
35
|
Ahmad R, Yu YH, Hua KF, Chen WJ, Zaborski D, Dybus A, Hsiao FSH, Cheng YH. Management and control of coccidiosis in poultry - A review. Anim Biosci 2024; 37:1-15. [PMID: 37641827 PMCID: PMC10766461 DOI: 10.5713/ab.23.0189] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Daniel Zaborski
- Department of Ruminants Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin,
Poland
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-310 Szczecin,
Poland
| | - Felix Shih-Hsiang Hsiao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| |
Collapse
|
36
|
Biswas S, Cho S, Ahn JM, Kim IH. Influences of flavonoid (quercetin) inclusion to corn-soybean-gluten meal-based diet on broiler performance. J Anim Physiol Anim Nutr (Berl) 2024; 108:64-71. [PMID: 37555477 DOI: 10.1111/jpn.13868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/09/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Quercetin (a predominant flavonoid) is considered to have antimicrobial and antioxidant properties. This trial was conducted to evaluate the impact of graded doses of quercetin (QS) on growth efficiency, nutrient retention, faecal score, footpad lesion score, tibia ash and meat quality. In a 32-day feeding test, a total of 576 1-day-old Ross 308 broilers (male) were allocated arbitrarily with an average body weight of 41 ± 0.5 g. The trial had four dietary treatments with eight repetitions of 18 birds per pen and a basal diet incorporating 0%, 0.02%, 0.04% and 0.06% of QS. As the QS dosage increased, body weight gain tended to increase linearly on Days 9-21 (p = 0.069) and overall period (p = 0.079). Similarly, feed intake increased (p = 0.009) linearly with the increasing doses of QS on Days 9-21. Likewise, there was a linear improvement in dry matter (p = 0.002) and energy (p = 0.016) digestibility after QS administration. Moreover, the inclusion of QS supplement (0%-0.06%) linearly increased (p = 0.012) tibia ash in broilers. However, the faecal score and footpad lesion score showed no significant outcome (p > 0.05). By giving broilers a graded amount of QS, the relative organ weights of breast muscle (p = 0.009) and spleen (p = 0.006) improved linearly, meat colour lightness increased (p = 0.015), redness tended to improve (p = 0.065) linearly and drip loss decreased (p = 0.015) linearly. The inclusion of QS in the graded-level diet led to improvements in growth efficiency, nutrient absorption, meat quality and tibia ash, which recommended it as a beneficial feed additive for the broiler.
Collapse
Affiliation(s)
- Sarbani Biswas
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| | - Je Min Ahn
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| |
Collapse
|
37
|
Smaoui S, Tarapoulouzi M, Agriopoulou S, D'Amore T, Varzakas T. Current State of Milk, Dairy Products, Meat and Meat Products, Eggs, Fish and Fishery Products Authentication and Chemometrics. Foods 2023; 12:4254. [PMID: 38231684 DOI: 10.3390/foods12234254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Food fraud is a matter of major concern as many foods and beverages do not follow their labelling. Because of economic interests, as well as consumers' health protection, the related topics, food adulteration, counterfeiting, substitution and inaccurate labelling, have become top issues and priorities in food safety and quality. In addition, globalized and complex food supply chains have increased rapidly and contribute to a growing problem affecting local, regional and global food systems. Animal origin food products such as milk, dairy products, meat and meat products, eggs and fish and fishery products are included in the most commonly adulterated food items. In order to prevent unfair competition and protect the rights of consumers, it is vital to detect any kind of adulteration to them. Geographical origin, production methods and farming systems, species identification, processing treatments and the detection of adulterants are among the important authenticity problems for these foods. The existence of accurate and automated analytical techniques in combination with available chemometric tools provides reliable information about adulteration and fraud. Therefore, the purpose of this review is to present the advances made through recent studies in terms of the analytical techniques and chemometric approaches that have been developed to address the authenticity issues in animal origin food products.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology, and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax 3029, Tunisia
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Teresa D'Amore
- IRCCS CROB, Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, Italy
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
38
|
Ou BR, Hsu MH, Haung LY, Lin CJ, Kuo LL, Tsai YT, Chang YC, Lin WY, Huang TC, Wu YC, Yeh JY, Liang YC. Systematic Myostatin Expression Screening Platform for Identification and Evaluation of Myogenesis-Related Phytogenic in Pigs. Bioengineering (Basel) 2023; 10:1113. [PMID: 37892843 PMCID: PMC10604025 DOI: 10.3390/bioengineering10101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.
