1
|
Mahnoor, Malik K, Kazmi A, Sultana T, Raja NI, Bibi Y, Abbas M, Badruddin IA, Ali MM, Bashir MN. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon 2025; 11:e41654. [PMID: 39916856 PMCID: PMC11800088 DOI: 10.1016/j.heliyon.2025.e41654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The importance of nanocomposites constantly attains attention because of their unique properties all across the fields especially in medical perspectives. The study of green-synthesized nanocomposites has grown to be extremely fascinating in the field of research. Nanocomposites are more promising than mono-metallic nanoparticles because they exhibit synergistic effects. This review encapsulates the current development in the formulation of plant-mediated nanocomposites by using several plant species and the impact of secondary metabolites on their biocompatible functioning. Phyto-synthesis produces diverse nanomaterials with biocompatibility, environment-friendliness, and in vivo actions, characterized by varying sizes, shapes, and biochemical nature. This process is advantageous to conventional physical and chemical procedures. New studies have been conducted to determine the biomedical efficacy of nanocomposites against various diseases. Unfortunately, there has been inadequate investigation into green-assisted nanocomposites. Incorporating phytosynthesized nanocomposites in therapeutic interventions not only enhances healing processes but also augments the host's immune defenses against infections. This review highlights the phytosynthesis of nanocomposites and their various biomedical applications, including antibacterial, antidiabetic, antiviral, antioxidant, antifungal, anti-cancer, and other applications, as well as their toxicity. This review also explores the mechanistic action of nanocomposites to achieve their designated tasks. Biogenic nanocomposites for multimodal imaging have the potential to exchange the conventional methods and materials in biomedical research. Well-designed nanocomposites have the potential to be utilized in various biomedical fields as innovative theranostic agents with the subsequent objective of efficiently diagnosing and treating a variety of human disorders.
Collapse
Affiliation(s)
- Mahnoor
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Khafsa Malik
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tahira Sultana
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animal Science Lahore (Jhang Campus), Jhang, 35200, Pakistan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - M. Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| | - Muhammad Nasir Bashir
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
- National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Orrù A, Pittau B, Pettinau F. Shedding Light on the Antioxidant Activity of Bee Venom Using a 2,2-Diphenyl-1-Picrylhydrazyl Assay in a Detergent-Based Buffer. Molecules 2025; 30:640. [PMID: 39942743 PMCID: PMC11821050 DOI: 10.3390/molecules30030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Honeybee venom (HBV) is a complex mixture of proteins and enzymes used in traditional medicine to treat various ailments. HBV has multiple pharmacological effects, making it a promising therapeutic agent in several medical areas. In addition, HBV has many potential cosmetic applications as an anti-aging agent and for the treatment of various skin conditions. HBV's antioxidant properties are also of great interest, as oxidative stress contributes to the onset and progression of many diseases. Several attempts have been made to assess HBV's antioxidant activity, mainly using the DPPH assay. However, variability in experimental protocols and the lack of experimental details make the interpretation of results difficult. In this study, we aim to address the source of this variability by investigating the antioxidant activity of HBV in a detergent-based buffer across a range of pH values (from 3 to 7.5). We also analyze the contribution of melittin, the major component of HBV. Our results demonstrate that the DPPH radical scavenging activity of HBV is strongly influenced by the solvent used and by pH. Specifically, we show, for the first time, that HBV exhibits antioxidant activity under mildly acidic conditions, following a complex fast + slow reaction pattern. Interestingly, melittin contributes only partially to the total antioxidant activity of HBV. Overall, this work provides new insights into the antioxidant properties of HBV.
Collapse
Affiliation(s)
- Alessandro Orrù
- Institute of Translational Pharmacology, National Research Council of Italy, Parco Scientifico e Tecnologico della Sardegna, 09050 Pula, Italy;
| | | | - Francesca Pettinau
- Institute of Translational Pharmacology, National Research Council of Italy, Parco Scientifico e Tecnologico della Sardegna, 09050 Pula, Italy;
| |
Collapse
|
3
|
Ballouk MAH, Altinawi M, Al-Kafri A, Zeitounlouian TS, Fudalej PS. Propolis mouthwashes efficacy in managing gingivitis and periodontitis: a systematic review of the latest findings. BDJ Open 2025; 11:5. [PMID: 39863575 PMCID: PMC11763050 DOI: 10.1038/s41405-025-00294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Gingivitis and periodontitis are common periodontal diseases that can significantly harm overall oral health, affecting the teeth and their supporting tissues, along with the surrounding anatomical structures, and if left untreated, leading to the total destruction of the alveolar bone and the connective tissues, tooth loss, and other more serious systemic health issues. Numerous studies have shown that propolis can help reduce gum inflammation, inhibit the growth of pathogenic bacteria, and promote tissue regeneration, but with varying degrees of success reported. For this reason, this comprehensive systematic review aims at finding out the truth concerning the efficacy of propolis mouthwashes in treating gingivitis and periodontitis, as its main objective. DATA SOURCES Research findings from 6 different databases: China National Knowledge Infrastructure (CNKI), PubMed®, Europe PMC, Cochrane Central Register of Controlled Trials (CENTRAL), BioMed Central, and Google Scholar, were retrieved and examined in addition to a manual search in the references lists. STUDY SELECTION AND SYNTHESIS The PICOS framework was used to select and exclude studies. The focus was on clinical randomized controlled trials (RCTs) that examined the effectiveness of propolis-containing mouthwashes in comparison with propolis-free ones for the treatment of gingivitis and periodontitis, employing related periodontal indices. Animal studies, microbiological studies, in-vitro studies, retrospective studies, case-control studies, cohorts, case reports, case series, reviews, letters, editorials, meta-analyses, and non-clinical randomized controlled trials (non-RCTs), all were excluded. A meta-analysis was not performed and data were only studied qualitatively due to the obvious heterogeneity amongst the studies. Data from the selected studies were extracted, and then the revised Cochrane's risk of bias tool (RoB 2.0) was utilised by two of the authors, independently, to evaluate the risk of bias in each study. RESULTS At first, 151 results were reached, but then after removing duplicates, 99 records remained, and were later screened, assessed, and studied in full details based on the set PICOS criteria. Out of these 99 articles, ten studies were included in this systematic review, encompassing a total of 453 patients with an age range of (13-70) years old. Propolis mouthwashes with different protocols of application were the intervention whereas placebo or the rest of the tested mouthwashes such as, chlorhexidine, sodium fluoride with cetylpyridinium chloride, sterile distilled water, hydrogen peroxide, were the ones to which propolis mouthwashes were compared. Treatment duration extended from 14 days to 3 months and the follow-up period differed from 14 days to 3 months. In general, propolis mouthwashes decreased plaque accumulations and gingival inflammation in gingivitis patients based on the employed indices. On the other hand, the aforementioned tested mouthwashes other than propolis were deemed equally effective or even superior to propolis in some studies. As an overall assessment for the risk of bias, four studies were assigned as having a low risk of bias. Two studies were deemed to have some concerns, while four studies were identified as having a high risk of bias. CONCLUSIONS Despite the fact that propolis has shown positive effects in terms of controlling gingival and periodontal inflammation especially when used with mechanical methods, studies lack certainty and their power of evidence is low with no agreed gold standards. These conclusions come, for sure, within the limitations of this review, like having substantial variability amongst the included studies and the presence of studies with a high risk of bias. The findings demonstrate that propolis-based mouthwashes showed promising clinical outcomes in reducing plaque and gingival inflammation. However, it is highly recommended to conduct more rigorous trials with patient-reported outcome measures, extended follow-up periods, larger samples sizes, better-designed methodologies, typified propolis use, and with the implementation of similar indices in order to obtain more reliable, conclusive, and generalisable results. PROSPERO REGISTRATION NUMBER CRD42024524523.
Collapse
Affiliation(s)
| | - Mohamed Altinawi
- Department of Paediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syria
| | - Abeer Al-Kafri
- Department of Lab Medicine, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Talar S Zeitounlouian
- Department of Orthodontics, Faculty of Dentistry, Damascus University, Damascus, Syria.
| | - Piotr S Fudalej
- Department of Orthodontics, Institute of Dentistry, Medical Faculty, Jagiellonian University, Kraków, Poland
- Department of Orthodontics, Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Orthodontics, School of Dental Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
da Paz MM, Sette KM, dos Santos RE, Barbosa e Vasconcelos AL, da Costa DCF, Amaral ACF, Rodrigues IA, Pereira Rangel L. Brazilian Stingless Bee Geopropolis Exhibit Antioxidant Properties and Anticancer Potential Against Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2025; 14:141. [PMID: 40002328 PMCID: PMC11851454 DOI: 10.3390/antiox14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cancer in terms of mortality and the sixth in incidence worldwide. Treatment varies by tumor stage, but low survival rates are common across all stages. Due to these poor outcomes, there is a critical need for new treatment options and lead compounds, prompting an active search. Geopropolis has been identified as a source of bioactive compounds with various pharmacological activities, including anticancer effects against different types of cancer. Since stingless bees may be selective for native botanical species, the geopropolis they produce can have an unusual chemical profile. In this study, we report the antioxidant properties and anticancer potential of geopropolis extracts produced by Melipona bicolor, M. marginata, and M. mondury using 2D- and 3D- cell culture models. The chemical profile of these samples using UPLC-QTOF HRMS/MS indicated ferreirin and dihydrokaempferide as the main flavonoids, along with cupressic acid and 15-acetoxyisocupressic acid as the most abundant diterpenoids. Interestingly, artepillin C, a main component of green propolis, was also detected. The geopropolis extracts showed good cell viability inhibition and selectivity indices in comparison to cisplatin used as an HCC treatment option. The antioxidant capacity of the geopropolis extracts was high and correlated with the cytotoxic effect against the HCC cells. Investigations into the mechanisms show the ability of the extracts to induce apoptosis and suppress the clonogenic potential of these cell lines. We also observed an inhibition of spheroid formation, viability, and morphology alterations. This is the first time the effects of geopropolis are described in a panel of HCC cell lines.
