1
|
Sun Z, Dong F, Zhang R, Song X, Huang X, Dong Y, Jia X, Luo S, Li Y, Wang M. UPLC-HDMS revealed numerous novel compounds in soybean crude oil. Food Chem 2025; 466:142177. [PMID: 39615351 DOI: 10.1016/j.foodchem.2024.142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Soybean crude oils (SCO) were detected by ultra-performance liquid chromatography-high-definition mass spectrometry (UPLC-HDMS) for discovering novel compounds. Numerous chromatographic peaks in ESI+ and ESI- modes showed that SCO was rich in numerous compounds. A total of 215 potential compounds with accurate mass-to-charge ratio, MSMS spectrum and CCS value were detected in SCOs. Among them, 105 compounds (47 known and 58 novel compounds) were identified and other 110 compounds weren't identified. Compared to peanut, sesame and olive oils, 65 compounds (genistein, foeniculoside X, 5,7-Dimethoxyflavone) were only detected in SCO; the types of fatty acids (32) and flavonoids (8) were higher in SCO. SCO was rich in fatty acids, fatty acid amides, flavonoids, stigmasterol, tocopherol, and soybean phospholipids. Overall, numerous novel and unique compounds with biological functions were first found in SCOs by UPLC/HDMS. Our results suggested the higher potential nutritional value of soybean oil.
Collapse
Affiliation(s)
- Zhaohui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China
| | - Feng Dong
- Department of Physical and Chemical Inspection, Jiaxing Center for Disease Control and Prevention, Jiaxing, Zhejiang 314050, China
| | - Rui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China
| | - Xinyu Song
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China
| | - Xiaocai Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China
| | - Yingran Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China
| | | | | | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China.
| | - Maoqing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 150081, China.
| |
Collapse
|
2
|
Xiao S, Peng K, Chen R, Liu X, Zhou B, He R, Yan Y, Wan R, Yin YS, Lu S, Liang X. Equol promotes the in vitro maturation of porcine oocytes by activating the NRF2/KEAP1 signaling pathway. Theriogenology 2025; 233:70-79. [PMID: 39608307 DOI: 10.1016/j.theriogenology.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
In vitro maturation (IVM) plays a critical role in embryo production. However, the quality of IVM oocytes often suffers from oxidative stress due to the excessive accumulation of ROS. Equol, a metabolite of soybean flavonoids, exhibits potent antioxidant activity. This study investigated the effects of equol on porcine oocyte IVM. Our findings showed that treatment with 5 μM equol significantly enhanced cumulus cell expansion and the first polar body extrusion in porcine oocytes. Moreover, equol also improved the subsequent embryonic development capacity of the oocytes after parthenogenetic activation. Additionally, equol improved mitochondrial function by increasing mitochondrial content, membrane potential, and ATP levels, while promoting lipid droplet accumulation in oocytes. Equol also reduced DNA damage and early apoptosis, with an associated upregulation of BCL2 and downregulation of BAX expression. Notably, equol decreased ROS levels, likely through activation of the NRF2/KEAP1 antioxidant pathway, leading to increased expression of HO-1, CAT, GPX1, and SOD. In conclusion, equol improves porcine oocyte IVM by mitigating oxidative stress via activation of the NRF2/KEAP1 pathway, offering a potential strategy for optimizing the IVM system in porcine oocytes.
Collapse
Affiliation(s)
- Sai Xiao
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Rui Chen
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Benliang Zhou
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Rijing He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yujun Yan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Runtian Wan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ye-Shi Yin
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shengsheng Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
Ferriere F, Aasi N, Flouriot G, Pakdel F. Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytother Res 2024. [PMID: 39707600 DOI: 10.1002/ptr.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet. Indeed, some epidemiological studies highlight health benefits in consuming isoflavone-rich foods, notably by reducing the risk of certain cancers. However, several studies conducted on cell models show that these molecules can have negative effects on cell fate, particularly with regard to proliferation and survival of mammary tumor cells. Isoflavones are mainly genistein, daidzein, formononetin, and biochanin A. These molecules belong to the family of phytoestrogens, which are capable of interacting with both nuclear estrogen receptor, ERα and ERβ, to trigger agonistic and antagonistic effects. Due to their estrogenic properties, isoflavones are suspected to promote hormone-dependent cancers such as breast cancer. This suspicion is based primarily on their ability to bind to ERα in breast cells, thereby altering the signaling pathways that control cell growth. However, study results are sometimes contradictory. Some studies suggest that isoflavones may protect against breast cancer by acting as selective estrogen receptor modulators, while others highlight their potential role in stimulating tumor growth. This review explores the literature on the effects of isoflavones, focusing on their influence on ERα-dependent signaling in breast tumor cells.
Collapse
Affiliation(s)
- François Ferriere
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Nagham Aasi
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
4
|
Lee HY, Kim HS, Kim MJ, Seo YH, Cho DY, Lee JH, Lee GY, Jeong JB, Jang MY, Lee JH, Lee J, Cho KM. Comparison of primary and secondary metabolites and antioxidant activities by solid-state fermentation of Apios americana Medikus with different fungi. Food Chem 2024; 461:140808. [PMID: 39151342 DOI: 10.1016/j.foodchem.2024.140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
This study compared the nutritional components, isoflavones, and antioxidant activities by solid-sate fermentation of Apios americana Medikus (AAM) with seven different fungi. The total fatty acid contents increased from 120.5 mg/100 g (unfermented AAM, UFAAM) to 242.0 to 3167.5 mg/100 g (fermented AAM, FAAM) with all fungi. In particular, the values of total fatty acids were highest (26.3-fold increase) in the FAAM with Monascus purpureus. The amount of total free amino acids increased from 591.69 mg/100 g (UFAAM) to 664.38 to 1603.07 mg/100 g after fermentation except for Monascus pilosus and Lentinula edodes. The total mineral contents increased evidently after fermentation with M. purpureus, F. velutipes, and Tricholoma matsutake (347.36 → 588.29, 576.59, and 453.32 mg/100 g, respectively). The UFAAM predominated isoflavone glycosides, whereas glycoside forms were converted into aglycone forms after fermentation by fungi. The bioconversion rates of glycoside to aglycone were excellent in the FAAM with M. pilosus, M. purpureus, F. velutipes, and T. matsutake (0.01 → 0.69, 0.50, 0.27, and 0.31 mg/g, respectively). Furthermore, the total phenolic contents, total flavonoid contents, and antioxidant activities by the abovementioned FAAM were high except for L.edodes. This FAAM can be used as a potential food and pharmaceutical materials.
Collapse
Affiliation(s)
- Hee Yul Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Geonjae-ro 111, Naju 58245, Republic of Korea
| | - Min Ju Kim
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea; Biological Resources Utilization Division, National Institute of Biological Resources (NIBR), Sangnam-ro 1008-11, Miryang 50452, Republic of Korea
| | - Young Hye Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Geonjae-ro 111, Naju 58245, Republic of Korea
| | - Du Yong Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Ji Ho Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Ga Young Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Jong Bin Jeong
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Mu Yeun Jang
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Geonjae-ro 111, Naju 58245, Republic of Korea.