Collapse
Affiliation(s)
- Bor-Rung Ou
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan;
| | - Ling-Ya Haung
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Chuan-Ju Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Li-Li Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Yu-Ting Tsai
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Yu-Chia Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Wen-Yuh Lin
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Tsung-Chien Huang
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Yun-Chu Wu
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Jan-Ying Yeh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
- College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
39
|
Vasilopoulou K, Papadopoulos GA, Lioliopoulou S, Pyrka I, Nenadis N, Savvidou S, Symeon G, Dotas V, Panitsidis I, Arsenos G, Giannenas I. Effects of Dietary Supplementation of a Resin-Purified Aqueous-Isopropanol Olive Leaf Extract on Meat and Liver Antioxidant Parameters in Broilers. Antioxidants (Basel) 2023; 12:1723. [PMID: 37760026 PMCID: PMC10525201 DOI: 10.3390/antiox12091723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Olive leaves are byproducts οf the agro-industrial sector and are rich in bioactive compounds with antioxidant properties. They could be supplemented in poultry diets powdered or less frequently as extracts to improve performance, health and product quality. The objective of this study was to investigate the possible beneficial effects of an aqueous isopropanol olive leaf extract-purified through filtration (250-25 µm) and a resin (XAD-4)-when supplemented in broiler chickens' diets, on meat quality parameters, focusing mainly on antioxidant parameters as there is limited published information. For this purpose, four-hundred-and-eighty-day-old broilers were randomly assigned to four dietary treatments: T1 (control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (positive control: 0.1% encapsulated oregano oil commercially used as feed additive). At the end of the experimental period (day 42), the birds were slaughtered, and samples from breast, thigh meat and liver were collected for antioxidant parameters evaluation. On day 1, after slaughter, in thigh meat, Malondialdehyde (MDA) was lower in T2 compared to T3, and total phenolic content (TPC) was higher in T2 compared to T3 and T4. Total antioxidant capacity (TAC) was increased in T2 and T4 breast meat compared to the control. In liver, T4 treatment resulted in higher TPC. The lack of dose-dependent effect for olive leaf extract may be attributed to the pro-oxidant effects of some bioactive compounds found in olive leaves, such as oleuropein, when supplemented at higher levels. In summary, it can be inferred that the inclusion of 1% olive leaf extract in the feed of broilers has the potential to mitigate oxidation in broiler meat and maybe enhance its quality.
Collapse
Affiliation(s)
- Konstantina Vasilopoulou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Soumela Savvidou
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - George Symeon
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - Vassilios Dotas
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Panitsidis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
40
|
Blue CEC, Emami NK, White MB, Cantley S, Dalloul RA. Inclusion of Quillaja Saponin Clarity Q Manages Growth Performance, Immune Response, and Nutrient Transport of Broilers during Subclinical Necrotic Enteritis. Microorganisms 2023; 11:1894. [PMID: 37630454 PMCID: PMC10456759 DOI: 10.3390/microorganisms11081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Necrotic enteritis (NE) is an intestinal disease that results in poor performance, inefficient nutrient absorption, and has a devastating economic impact on poultry production. This study evaluated the effects of a saponin-based product (Clarity Q, CQ) during an NE challenge. A total of 1200 male chicks were randomly assigned to four dietary treatments (10 pens/treatment; 30 birds/pen): treatment 1 (NC), a non-medicated corn-soybean basal diet; treatment 2 (PC), NC + 50 g/metric ton (MT) of bacitracin methylene disalicylate (BMD); and treatments 3 (CQ15) and 4 (CQ30), NC + 15 and 30 g/MT, respectively. On the day (d) of placement, birds were challenged by a coccidia vaccine to induce NE. On d 8, 14, 28, and 42, performance parameters were measured. On d 8, three birds/pen were necropsied for NE lesions. On d 8 and d 14, jejunum samples from one bird/pen were collected for mRNA abundance of tight junction proteins and nutrient transporter genes. Data were analyzed in JMP (JMP Pro, 16), and significance (p ≤ 0.05) between treatments was identified by Fisher's least significant difference (LSD) test. Compared to PC and NC, CQ15 had higher average daily gain (ADG), while CQ30 had lower average daily feed intake (ADFI) and feed conversion ratio (FCR). NE lesions in the duodenum were lower in CQ15 compared to all other treatments. On d 8, mRNA abundance of CLDN1, CLDN5, AMPK, PepT2, GLUT2, and EAAT3 were significantly greater in CQ30 (p < 0.05) compared to both PC and NC. On d 14, mRNA abundance of ZO2 and PepT2 was significantly lower in PC when compared to all treatments, while that of ANXA1, JAM3, and GLUT5 was comparable to CQ15. In summary, adding Clarity Q to broiler diets has the potential to alleviate adverse effects caused by this enteric disease by improving performance, reducing intestinal lesions, and positively modulating the mRNA abundance of various tight junction proteins and key nutrient transporters during peak NE infection.