Collapse
Affiliation(s)
- Mariana Muniz da Paz
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Kamila Marques Sette
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Raissa Eduardo dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ana Luiza Barbosa e Vasconcelos
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | | | | | - Igor Almeida Rodrigues
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
5
|
Mara A, Mainente F, Soursou V, Picó Y, Perales I, Ghorab A, Sanna G, Borrás-Linares I, Zoccatelli G, Ciulu M. New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy. Molecules 2025; 30:410. [PMID: 39860278 PMCID: PMC11767624 DOI: 10.3390/molecules30020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy. The honeydew elements, conductivity, color, antioxidant properties, total polyphenol content, hydroxymethylfurfural, major and trace elements, toxic and rare earth elements, and pesticide residues were measured in 59 samples of honeydew honey from forest, eucalyptus, fir, oak, and citrus sources. Physico-chemical and antioxidant properties were unable to differentiate the botanical origin of Italian honeydew honeys. Similarly, the mineral composition did not vary significantly, whereas rare earth elements appeared to be promising markers for classifying their origin. Multivariate analysis allowed discriminating fir honeydews from the other varieties. Concerning safety aspects, pesticide residues were detected in 90% of the samples, with fir honeydews exhibiting the lowest contamination levels, probably due to its production in less industrialized areas. Acetamiprid and imidacloprid were the most prevalent pesticide residues, but their concentrations were below the limit indicated by the EFSA. These findings suggest the need for a continuous monitoring program for contaminants to ensure safety and to assess risk.
Collapse
Affiliation(s)
- Andrea Mara
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (G.S.)
| | - Federica Mainente
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.M.); (G.Z.)
| | - Vasiliki Soursou
- Environmental & Food Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Road CV-315 Km 10.7, 46113 Moncada, Spain; (V.S.); (Y.P.)
| | - Yolanda Picó
- Environmental & Food Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Road CV-315 Km 10.7, 46113 Moncada, Spain; (V.S.); (Y.P.)
| | - Iratxe Perales
- Microfy Systems SL, Avda. Carrilet 243, 1-2, 08907 Barcelona, Spain; (I.P.); (A.G.)
| | - Asma Ghorab
- Microfy Systems SL, Avda. Carrilet 243, 1-2, 08907 Barcelona, Spain; (I.P.); (A.G.)
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Gavino Sanna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (G.S.)
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Gianni Zoccatelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.M.); (G.Z.)
| | - Marco Ciulu
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.M.); (G.Z.)
| |
Collapse
|
6
|
Sęk A, Olszak S, Jaśkiewicz K, Szczęsna T. Preliminary Research on the Health-Promoting Value of Honeydew Honey Enriched with Bee Bread. Molecules 2025; 30:256. [PMID: 39860126 PMCID: PMC11767281 DOI: 10.3390/molecules30020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Since the imbalance between free radicals and antioxidants in the body plays a significant role in the physiology of common, often dangerous diseases, an emphasis is placed on enriching the daily diet with compounds characterized by antioxidant activity. Good sources of natural antioxidants are bee products such as honey, bee pollen, bee bread and propolis, and the best path for introducing the latter products into the diet is mixing them with honey. However, the characteristics of bee product mixtures are not yet fully understood. Therefore, the aim of this study is to verify the health-promoting properties of a mixture of honeydew honey and multifloral bee bread. The profile of phenolic compounds, radical scavenging activity, total phenolic content, diastase number, and also proline and HMF content were determined. The obtained results indicated the improved health-promoting value of this mixture, as increases in radical scavenging activity (from 82.7 to 88.4%), in the total content of phenolic compounds (from 74.6 to 118.8 mg·100 g-1), and also in the proline content (from 64.0 to 95.5 mg·100 g-1) and diastase activity (from 22.6 to 38.8 Schade units) were observed when 5% of bee bread (w/w) was added. Moreover, the bee bread addition provided two important flavonoids to the honeydew honey, i.e., rutin and kaempferol.
Collapse
Affiliation(s)
- Alicja Sęk
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland (K.J.); (T.S.)
| | | | | | | |
Collapse
|
7
|
Tlak Gajger I, Vlainić J. Antioxidant Activity of Honey Bee Products. Antioxidants (Basel) 2025; 14:64. [PMID: 39857398 PMCID: PMC11762966 DOI: 10.3390/antiox14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Antioxidants have gained significant importance in modern nutrition [...].
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- NRL for Honeybee Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Josipa Vlainić
- Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Mahani, Ferdian PR, Ghibran HM, Herlina AF, Nurhasanah S, Nurjanah N, Elfirta RR, Pribadi A, Amalia RLR, Samudra IM. A report on the physicochemical and antioxidant properties of three Indonesian forest honeys produced by Apis dorsata. Food Chem X 2025; 25:102156. [PMID: 39877690 PMCID: PMC11773047 DOI: 10.1016/j.fochx.2025.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Indonesia, one of the largest tropical forests, offers a diverse range of nectar sources that contribute to the unique characteristics of forest honey. This study aims to investigate physicochemical and antioxidant properties of Apis dorsata forest honey from three distinct regions of Indonesia. Key physicochemical parameters include moisture, color, electrical conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS), density, diastase number (DN), hydroxymethylfurfural (HMF), pH, total acidity, ash content, protein content, and reducing sugars. Antioxidant properties, assessed through total phenolic content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity, ascorbic acid equivalent antioxidant capacity (AEAC), and ferric reducing power (FRP), revealed significant regional variability. Principal component analysis (PCA) distinguished honey samples based on these attributes. These findings provide preliminary insights into the variability of Indonesian forest honeys. However, the small sample size limits generalizations, and further research with larger datasets is essential for validation.
Collapse
Affiliation(s)
- Mahani
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Padjadjaran University, P.O. Box 45363, Sumedang, Indonesia
| | - Pamungkas Rizki Ferdian
- Research Center for Applied Zoology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia
| | - Habil Muhammad Ghibran
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Padjadjaran University, P.O. Box 45363, Sumedang, Indonesia
| | - Amirah Fathia Herlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Padjadjaran University, P.O. Box 45363, Sumedang, Indonesia
| | - Siti Nurhasanah
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Padjadjaran University, P.O. Box 45363, Sumedang, Indonesia
| | - Nunung Nurjanah
- Research Center for Public Health and Nutrition, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia
| | - Rizki Rabeca Elfirta
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia
| | - Avry Pribadi
- Research Center for Applied Zoology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia
| | - Raden Lia Rahadian Amalia
- Research Center for Applied Zoology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia
| | - I Made Samudra
- Research Center for Applied Zoology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia
| |
Collapse
|
9
|
Ogoh SN, Özgör E. Characterization, antimicrobial and antioxidant activity of bee bread encapsulated with chitosan nanoparticle. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-23. [PMID: 39704475 DOI: 10.1080/09205063.2024.2441032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The potential of bee bread as an apitherapeutic agent was investigated in this study, focusing on its immune-stimulating abilities. The novel aspect of the study is how bee bread is combined with chitosan, a biopolymer with antibacterial and antioxidant properties, to increase its therapeutic efficacy. Free freeze-drying technology accomplished encapsulation at a critical temperature of -80 °C. The encapsulated constructs were characterized using analytical techniques like FTIR (Fourier Transform Infrared Spectroscopy), X-ray diffraction (XRD), Zeta potential analysis, and Scanning Electron Microscopy (SEM). Furthermore, the ethanolic extract of bee bread was analyzed using Gas Chromatography-Mass Spectrometry (GCMS) to identify phytochemicals. UV spectrophotometry was used to quantify antioxidant activity. Antibacterial tests using the disc diffusion method revealed a significant inhibitory effect on Bacillus subtilis, a Gram-positive bacterium, whereas Gram-negative bacteria showed reduced sensitivity to the encapsulated agents.
Collapse
Affiliation(s)
- Stanley Nnamdi Ogoh
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Nicosia, North Cyprus, Turkey
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, Nicosia, North Cyprus, Turkey
| | - Erkay Özgör
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, Nicosia, North Cyprus, Turkey
| |
Collapse
|
10
|
Zaldivar-Ortega AK, Cenobio-Galindo ADJ, Morfin N, Aguirre-Álvarez G, Campos-Montiel RG, Esturau-Escofet N, Garduño-García A, Angeles-Hernandez JC. The Physicochemical Parameters, Phenolic Content, and Antioxidant Activity of Honey from Stingless Bees and Apis mellifera: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:1539. [PMID: 39765867 PMCID: PMC11726963 DOI: 10.3390/antiox13121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/15/2025] Open
Abstract
The most common bee species used for honey production is Apis mellifera (A. mellifera), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD). The mean phenolic content in A. mellifera honey was 61.21 ± 28.3 mg GAE/100 g and stingless bee honey +33.69 mg GAE/100 g; p = 0.01. The antioxidant activity, discovered by the Ferric Reducing Antioxidant Power (FRAP) method, showed a mean of 97.34 ± 7.84 μmol Fe(II)/100 g in A. mellifera and stingless bee honey +63.39 μmol Fe(II)/100 g; p = 0.009. The physicochemical properties showed significant differences in moisture (A. mellifera honey 19.54 ± 3.65%; stingless bee honey +8.02%; p = 0.0001), hydroxymethylfurfural (HMF) (A. mellifera honey 20.14 ± 16.27 mg/kg; stingless bee honey -11.25 mg/kg; p = 0.001), and free acidity (A. mellifera honey 31.32 ± 16.67 meq/kg; stingless bee honey +34.76 meq/kg; p = 0.01). The variability in the trials was explained by the heterogeneity, and a meta-regression analysis incorporated four covariates: (1) stingless bee species; (2) floral source; (3) country, and (4) latitude. This study highlights the importance of conducting further studies on stingless bee honey.