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea.
| |
Collapse
|
5
|
Chakravarti B, Rajput S, Srivastava A, Sharma LK, Sinha RA, Chattopadhyay N, Siddiqui JA. A Systematic Review and Meta-Analysis of the Effects of Dietary Isoflavones on Female Hormone-Dependent Cancers for Benefit-Risk Evaluation. Phytother Res 2024; 38:6062-6081. [PMID: 39480044 DOI: 10.1002/ptr.8358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Female hormone-dependent cancers depend on estrogen for their growth. Numerous studies have explored the antitumor effect of dietary isoflavones on female hormone-dependent cancers. Still, few clinical evidence supports the use of isoflavones in female hormone-dependent cancer patients. This study was performed to examine the impact of dietary isoflavones on tumor growth of female hormone-dependent cancers and accelerate the transformation of research from bench to bedside. We searched PubMed Medline, Web of Science, and Google Scholar for relevant articles related to the effect of dietary isoflavone on tumor growth of experimental animal models of female hormone-dependent cancers from 1998 to 2024. The effects of dietary isoflavones on tumor growth were analyzed between the control and treatment groups using comprehensive meta-analysis software (CMA). We included 30 studies describing tumor growth focused on female hormone-dependent cancer types, including breast, ovarian, and uterine cancers. Overall, a pooled analysis revealed that dietary isoflavones reduced tumor volume (Hedge's g = -1.151, 95% CI = -1.717 to -0.585, p = 0.000) and tumor weight (Hedge's g = -2.584, 95% CI = -3.618 to -1.549, p = 0.000). On the other hand, dietary isoflavones increased tumor area (Hedge's g = 1.136, 95% CI = 0.752 to 1.520, p = 0.000). Dietary isoflavones have potential benefits and risks in female hormone-dependent cancers. Therefore, caution should be exercised when considering the intake of dietary isoflavones in female hormone-dependent cancer patients, particularly in the form of supplements.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Stem Cell/Cell culture lab Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Swati Rajput
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anubhav Srivastava
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India
| | - Rohit Anthony Sinha
- Stem Cell/Cell culture lab Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
6
|
Goleij P, Tabari MAK, Khandan M, Poudineh M, Rezaee A, Sadreddini S, Sanaye PM, Khan H, Larsen DS, Daglia M. Genistein in focus: pharmacological effects and immune pathway modulation in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03647-x. [PMID: 39601821 DOI: 10.1007/s00210-024-03647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Cancer is a significant global health concern, responsible for mortality and morbidity of individuals. It is characterized by uncontrolled cellular growth, tumor formation, and potential metastasis. The immune system is pivotal in recognizing and eliminating cancerous cells, with immune cells such as T cells, B cells, natural killer cells (NK), and dendritic cells playing critical roles. Dysregulation of immune responses can contribute to cancer progression. Phytochemicals, bioactive compounds derived from plants, have gained attention for their potential roles in cancer prevention and therapy due to their antioxidant, anti-inflammatory, and immunomodulatory properties. Genistein, an isoflavone found in soy products, is of particular interest. In this study, genistein's mechanisms of action at the molecular and cellular levels in cancer were demonstrated, highlighting its impact on T and B lymphocytes, NK cells and dendritic cells. Genistein's ability to influence cytokine production, reducing levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, is emphasized. Genistein modulates inflammatory response pathways like Toll-like receptors (TLRs), NF-κB, chemokines, and MAPK, inhibiting tumor growth, promoting apoptosis, and reducing metastasis. It shows promise in overcoming chemoresistance, particularly in ovarian and neuroblastoma cancers, by inhibiting autophagy. Genistein also affects T-cell execution markers, including granzyme B, TNF-α, and FAS ligand in cancer by influencing key proteins involved in immune response and apoptosis. Clinical trials have investigated genistein's therapeutic potential, revealing its promise in enhancing the efficacy of traditional cancer treatments while mitigating associated toxicities. Genistein helps overcome chemoresistance in various cancers by inhibiting autophagy and promoting apoptosis. It also enhances immunotherapy by boosting immune responses and modifying antigens, but careful dosing is needed when combined with anti-PD-1 treatments to avoid reducing effectiveness.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, 4816118761, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656-87386, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples, 80131, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
7
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03579-6. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
8
|
Mio Asni NS, Surya R, Mohmad Misnan N, Lim SJ, Ismail N, Sarbini SR, Kamal N. Metabolomics insights of conventional and organic tempe during in vitro digestion and their antioxidant properties and cytotoxicity in HCT-116 cells. Food Res Int 2024; 195:114951. [PMID: 39277229 DOI: 10.1016/j.foodres.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Tempe, a fermented soybean food rich in polyphenols including isoflavones, is valued for its health benefits, notably its antioxidants. Concerns about glyphosate residues in crops have led to increased demand for organic soy products, including tempe. The study aimed to investigate the metabolomic profiles of tempe and its bioactive potentials prior to and following in vitro simulated gastrointestinal digestion. Conventional soybean (CS), conventional tempe (CT), conventional tempe digesta (CTD), organic soybean (OS), organic tempe (OT) and organic tempe digesta (OTD) were analysed for various assays. The study observed a significant decrease in the total phenolic and flavonoid levels for conventional and organic samples in tempe extracts (CT, OT) compared to tempe digesta (CTD, OTD). Organic tempe digesta has a higher total phenolic content (CTD = 22.55 µg GAE/g, OTD = 41.36 µg GAE/g) and flavonoid content (CTD = 4.64 µg QE/g, OTD = 10.06 µg QE/g) compared to conventional tempe digesta. However, there is a significant difference in the bioaccessibility of phenolic (CT = 74.77 %, OT = 59.20 %) and flavonoid (CT = 49.4 %, OT = 57.52 %) in both organic and conventional tempe. Tempe consistently surpasses soybean in antioxidant assays such as DPPH, ABTS, and FRAP. Organic tempe digesta exhibits the most elevated levels of antioxidants. Using GNPS and the SIRIUS database, 34 metabolites were annotated according to the criteria of having a VIP score > 1.5, a log2(FC) > 1, and a p-value < 0.05. From the list, 26 metabolites demonstrated a positive correlation with antioxidant activity, DPPH, and FRAP. Molecular networking enables the visualization of 12 prominent isoflavones, namely daidzein, daidzin, genistein, genistin, glycitein, glycitin, 6″-O-malonyldaidzin, 6″-O-acetylgenistin, 6″-O-acetyldaidzin, and 7,8,4'-trihydroxyisoflavone. Interestingly, aglycone isoflavones are abundant in organic tempe digesta while glycoside isoflavones are abundant in organic and conventional soybeans. Overall, the findings indicate that tempe digesta exhibits distinct metabolic patterns and bioactive potentials.
Collapse
Affiliation(s)
- Nurul Syahidah Mio Asni
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Reggie Surya
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Malaysia
| | - Nurkhalida Kamal
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| |
Collapse
|
9
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
10
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
11
|
Qin W, Zhang L, Yang Y, Zhou W, Hou S, Huang J, Gao B. Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol. Enzyme Microb Technol 2024; 180:110480. [PMID: 39067324 DOI: 10.1016/j.enzmictec.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/08/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production.
Collapse
Affiliation(s)
- Weichuang Qin
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yichen Yang
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhou
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuting Hou
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Huang
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Bei Gao
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
13
|
Tomczyk-Warunek A, Winiarska-Mieczan A, Blicharski T, Blicharski R, Kowal F, Pano IT, Tomaszewska E, Muszyński S. Consumption of Phytoestrogens Affects Bone Health by Regulating Estrogen Metabolism. J Nutr 2024; 154:2611-2627. [PMID: 38825042 DOI: 10.1016/j.tjnut.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Physiotherapy, Laboratory of Locomotor Systems Research, Medical University of Lublin, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Rudolf Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Filip Kowal
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Inés Torné Pano
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
14
|
Singh L. Daidzein's potential in halting neurodegeneration: unveiling mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03356-5. [PMID: 39158734 DOI: 10.1007/s00210-024-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Neurological conditions encompassing a wide range of disorders pose significant challenges globally. The complex interactions among signaling pathways and molecular elements play pivotal roles in the initiation and progression of neurodegenerative diseases. Isoflavones have emerged as a promising candidate to fight against neurodegenerative diseases. Daidzein, a 7-hydroxy-3-(4-hydroxyphenyl)-chromen-4-one, belongs to the isoflavone class and exhibits a diverse pharmacological profile. It is found primarily in soybeans and soy products, as well as in some other legumes and herbs. Investigations into daidzein have revealed that it confers neuroprotection by inhibiting oxidative stress, inflammation, and apoptosis, which are key contributors to neuronal damage and degeneration. Activating pathways like PI3K/Akt/mTOR and promoting neurotrophic factors like BDNF by daidzein underscore its potential in supporting neuronal function and combating neurodegeneration. Daidzein's effects on dopamine provide further avenues for intervention in conditions like Parkinson's disease. Additionally, the modulation of inflammatory and NRF-2-antioxidant signaling by daidzein reinforces its neuroprotective role. Moreover, daidzein's interaction with receptors and cellular processes like ER-β, GPR30, MAO, VEGF, and GnRH highlights its multifaceted effects across multiple pathways involved in neuroprotection and neuronal function. This review article delves into the mechanistic interplay of various mediators in mediating the neuroprotective effects of daidzein. The review article consolidates and analyzes research published over nearly two decades (2005-2024) from various databases, including PubMed, Scopus, ScienceDirect, and Web of Science, to provide a comprehensive understanding of daidzein's effects and mechanisms in neuroprotection.