Collapse
Affiliation(s)
- Candice E. C. Blue
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Nima K. Emami
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mallory B. White
- School of STEM, Virginia Western Community College, Roanoke, VA 24015, USA
| | | | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
41
|
Hu Z, Liu L, Guo F, Huang J, Qiao J, Bi R, Huang J, Zhang K, Guo Y, Wang Z. Dietary supplemental coated essential oils and organic acids mixture improves growth performance and gut health along with reduces Salmonella load of broiler chickens infected with Salmonella Enteritidis. J Anim Sci Biotechnol 2023; 14:95. [PMID: 37391807 DOI: 10.1186/s40104-023-00889-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/03/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Reducing Salmonella infection in broiler chickens by using effective and safe alternatives to antibiotics is vital to provide safer poultry meat and minimize the emergence of drug-resistant Salmonella and the spread of salmonellosis to humans. This study was to first evaluate the protective efficacy of feeding coated essential oils and organic acids mixture (EOA) on broiler chickens infected with Salmonella Enteritidis (S. Enteritidis, SE), and then its action mechanism was further explored. METHODS A total of 480 1-day-old Arbor Acres male chickens were randomly assigned into five treatments with six replicates, including non-challenged control fed with basal diet (A), SE-challenged control (B), and SE-infected birds fed a basal diet with 300 mg/kg of EOA (BL), 500 mg/kg of EOA (BM) and 800 mg/kg of EOA (BH), respectively. All birds on challenged groups were infected with Salmonella Enteritidis on d 13. RESULTS: Feeding EOA showed a reversed ability on negative effects caused by SE infection, as evidenced by decreasing the feed conversion rate (FCR) and the ratio of villus height to crypt depth (VH/CD) (P < 0.05), obviously decreasing intestinal and internal organs Salmonella load along with increasing cecal butyric acid-producing bacteria abundance (P < 0.05). Moreover, supplemental different levels of EOA notably up-regulated claudin-1 (CLDN-1), occludin (OCLN), zonula occludens-1 (ZO-1), mucin-2 (MUC-2), fatty acid binding protein-2 (FABP-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differential protein-88 (MyD88) and interleukin-6 (IL-6) mRNA levels in the ileum of the infected chickens after challenge, whereas down-regulated toll-like receptor-4 (TLR-4) mRNA levels (P < 0.05). Linear discriminant analysis combined effect size measurements analysis (LEfSe) showed that the relative abundance of g_Butyricicoccus, g_Anaerotruncus and g_unclassified_f_Bacillaceae significantly was enriched in infected birds given EOA. Also, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed that alpha-linolenic acid metabolism, fatty acid metabolism and biosynthesis of unsaturated fatty acids were significantly enriched in the EOA group. CONCLUSION Our data suggest that the essential oils and organic acids mixture can be used as an effective strategy to ameliorate and alleviate Salmonella Enteritidis infection in broilers.