Collapse
Affiliation(s)
- Ana Karen Zaldivar-Ortega
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1 s/n Exhacienda Aquetzalpa, Tulancingo 43600, Mexico; (A.K.Z.-O.); (A.d.J.C.-G.); (G.A.-Á.); (R.G.C.-M.)
| | - Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1 s/n Exhacienda Aquetzalpa, Tulancingo 43600, Mexico; (A.K.Z.-O.); (A.d.J.C.-G.); (G.A.-Á.); (R.G.C.-M.)
| | - Nuria Morfin
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, The University of British Columbia, Vancouver, BC V6T1Z4, Canada;
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1 s/n Exhacienda Aquetzalpa, Tulancingo 43600, Mexico; (A.K.Z.-O.); (A.d.J.C.-G.); (G.A.-Á.); (R.G.C.-M.)
| | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1 s/n Exhacienda Aquetzalpa, Tulancingo 43600, Mexico; (A.K.Z.-O.); (A.d.J.C.-G.); (G.A.-Á.); (R.G.C.-M.)
| | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Angel Garduño-García
- Departamento de Ingeniería Mecánica Agrícola, Universidad Autónoma Chapingo, Carretera México-Texcoco, Km 38.5, Texcoco 56230, Mexico
| | - Juan Carlos Angeles-Hernandez
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
11
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
12
|
Gercek YC, Dagsuyu E, Basturk FN, Kırkıncı S, Yıldırım N, Kıskanç G, Özmener B, Unlu YS, Kalkan SN, Boztaş K, Oz GC, Yanardağ R, Bayram NE, Kostić AŽ. Enzyme Inhibitory, Physicochemical, and Phytochemical Properties and Botanical Sources of Honey, Bee Pollen, Bee Bread, and Propolis Obtained from the Same Apiary. Antioxidants (Basel) 2024; 13:1483. [PMID: 39765812 PMCID: PMC11673488 DOI: 10.3390/antiox13121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bee products are an important source of nutrients and bioactive phytochemicals. This study aimed to determine the chemical composition (proximate composition, general phytochemical composition, sugar, and phenolic profiles) of four different products (honey, bee pollen, bee bread, and propolis), obtained from the same apiary, as well as to assess their biological activity through antioxidant and enzyme inhibition assays (α-amylase, α-glucosidase, lipase, AchE, neuraminidase, angiotensin-converting enzyme, urease, trypsin, tyrosinase, carbonic anhydrase, thioredoxin reductase, adenosine deaminase). Clear differences were observed among the samples in terms of both chemical composition and biological activity. The analysis revealed that bee pollen exhibited the highest carbohydrate content (87.9%), while propolis was identified as the richest source of phenolic compounds (14,858.9 mg/kg) among the analyzed samples. Propolis exhibited the highest biological activity in all applied antioxidant assays (CUPRAC, DPPH•, and ABTS•+) and in most enzyme inhibition assays. Notably, the α-glucosidase inhibition activity of propolis was comparable to that of the reference standard. In addition, honey exhibited remarkable trypsin inhibition, also comparable to the applied standard. These findings highlight the diverse bioactivities of hive products, which could play a key role in promoting health and preventing diseases.
Collapse
Affiliation(s)
- Yusuf Can Gercek
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34116, Türkiye; (K.B.); (G.C.O.)
- Centre for Plant and Herbal Products Research-Development, Istanbul 34116, Türkiye
| | - Eda Dagsuyu
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul 34320, Türkiye; (E.D.); (R.Y.)
| | - Fatma Nur Basturk
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Seran Kırkıncı
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Nazlıcan Yıldırım
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Gamze Kıskanç
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Bahar Özmener
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Yigit Sabri Unlu
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Seda Nur Kalkan
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul 34116, Türkiye; (F.N.B.); (S.K.); (N.Y.); (G.K.); (B.Ö.); (Y.S.U.); (S.N.K.)
| | - Kadir Boztaş
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34116, Türkiye; (K.B.); (G.C.O.)
| | - Gül Cevahir Oz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34116, Türkiye; (K.B.); (G.C.O.)
- Centre for Plant and Herbal Products Research-Development, Istanbul 34116, Türkiye
| | - Refiye Yanardağ
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul 34320, Türkiye; (E.D.); (R.Y.)
| | - Nesrin Ecem Bayram
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, Bayburt 69500, Türkiye;
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
13
|
Dos Santos AC, Seraglio SKT, Gonzaga LV, Deolindo CTP, Hoff R, Costa ACO. Brazilian stingless bee honey: A pioneer study on the in vitro bioaccessibility of phenolic compounds. Food Chem 2024; 460:140332. [PMID: 39106805 DOI: 10.1016/j.foodchem.2024.140332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
In this study, the effect of in vitro gastrointestinal digestion of phenolic compounds, the total phenolic content, and the antioxidant potential of stingless bee honey were investigated. Among the 33 phenolic compounds investigated, 25 were quantified, and only eight were not bioaccessible (p-aminobenzoic acid, sinapic acid, pinobanksin, isorhamnetin, quercetin-3-glucoside, syringaldehyde, coumarin, and coniferaldehyde). Benzoic acid was predominant in most undigested samples (21.3 to 2414 μg 100 g-1), but its bioaccessibility varied widely (2.5 to 534%). Rutin, a glycosylated flavonoid, was quantified in all samples and might have been deglycosylated during digestion, increasing the bioaccessibility of quercetin in a few samples. Overall, the concentration of phenolic compounds prior digestion and their bioaccessibility varied greatly among samples. Nevertheless, higher concentrations before digestion were not correlated to greater bioaccessibility. This study is the first to assess the in vitro bioaccessibility of phenolic compounds in SBH, providing novel insights into SBH research.
Collapse
Affiliation(s)
- Adriane Costa Dos Santos
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil.
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Carolina Turnes Pasini Deolindo
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil; Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA), Federal Agricultural Defense Laboratory, Sao Jose, SC, 88102-600, Brazil
| | - Rodrigo Hoff
- Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA), Federal Agricultural Defense Laboratory, Sao Jose, SC, 88102-600, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil.
| |
Collapse
|
14
|
Riddick EW. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. INSECTS 2024; 15:956. [PMID: 39769558 PMCID: PMC11678172 DOI: 10.3390/insects15120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.g., Web of Science, Scopus, and CAB Abstracts, via the USDA-ARS, National Agricultural Library, DigiTop literature retrieval system. Data were compiled in tables and subjected to statistical analysis, when appropriate. Flavonoids were generally harmful to true bugs and true flies but harmless to honey bees. Flavonoid glycosides showed a tendency to harm true bugs (Heteroptera) and true flies (Diptera). Flavonoid glycosides were harmless to sawflies. Flavonoids and flavonoid glycosides produced a mixture of harmful and harmless outcomes to herbivorous beetles, depending on the species. Flavonoid glycosides were harmless to butterflies. In conclusion, specific flavonoids could function as feeding stimulants or deterrents, oviposition stimulants or deterrents, chemical protectants from pesticides, mating attractants, less-toxic insecticides, and other functions. Flavonoids could manage some insect pests without causing significant harm to beneficials (e.g., honey bees). Flavonoid-based insecticides could serve as environmentally benign alternatives to broad-spectrum insecticides against some pests, but field testing is necessary.
Collapse
Affiliation(s)
- Eric Wellington Riddick
- Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA
| |
Collapse
|
15
|
Alves TRR, Trivellato MF, Freitas TAL, Kato AY, Gomes CRA, Ferraz YMM, Serafim JA, De Jong D, Prado EP, Vicente EF, Orsi RO, Pereira GT, Miranda CA, Mingatto FE, Nicodemo D. Pollen contaminated with a triple-action fungicide induced oxidative stress and reduced longevity though with less impact on lifespan in honey bees from well fed colonies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104587. [PMID: 39505060 DOI: 10.1016/j.etap.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Experiments were conducted to determine the effects of a triple-action fungicide on bees and whether improved nutrition can ameliorate eventual negative impacts. In cage tests, newly-emerged bees from well fed and from nutritionally-restricted honey bee colonies were fed for five days with pollen from sunflowers that had been sprayed or not with a commercial fungicide containing bixafen, prothioconazole and trifloxystrobin. Bees from well-fed colonies were significantly larger and consumed more uncontaminated pollen. They also exhibited increased glutathione peroxidase activity and higher concentrations of pyridine nucleotides, both of which are involved in antioxidase defense. However, pollen contaminated with fungicide led to an increase in lipoperoxidation, regardless of nutritional status. Bee longevity was reduced by both fungicide contamination of the pollen diet and poor nutritional condition. The fungicide adversely affected bees fed with contaminated pollen, though nutritional supplementation of the bee colonies that reared the bees partially compensated for these effects.