Collapse
Affiliation(s)
- Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
15
|
Yun SW, Lee DY, Park HS, Kim DH. Heat-Processed Soybean Germ Extract and Lactobacillus gasseri NK109 Supplementation Reduce LPS-Induced Cognitive Impairment and Colitis in Mice. Nutrients 2024; 16:2736. [PMID: 39203872 PMCID: PMC11357477 DOI: 10.3390/nu16162736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Soybean alleviates cognitive impairment. In our preparatory experiment, we found that dry-heat (90 °C for 30 min)-processed soybean embryo ethanol extract (hSE) most potently suppressed lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α expression in BV2 cells among dry-heat-, steaming-, and oil exclusion-processed soybean embryo ethanol extracts (SEs). Heat processing increased the absorbable soyasaponin Bb content of SE. Therefore, we investigated whether hSE and its supplement could mitigate LPS-impaired cognitive function in mice. Among dry-heat-, steaming-, and oil exclusion-processed SEs, hSE mitigated LPS-impaired cognitive function more than parental SE. hSE potently upregulated LPS-suppressed brain-derived neurotropic factor (BDNF) expression in the hippocampus, while LPS-induced TNF-α and IL-1β expression in the hippocampus and colon were downregulated. Lactobacillus gasseri NK109 additively increased the cognitive function-enhancing activity of hSE in mice with LPS-induced cognitive impairment as follows: the hSE and NK109 mix potently increased cognitive function and hippocampal BDNF expression and BDNF-positive neuron cell numbers and decreased TNF-α expression and NF-κB-positive cell numbers in the hippocampus and colon. These findings suggest that hSE and its supplement may decrease colitis and neuroinflammation by suppressing NF-κB activation and inducing BDNF expression, resulting in the attenuation of cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (D.-Y.L.); (H.-S.P.)
| |
Collapse
|
16
|
Arslan N, Bozkır E, Koçak T, Akin M, Yilmaz B. From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep. Nutrients 2024; 16:2683. [PMID: 39203818 PMCID: PMC11357367 DOI: 10.3390/nu16162683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
The effect of diet on sleep quality has been addressed in many studies; however, whether/how plant-based diets (PBDs) impact sleep-related parameters has not been explored in detail. This review aims to give an overview of the components of PBDs and the possible mechanisms through which PBDs may improve sleep quality. Studies have indicated that diets such as PBDs, which are typically high in fruits, vegetables, nuts, seeds, whole grains, and fiber, are associated with better sleep outcomes, including less fragmented sleep and improved sleep duration. Several mechanisms may explain how PBDs impact and/or improve sleep outcomes. Firstly, PBDs are characteristically rich in certain nutrients, such as magnesium and vitamin B6, which have been associated with improved sleep patterns. Secondly, PBDs are often lower in saturated fats and higher in fiber, which may contribute to better overall health, including sleep quality. Additionally, plant bioactive compounds like phytochemicals and antioxidants in fruits, vegetables, and herbs may have sleep-promoting effects. According to available data, PBD and Mediterranean diet elements promise to enhance sleep quality; however, it is crucial to note that diets should be customized based on each person's needs.
Collapse
Affiliation(s)
- Neslihan Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzurum Technical University, Erzurum 25050, Türkiye;
| | - Eda Bozkır
- Burhaniye Chamber of Commerce, Safe Food Analysis and Export Support Center, Balıkesir 10700, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gümüşhane University, Gümüşhane 29100, Türkiye;
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır 76000, Türkiye;
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana 01330, Türkiye
| |
Collapse
|
17
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
18
|
Cho Y, Kim JY, Kim SK, Kim SY, Kim N, Lee J, Park JL. Whole-genome sequencing analysis of soybean diversity across different countries and selection signature of Korean soybean accession. G3 (BETHESDA, MD.) 2024; 14:jkae118. [PMID: 38833595 PMCID: PMC11304964 DOI: 10.1093/g3journal/jkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5,000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America, and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.
Collapse
Affiliation(s)
- Youngbeom Cho
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Kyu Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Diksha, Singh L. Glycitein prevents reserpine-induced depression and associated comorbidities in mice: modulation of lipid peroxidation and TNF-α levels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6153-6163. [PMID: 38430231 DOI: 10.1007/s00210-024-03007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
Depression is a debilitating mood disorder affecting millions worldwide and continues to pose a significant global health burden. Due to the multifaceted nature of depression, the current treatment regimens are not up to mark in terms of their multitargeting potential and least side effect profile. Molecules within the isoflavone class demonstrate promising potential in alleviating depression and associated conditions, offering a multifaceted approach to manage mental health concerns. Therefore, the current study was designed to explore the potential of glycitein, an isoflavone in managing reserpine-induced depression and associated comorbidities in mice. Reserpine (0.5 mg/kg; i.p.) administration for the first 3 days induced depression and associated comorbidities as evidenced by increased immobility time in forced swim test (FST) and tail suspension test (TST), along with reduced locomotor activity in the open field test (OFT) and increased latency to reach the platform in the Morris water maze (MWM) test. Reserpine treatment also upregulated and downregulated the brain thiobarbituric acid reactive substance (TBARS) and glutathione (GSH) levels, respectively. Furthermore, reserpine administration also uplifted the level of TNF-α in the serum samples. Glycitein (3 mg/kg and 6 mg/kg; p.o.) treatment for 5 days prevented the depressive effect of reserpine. It also improved the spatial memory at both dose levels. Moreover, in biochemical analysis, glycitein also reduced the brain TBARS and serum tumor necrosis factor-alpha (TNF-α) levels. Whereas, no significant effect was seen on the brain GSH level. Glycitein (6 mg/kg) was found to be more effective than the 3 mg/kg dose of glycitein. Overall results delineate that glycitein has the potential to manage depression and impaired memory by inhibiting lipid peroxidation and inflammatory stress.
Collapse
Affiliation(s)
- Diksha
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
20
|
Sabetian S, Archin Dialameh P, Tanideh N, Gharesifard B, Ahmadi M, Valibeigi M, Kumar PV, Siahbani S, Namavar Jahromi B. Potential therapeutic properties of broccoli extract and soy isoflavones on improvement endometriosis and involved oxidative parameters. Horm Mol Biol Clin Investig 2024; 0:hmbci-2023-0071. [PMID: 39041387 DOI: 10.1515/hmbci-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVES In Endometriosis is a gynecological disorder characterized by the growth of endometrial tissue outside the uterine cavity that is associated with chronic pelvic pain and subfertility. The purpose of the study was to investigate the effect of broccoli extract (BE) alone and in combination with soy isoflavones (SI) on endometrial implants in female rat. METHODS In this study, endometriosis was induced surgically in 40 mature female rats. The rats were divided into 5 groups that were treated by oral gavage for 6 weeks with 0.5 mL of saline 0.9 %/day (control group), BE (3,000 mg/kg/day), SI (50 mg/kg/day), BE/soy isoflavones (BE 3000 mg/kg/day + soy isoflavones 50 mg/kg/day) and diphereline as a standard medication (3 mg/kg) intramuscularly. At the end of treatments, the volume and histopathology of the endometrial implants were compared among the 5 groups. The serum levels of oxidative parameters including superoxide dismutase (SOD), malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) were also compared between the groups. The volume of the implants significantly decreased in diphereline group (p=0.002). RESULTS The histopathological grade of endometrial implants in BE/SI and diphereline group were significantly decreased compared to the control group (p=0.001). The serum levels of SOD in BE group were enhanced significantly in comparison to the control group (p=0.034). CONCLUSIONS BE in combination with SI decreased the growth and histopathologic grades of transplanted endometrial implants. These herbal compounds may have the potential therapeutic effect to be used as an alternative medication for the treatment of endometriosis.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parimah Archin Dialameh
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrooz Gharesifard
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Ahmadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Valibeigi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sarah Siahbani
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Hazrat-e-Zeynab Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
22
|
Liang S, Zhang H, Mo Y, Li Y, Zhang X, Cao H, Xie S, Wang D, Lv Y, Wu Y, Zhang Z, Yang W. Urinary Equol and Equol-Predicting Microbial Species Are Favorably Associated With Cardiometabolic Risk Markers in Chinese Adults. J Am Heart Assoc 2024; 13:e034126. [PMID: 38934874 PMCID: PMC11255694 DOI: 10.1161/jaha.123.034126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The association between soy isoflavones intake and cardiometabolic health remains inconclusive. We investigated the associations of urinary biomarkers of isoflavones including daidzein, glycitein, genistein, equol (a gut microbial metabolite of daidzein), and equol-predicting microbial species with cardiometabolic risk markers. METHODS AND RESULTS In a 1-year study of 305 Chinese community-dwelling adults aged ≥18 years, urinary isoflavones, fecal microbiota, blood pressure, blood glucose and lipids, and anthropometric data were measured twice, 1 year apart. Brachial-ankle pulse wave velocity was also measured after 1 year. A linear mixed-effects model was used to analyze repeated measurements. Logistic regression was used to calculate the adjusted odds ratio (aOR) and 95% CI for the associations for arterial stiffness. Each 1 μg/g creatinine increase in urinary equol concentrations was associated with 1.47%, 0.96%, and 3.32% decrease in triglycerides, plasma atherogenic index, and metabolic syndrome score, respectively (all P<0.05), and 0.61% increase in high-density lipoprotein cholesterol (P=0.025). Urinary equol was also associated with lower risk of arterial stiffness (aOR, 0.28 [95% CI, 0.09-0.90]; Ptrend=0.036). We identified 21 bacterial genera whose relative abundance was positively associated with urinary equol (false discovery rate-corrected P<0.05) and constructed a microbial species score to reflect the overall equol-predicting capacity. This score (per 1-point increase) was inversely associated with triglycerides (percentage difference=-1.48%), plasma atherogenic index (percentage difference=-0.85%), and the risk of arterial stiffness (aOR, 0.27 [95% CI, 0.08-0.88]; all P<0.05). CONCLUSIONS Our findings suggest that urinary equol and equol-predicting microbial species may improve cardiometabolic risk parameters in Chinese adults.