Collapse
Affiliation(s)
- Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianing Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinyu Huang
- Shanghai Meinong Biotechnology Co., Ltd., Shanghai, China
| | - Kaichen Zhang
- Shandong Heyi Food Co., Ltd., Zaozhuang City, Shandong Province, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
42
|
Szabó RT, Kovács-Weber M, Zimborán Á, Kovács L, Erdélyi M. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes-A Review. Molecules 2023; 28:4956. [PMID: 37446617 DOI: 10.3390/molecules28134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
The non-therapeutic use of antimicrobials in poultry production contributes to the spread of drug-resistant pathogens in both birds and humans. Antibiotics are known to enhance feed efficiency and promote the growth and weight gain of poultry. New regulatory requirements and consumer preferences have led to a reduced use of antibiotics in poultry production and to the discovery of natural alternatives to antibiotic growth promoters. This interest is not only focused on the direct removal or inhibition of causative microorganisms but also on the prevention of diseases caused by enteric pathogens using a range of feed additives. A group of promising feed additives is composed of short- and medium-chain fatty acids (SCFAs and MCFAs) and their derivatives. MCFAs possess antibacterial, anticoccidial, and antiviral effects. In addition, it has been proven that these acids act in synergy if they are used together with organic acids, essential oils, or probiotics. These fatty acids also benefit intestinal health integrity and homeostasis in broilers. Other effects have been documented as well, such as an increase in intestinal angiogenesis and the gene expression of tight junctions. The aim of this review is to provide an overview of SCFAs and MCFAs as alternatives to antibiotic growth promoters and to summarize the current findings in the literature to show their possible benefits on production, meat quality, and gut health in poultry.
Collapse
Affiliation(s)
- Rubina Tünde Szabó
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mária Kovács-Weber
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Ágnes Zimborán
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Levente Kovács
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Márta Erdélyi
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
43
|
Park I, Nam H, Wickramasuriya SS, Lee Y, Wall EH, Ravichandran S, Lillehoj HS. Host-mediated beneficial effects of phytochemicals for prevention of avian coccidiosis. Front Immunol 2023; 14:1145367. [PMID: 37334385 PMCID: PMC10272459 DOI: 10.3389/fimmu.2023.1145367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Both in vitro and in vivo studies were conducted to evaluate the beneficial effects of green tea extract (GT), cinnamon oil (CO), and pomegranate extract (PO) on avian coccidiosis. In experiment (EXP) 1, an in vitro culture system was used to investigate the individual effects of GT, CO, and PO on the proinflammatory cytokine response and integrity of tight junction (TJ) in chicken intestinal epithelial cells (IEC), on the differentiation of quail muscle cells and primary chicken embryonic muscle cells, and anticoccidial and antibacterial activities against Eimeria tenella sporozoites and Clostridium perfringens bacteria, respectively. In EXP 2 and 3, in vivo trials were carried out to study the dose-dependent effect of blended phytochemicals (GT, CO, PO) on coccidiosis in broiler chickens infected with E. maxima. For EXP 2, one hundred male broiler chickens (0-day-old) were allocated into the following five treatment groups: Control group for non-infected chickens (NC), Basal diet group for E. maxima-infected chickens (PC), PC group supplemented with phytochemicals at 50 (Phy 50), 100 (Phy 100), and 200 (Phy 200) mg/kg feed diets for E. maxima-infected chickens. For EXP 3, one hundred twenty male broiler chickens (0-day-old) were allocated into the following six treatment groups: NC, PC, PC supplemented with phytochemicals at 10 (Phy 10), 20 (Phy 20), 30 (Phy 30), and 100 (Phy 100) mg/kg feed for E. maxima-infected chickens. Body weights (BW) were measured on days 0, 7, 14, 20, and 22, and jejunum samples were used to measure cytokine, TJ protein, and antioxidant enzyme responses at 8 days post-infection (dpi). Fecal samples for oocyst enumeration were collected from 6 to 8 dpi. In vitro, CO and PO reduced LPS-induced IL-1β and IL-8 in IEC, respectively, and GT enhanced the gene expression of occludin in IEC. PO at 1.0 and 5.0 mg/mL exerted antimicrobial effect against E. tenella sporozoites and C. perfringens bacteria, respectively. In vivo, chickens fed a diet supplemented with phytochemicals showed enhanced BW, reduced oocyst shedding, and decreased proinflammatory cytokines following E. maxima challenge. In conclusion, the combination of GT, CO, and PO in the diet of broiler chickens infected with E. maxima induced enhanced host disease resistance including innate immunity and gut health, which contributed to improved growth and reduced disease responses. These findings provide scientific support for the development of a novel phytogenic feed additive formula that enhances the growth and intestinal health of broiler chickens infected with coccidiosis.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Emma H. Wall