Collapse
Affiliation(s)
- Thais R R Alves
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Matheus F Trivellato
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Tainá A L Freitas
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Aline Y Kato
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Cássia R A Gomes
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Yara M M Ferraz
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Jéssica A Serafim
- Department of Biosystems Engineering, College of Sciences and Engineering, São Paulo State University (Unesp), Tupã, SP, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evandro P Prado
- Department of Plant Production, College of Agricultural and Technology Sciences, São Paulo State University (Unesp) Dracena, SP, Brazil
| | - Eduardo F Vicente
- Department of Biosystems Engineering, College of Sciences and Engineering, São Paulo State University (Unesp), Tupã, SP, Brazil
| | - Ricardo O Orsi
- Department of Animal Production and Medicine Veterinary Preventive, College of Veterinary Medicine and Animal Sciences, São Paulo State University (Unesp) Botucatu, SP, Brazil
| | - Gener T Pereira
- Department of Exact Sciences, School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Camila A Miranda
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Fábio E Mingatto
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
16
|
Amr A, Abdel Karim AE, Abd El-Wahed AA, El-Seedi HR, Augustyniak M, El Wakil A, El-Samad LM, Hassan MA. Liquid chromatography–mass spectrometry profiling of propolis and royal jelly and their ameliorative effects on cadmium-instigated pathological consequences in ovarian tissues of rats. Microchem J 2024; 207:111800. [DOI: 10.1016/j.microc.2024.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
17
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
18
|
Majtan J. In vitro testing of honey quality and biological functionality: underestimated elements in the clinical testing of honey. Front Nutr 2024; 11:1433786. [PMID: 39449821 PMCID: PMC11500635 DOI: 10.3389/fnut.2024.1433786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Honey is an attractive functional food that often becomes a subject of clinical studies on the treatment of diverse diseases. However, the clinical efficacy of honey is rather controversial due, at least in part, to its variable composition and botanical origin as well as thermal processing or improper storage conditions. This review addresses the importance of honey quality standards and in vitro testing of the biological properties of honey prior to performing clinical studies, which can have a great impact on clinical outcomes. It focused on recently performed meta-analyses and systematic reviews where honey was used in the management of various disorders including respiratory tract infections, and metabolic and cardiometabolic diseases, with the goal of characterising the honeys used in clinical studies. In addition, it provides recommendations for the use and storage of honey for clinical testing. The vast majority of clinical studies included in meta-analyses do not provide any information about honey quality parameters. In fact, indicators of thermal damage or prolonged storage of honey were analysed only in one clinical study. This observation highlights on the alarming status of honey quality in clinical studies. Furthermore, in vitro biological properties of the analysed honeys were assessed in two clinical studies. Therefore, this review strongly advocates the clinical use of only fully characterised honey samples of known botanical origin with proven in vitro biological functionality and no or minimal thermal processing.
Collapse
Affiliation(s)
- Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
19
|
Jabłońska M, Karpińska-Tymoszczyk M, Surma M, Narwojsz A, Reszka M, Błaszczak W, Sawicki T. Enrichment of shortcrust pastry cookies with bee products: polyphenol profile, in vitro bioactive potential, heat-induced compounds content, colour parameters and sensory changes. Sci Rep 2024; 14:23652. [PMID: 39384866 PMCID: PMC11464765 DOI: 10.1038/s41598-024-74811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Bee products, including bee pollen (BP) and bee bread (BB) are natural sources that contain a diverse range of bioactive compounds. The objective of this study was to investigate the potential of BP and BB to enhance the functional properties of shortcrust pastry cookies. The impact on BP and BB on the colour parameters, polyphenolic compounds content, heat-induced compounds content (acrylamide, furfural, 5-hydroxymethylfurfural (HMF)), antioxidant properties, and inhibitory effects against advanced glycation end products (AGEs) formation and acetylcholinesterase (AChE) activity was examine by enriching cookies with 3 and 10% of BP or BB. The incorporation of BP or BB resulted in a notable darkening of the cookies. The spectroscopic and chromatographic analyses revealed that the cookies enriched with bee products exhibited an elevated content of phenolic compounds. The antioxidant activity (AA) of the enriched cookies exhibited an average increase of 2- to 3-fold in the ABTS test and 2-fold in the DPPH test. All cookies exhibited inhibitory potential against AGEs formation, witch inhibitory rates ranging from 10.64 to 46.22% in the BSA-GLU model and 1.75-19.33% in BSA-MGO model. The cookies enriched with 10% BP were characterised by to the highest level of AChE activity inhibition (13.72%). The incorporation of BB and BP resulted in elevated concentration of acrylamide, furfural, and HMF. Our findings suggest that bee products may serve as a valuable addition to food ingredients, significantly enhancing the functional properties of shortcrust pastry cookies. However, further investigation is necessary to address the increased level of heat-induced compounds.
Collapse
Affiliation(s)
- Monika Jabłońska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland.
| | - Mirosława Karpińska-Tymoszczyk
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149, Kraków, Poland
| | - Agnieszka Narwojsz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Mateusz Reszka
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Wioletta Błaszczak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland.
| |
Collapse
|
20
|
Mejías E, Gomez C, Garrido T. Effect on the Antioxidant Properties of Native Chilean Endemic Honeys Treated with Ionizing Radiation to Remove American Foulbrood Spores. Foods 2024; 13:2710. [PMID: 39272476 PMCID: PMC11394921 DOI: 10.3390/foods13172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
In Chile, honey is produced from several native species with interesting biological properties. Accordingly, those attributes are present in Chilean honeys owing to the presence of phenolic compounds inherited from specific floral sources. In recent years, the exported volume of Chilean honeys has been increased, reaching new markets with demanding regulations directed toward the fulfilment of consumers' expectations. Accordingly, there are countries with special requirements referring to Paenibacillus larvae spore-free honeys. This microorganism is the pathogen responsible for American foulbrood disease in beehives; however, antibiotics are not allowed when an apiary tests positive for P. larvae. On the other hand, it is mandatory to have an accurate method to remove the potential presence of spores in bee products intended for export. Exposure to ionizing radiation can be an efficient way to achieve this goal. In this work, 54 honey samples harvested from northern, central and southern Chile were analyzed for physicochemical patterns, total phenols, antioxidant activity and antiradical activity. Honeys with and without spores were exposed to ionizing radiation at three levels of intensity. Afterwards, the presence of spores and the effect on phenol bioavailability, antiradical activity and antioxidant activity were measured again. This research presents results showing a positive correlation between the percentage of prevalence of native endemic species in the set of honeys analyzed and the capacity to resist this process, without altering their natural attributes determined before irradiation treatments.
Collapse
Affiliation(s)
- Enrique Mejías
- Centro de Tecnologías Nucleares en Ecosistemas Vulnerables, División de Investigación y Aplicaciones Nucleares-Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Santiago 7600713, Chile
| | - Carlos Gomez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Independencia 8391063, Chile
| | - Tatiana Garrido
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Independencia 8391063, Chile
| |
Collapse
|
21
|
Wojtacka J. The Chemical Residues in Secondary Beekeeping Products of Environmental Origin. Molecules 2024; 29:3968. [PMID: 39203046 PMCID: PMC11357314 DOI: 10.3390/molecules29163968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Natural products of bee origin, despite their complex composition and difficulties in standardization, have been of high interest among scientists representing various disciplines from basic sciences to industrial and practical implementation. As long as their use is monitored and they do not impact human health, they can be considered valuable sources of many chemical compounds and are potentially useful in medicine, food processing, nutrition, etc. However, apart from honey, the general turnover of bee products lacks precise and detailed legal requirements ensuring their quality. The different residues in these products constitute a problem, which has been reported in numerous studies. All products derived from beekeeping are made by bees, but they are also influenced by the environment. Such a dual pathway requires detailed surveillance of hazards stemming from outside and inside the apiary. This should be ensured via harmonized requirements arising from the binding legal acts, especially in international and intercontinental trade zones.
