1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Duan G, Li M, Zheng C, Wan M, Yu J, Cao B, Yin Y, Duan Y, Cong F. Odd-chain fatty acids-enriched fats improved the growth and intestinal morphology and function in milk replacers-fed piglets. J Nutr 2025:S0022-3166(25)00028-8. [PMID: 39889853 DOI: 10.1016/j.tjnut.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The intestinal development and nutritional needs of piglets after birth are similar to those of human infants. OBJECTIVES This study aimed to investigate the effect of odd chain fatty acids (OCFAs) with different forms on the growth and intestinal morphology and function in milk replacers-fed piglets, as a model for human infants. METHODS Forty 7-day-old piglets from 8 sows were randomly assigned into 5 groups (n = 8, each of them was from different litters) and fed sow milk or milk replacers supplemented with different kinds of fats (namely, the control fats, and the DHA algal oil-, OCFA algal oil-, and OCFA-enriched fats) for 21 days. The statistical analysis about the data from milk replacers-fed piglet groups was conducted on the one-way ANOVA. And the data between sow milk- and milk replacers-fed piglets were analyzed by unpaired t-test. RESULTS Milk replacers supplemented with OCFA-enriched fats increased the average daily gain (ADG) and the ratio of villus height to crypt depth, increased the protein expression of Ki67, p-mTOR, p-p70S6k, Occludin, Claudin, and ZO-1 in selected intestines, and decreased the protein expression of p-ULK1, Parkin, and PINK1 to levels similar to the sow milk group (P < 0.05). CONCLUSION Overall, milk replacers supplemented with OCFA-enriched fats improved the ADG and intestinal morphology and function of piglets to levels comparable to the sow milk-fed piglets.
Collapse
Affiliation(s)
- Geyan Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Li
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd 200137
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Yu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Cao
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd 200137
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Cong
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd 200137.
| |
Collapse
|
3
|
Liu S, Tian M, Ma M, Qiu Y, Tang J, Hou J, Lu Q, Tian C, Ye G, Wang L, Gao K, Guo S, Jiang Z, Yang X. Effect of Gardeniae Fructus Powder on Growth Performance, Antioxidant Capacity, Intestinal Barrier Function, and Colonic Microbiota of Weaned Piglets. Animals (Basel) 2025; 15:221. [PMID: 39858221 PMCID: PMC11758313 DOI: 10.3390/ani15020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The present study aimed to explore the effect of GF powder on the growth performance, diarrhea rate, antioxidant and immune capacity, and intestinal health of weaned piglets. A total of 144 weaned piglets (8.29 ± 0.11 kg) at 21 d old were randomly assigned to four groups, with each treatment consisting of six replicate pens, with six piglets per pen, and each pen containing three barrows and three gilts. The piglets were fed a basal diet supplement with 0%, 0.4%, 0.6%, and 0.8% GF powder (n = 36). Our results indicated that compared with the basal diet, the F/G and diarrhea rate were remarkably decreased in the 0.8% GF group (p < 0.05). Serum biochemical parameters showed that supplementation with GF significantly increased the content of HDL-C (0.6 and 0.8% levels), IL-6 (0.8% level), IL-10 (0.4, 0.6, and 0.8% levels), Ig G (0.4% level), and Ig A (0.8% level) compared with the basal diet (p < 0.05). The index of antioxidant capacity showed that compared with a basal diet, supplementation with GF significantly decreased serum MDA content (0.4% and 0.8% levels) and jejunal and ileal MDA content (0.4%, 0.6%, and 0.8% levels) (p < 0.05). Additionally, compared with the basal diet, supplementation with GF significantly increased serum and ileal T-AOC content (0.4%, 0.6%, and 0.8% levels), serum T-SOD content (0.4% and 0.8% levels), ileal T-SOD content (0.4%, 0.6%, and 0.8% levels), CAT content (0.4%, 0.6%, and 0.8% levels), and jejunal GSH-Px content (0.8% level) (p < 0.05). The results of gene expression indicate that compared with the basal diet, supplementation with GF significantly increased Nrf 2 (0.4% level), NQO (0.4% level), SOD 1 (0.4% and 0.8% levels), and GCLC (0.4% level) and GCLM (0.8% level) abundance in jejunal mucosa; supplementation with GF significantly increased Nrf 2 (0.4%, 0.6%, and 0.8% levels), HO-1 (0.4% level), NQO (0.8% level), SOD 1 (0.4% and 0.8% levels), and GCLC (0.4% level) and GCLM (0.8% level) abundance in ileal mucosa (p < 0.05). Ulteriorly, the present results indicate that supplementation with GF at the 0.8% level significantly increased the villus height in the jejunum and ileum as well as the villus/crypt ratio in the ileum compared with the basal diet (p < 