- AVT Natural North America, Santa Clara, CA, United States
| | | | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
44
|
Phillips CJC, Hosseintabar-Ghasemabad B, Gorlov IF, Slozhenkina MI, Mosolov AA, Seidavi A. Immunomodulatory Effects of Natural Feed Additives for Meat Chickens. Life (Basel) 2023; 13:1287. [PMID: 37374069 DOI: 10.3390/life13061287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Broiler chickens are increasingly kept in large numbers in intensive housing conditions that are stressful, potentially depleting the immune system. With the prohibition of the use of antibiotics in poultry feed spreading worldwide, it is necessary to consider the role of natural feed additives and antibiotic alternatives to stimulate the chickens' immune systems. We review the literature to describe phytogenic feed additives that have immunomodulatory benefits in broilers. We initially review the major active ingredients from plants, particularly flavonoids, resveratrol and humic acid, and then describe the major herbs, spices, and other plants and their byproducts that have immunomodulatory effects. The research reviewed demonstrates the effectiveness of many natural feed additives in improving the avian immune system and therefore broiler health. However, some, and perhaps all, additives have the potential to reduce immunocompetence if given in excessive amounts. Sometimes additives are more effective when given in combination. There is an urgent need to determine tolerance levels and optimum doses for additives deemed most suitable to replace antibiotics in the diet of broiler chickens. Effective replacement is most likely with readily available additives, such as olive oil byproducts, olive leaves and alfalfa. It is concluded that effective replacement of antibiotic function with plant-derived additives will be possible, but that further research is necessary to determine optimum doses.
Collapse
Affiliation(s)
- Clive J C Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Kent St., Bentley 6102, Australia
| | | | - Ivan F Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, 400131 Volgograd, Russia
| | - Marina I Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, 400131 Volgograd, Russia
| | - Aleksandr A Mosolov
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, 400131 Volgograd, Russia
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 41335-3516, Iran
| |
Collapse
|
45
|
Hussein EOS, Suliman GM, Al-Owaimer AN, Al-Baadani HH, Al-Garadi MA, Ba-Awadh HA, Qaid MM, Swelum AA. Effect of water supplementation of Magic oil at different growing periods on growth performance, carcass traits, blood biochemistry, and ileal histomorphology of broiler chickens. Poult Sci 2023; 102:102775. [PMID: 37269792 PMCID: PMC10242640 DOI: 10.1016/j.psj.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
Natural antibiotic substitutes have recently been used as growth promoters and to combat pathogens. Therefore, this study aimed to assess the effects of adding Magic oil (nano-emulsified plant oil) at different growing periods on growth performance, histomorphology of the ileum, carcass traits, and blood biochemistry of broiler chickens. A total of 432-day-old Ross 308 chicks were randomly assigned to 1 of 6 water supplementation treatment groups based on growing periods, with 4 groups of Magic oil programs compared to probiotic (Albovit) as a positive control and nonsupplemented group as a negative control, with 9 replicates each with 8 birds (4♂ and 4♀). The periods of adding Magic oil Magic oil were 35, 20, 23, and 19 d for T1, T2, T3, and T4, respectively. Birds' performance was evaluated during 0 to 4, 4 to 14, 21 to 30, 30 to 35, and overall days old. Carcass parameters, blood chemistry, and ileal histomorphology were examined on d 35. The findings showed that birds in the T4 group of the Magic oil supplementation program (from 1 to 4 and 21 to 35 d of age) consumed 1.82% and 4.20% more food, gained 3.08% and 6.21% more, and converted feed to meat 1.39% and 2.07% more than Albovit and negative control, respectively, during the experiment (1-35). Magic oil particularly T1 (Magic oil is supplemented throughout the growing period) and T4 programs improved intestinal histology compared to the negative control. There were no changes (P > 0.05) between treatments in carcass parameters and blood biochemistry. In conclusion, water supplementation with Magic oil for broilers improves intestinal morphometrics and growth performance similar to or better than probiotic, especially during brooding and overall periods. Further studies are needed to evaluate the effect of adding both nano-emulsified plant oil and probiotics on different parameters.