Collapse
Affiliation(s)
- Joanna Wojtacka
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| |
Collapse
|
22
|
Kwak JE, Lee JY, Baek JY, Kim SW, Ahn MR. The Antioxidant and Anti-Inflammatory Properties of Bee Pollen from Acorn ( Quercus acutissima Carr.) and Darae ( Actinidia arguta). Antioxidants (Basel) 2024; 13:981. [PMID: 39199227 PMCID: PMC11352170 DOI: 10.3390/antiox13080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physical function and an increased risk of age-related chronic diseases. Additionally, oxidative stress is known to cause severe tissue damage and inflammation. Pollens from acorn and darae are extensively produced in Korea. However, the underlying molecular mechanisms of these components under the conditions of inflammation and oxidative stress remain largely unknown. This study aimed to investigate the effect of bee pollen components on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages. This study demonstrates that acorn and darae significantly inhibit the LPS-induced production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW 264.7 cells. Specifically, bee pollen from acorn reduces NO production by 69.23 ± 0.04% and PGE2 production by 44.16 ± 0.08%, while bee pollen from darae decreases NO production by 78.21 ± 0.06% and PGE2 production by 66.23 ± 0.1%. Furthermore, bee pollen from acorn and darae reduced active oxygen species (ROS) production by 47.01 ± 0.5% and 60 ± 0.9%, respectively. It increased the nuclear potential of nuclear factor erythroid 2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 cells. Moreover, treatment with acorn and darae abolished the nuclear potential of nuclear factor κB (NF-κB) and reduced the expression of extracellular signal-associated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation in LPS-stimulated RAW 264.7 cells. Specifically, acorn decreased NF-κB nuclear potential by 90.01 ± 0.3%, ERK phosphorylation by 76.19 ± 1.1%, and JNK phosphorylation by 57.14 ± 1.2%. Similarly, darae reduced NF-κB nuclear potential by 92.21 ± 0.5%, ERK phosphorylation by 61.11 ± 0.8%, and JNK phosphorylation by 59.72 ± 1.12%. These results suggest that acorn and darae could be potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jeong-Eun Kwak
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Joo-Yeon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Ji-Yoon Baek
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Sun Wook Kim
- Research and Business Planning Team, Panolos Bioscience Inc., Hwaseong 18471, Republic of Korea;
| | - Mok-Ryeon Ahn
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
23
|
Amr A, Karim AEA, Augustyniak M, Wakil AE, El-Samad LM, Hassan MA. Efficacy of propolis and royal jelly in attenuating cadmium-induced spermatogenesis and steroidogenesis dysregulation, causing infertility in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53052-53073. [PMID: 39172338 DOI: 10.1007/s11356-024-34673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Bee-derived pharmaceutical products, including propolis (PRO) and royal jelly (ROJ), possess outstanding pharmacological properties. However, their efficiency in counteracting the deleterious influences of cadmium (Cd) in testes and the relevant mechanisms entail further investigations. Therefore, this study sheds light on the therapeutic efficacy of PRO and ROJ against testicular dysfunction and infertility induced by Cd. Toward this end, 30 mature male Wistar albino rats were randomly divided into six groups (5 animals/group), including (I) control, (II) Cd, (III) PRO, (IV) ROJ, (V) PRO + Cd, and (VI) ROJ + Cd groups. Furthermore, antioxidant factors, semen quality, hormonal levels, steroidogenic enzymes, and genotoxicity were assessed. Moreover, histopathological and ultrastructural attributes and offspring rates were investigated. The Cd-treated group revealed marked reductions in reduced glutathione (GSH), total antioxidant capacity (TAC), and superoxide dismutase (SOD) with an amplification of lipid peroxidation in testes, indicating disruption of the antioxidant defense system. Furthermore, myeloperoxidase (MPO) activity and DNA damage were significantly heightened, implying inflammation and genotoxicity, respectively. Moreover, steroidogenic enzymes, including 17β-Hydroxy Steroid Dehydrogenase 3 (HSD17b3), 3β-Hydroxy Steroid Dehydrogenase 2 (HSD3b2), 17α-hydroxylase/17,20-lyase (CYP17A1), and steroid 5α-reductase 2 (SRD5A2) were markedly diminished accompanied with disorders in luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone. Besides, spermatozoa quality was reduced, associated with a diminution in the diameter of seminiferous tubules. By contrast, PRO or ROJ significantly protected and/or counteracted the Cd-induced pathophysiological consequences, ameliorating antioxidant and inflammatory biomarkers, steroidogenic enzymes, hormonal levels, and sperm properties, along with lessening DNA impairments. Critically, histological and ultrastructural analyses manifested several anomalies in the testicular tissues of the Cd-administered group, including the Leydig and Sertoli cells and spermatozoa. Conversely, PRO or ROJ sustained testicular tissues' structure, enhancing spermatozoa integrity and productivity. Interestingly, treatment with PRO or ROJ improved fertility indices through offspring rates compared to the Cd-animal group. Our data suggest that PRO is a more effective countermeasure than ROJ against Cd toxicity for securing the delicate testicular microenvironment for spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Ahmed E Abdel Karim
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, 21526, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
24
|
Gernt P, Dittes J, Vervuert I, Emmerich IU. Review: Nutritional Needs of Honeybees and Legislation on Apiculture By-Products in Animal Nutrition. Animals (Basel) 2024; 14:2208. [PMID: 39123734 PMCID: PMC11311006 DOI: 10.3390/ani14152208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Honeybees are some of the smallest farmed animals, and apiculture by-products, e.g., honey, beeswax, propolis, royal jelly, and pollen contribute to animal nutrition. For the effective production of these by-products, the optimal development and nutrient supply of the honeybee is required. Beginning with the development of the mouth and anal pores on the second day of embryonic development, the digestive tract differentiates into the mouth and fore-, mid-, and hindgut during the pupal stage. The various glands within the oral cavity are particularly important, secreting enzymes and substances that are crucial for digestion and hive nutrition, e.g., invertase and royal jelly. Honeybees rely on a specialized caste system, with worker bees collecting nectar, pollen, water, and resin for the nutrition of the entire hive. Macronutrients, including proteins, carbohydrates, and lipids, obtained primarily from pollen and nectar, are essential for the growth and development of larvae and the overall health of the colony. Inadequate nutrient intake can lead to detrimental effects on larval development, prompting cannibalism within the hive. Apiculture by-products possess unique nutritional and therapeutic properties, leading to a growing interest in the use of honey, beeswax, propolis, and pollen as a feed additive. In recent years, the use of apicultural by-products in animal nutrition has been primarily limited to in vivo studies, which have demonstrated various positive impacts on the performance of farm animals. Honey, beeswax, propolis, royal jelly, and pollen are listed feed stuffs according to Regulation (EC) No. 68/2013. However, for animal nutrition there is not any specific legal definition for these products and no legal requirements regarding their ingredients as given for honey or beeswax in European food law.
Collapse
Affiliation(s)
- Patrick Gernt
- Faculty of Veterinary Medicine, Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, 04103 Leipzig, Germany; (P.G.); (I.V.)
| | - Julia Dittes
- Centre for Applied Training and Learning, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, 04103 Leipzig, Germany
| | - Ingrid Vervuert
- Faculty of Veterinary Medicine, Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, 04103 Leipzig, Germany; (P.G.); (I.V.)
| | - Ilka U. Emmerich
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
26
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
27
|
Kim BY, Lee KS, Jin BR. Antioxidant Activity and Mechanism of Action of Amwaprin: A Protein in Honeybee ( Apis mellifera) Venom. Antioxidants (Basel) 2024; 13:469. [PMID: 38671917 PMCID: PMC11047345 DOI: 10.3390/antiox13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Bee venom contains several bioactive components, including enzymatic and non-enzymatic proteins. There is increasing interest in the bioactive components of bee venom since they have exhibited various pharmacological effects. Recently, Apis mellifera waprin (Amwaprin) was identified as a novel protein in Apis mellifera (honeybee) venom and characterized as an antimicrobial agent. Herein, the novel biological function of Amwaprin as an antioxidant is described. In addition, the antioxidant effects of Amwaprin in mammalian cells were investigated. Amwaprin inhibited the growth of, oxidative stress-induced cytotoxicity, and inflammatory response in mammalian NIH-3T3 cells. Amwaprin decreased caspase-3 activity during oxidative stress and exhibited protective activity against oxidative stress-induced cell apoptosis in NIH-3T3 and insect Sf9 cells. The mechanism underlying the cell protective effect of Amwaprin against oxidative stress is due to its direct binding to the cell membrane. Furthermore, Amwaprin demonstrated radical-scavenging activity and protected against oxidative DNA damage. These results suggest that the antioxidant capacity of Amwaprin is attributed to the synergistic effects of its radical-scavenging action and cell shielding, indicating its novel role as an antioxidant agent.
Collapse
Affiliation(s)
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea;
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
28
|
Ito T, Rojasawasthien T, Takeuchi SY, Okamoto H, Okumura N, Shirakawa T, Matsubara T, Kawamoto T, Kokabu S. Royal Jelly Enhances the Ability of Myoblast C2C12 Cells to Differentiate into Multilineage Cells. Molecules 2024; 29:1449. [PMID: 38611729 PMCID: PMC11013243 DOI: 10.3390/molecules29071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Royal jelly (RJ) is recognized as beneficial to mammalian health. Multilineage differentiation potential is an important property of mesenchymal stem cells (MSCs). C2C12 cells have an innate ability to differentiate into myogenic cells. Like MSCs, C2C12 cells can also differentiate into osteoblast- and adipocyte-lineage cells. We recently reported that RJ enhances the myogenic differentiation of C2C12 cells. However, the effect of RJ on osteoblast or adipocyte differentiation is still unknown. Here in this study, we have examined the effect of RJ on the osteoblast and adipocyte differentiation of C2C12 cells. Protease-treated RJ was used to reduce the adverse effects caused by RJ supplementation. To induce osteoblast or adipocyte differentiation, cells were treated with bone morphogenetic proteins (BMP) or peroxisome proliferator-activated receptor γ (PPARγ) agonist, respectively. RNA-seq was used to analyze the effect of RJ on gene expression. We found that RJ stimulates osteoblast and adipocyte differentiation. RJ regulated 279 genes. RJ treatment upregulated glutathione-related genes. Glutathione, the most abundant antioxidative factor in cells, has been shown to promote osteoblast differentiation in MSC and MSC-like cells. Therefore, RJ may promote osteogenesis, at least in part, through the antioxidant effects of glutathione. RJ enhances the differentiation ability of C2C12 cells into multiple lineages, including myoblasts, osteoblasts, and adipocytes.
Collapse
Affiliation(s)
- Takumi Ito
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Sachiko Yamashita Takeuchi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Hideto Okamoto
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| |
Collapse
|
29
|
Kurek-Górecka A, Kłósek M, Pietsz G, Balwierz R, Olczyk P, Czuba ZP. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients 2024; 16:627. [PMID: 38474755 DOI: 10.3390/nu16050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Grażyna Pietsz
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
30
|
Wang X, Liu H, Qiao C, Ma Y, Luo H, Hou C, Huo D. A dual-functional single-atom Fe nanozyme-based sensitive colorimetric sensor for tannins quantification in brandy. Food Chem 2024; 434:137523. [PMID: 37742553 DOI: 10.1016/j.foodchem.2023.137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Traditional methods of tannins detection suffer from complex pretreatment, long detection time, and limited sensitivity. Modern techniques like liquid chromatography require expertise, involve tedious result processing, and lack effective data visualization. Therefore, there is a need for an alternative detection method that simplifies pretreatment and detection steps, reduces analysis time, and provides visualized results. In this study, a novel colorimetric sensor based on single-atom Fe nanozyme (Fe@CN-20) was developed for tannins detection. Fe@CN-20 exhibited laccase-like and oxidase-like activities, enabling simultaneous oxidation of tannins and a substrate called TMB. Tannins competed with TMB, allowing quantification of tannins content. The Fe@CN-20/TMB system provided a detection range of 5-100 mg/L tannic acid, with a detection limit of 0.13 mg/L (S/N = 3). Analysis time was approximately 30 min. The platform successfully quantified tannins in brandy, showing less than 5% deviation compared to the standard method. The sensor was simple, sensitive, rapid, and provided strong visualization.