Collapse
Affiliation(s)
- Shaoxian Liang
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University)Ministry of Education of the People’s Republic of ChinaHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractHefeiAnhuiChina
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical UniversityHefeiAnhuiChina
| | - Honghua Zhang
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
| | - Yufeng Mo
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
| | - Yamin Li
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
| | - Xiaoyu Zhang
- Department of Physical Examination CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Hongjuan Cao
- Department of Chronic Noncommunicable Diseases Prevention and ControlLu’an Municipal Center for Disease Control and PreventionLu’anAnhuiChina
| | - Shaoyu Xie
- Department of Chronic Noncommunicable Diseases Prevention and ControlLu’an Municipal Center for Disease Control and PreventionLu’anAnhuiChina
| | - Danni Wang
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
| | - Yaning Lv
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food SafetyHefeiAnhuiChina
| | - Yaqin Wu
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food SafetyHefeiAnhuiChina
| | - Zhuang Zhang
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
| | - Wanshui Yang
- Department of Nutrition, Center for Big Data and Population Health of IHMSchool of Public Health, Anhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University)Ministry of Education of the People’s Republic of ChinaHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractHefeiAnhuiChina
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
23
|
Jiang Z, Huang B, Cui Z, Lu Z, Ma H. Synergistic effect of genistein and adiponectin reduces fat deposition in chicken hepatocytes by activating the ERβ-mediated SIRT1-AMPK signaling pathway. Poult Sci 2024; 103:103734. [PMID: 38636201 PMCID: PMC11040169 DOI: 10.1016/j.psj.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Dietary supplementation with bioactive substances that can regulate lipid metabolism is an effective approach for reducing excessive fat deposition in chickens. Genistein (GEN) has the potential to alleviate fat deposition; however, the underlying mechanism of GEN's fat-reduction action in chickens remains unclear. Therefore, the present study aimed to explore the underlying mechanism of GEN on the reduction of fat deposition from a novel perspective: intercellular transmission of adipokine between adipocytes and hepatocytes. The findings showed that GEN enhanced the secretion of adiponectin (APN) in chicken adipocytes, and the enhancement effect of GEN was completely blocked when the cells were pretreated with inhibitors targeting estrogen receptor β (ERβ) or proliferator-activated receptor γ (PPARγ) signals, respectively. Furthermore, the results demonstrated that both co-treatment with GEN and APN or treatment with the medium supernatant (Med SUP) derived from chicken adipocytes treated with GEN significantly decreased the content of triglyceride and increased the protein levels of ERβ, Sirtuin 1 (SIRT1) and phosphor-AMP-activated protein kinase (p-AMPK) in chicken hepatocytes compared to the cells treated with GEN or APN alone. Moreover, the increase in the protein levels of SIRT1 and p-AMPK induced by GEN and APN co-treatment or Med SUP treatment were blocked in chicken hepatocytes pretreated with the inhibitor of ERβ signals. Importantly, the up-regulatory effect of GEN and APN co-treatment or Med SUP treatment on the protein level of p-AMPK was also blocked in chicken hepatocytes pretreated with a SIRT1 inhibitor; however, the increase in the protein level of SIRT1 induced by GEN and APN co-treatment or Med SUP treatment was not reversed when the hepatocytes were pretreated with an AMPK inhibitor. In conclusion, the present study demonstrated that GEN enhanced APN secretion by activating the ERβ-Erk-PPARγ signaling pathway in chicken adipocytes. Subsequently, adipocyte-derived APN synergized with GEN to activate the ERβ-mediated SIRT1-AMPK signaling pathway in chicken hepatocytes, ultimately reducing fat deposition. These findings provide substantial evidence from a novel perspective, supporting the potential use of GEN as a dietary supplement to prevent excessive fat deposition in poultry.
Collapse
Affiliation(s)
- Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Berroug L, Essaidi O, Laaroussi M, Malqui H, Anarghou H, Bellali F, Fetoui H, Chigr F. Corn oil and Soybean oil effect as vehicles on behavioral and oxidative stress profiles in developmentally exposed offspring mice. Physiol Behav 2024; 280:114548. [PMID: 38615729 DOI: 10.1016/j.physbeh.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.
Collapse
Affiliation(s)
- Laila Berroug
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Fatima Bellali
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Toxicology-Micorbiology and Environmental Health Laboratory, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
25
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
26
|
He J, Duan J, Yu P, Li Y, Wang M, Zhang X, Chen Z, Shi P. Characterization of a novel cold-adapted GH1 β-glucosidase from Psychrobacillus glaciei and its application in the hydrolysis of soybean isoflavone glycosides. Curr Res Food Sci 2024; 8:100777. [PMID: 38840809 PMCID: PMC11150966 DOI: 10.1016/j.crfs.2024.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
The novel β-glucosidase gene (pgbgl1) of glycoside hydrolase (GH) family 1 from the psychrotrophic bacterium Psychrobacillus glaciei sp. PB01 was successfully expressed in Escherichia coli BL21 (DE3). The deduced PgBgl1 contained 447 amino acid residues with a calculated molecular mass of 51.4 kDa. PgBgl1 showed its maximum activity at pH 7.0 and 40 °C, and still retained over 10% activity at 0 °C, suggesting that the recombinant PgBgl1 is a cold-adapted enzyme. The substrate specificity, Km, Vmax, and Kcat/Km for the p-Nitrophenyl-β-D-glucopyranoside (pNPG) as the substrate were 1063.89 U/mg, 0.36 mM, 1208.31 U/mg and 3871.92/s, respectively. Furthermore, PgBgl1 demonstrated remarkable stimulation of monosaccharides such as glucose, xylose, and galactose, as well as NaCl. PgBgl1 also demonstrated a high capacity to convert the primary soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their respective aglycones. Overall, PgBgl1 exhibited high catalytic activity towards aryl glycosides, suggesting promising application prospects in the food, animal feed, and pharmaceutical industries.