Collapse
Affiliation(s)
- Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah N Al-Owaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani H Al-Baadani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maged A Al-Garadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani A Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Qaid
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
46
|
Chaney WE, McBride H, Girgis G. Effect of a Saccharomyces cerevisiae Postbiotic Feed Additive on Salmonella Enteritidis Colonization of Cecal and Ovarian Tissues in Directly Challenged and Horizontally Exposed Layer Pullets. Animals (Basel) 2023; 13:ani13071186. [PMID: 37048442 PMCID: PMC10093213 DOI: 10.3390/ani13071186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Determining the efficacy of feed-additive technologies utilized as pre-harvest food-safety interventions against Salmonella enterica may be influenced by factors including, but not limited to, mechanism of action, experimental design variables, Salmonella serovar(s), exposure dose, route, or duration in both controlled research and real-world field observations. The purpose of this study was to evaluate the dietary inclusion of a Saccharomyces cerevisiae fermentation-derived postbiotic (SCFP) additive (Diamond V, Original XPC®) on the colonization of cecal and ovarian tissues of commercial pullets directly and indirectly exposed to Salmonella Enteritidis (SE). Four hundred and eighty commercial, day-of-age W-36 chicks were randomly allotted to 60 cages per treatment in two identical BSL-2 isolation rooms (Iowa State University) with four birds per cage and fed control (CON) or treatment (TRT) diets for the duration of study. At 16 weeks, two birds per cage were directly challenged via oral gavage with 1.1 × 109 CFU of a nalidixic-acid-resistant SE strain. The remaining two birds in each cage were thus horizontally exposed to the SE challenge. At 3, 7, and 14 days post-challenge (DPC), 20 cages per group were harvested and sampled for SE prevalence and load. No significant differences were observed between groups for SE prevalence in the ceca or ovary tissues of directly challenged birds. For the indirectly exposed cohort, SE cecal prevalence at 7 DPC was significantly lower for TRT (50.0%) vs. CON (72.5%) (p = 0.037) and, likewise, demonstrated significantly lower mean SE cecal load (1.69 Log10) vs. CON (2.83 Log10) (p = 0.005). At 14 DPC, no significant differences were detected but ~10% fewer birds remained positive in the TRT group vs. CON (p > 0.05). These findings suggest that diets supplemented with SCFP postbiotic may be a useful tool for mitigating SE colonization in horizontally exposed pullets and may support pre-harvest food-safety strategies.