Collapse
Affiliation(s)
- Xinrou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
31
|
Akhtari N, Ahmadi M, Kiani Doust Vaghe Y, Asadian E, Behzad S, Vatanpour H, Ghorbani-Bidkorpeh F. Natural agents as wound-healing promoters. Inflammopharmacology 2024; 32:101-125. [PMID: 38062178 DOI: 10.1007/s10787-023-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 03/03/2024]
Abstract
The management of acute and chronic wounds resulting from diverse injuries poses a significant challenge to clinical practices and healthcare providers. Wound healing is a complex biological process driven by a natural physiological response. This process involves four distinct phases, namely hemostasis, inflammation, proliferation, and remodeling. Despite numerous investigations on wound healing and wound dressing materials, complications still persist, necessitating more efficacious therapies. Wound-healing materials can be categorized into natural and synthetic groups. The current study aims to provide a comprehensive review of highly active natural animal and herbal agents as wound-healing promoters. To this end, we present an overview of in vitro, in vivo, and clinical studies that led to the discovery of potential therapeutic agents for wound healing. We further elucidated the effects of natural materials on various pharmacological pathways of wound healing. The results of previous investigations suggest that natural agents hold great promise as viable and accessible products for the treatment of diverse wound types.
Collapse
Affiliation(s)
- Negin Akhtari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Kiani Doust Vaghe
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Mara A, Migliorini M, Ciulu M, Chignola R, Egido C, Núñez O, Sentellas S, Saurina J, Caredda M, Deroma MA, Deidda S, Langasco I, Pilo MI, Spano N, Sanna G. Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods 2024; 13:243. [PMID: 38254544 PMCID: PMC10814624 DOI: 10.3390/foods13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machine-learning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors.
Collapse
Affiliation(s)
- Andrea Mara
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Matteo Migliorini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.M.); (M.C.); (R.C.)
| | - Marco Ciulu
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.M.); (M.C.); (R.C.)
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.M.); (M.C.); (R.C.)
| | - Carla Egido
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain
- Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain
| | - Sònia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain
- Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (C.E.); (O.N.); (S.S.); (J.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - Marco Caredda
- Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy;
| | - Mario A. Deroma
- Department of Agriculture, University of Sassari, Viale Italia, 39A, 07100 Sassari, Italy;
| | - Sara Deidda
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Ilaria Langasco
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Maria I. Pilo
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Nadia Spano
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| | - Gavino Sanna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (S.D.); (I.L.); (M.I.P.); (N.S.)
| |
Collapse
|
33
|
Gîlcescu Florescu CA, Stanciulescu EC, Berbecaru-Iovan A, Balasoiu RM, Pisoschi CG. In vitro Assessment of Free Radical Scavenging Effect and Thermal Protein Denaturation Inhibition of Bee Venom for an Anti-Inflammatory Use. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:81-86. [PMID: 38846469 PMCID: PMC11151940 DOI: 10.12865/chsj.50.01.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/25/2024] [Indexed: 06/09/2024]
Abstract
Inflammation and the injuries produced by free radicals are interconnected and influence each other. The underlying mechanisms of inflammation are partially attributed to the release of free radicals by immune cells, prooxidants that can also cause protein alteration. This study was performed in order to assess the potential anti-inflammatory effect of two bee venom samples harvested from Apis mellifera. Free radical scavenging capacity was investigated using DPPH and ABTS.+ tests and protective effect on proteins through the inhibitory activity on thermal denaturation of albumin.
Collapse
Affiliation(s)
| | - Elena Camelia Stanciulescu
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova
| | - Anca Berbecaru-Iovan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova
| | - Roxana Maria Balasoiu
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova
| | - Catalina Gabriela Pisoschi
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova
| |
Collapse
|
34
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
35
|
Anbara H, Ghorbani M, Shahriary A. Anti-oxidant and anti-apoptotic effects of royal jelly against polystyrene microplastic-induced testicular injury in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1515-1528. [PMID: 39539451 PMCID: PMC11556760 DOI: 10.22038/ijbms.2024.78787.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/13/2024] [Indexed: 11/16/2024]
Abstract
Objectives In recent years, microplastics (MPs), which are novel environmental contaminants measuring 5 mm in diameter, have garnered considerable attention. However, information regarding substances that can mitigate the dangers of MPs for animals remains extremely limited. Materials and Methods Ninety days were devoted to the exposure of mature male mice to royal jelly (RJ) and 2 µm virgin polystyrene microplastics (PS-MPs) in this study. Pre-implantation embryo development; the structure of testis tissue; the gonadosomatic index; sperm parameters; RNA damage in germinal cells; the anti-oxidant capacity of the entire testis; and the activity of anti-oxidant enzymes in serum and testicular tissue, including TAC, SOD dismutase, CAT, GSH, and MDA, histomorphometric indices of the testis (tubular differentiation index, spermatogenesis index, and repopulation index), steroidogenic foci, and the quantity of apoptosis were assessed in the testis, respectively, through the measurement of pro-apoptosis (p53, Bax, and Caspase-3) and anti-apoptosis (Bcl-2) factors, as well as Hsp70 mediator. Results The results indicate that concurrent administration of RJ can confer a protective effect on mice exposed to microplastics by maintaining the structure of mitochondria and enhancement of the anti-oxidant defense system. Furthermore, RJ co-treatment decreased apoptosis and oxidant/anti-oxidant status, enhanced pre-implantation embryo development, and improved sperm characteristics and RNA damage in germ cells. Conclusion The data confirm that royal jelly could protect the testis structure against polystyrene microplastic-induced testicular injury through anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Rodríguez-Pólit C, Gonzalez-Pastor R, Heredia-Moya J, Carrera-Pacheco SE, Castillo-Solis F, Vallejo-Imbaquingo R, Barba-Ostria C, Guamán LP. Chemical Properties and Biological Activity of Bee Pollen. Molecules 2023; 28:7768. [PMID: 38067498 PMCID: PMC10708394 DOI: 10.3390/molecules28237768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Pollen, a remarkably versatile natural compound collected by bees for its abundant source of proteins and nutrients, represents a rich reservoir of diverse bioactive compounds with noteworthy chemical and therapeutic potential. Its extensive biological effects have been known and exploited since ancient times. Today, there is an increased interest in finding natural compounds against oxidative stress, a factor that contributes to various diseases. Recent research has unraveled a multitude of biological activities associated with bee pollen, ranging from antioxidant, anti-inflammatory, antimicrobial, and antifungal properties to potential antiviral and anticancer applications. Comprehending the extensive repertoire of biological properties across various pollen sources remains challenging. By investigating a spectrum of pollen types and their chemical composition, this review produces an updated analysis of the bioactive constituents and the therapeutic prospects they offer. This review emphasizes the necessity for further exploration and standardization of diverse pollen sources and bioactive compounds that could contribute to the development of innovative therapies.
Collapse
Affiliation(s)
- Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador;
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Fabián Castillo-Solis
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Roberto Vallejo-Imbaquingo
- Departamento de Estudios Organizacionales y Desarrollo Humano DESODEH, Facultad de Ciencias Administrativas, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| |
Collapse
|
37
|
Caetano AR, Oliveira RD, Pereira RFC, Cardoso TV, Cardoso A, Almeida-Aguiar C. Examination of Raw Samples and Ethanol Extracts of Gerês Propolis Collected in Different Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:3909. [PMID: 38005805 PMCID: PMC10674325 DOI: 10.3390/plants12223909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Propolis, a natural resin created by bees, has garnered significant attention from both the scientific community and industry due to an impressive range of bioactivities. Nonetheless, the intrinsic variability in its chemical composition and bioactive profiles has been hindering propolis' full potential use. We previously showed that ethanol extracts (EEs) of a Portuguese propolis sample (Gerês) collected over four consecutive years displayed similar chemical and biological profiles, a constancy never documented before. However, the characteristics of the unprocessed samples of Gerês propolis were never described. Hence, the central objective of this study is to assess the quality parameters of unprocessed propolis samples collected from Gerês (G), over a four-year period (2019-2022), alongside the analysis of the chemical composition and bioactivities of the EEs prepared with the same raw samples. The ash, wax, balsam and water contents of the unprocessed samples-G19 to G22-showed minor fluctuations, likely attributed to uncontrollable natural events impacting the propolis source and collection process. On the other hand, the antimicrobial and antioxidant activities of all the four ethanol extracts (G19.EE-G22.EE) consistently align with prior studies. Furthermore, the Gerês propolis extracts showed remarkable uniformity in chemical composition parameters too, particularly concerning total polyphenol, flavonoid and ortho-diphenol contents. In summary, our research reinforces the beneficial properties of propolis and show that extracts' bioactivities remain within the reference ranges for Gerês propolis, despite minor differences in unprocessed samples, suggesting a consistent action over time. Thus, this work could be instrumental towards the establishment of standard parameters for propolis applications, offering valuable insights to this field of propolis research.