Collapse
Affiliation(s)
- Jinjian He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jiajing Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pinglian Yu
- Key Laboratory of Yunnan University for Plateau Characteristic Functional Food, School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong,657000, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Zishu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| |
Collapse
|
27
|
Nutho B, Tungmunnithum D. Anti-Aging Potential of the Two Major Flavonoids Occurring in Asian Water Lily Using In Vitro and In Silico Molecular Modeling Assessments. Antioxidants (Basel) 2024; 13:601. [PMID: 38790706 PMCID: PMC11118190 DOI: 10.3390/antiox13050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Our previous study investigated the major flavonoids and antioxidant potential of Asian water lily (Nymphaea lotus L., family Nymphaeaceae) stamens and perianth extracts. Quercetin-3-O-rhamnoside (Que-3-Rha) and kaempferol-3-O-galactoside (Kae-3-Gal) were reported as the two most prominent flavonoids found in these extracts. Many flavonoids have been reported on the skin anti-aging effect that are useful for cosmeceutical/phytopharmaceutical application. However, Que-3-Rha and Kae-3-Gal occurring in this medicinal plant have not yet been evaluated for their ability to inhibit skin-aging enzymes. Therefore, this study aimed (1) to assess the enzyme inhibitory activity of Que-3-Rha and Kae-3-Gal, and (2) to conduct molecular modeling of these compounds against critical enzymes involved in skin aging such as collagenase, elastase, and tyrosinase. In vitro enzymatic assays demonstrated that both of the two most prominent flavonoids exhibited moderate to good inhibitory activity toward these enzymes. These experimental findings were supported by molecular docking analysis, which indicated that Que-3-Rha and Kae-3-Gal showed superior binding affinity to the target enzymes compared to the positive controls. Additionally, computational predictions suggested favorable skin permeability and no severe toxicity for both compounds. The results from molecular dynamic (MD) simulation revealed that all the complexes remained stable during the 200 ns MD simulation. Structural analyses and binding free energy calculations also supported the inhibitory potential of these two flavonoids against skin-aging enzymes. In conclusion, this study provides valuable insights into the anti-aging potential of the two major flavonoids occurring in this medicinal plant, paving the way for further development of cosmeceutical/phytopharmaceutical products targeting skin aging.
Collapse
Affiliation(s)
- Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
28
|
Edward OC, Jeong DY, Yang HJ, Han A, Cha YS. Doenjang Ameliorates Diet-Induced Hyperlipidemia and Hepatic Oxidative Damage by Improving Lipid Metabolism, Oxidative Stress, and Inflammation in ICR Mice. Foods 2024; 13:1471. [PMID: 38790771 PMCID: PMC11120292 DOI: 10.3390/foods13101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperlipidemia, characterized by elevated cholesterol, lipids, and triglycerides in the bloodstream, is linked to hepatic oxidative damage. Doenjang, a traditional Korean condiment made from fermented soybeans, is known for its health benefits, yet its anti-hyperlipidemic effects remain understudied. Our study aimed to assess the hypolipidemic and hepatic protective effects of Doenjang on male ICR mice fed a high-fat cholesterol diet for 8 weeks. Mice were divided into three groups: the normal diet (ND), the high-fat cholesterol diet (HD), and the Doenjang-supplemented HD diet (DS) group. Doenjang supplementation significantly regulated total cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol levels compared to the HD group. It also downregulated lipogenic genes, including PPARγ, FAS, and ACC, and positively influenced the cholesterol metabolism-related genes HMGCR and LXR. Moreover, Doenjang intake increased serum glutathione levels, activated oxidative stress defense genes (NRF2, SOD, GPx1, and CAT), positively modulated inflammation genes (NF-kB and IL6) in hepatic tissue, and reduced malondialdehyde levels. Our findings highlight the effectiveness of traditional Doenjang in preventing diet-induced hyperlipidemia and protecting against hepatic oxidative damage.
Collapse
Affiliation(s)
- Olivet Chiamaka Edward
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
29
|
Murakami H, Ishikawa M, Higashi H, Kohama K, Inoue T, Fujisaki N, Hirata JI. EQUOL, A SOYBEAN METABOLITE WITH ESTROGEN-LIKE FUNCTIONS, DECREASES LIPOPOLYSACCHARIDE-INDUCED HUMAN NEUTROPHIL EXTRACELLULAR TRAPS IN VITRO. Shock 2024; 61:695-704. [PMID: 37962916 DOI: 10.1097/shk.0000000000002273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ABSTRACT Objective: Neutrophil extracellular traps (NETs) defend against acute infections. However, their overexpression causes organ failure during sepsis. Control of NET formation may improve the outcomes of patients with sepsis. Equol, a soybean isoflavone, is a female hormone analog, which prevents inflammation. We evaluated the effects of equol on NET formation in human neutrophils during inflammatory stimulation in vitro . Methods: Healthy volunteers provided blood samples. An enzyme-linked immunosorbent assay assessed serum equol concentrations. Neutrophil extracellular trap formation in neutrophils was induced by lipopolysaccharide treatment. Enzyme-linked immunosorbent assay quantified DNA-binding elastase, and immunostaining assessed NET formation. Reverse-transcription quantitative polymerase chain reaction and Western blotting detected G-protein-coupled receptor 30 (GPR30) or peptidyl arginine deiminase 4 (PAD4) expression. Flow cytometry assessed neutrophil phagocytic ability with inactivated Escherichia coli . Results: In neutrophils derived from males with low-serum equol levels (low-serum equol group), equol significantly decreased DNA-binding elastase levels and NET formation. Equol did not decrease NETs in neutrophils from males with high-serum equol levels. GPR30 expression of neutrophils was higher in the low-serum than in the high-serum equol group. PAD4 mRNA levels and nuclear PAD4 protein expression also decreased more than the vehicle control in the low-serum equol group. Equol did not alter the phagocytic ability of neutrophils. In neutrophils from young females, equol had no inhibitory effect on NET formation. Conclusions: Equol decreases lipopolysaccharide-induced NET formation in neutrophils from males via inhibition of PAD4 expression. Our findings provide a rationale for investigating a new therapeutic approach using equol to control neutrophil activity during sepsis.
Collapse
Affiliation(s)
- Hiromoto Murakami
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Michiko Ishikawa
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Hideki Higashi
- Department of Engineering, Himeji Dokkyo University, Hyogo, Japan
| | - Keisuke Kohama
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Taketo Inoue
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Noritomo Fujisaki
- Department of Emergency Medicine, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Jun-Ichi Hirata
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
30
|
Wang Y, Li J, Li L, Quan S, Meng G, Gu Y, Zhang Q, Liu L, Wu H, Lai S, Chen Y, Liu T, Sun S, Wang X, Jia Q, Song K, Niu K. The association between raw garlic consumption and the risk of depressive symptoms: the TCLSIH cohort study. Food Funct 2024; 15:4436-4445. [PMID: 38563400 DOI: 10.1039/d3fo03833e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background: Garlic has antioxidant, anti-inflammatory, cardiovascular improvement and other beneficial effects on human health. However, few studies have evaluated the association of garlic intake with the risk of depressive symptoms. The aim of this prospective cohort was to examine the association between the frequency of raw garlic consumption and depressive symptoms in the general adult population. Methods: A total of 7427 participants (mean ± standard deviation: 39.7 ± 10.5 years) without baseline depressive symptoms were included in the cohort study. Garlic consumption was assessed using a validated food frequency questionnaire, and depressive symptoms were assessed by a Chinese version of the Self-rating Depression Scale score (SDS score ≥ 45). Multivariable Cox proportional hazards models were used to determine the association between garlic consumption and the risk of depressive symptoms. Results: This study identified 1070 cases of depressive symptoms during a median follow-up of 2.0 years, with a depression prevalence of 73.4 cases per 1000 person-years. After multivariate adjustment, the hazard ratios (95% confidence intervals) for depressive symptoms in males were 1.00 (reference) for almost never, 1.05 (0.84, 1.32) for ≤1 time per week, 1.16 (0.90, 1.49) for 2-3 times per week, and 1.31 (0.97, 1.78) for ≥4 times per week, and in females, they were 1.00 (reference) for almost never, 0.85 (0.69, 1.06) for ≤1 time per week, 0.72 (0.54, 0.97) for 2-3 times per week, and 0.78 (0.53, 1.13) for ≥4 times per week. Conclusion: In a large general population, we demonstrate for the first time that moderate raw garlic consumption is associated with a reduced risk of depressive symptoms in females, but not in males. Additional prospective studies with long-term follow-up and randomized controlled trials are necessary to confirm the preliminary results of the current study.