Collapse
|
47
|
Dietary Supplementation with Eugenol Nanoemulsion Alleviates the Negative Effects of Experimental Coccidiosis on Broiler Chicken's Health and Growth Performance. Molecules 2023; 28:molecules28052200. [PMID: 36903445 PMCID: PMC10005078 DOI: 10.3390/molecules28052200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present study investigated the protective efficacy of dietary supplementation with clove essential oil (CEO), its main constituent eugenol (EUG), and their nanoformulated emulsions (Nano-CEO and Nano-EUG) against experimental coccidiosis in broiler chickens. To this aim, various parameters (oocyst number per gram of excreta (OPG), daily weight gain (DWG), daily feed intake (DFI), feed conversion ratio (FCR), serum concentrations of total proteins (TP), albumin (ALB), globulins (GLB), triglycerides (TG), cholesterol (CHO) and glucose (GLU), serum activity of superoxide dismutase (SOD), glutathione s-transferase (GST), and glutathione peroxidase (GPx)] were compared among groups receiving CEO supplemented feed (CEO), Nano-CEO supplemented feed (Nano-CEO), EUG supplemented feed (EUG), Nano-EUG supplemented feed (Nano-EUG), diclazuril supplemented feed (standard treatment, ST), or basal diet [diseased control (d-CON) and healthy control (h-CON)), from days 1-42. Chickens of all groups, except h-CON, were challenged with mixed Eimeria spp. at 14 days of age. Coccidiosis development in d-CON was associated with impaired productivity (lower DWG and higher DFI and FCR relative to h-CON; p < 0.05) and altered serum biochemistry (decreased TP, ALB, and GLB concentrations and SOD, GST, and GPx activities relative to h-CON; p < 0.05). ST effectively controlled coccidiosis infection by significantly decreasing OPG values compared with d-CON (p < 0.05) and maintaining zootechnical and serum biochemical parameters at levels close to (DWG, FCR; p < 0.05) or not different from (DFI, TP, ALB, GLB, SOD, GST, and GPx) those of h-CON. Among the phytogenic supplemented (PS) groups, all showed decreased OPG values compared with d-CON (p < 0.05), with the lowest value being measured in Nano-EUG. All PS groups showed better values of DFI and FCR than d-CON (p < 0.05), but only in Nano-EUG were these parameters, along with DWG, not different from those of ST. Furthermore, Nano-EUG was the only PS group having all serum biochemical values not different (or even slightly improved) relative to ST and h-CON. In conclusion, the tested PS diets, especially Nano-EUG, can limit the deleterious effects of coccidiosis in broiler chickens, due to anticoccidial activity and possibly their reported antioxidant and anti-inflammatory properties, thereby representing a potential green alternative to synthetic anticoccidials.
Collapse
|
48
|
Impact of Dietary Supplementation of Spice Extracts on Growth Performance, Nutrient Digestibility and Antioxidant Response in Broiler Chickens. Animals (Basel) 2023; 13:ani13020250. [PMID: 36670790 PMCID: PMC9854518 DOI: 10.3390/ani13020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This study aimed to investigate the effects of supplementing broiler chicken diets with an encapsulated product based on capsicum and other spice (black pepper and ginger) extracts on growth performance, nutrient digestibility, digestive enzyme activity and antioxidant response. To this end, 480 1-day-old male chicks were randomly assigned to two experimental treatments (12 pens/treatment; 20 birds/pen). Dietary treatments included a basal diet with no additives (CONTROL) and a basal diet supplemented with 250 ppm of the spice additive (SPICY; Lucta S.A., Spain). Supplementation of SPICY increased body weight (p < 0.05) compared with CONTROL at 7 d of age and improved (p < 0.01) ADG from 0 to 7 d of age. The apparent ileal digestibility of dry matter, gross energy and crude protein was higher (p < 0.05) in birds fed the SPICY diet compared with the CONTROL diet. Birds fed SPICY showed lower (p < 0.05) plasma catalase (CAT) activity, and the hepatic gene expression of CAT and Nrf2 was down-regulated (p < 0.05) compared with the CONTROL. In conclusion, the inclusion of 250 ppm of SPICY in broiler diets improved growth performance at 7 d of age and positively affected nutrient digestibility and antioxidant response.
Collapse
|
49
|
Formulation, optimization of a poultry feed and analysis of spectrometry, biochemical composition and energy facts. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
50
|
Peşmen G. Effects of in ovo injection of black cumin ( Nigella sativa) extract on hatching performance of broiler eggs. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
The objective of this research is to state the impact of black cumin (Nigella sativa) extract in ovo injected at different doses on the hatchability of Cobb 500 Broiler fertile eggs. Injected doses of black cumin were 3 and 6 mg, applied to the air sac of the eggs on the 17.5th day of incubation. It has been established that, black cumin extract given to fertile broiler eggs had a positive effect on chick weight and chick length, but did not have a significant impact on hatching power and chick quality.
Collapse
Affiliation(s)
- Günnur Peşmen
- Department of Laborant Veterinary Health, Şuhut Vocational School, Afyon Kocatepe University , Afyonkarahisar , Turkey
| |
Collapse
|