Collapse
Affiliation(s)
- Ana Rita Caetano
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.C.); (R.D.O.); (R.F.C.P.); (T.V.C.); (A.C.)
| | - Rafaela Dias Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.C.); (R.D.O.); (R.F.C.P.); (T.V.C.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui Filipe Cerqueira Pereira
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.C.); (R.D.O.); (R.F.C.P.); (T.V.C.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Tiago Vidal Cardoso
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.C.); (R.D.O.); (R.F.C.P.); (T.V.C.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia Cardoso
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.C.); (R.D.O.); (R.F.C.P.); (T.V.C.); (A.C.)
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.C.); (R.D.O.); (R.F.C.P.); (T.V.C.); (A.C.)
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
38
|
Sahu SA, Panda S, Das AC, Mishra L, Rath S, Sokolowski K, Kumar M, Mohanty R, Nayak R, Satpathy A, Lapinska B. Efficacy of Sub-Gingivally Delivered Propolis Nanoparticle in Non-Surgical Management of Periodontal Pocket: A Randomized Clinical Trial. Biomolecules 2023; 13:1576. [PMID: 38002260 PMCID: PMC10669236 DOI: 10.3390/biom13111576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Naturally sourced products like propolis are commonly employed for the non-surgical treatment of periodontal pockets. The use of nanoparticle formulations of these natural remedies has the potential to improve treatment outcomes. The aim of the present study was to evaluate the efficacy of sub-gingivally delivered propolis nanoparticles in the non-surgical management of periodontal pockets. Forty patients diagnosed with periodontitis presenting at least one periodontal pocket with a probing pocket depth between 4 and 6 mm were selected. Patients were randomly assigned into the control group (n = 20), which received scaling and root planing (SRP) and saline (SRP + Saline), and the test group (n = 20), which received SRP and sub-gingivally delivered propolis nanoparticles (PRO) into the periodontal pocket (SRP + PRO). The clinical parameters recorded were plaque index (PI), gingival index (GI), relative attachment loss (RAL), probing pocket depth (PPD), and bleeding on probing (BOP). They were assessed at baseline, one month, and three months post therapy. The results indicated that there was a significant improvement in clinical parameters (p < 0.05) in the test sites compared with the control sites at the end of the study. The gingival index at one month and three months was found to be significantly better in the SRP + PRO group than the SRP + Saline group, with a p value of <0.001. The BOP, PPD, and RAL showed significant improvement with the SRP + PRO group at the end of the 3-month follow-up with p values of 0.0001, 0.001, and 0.05, respectively. The subgingival delivery of propolis nanoparticles showed promising results as an adjunct to SRP in patients with periodontitis presenting periodontal pockets.
Collapse
Affiliation(s)
- Sushree Ambika Sahu
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Saurav Panda
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Abhaya Chandra Das
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Lora Mishra
- Department of Conservative Dentistry & Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India;
| | - Satchidananda Rath
- Department of Physics, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India;
| | - Krzysztof Sokolowski
- Department of Conservative Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Manoj Kumar
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Rinkee Mohanty
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Rashmita Nayak
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Anurag Satpathy
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
39
|
Shaker SA, Alshufta SM, Gowayed MA, El-Salamouni NS, Bassam SM, Megahed MA, El-Tahan RA. Propolis-loaded nanostructured lipid carriers halt breast cancer progression through miRNA-223 related pathways: an in-vitro/in-vivo experiment. Sci Rep 2023; 13:15752. [PMID: 37735586 PMCID: PMC10514043 DOI: 10.1038/s41598-023-42709-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The most frequent malignant tumor in women is breast cancer, and its incidence has been rising every year. Propolis has been used for its antibacterial, antifungal, and anti-inflammatory properties. The present study aimed to examine the effect of the Egyptian Propolis Extract (ProE) and its improved targeting using nanostructured lipid carriers (ProE-NLC) in Ehrlich Ascites Carcinoma (EAC) bearing mice, the common animal model for mammary tumors. EAC mice were treated either with 5-fluorouracil (5-FU), ProE, ProE-NLC, or a combination of ProE-NLC and 5-FU. Their effect on different inflammatory, angiogenic, proliferation and apoptotic markers, as well as miR-223, was examined. ProE and ProE-NLC have shown potential anti-breast cancer activity through multiple interrelated mechanisms including, the elevation of antioxidant levels, suppression of angiogenesis, inflammatory and mTOR pathways, and induction of the apoptotic pathway. All of which is a function of increased miRNA-223 expression. The efficiency of propolis was enhanced when loaded in nanostructured lipid carriers, increasing the effectiveness of the chemotherapeutic agent 5-FU. In conclusion, this study is the first to develop propolis-loaded NLC for breast cancer targeting and to recommend propolis as an antitumor agent against breast cancer or as an adjuvant treatment with chemotherapeutic agents to enhance their antitumor activity and decrease their side effects. Tumor targeting by ProE-NLC should be considered as a future therapeutic perspective in breast cancer.
Collapse
Affiliation(s)
- Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Shadi M Alshufta
- Department of Clinical Pathology, Faculty of Medicine, Aden University, Aden, Yemen
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El-Mahmoudia Str., Smouha, Alexandria, Egypt.
| | - Noha S El-Salamouni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar M Bassam
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Magda A Megahed
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rasha A El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Gaafar HM, Dell'Anno M, Rossi L, Mohsen MK, Abdel-Raouf ESM, El-Nahrawy MM, Amer AW. Evaluation of Beeswax Supplementation on Productive Performance of Growing Assaf Lambs. Vet Sci 2023; 10:574. [PMID: 37756096 PMCID: PMC10536123 DOI: 10.3390/vetsci10090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this work was to assess the effects of beeswax supplementation on growth rate, feed intake, nutrient digestion, rumen fermentation, blood parameters, and economic sustainability in Assaf lambs. Eighteen growing Assaf (5 months old) lambs were separated into three experimental groups (n = 6 lambs/group). The lambs were fed a basal diet without supplementation (G1) or supplemented with 2 and 4 g beeswax/head/day in G2 and G3 groups, respectively. Zootechnical performance was evaluated over a 90 day period. Feed digestibility was assessed in faeces through the acid insoluble-ash method, and rumen liquor was collected to measure ammonia (NH3-N) and total volatile fatty acid (TVFA) levels. Blood samples were obtained for the titration serum metabolites by colorimetric tests. The findings showed that G3 had an improved performance compared to the other groups (p < 0.01). The lambs in G3 revealed the highest nutrient digestibility and feed use, followed by G2, and G1. G3 recorded the highest economic efficiency followed by G2 and G1 (p < 0.01). The TVFA, acetate, and propionate concentrations were higher and the pH values, NH3-N, and butyrate concentrations were lower in G3 compared to G2 and particularly to G1 (p < 0.01). The concentrations of total protein, globulin, and glucose were significantly higher with 4 g beeswax (p < 0.05). However, albumin, cholesterol, total lipids, urea, creatinine, glutamic oxaloacetic transaminase (GOT), and glutamate pyruvate transaminase (GPT) concentrations as well as the albumin to globulin ratio decreased significantly with both levels of beeswax (p < 0.05). The addition of beeswax at the level of 4 g/head/day for growing Assaf lambs significantly improved the growth performance, digestibility, rumen fermentation, and blood serum parameters in addition to the economic efficiency.
Collapse
Affiliation(s)
- Hamed Mohamed Gaafar
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza P.O. Box 33717, Egypt
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Mohamed Kamel Mohsen
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh P.O. Box 33516, Egypt
| | - El-Sayed Mohamed Abdel-Raouf
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh P.O. Box 33516, Egypt
| | | | - Abdeen Wajeeh Amer
- Animal Production Specialist at the National Campaign to Advance Camel Productivity Project, Desert Research Center, Cairo P.O. Box 11756, Egypt
| |
Collapse
|
41
|
Petcu CD, Tăpăloagă D, Mihai OD, Gheorghe-Irimia RA, Negoiță C, Georgescu IM, Tăpăloagă PR, Borda C, Ghimpețeanu OM. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023; 12:3176. [PMID: 37685108 PMCID: PMC10486681 DOI: 10.3390/foods12173176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Consumers are increasingly showing in maintaining a healthy dietary regimen, while food manufacturers are striving to develop products that possess an extended shelf-life to meet the demands of the market. Numerous studies have been conducted to identify natural sources that contribute to the preservation of perishable food derived from animals and plants, thereby prolonging its shelf life. Hence, the present study focuses on the identification of both natural sources of antioxidants and their applications in the development of novel food products, as well as their potential for enhancing product shelf-life. The origins of antioxidants in nature encompass a diverse range of products, including propolis, beebread, and extracts derived through various physical-chemical processes. Currently, there is a growing body of research being conducted to evaluate the effectiveness of natural antioxidants in the processing and preservation of various food products, including meat and meat products, milk and dairy products, bakery products, and bee products. The prioritization of discovering novel sources of natural antioxidants is a crucial concern for the meat, milk, and other food industries. Additionally, the development of effective methods for applying these natural antioxidants is a significant objective in the food industry.
Collapse
Affiliation(s)
- Carmen Daniela Petcu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Oana Diana Mihai
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Carmen Negoiță
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Ioana Mădălina Georgescu
- Sanitary Veterinary and Food Safety Directorate Bucharest, Ilioara Street No. 16Y, District 3, 032125 Bucharest, Romania;
| | - Paul Rodian Tăpăloagă
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Cristin Borda
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mânăștur St., 400372 Cluj-Napoca, Romania
| | - Oana Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| |
Collapse
|
42
|
Małek A, Strzemski M, Kurzepa J, Kurzepa J. Can Bee Venom Be Used as Anticancer Agent in Modern Medicine? Cancers (Basel) 2023; 15:3714. [PMID: 37509375 PMCID: PMC10378503 DOI: 10.3390/cancers15143714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee venom in its composition contains many biologically active peptides and enzymes that are effective in the fight against diseases of various etiologies. The history of the use of bee venom for medicinal purposes dates back thousands of years. There are many reports in the literature on the pharmacological properties of bee venom and/or its main components, e.g., anti-arthritic, anti-inflammatory, anti-microbial or neuroprotective properties. In addition, both crude venom and melittin exhibit cytotoxic activity against a wide range of tumor cells, with significant anti-metastatic activity in pre-clinical studies. Due to the constantly increasing incidence of cancer, the development of new therapeutic strategies in oncology is a particular challenge for modern medicine. A review paper discusses the various properties of bee venom with an emphasis on its anticancer properties. For this purpose, the PubMed database was searched, and publications related to "bee", "venom", "cancer" from the last 10 years were selected.