Collapse
Affiliation(s)
- Yaxiao Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaoyang Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengxin Quan
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Sizhen Lai
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinxiao Chen
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tongfeng Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
- National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Deschênes Gagnon R, Langevin MÈ, Lutin F, Bazinet L. Identification of Fouling Occurring during Coupled Electrodialysis and Bipolar Membrane Electrodialysis Treatment for Tofu Whey Protein Recovery. MEMBRANES 2024; 14:88. [PMID: 38668116 PMCID: PMC11052131 DOI: 10.3390/membranes14040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tofu whey, a by-product of tofu production, is rich in nutrients such as proteins, minerals, fats, sugars and polyphenols. In a previous work, protein recovery from tofu whey was studied by using a coupled environmental process of ED + EDBM to valorize this by-product. This process allowed protein recovery by reducing the ionic strength of tofu whey during the ED process and acidifying the proteins to their isoelectric point during EDBM. However, membrane fouling was not investigated. The current study focuses on the fouling of membranes at each step of this ED and EDBM process. Despite a reduction in the membrane conductivities and some changes in the mineral composition of the membranes, no scaling was evident after three runs of the process with the same membranes. However, it appeared that the main fouling was due to the presence of isoflavones, the main polyphenols in tofu whey. Indeed, a higher concentration was observed on the AEMs, giving them a yellow coloration, while small amounts were found in the CEMs, and there were no traces on the BPMs. The glycosylated forms of isoflavones were present in higher concentrations than the aglycone forms, probably due to their high amounts of hydroxyl groups, which can interact with the membrane matrices. In addition, the higher concentration of isoflavones on the AEMs seems to be due to a combination of electrostatic interactions, hydrogen bonding, and π-π stacking, whereas only π-π stacking and hydrogen bonds were possible with the CEMs. To the best of our knowledge, this is the first study to investigate the potential fouling of BPMs by polyphenols, report the fouling of IEMs by isoflavones and propose potential interactions.
Collapse
Affiliation(s)
- Rosie Deschênes Gagnon
- Institute of Nutrition and Functional Foods (INAF), Food Science Department, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM/Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Marie-Ève Langevin
- Eurodia Industrie S.A.S—Zac Saint Martin, Impasse Saint Martin, 84120 Pertuis, France; (M.-È.L.); (F.L.)
| | - Florence Lutin
- Eurodia Industrie S.A.S—Zac Saint Martin, Impasse Saint Martin, 84120 Pertuis, France; (M.-È.L.); (F.L.)
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Food Science Department, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM/Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
32
|
Yasuda T, Kashima Y. A soy protein enzymatic digest mitigates Nrf2-related oxidative stress and attenuates depression-like behavior in a mouse model of sub-chronic restraint stress. Heliyon 2024; 10:e27826. [PMID: 38524573 PMCID: PMC10958348 DOI: 10.1016/j.heliyon.2024.e27826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Continuous oxidative stress conditions have been identified as a major cause of various neuropsychiatric disorders, including depression. The present study investigated the potential antidepressant-like effects of a soy protein enzymatic digest (SPD) containing soy-deprestatin, which is a soy-derived peptide with reported antidepressant-like effects, as well as its ability to mitigate oxidative stress in the brain caused by sub-chronic restraint stress. Mice were divided into two groups: a control group and restraint stress group. The restraint stress group was further divided into two groups administered water or SPD. After repeated short-time restraints over five days, we evaluated immobility times in the tail suspension test, and antioxidant enzyme activities, glutathione levels, oxidative stress maker levels, and the gene expression levels of Nrf2 and antioxidant enzymes in the brain. The results obtained showed that the oral administration of SPD reduced immobility times in mice exposed to restraint stress. In comparisons with the water-treated restraint group, the administration of SPD restored superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities and glutathione levels and prevented restraint stress-induced increases in malondialdehyde, carbonyl protein, and 8-OHdG levels in the restraint stress group. In addition, high expression levels of Nrf2, HO-1, NQO-1 and GCLC were observed in the SPD-treated restraint group. These results suggest that SPD attenuated repeated restraint stress-induced depression-like behaviors by mitigating oxidative stress through the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Takuwa Yasuda
- Global Healthcare Research Laboratory, UHA Mikakuto Co., Ltd., Osaka, Japan
| | - Yasuhiro Kashima
- Global Healthcare Research Laboratory, UHA Mikakuto Co., Ltd., Osaka, Japan
| |
Collapse
|
33
|
Simsek M, Whitney K. Examination of Primary and Secondary Metabolites Associated with a Plant-Based Diet and Their Impact on Human Health. Foods 2024; 13:1020. [PMID: 38611326 PMCID: PMC11011468 DOI: 10.3390/foods13071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The consumption of plant-based diets has become a burgeoning trend, and they are increasingly consumed globally owing to their substantial energy intensity and dietetic advantages. Plants possess numerous bioactive components that have been recognized to exhibit manifold health-promoting assets. Comprehension of the synthesis of these primary and secondary metabolites by plants and their method of action against several chronic illnesses is a significant requirement for understanding their benefits to human health and disease prevention. Furthermore, the association of biologically active complexes with plants, humans, disease, medicine, and the underlying mechanisms is unexplored. Therefore, this review portrays various bioactive components derived from plant sources associated with health-promoting traits and their action mechanisms. This review paper predominantly assembles proposed plant-derived bioactive compounds, postulating valuable evidence aimed at perceiving forthcoming approaches, including the selection of potent bioactive components for formulating functional diets that are effective against several human disorders. This meticulous evidence could perhaps provide the basis for the advanced preemptive and therapeutic potential promoting human health. Hence, delivery opens possibilities for purchasers to approach the lucrative practice of plants as a remedy, produce novel products, and access new marketplaces.
Collapse
Affiliation(s)
- Miray Simsek
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kristin Whitney
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Madjirebaye P, Peng F, Mueed A, Huang T, Mahamat B, Pahane MM, Xi Q, Chen X, Moussa K, Kadebe ZT, Otchom BB, Xu Y, Xie M, Xiong T, Peng Z. Exploring Impact of Probiotic-Fermented Soymilk on Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Modulating Inflammation and Gut Microbiota Profile. Mol Nutr Food Res 2024; 68:e2300586. [PMID: 38299716 DOI: 10.1002/mnfr.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/29/2023] [Indexed: 02/02/2024]
Abstract
SCOPE Lactic acid bacteria with probiotic functions and their fermentation products play a role in regulating ulcerative colitis (UC). This study investigates the potential role of fermented soymilk (FSM4) rich in isoflavones on DSS-induced UC. METHODS AND RESULTS Mice received 3% DSS and are supplemented daily once for 1 week by NFSM and FSM4. DSS usually causes intestinal inflammation and alters the gut microbiota. FSM4 intervention improves the UC-related inflammation and gut microbiota alteration. It considerably decreases pro-inflammatories such as TNF-α, IL-1β, and IL-6 in serum and COX-2 and MPO in colon tissues and pathogenic bacteria (Escherichia-Shigella). This facilitates gut-healthy bacteria growth. These healthy bacteria negatively correlat with pro-inflammatory factors but positively associated with acetic acid, butyric acid, and propionic acid, which may act for PPAR-γ pathway activating and NF-κB p65 pathway inhibiting, lowering the risk of UC. Overall, FSM4 might alleviate UC and significantly reverse the dysbiosis of gut microbiota via the PPAR-γ activation. It could be a good alternative for developing functional food to protect against UC. CONCLUSION FSM4 attenuates intestinal inflammation and modulates the SCFA-producing bacteria growth, which enable the PPAR-γ activation to alleviate the UC target, which could be a dietary intervention strategy for gut health.
Collapse
Affiliation(s)
- Philippe Madjirebaye
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Bechir Mahamat
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | | | - Qinghua Xi
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Kalli Moussa
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Zoua Tessou Kadebe
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Brahim Boy Otchom
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Yazhou Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| |
Collapse
|
35
|
Lau LYJ, Quek SY. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. FOOD BIOENGINEERING 2024; 3:41-64. [DOI: 10.1002/fbe2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 01/04/2025]
Abstract
AbstractProbiotics have become increasingly popular over the past two decades due to the continuously expanding scientific evidence indicating their beneficial effects on human health. Therefore, they have been applied in the food industry to produce functional food, which plays a significant role in human health and reduces disease risk. However, maintaining the viability of probiotics and targeting the successful delivery to the gastrointestinal tract remain two challenging tasks in food applications. Specifically, this paper reviews the potentially beneficial properties of probiotics, highlighting the use and challenges of probiotics in food application and the associated health benefits. Of foremost importance, this paper also explores the potential underlying molecular mechanisms of the enhanced effect of probiotics on gastrointestinal epithelial cells, including a discussion on various surface adhesion‐related proteins on the probiotic cell surface that facilitate colonization.
Collapse
Affiliation(s)
- Li Ying Jessie Lau
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
36
|
Naderi M, Salavatiha Z, Gogoi U, Mohebbi A. An overview of anti-Hepatitis B virus flavonoids and their mechanisms of action. Front Cell Infect Microbiol 2024; 14:1356003. [PMID: 38487354 PMCID: PMC10937540 DOI: 10.3389/fcimb.2024.1356003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids, a diverse group of polyphenolic compounds found in various plant-based foods, have garnered attention for their potential in combating Hepatitis B Virus (HBV) infection. Flavonoids have demonstrated promising anti-HBV activities by interfering with multiple stages of the HBV life cycle, making them promising candidates for novel antiviral agents. Certain plant families, such as Theaceae, Asteraceae, Lamiaceae, and Gentianaceae, are of particular interest for their flavonoid-rich members with anti-HBV activities. Evidences, both in vitro and in vivo, supports the anti-HBV potential of flavonoids. These subsets of compound exert their anti-HBV effects through various mechanisms, including inhibiting viral entry, disrupting viral replication, modulating transcription factors, enhancing the immune response, and inducing autophagy. The antioxidant properties of flavonoids play a crucial role in modulating oxidative stress associated with HBV infection. Several flavonoids like epigallocatechin gallate (EGCG), proanthocyanidin (PAC), hexamethoxyflavone, wogonin, and baicalin have shown significant anti-HBV potential, holding promise as therapeutic agents. Synergistic effects between flavonoids and existing antiviral therapies offer a promising approach to enhance antiviral efficacy and reduce drug resistance. Challenges, including limited bioavailability, translation from preclinical studies to clinical practice, and understanding precise targets, need to be addressed. Future research should focus on clinical trials, combination therapies, and the development of flavonoid derivatives with improved bioavailability, and optimizing their effectiveness in managing chronic HBV infections.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Salavatiha
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
| |
Collapse
|
37
|
Wójciak M, Drozdowski P, Ziemlewska A, Zagórska-Dziok M, Nizioł-Łukaszewska Z, Kubrak T, Sowa I. ROS Scavenging Effect of Selected Isoflavones in Provoked Oxidative Stress Conditions in Human Skin Fibroblasts and Keratinocytes. Molecules 2024; 29:955. [PMID: 38474467 DOI: 10.3390/molecules29050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 2A Kopisto St., 35-959 Rzeszów, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland
| |
Collapse
|
38
|
Kim J, Jeong K, Lim S, Lee S, Baek Y. Association of Dietary Protein Sources and Their Adequacy, Body Composition and Risk of Sarcopenic Obesity in South Korean Populations: A Cross-Sectional Study. Metabolites 2024; 14:130. [PMID: 38393022 PMCID: PMC10890361 DOI: 10.3390/metabo14020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Dietary protein sources and protein adequacy are crucial modulators of muscle quality and body composition. We investigated the association between dietary protein sources (and their adequacy) and body composition and the risk of sarcopenic obesity (SO) in South Korean populations. The participants (n = 1967) were classified into SO, obese, sarcopenia, and normal groups. A cross-sectional survey was conducted using the KS-15 questionnaire, short-form food frequency questionnaire, and anthropometric measurements. The percentage of body fat (male: 35.36 ± 0.51%; female: 44.14 ± 0.36%) was significantly high, while appendicular skeletal muscle (ASM; male: 36.39 ± 0.30%, female: 30.32 ± 0.19%) was low in the SO group. Beef and pork consumption was negatively associated with ASM (%) but positively associated with body fat (%) in the normal group and positively associated with ASM (kg/m2: beta = 0.002, p = 0.02) and BFM (kg: beta = 0.012, p = 0.03) in the SO group, respectively. The highest quintile (Q5: 173.6 g/day) showed a decreased risk of SO prevalence (AORs: 0.46, CI: 0.22-0.94) compared with that in the lowest quintile (Q1: 21.6 g/day) among the people with inadequacy protein intake. Daily poultry and egg intake was positively linked with body composition in the participants with SO, while red meat showed a negative effect on imbalanced body composition in participants in the normal and SO groups. Furthermore, a lower intake of poultry and eggs was strongly associated with SO prevalence in people who consumed inadequate amounts of daily dietary protein.
Collapse
Affiliation(s)
- Jieun Kim
- Division of Korean Medicine Data, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Kyoungsik Jeong
- Division of Korean Medicine Data, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sueun Lim
- Division of Korean Medicine Data, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Siwoo Lee
- Division of Korean Medicine Data, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Younghwa Baek
- Division of Korean Medicine Data, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
39
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
40
|
Oh J, Hong S, Ko SH, Kim HS. Evaluation of Antioxidant Effects of Pumpkin ( Cucurbita pepo L.) Seed Extract on Aging- and Menopause-Related Diseases Using Saos-2 Cells and Ovariectomized Rats. Antioxidants (Basel) 2024; 13:241. [PMID: 38397839 PMCID: PMC10886273 DOI: 10.3390/antiox13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Aging and menopause are associated with oxidative stress and inflammation. Here, we evaluated the antioxidant properties of pumpkin (Cucurbita pepo L.) seed extract and assessed its ameliorative effects on aging- and menopause-related diseases using Saos-2 cells and ovariectomized rats. The seed extract had bioactive components that exhibited antioxidant activity. The extract increased the alkaline phosphatase (ALP) activity of Saos-2 cells. The oral administration of the extract to ovariectomized rats for 12 weeks decreased their body weight, fat weight, and cardiac risk indices. It also contributed to reductions in the levels of reactive oxygen species, oxidative stress, and inflammation, as assessed by measuring the serum levels of malondialdehyde and analyzing gene expression in rats. Furthermore, the administration of the extract also promoted an enhancement of the transcription of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (Ho-1), and catalase (Cat), involved in antioxidant activity; endothelial nitric oxide synthase (eNos), involved in vasculoprotective activity; and PR/SET domain 16 (Prdm16) and peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α), involved in brown adipogenesis and thermogenesis. Our results using ovariectomized rats show that pumpkin seed extract may have ameliorative effects on menopause-related diseases by increasing ALP activity, evaluating the antioxidant system, ameliorating oxidative stress and thermogenesis, and enhancing lipid profiles.
Collapse
Affiliation(s)
| | | | - Seong-Hee Ko
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|
41
|
Alharbi TS, Alshammari ZS, Alanzi ZN, Althobaiti F, Elewa MAF, Hashem KS, Al-Gayyar MMH. Therapeutic effects of genistein in experimentally induced ulcerative colitis in rats via affecting mitochondrial biogenesis. Mol Cell Biochem 2024; 479:431-444. [PMID: 37084167 DOI: 10.1007/s11010-023-04746-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.
Collapse
Affiliation(s)
- Talal S Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ziyad S Alshammari
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ziyad N Alanzi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fahad Althobaiti
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohammed A F Elewa
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Khalid S Hashem
- Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
42
|
Shao Y, Yu Y, Pang S, Ge L, Shi H. Soybean Isoflavones Ameliorates Lactation Performance in Postpartum Mice by Alleviating Oxidative Stress and Regulating Gut Microflora. Mol Nutr Food Res 2024; 68:e2300184. [PMID: 38175853 DOI: 10.1002/mnfr.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Indexed: 01/06/2024]
Abstract
Postpartum dysgalactiae syndrome (PPDS) is one of the key issues affecting breastfeeding, usually occurring as breast swelling, a low milk yield, and at length a stop of breast milk secretion. Therefore, there is a need to investigate the effectiveness of Traditional Chinese Medicine (TCM) diet therapy in treating or preventing PPDS. This study aims to analyze the effect of soybean isoflavone (SIF), a natural estrogen found in plants, on postpartum lactation performance in mice and to evaluate its potential as a treatment for PPDS. Adult female BALB/c mice at 8 weeks of age (25 ± 3 g) are randomly divided into four groups fed with different levels of SIF and a normal diet for 14 days. SIF (0, 50, 100, 200 mg kg-1 BW) is provided via intra-gastric route to the experimental mice. Using a high-throughput sequencing of microbial diversity and mammary gland metabolites, it is found that SIF-treated mice potentially show an improved milk performance via enhanced antioxidant capacity and altered gut microbiota. SIF from plant sources at a high dosage promotes the lactation in normal postpartum mice.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shilong Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
43
|
Chen G, Sun Y, Yushan D, Shaerbayi N, Zhang H, He H, Jin Y, Chen L. Identification and Characterization of Chemical Constituents from Ammopiptanthus nanus Stem and Their Metabolites in Rats by UHPLC-Q-TOF-MS/MS. PLANTA MEDICA 2024; 90:138-153. [PMID: 37774754 DOI: 10.1055/a-2184-1134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Ammopiptanthus nanus as a Kirgiz medicine is widely used for the treatment of frostbite and chronic rheumatoid arthritis. However, due to a lack of systematic research on the chemical components of A. nanus and their metabolites, the bioactive components in it remain unclear. Herein, a reliable strategy based on UHPLC-Q-TOF-MS/MS was established to comprehensively analyze the chemical components and their metabolites in vivo. In total, 59 compounds were identified from A. nanus stem extract, among which 14 isoflavones, 10 isoprenylated isoflavones, 4 polyhydroxy flavonoids, 9 alkaloids and 1 polyol were characterized for the first time. After oral administration of A. nanus stem extract, 30 prototype constituents and 28 metabolites (12 phase I and 16 phase II metabolites) were speculated on and identified in rat serum, urine and feces. Furthermore, the metabolic pathways of the chemical components were systematically analyzed and proposed. In conclusion, the chemical components from A. nanus stem and their metabolites in vivo were first studied, which may provide useful chemical information for further study on the effective material basis and pharmacological mechanism of A. nanus.