Collapse
Affiliation(s)
- Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Kurzepa
- 1st Department of Radiology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
43
|
Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the Potential of Bee-Derived Antioxidants for Maintaining Oral Hygiene and Dental Health: A Comprehensive Review. Antioxidants (Basel) 2023; 12:1452. [PMID: 37507990 PMCID: PMC10375990 DOI: 10.3390/antiox12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.
Collapse
Affiliation(s)
- Poonam Choudhary
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Surya Tushir
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Manju Bala
- Department of Food Grain and Oilseed Processing, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Parminder Kumar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| |
Collapse
|
44
|
Stefanowska K, Woźniak M, Sip A, Mrówczyńska L, Majka J, Kozak W, Dobrucka R, Ratajczak I. Characteristics of Chitosan Films with the Bioactive Substances-Caffeine and Propolis. J Funct Biomater 2023; 14:358. [PMID: 37504853 PMCID: PMC10381157 DOI: 10.3390/jfb14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances-caffeine and ethanolic propolis extract (EEP)-were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 48, 60627 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61614 Poznań, Poland
| | - Jerzy Majka
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60637 Poznań, Poland
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
45
|
Sanyal A, Ghosh A, Roy C, Mazumder I, Marrazzo P. Revolutionizing the Use of Honeybee Products in Healthcare: A Focused Review on Using Bee Pollen as a Potential Adjunct Material for Biomaterial Functionalization. J Funct Biomater 2023; 14:352. [PMID: 37504847 PMCID: PMC10381877 DOI: 10.3390/jfb14070352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
The field of biomedical engineering highly demands technological improvements to allow the successful engraftment of biomaterials requested for healing damaged host tissues, tissue regeneration, and drug delivery. Polymeric materials, particularly natural polymers, are one of the primary suitable materials employed and functionalized to enhance their biocompatibility and thus confer advantageous features after graft implantation. Incorporating bioactive substances from nature is a good technique for expanding or increasing the functionality of biomaterial scaffolds, which may additionally encourage tissue healing. Our ecosystem provides natural resources, like honeybee products, comprising a rich blend of phytochemicals with interesting bioactive properties, which, when functionally coupled with biomedical biomaterials, result in the biomaterial exhibiting anti-inflammatory, antimicrobial, and antioxidant effects. Bee pollen is a sustainable product recently discovered as a new functionalizing agent for biomaterials. This review aims to articulate the general idea of using honeybee products for biomaterial engineering, mainly focusing on describing recent literature on experimental studies on biomaterials functionalized with bee pollen. We have also described the underlying mechanism of the bioactive attributes of bee pollen and shared our perspective on how future biomedical research will benefit from the fabrication of such functionalized biomaterials.
Collapse
Affiliation(s)
- Arka Sanyal
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Anushikha Ghosh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Chandrashish Roy
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
46
|
Ferreira IC, Côrrea RCD, Orué SL, Leite DF, da Rocha PDS, Cardoso CAL, Mussury RM, Vit P, de Picoli Souza K, Dos Santos EL, Campos JF. Chemical Components and Antioxidant Activity of Geotrigona sp. and Tetragonisca fiebrigi Stingless Bee Cerumen Reduce Juglone-Induced Oxidative Stress in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:1276. [PMID: 37372006 DOI: 10.3390/antiox12061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Cerumen is a bee product produced exclusively by stingless bees, resulting from a mixture of beeswax and plant resins. The antioxidant activity of bee products has been investigated since oxidative stress is associated with the onset and progression of several diseases that can lead to death. In this context, this study aimed to investigate the chemical composition and antioxidant activity of cerumen produced by the Geotrigona sp. and Tetragonisca fiebrigi stingless bees, in vitro and in vivo. The chemical characterization of cerumen extracts was performed by HPLC, GC, and ICP OES analyses. The in vitro antioxidant potential was evaluated by DPPH• and ABTS•+ free radical scavenging methods, and in human erythrocytes subjected to oxidative stress with AAPH. In vivo, the antioxidant potential was evaluated in Caenorhabditis elegans nematodes subjected to oxidative stress with juglone. Both cerumen extracts presented phenolic compounds, fatty acids, and metallic minerals in their chemical constitution. The cerumen extracts showed antioxidant activity by capturing free radicals, reducing lipid peroxidation in human erythrocytes, and reducing oxidative stress in C. elegans, observed by the increase in viability. The results obtained indicate that cerumen extracts from Geotrigona sp. and Tetragonisca fiebrigi stingless bees may be promising against oxidative stress and associated diseases.
Collapse
Affiliation(s)
- Isamara Carvalho Ferreira
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Raíssa Cristina Darroz Côrrea
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Sarah Lam Orué
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Paola Dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Claudia Andrea Lima Cardoso
- Course of Chemistry, State University of Mato Grosso do Sul, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Rosilda Mara Mussury
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil
| |
Collapse
|
47
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
48
|
Sánchez-Martín V, Morales P, Iriondo-DeHond A, Hospital XF, Fernández M, Hierro E, Haza AI. Differential Apoptotic Effects of Bee Product Mixtures on Normal and Cancer Hepatic Cells. Antioxidants (Basel) 2023; 12:615. [PMID: 36978864 PMCID: PMC10045410 DOI: 10.3390/antiox12030615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Most effective anticancer drugs normally generate considerable cytotoxicity in normal cells; therefore, the preferential activation of apoptosis in cancer cells and the reduction of toxicity in normal cells is a great challenge in cancer research. Natural products with selective anticancer properties used as complementary medicine can help to achieve this goal. The aim of the present study was to analyze the effect of the addition of bee products [propolis (PR) or royal jelly (RJ) or propolis and royal jelly (PR+RJ), 2-10%] to thyme (TH) and chestnut honeys (CH) on the differential anticancer properties, mainly the cytotoxic and pro-apoptotic effects, in normal and cancer hepatic cells. The cytotoxic effects of samples were analyzed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (0-250 mg/mL) and the effects on apoptosis were analyzed using cell cycle analysis, TdT-dUTP terminal nick-end labeling (TUNEL) assay, DR5 (Death Receptor 5) and BAX (BCL-2-Associated X) activation, and caspases 8, 9, and 3 activities. Both honey samples alone and honey mixtures had no or very little apoptotic effect on normal cells. Antioxidant honey mixtures enhanced the apoptotic capacity of the corresponding honey alone via both extrinsic and intrinsic pathways. Of all the samples, chestnut honey enriched with 10% royal jelly and 10% propolis (sample 14, CH+10RJ+10PR) showed the highest apoptotic effect on tumor liver cells. The enrichment of monofloral honey with bee products could be used together with conventional anticancer treatments as a dietary supplement without side effects. On the other hand, it could be included in the diet as a natural sweetener with high added value.
Collapse
Affiliation(s)
- Vanesa Sánchez-Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Paloma Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Xavier F. Hospital
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Manuela Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Eva Hierro
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Ana I. Haza
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
49
|
Sahu A, Nayak G, Bhuyan SK, Bhuyan R, Kar D, Kuanar A. A comparative study on antioxidant activity of propolis ethanolic extract and oil from different agroclimatic regions of Eastern India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
50
|
Sawicki T, Surma M, Sadowska-Rociek A. Characteristics of contaminants in the polish-origin bee products and cancer risk assessment. Food Chem Toxicol 2023; 175:113693. [PMID: 36849088 DOI: 10.1016/j.fct.2023.113693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The aim of this study was to evaluate the concentration of 5-hydroxymethylfurfural (HMF), furfural, polycyclic aromatic hydrocarbons (PAHs), and pesticide residues, as well as assessment of cancer risk of the Polish-origin bee products. The bee product samples were prepared using a modified QuEChERS method, then PAHs and pesticides were analysed by gas chromatography-mass spectrometry (GC-MS), neonicotinoids by high-performance liquid chromatography with a diode array detector (HPLC-DAD), and HMF and furfural by spectrophotometry (HPLC-UV/Vis). The results showed that the highest furfural content was found in bee bread from the northeast part of Poland; moreover, samples obtained from the same region were also characterized with a higher level of HMF. The total sum of PAHs ranged from 324.0 to 866.4 μg/kg; the highest content of PAH4 (the sum of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) was 21.0 μg/kg, but only benzo[a]anthracene and chrysene were detected in the samples. Imidacloprid and acetamiprid were found only in bee bread from the northeast part of Poland, while clothianidin was detected in honey samples. The acceptable cancer risk has been calculated for PAHs due to ingestion of honey, while increasing the risk of cancer was calculated for bee bread and bee pollen. Due to the high concentration of PAHs and excessively high recommended consumption dose, regular consumption of bee bread and pollen may pose a severe threat to human health and should be strictly limited.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Ul. Słoneczna 45F, 10-719, Olsztyn, Poland.
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Ul. Balicka 122, 30-149, Krakow, Poland
| | - Anna Sadowska-Rociek
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Ul. Balicka 122, 30-149, Krakow, Poland
| |
Collapse
|