Collapse
Affiliation(s)
- Guanru Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yanpei Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dilnur Yushan
- People's Hospital of Kizilsu Kirgiz Autonomous Prefecture, Atushi, Xinjiang, China
| | | | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
45
|
Singla M, Verma S, Thakur K, Goyal A, Sharma V, Sharma D, Porwal O, Subramaniyan V, Behl T, Singh SK, Dua K, Gupta G, Gupta S. From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions. Curr Med Chem 2024; 31:6855-6870. [PMID: 37921179 DOI: 10.2174/0109298673250784231011094322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Smriti Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ahsas Goyal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, U.P., India
| | - Vishal Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diksha Sharma
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Tapan Behl
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies, Dehradun, Uttarakhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, the University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
46
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
47
|
Kharnaior P, Tamang JP. Microbiome and metabolome in home-made fermented soybean foods of India revealed by metagenome-assembled genomes and metabolomics. Int J Food Microbiol 2023; 407:110417. [PMID: 37774634 DOI: 10.1016/j.ijfoodmicro.2023.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Grep-chhurpi, peha, peron namsing and peruñyaan are lesser-known home-made fermented soybean foods prepared by the native people of Arunachal Pradesh in India. Present work aims to study the microbiome, their functional annotations, metabolites and recovery of metagenome-assembled genomes (MAGs) in these four fermented soybean foods. Metagenomes revealed the dominance of bacteria (97.80 %) with minor traces of viruses, eukaryotes and archaea. Bacillota is the most abundant phylum with Bacillus subtilis as the abundant species. Metagenome also revealed the abundance of lactic acid bacteria such as Enterococcus casseliflavus, Enterococcus faecium, Mammaliicoccus sciuri and Staphylococcus saprophyticus in all samples. B. subtilis was the major species found in all products. Predictive metabolic pathways showed the abundance of genes associated with metabolisms. Metabolomics analysis revealed both targeted and untargeted metabolites, which suggested their role in flavour development and therapeutic properties. High-quality MAGs, identified as B. subtilis, Enterococcus faecalis, Pediococcus acidilactici and B. velezensis, showed the presence of several biomarkers corresponding to various bio-functional properties. Gene clusters of secondary metabolites (antimicrobial peptides) and CRISPR-Cas systems were detected in all MAGs. This present work also provides key elements related to the cultivability of identified species of MAGs for future use as starter cultures in fermented soybean food product development. Additionally, comparison of microbiome and metabolites of grep-chhurpi, peron namsing and peruñyaan with that of other fermented soybean foods of Asia revealed a distinct difference.
Collapse
Affiliation(s)
- Pynhunlang Kharnaior
- Department of Microbiology, Sikkim University, Science Building, Tadong 737102, Gangtok, Sikkim, India
| | - Jyoti Prakash Tamang
- Department of Microbiology, Sikkim University, Science Building, Tadong 737102, Gangtok, Sikkim, India.
| |
Collapse
|
48
|
Nanri A, Yamamoto S, Suetsugu M, Kochi T, Kabe I, Mizoue T. Isoflavone intake and depressive symptoms among workers. Clin Nutr ESPEN 2023; 58:416-420. [PMID: 38057034 DOI: 10.1016/j.clnesp.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIM High intake of isoflavones has been reported to be associated with decreased prevalence of depressive symptoms. However, no prospective study has examined this association. We prospectively investigated the association between isoflavone intake and depressive symptoms in a Japanese working population. METHODS Participants were 1162 workers (1033 men and 129 women aged 18-68 years) without depressive symptoms at baseline. Dietary intake was assessed using a validated self-administered diet history questionnaire. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression (CES-D) scale. Cox proportional hazards regression for interval-censored data was used to estimate the hazard ratio of depressive symptoms (CES-D ≥16) according to the tertile of isoflavone intake with adjustment for covariates. RESULTS During 5065 person-years of follow-up, 276 (23.8 %) workers were newly identified as having depressive symptoms. Isoflavone intake was not associated with risk of depressive symptoms. After adjustment for lifestyle and dietary factors and baseline CES-D score, the multivariable-adjusted hazard ratios (95 % confidence interval) for the lowest through highest tertile of isoflavone intake were 1.00 (reference), 0.93 (0.66-1.31), and 0.93 (0.62-1.38) (P for trend = 0.70). CONCLUSIONS Our findings suggest that higher isoflavone intake is not associated with decreased risk of depressive symptoms among Japanese.
Collapse
Affiliation(s)
- Akiko Nanri
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan; Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masana Suetsugu
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Takeshi Kochi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | | | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Khatun S, Kim T, Mollah MMI. Heat shock increases the anti-inflammatory and anti-obesity activity of soybean by increasing polyphenol, antioxidant and aglycon form isoflavones. Heliyon 2023; 9:e21944. [PMID: 38034630 PMCID: PMC10682200 DOI: 10.1016/j.heliyon.2023.e21944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
We know that heat shock can activate the functional components in soybeans, but we don't know the type, level, and duration of heat shock for maximum activation. To address this, the present study investigated the changes in functional components like polyphenols, antioxidants, and isoflavones in soybeans at various temperature levels and durations with their respective functionality or health benefits. For this, treated seed samples were extracted with 70 % ethanol. Heat shock at 60 °C for 2 h increased polyphenol content (60.67 % of control) and antioxidant activity for both ABTS (41.14 % of control) and DPPH (217.72 % of control). This also increased the beneficial aglycone form of isoflavones that includes daidzein (8.36-fold of control), glycitein (3.85-fold of control) and genistein (20.50-fold of control) but decreased the harmful β-glucoside form (3.65-fold) including daiazin (1.84-fold of control); glycitin (1.45-fold of control) and genistin (23.88-fold of control) over untreated dry seed. This may happen because of the conversion of conjugated β-glucoside isoflavones to their aglycone forms that have various health benefits. Maximum inhibition of NO production in RAW 264.7 cells was achieved by samples elicited for 2 h with 300 μg/mL concentration. This sample also confirmed the maximum anti-obesity activity treated against 3-T-3L1 cells. This study summarized that heat shock at 60 °C for 2 h increased polyphenols, antioxidants, and aglycon isoflavone in soybeans resulting in increased anti-inflammatory and anti-obesity activity.
Collapse
Affiliation(s)
- Soyema Khatun
- Crop Physiology Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh-2022, Bangladesh
- Department of Food Science and Biotechnology, Andong National University, Andong-1375, Republic of Korea
| | - Taewan Kim
- Department of Food Science and Biotechnology, Andong National University, Andong-1375, Republic of Korea
| | - Md. Mahi Imam Mollah
- Department of Entomology, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| |
Collapse
|
50
|
Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M, Tuli HS. Genistein: a promising modulator of apoptosis and survival signaling in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2893-2910. [PMID: 37300702 DOI: 10.1007/s00210-023-02550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | | | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|