0.05). Compared with the basal diet, 0.4% GF significantly increased Occludin gene expression in ileal mucosa (p < 0.05), 0.6% GF significantly increased ZO-1, Claudin-1, and Occludin gene expression in jejunal mucosa (p < 0.05), and 0.8% GF significantly increased ZO-1 and Occludin gene expression in jejunal mucosa along with Occludin expression in ileal mucosa (p < 0.05). Furthermore, colonic microbiota composition showed that Shannon, observed species, and Chao 1 indices were significantly increased in the 0.8% GF group compared with the basal diet (p < 0.05). At the phylum level, in comparison with the basal diet, the relative abundance of Firmicutes significantly decreased in the 0.4%, 0.6%, and 0.8% GF groups, and Bacteroidetes increased in the 0.8% GF group (p < 0.05). At the genus level, compared with the basal diet, 0.6% and 0.8% GF significantly increased Prevotella abundance, and 0.6% GF significantly decreased Coprococcus abundance (p < 0.05). At the species level, compared with the basal diet, 0.8% GF significantly increased Prevotella copri abundance, and 0.4%, 0.6%, and 0.8% GF significantly decreased Blautia obeum abundance (p < 0.05). In summary, a dietary supplement with 0.8% Gardeniae Fructus powder significantly decreased the F/G and diarrhea rate and improved antioxidant capacity and intestinal barrier function, which may be associated with the improvement of the relative abundance of Prevotella copri. These findings indicate that Gardeniae Fructus powder may be used as a feed additive in swine weaning.
Collapse
Affiliation(s)
- Shilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (M.M.)
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Ming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (M.M.)
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jiaxi Tang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chaoyang Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Guohao Ye
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.L.); (M.M.)
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.T.); (Y.Q.); (J.T.); (J.H.); (Q.L.); (C.T.); (G.Y.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
4
|
Li H, Han L, Zong Y, Feng R, Chen W, Geng J, Li J, Zhao Y, Wang Y, He Z, Du R. Deer oil improves ulcerative colitis induced by DSS in mice by regulating the intestinal microbiota and SCFAs metabolism and modulating NF-κB and Nrf2 signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:382-393. [PMID: 39189446 DOI: 10.1002/jsfa.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Deer oil (DO), a byproduct of deer meat processing, possesses high nutritional value. This study aims to evaluate the protective effects of DO on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and to explore its potential mechanisms of action. RESULTS DO was found to inhibit weight loss and colon shortening in colitis mice, significantly reduce disease activity index scores, and notably enhance the levels of tight junction proteins in colon tissues, thus improving intestinal barrier function. ELISA results indicated that DO markedly alleviated the mice's oxidative stress and inflammatory responses. Western blot analysis further demonstrated that DO significantly inhibited the phosphorylation of NF-κB while up-regulating the expression levels of Nrf2 and HO-1 proteins. Additionally, DO increased the abundance of beneficial bacteria such as Odoribacter, Blautia, and Muribaculum, reduced the abundance of harmful bacteria such as Bacteroides, Helicobacter, and Escherichia-Shigella, and promoted the production of short-chain fatty acids. CONCLUSION Our study provides the first evidence that DO can effectively improve DSS-induced UC in mice. The underlying mechanisms may involve maintaining intestinal barrier function, inhibiting inflammation, alleviating oxidative stress, and modulation of gut microbiota. These findings offer valuable insights for developing DO as an adjunct treatment for UC and as a functional food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyan Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Lu Han
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Ruyi Feng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jianan Geng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Yuqi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
- Engineering Research Center for High Efficiency Breeding and Product Development Technology of SikaDeer, Changchun, China
| |
Collapse
|
5
|
Wang K, Hao Z, Xie J, Ma L, Zhang W, Mo J, Li L, Jin C. Nrf2-dependent hepatoprotective effect of ellagic acid in titanium dioxide nanoparticles-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156064. [PMID: 39306885 DOI: 10.1016/j.phymed.2024.156064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/15/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Previous studies suggest that titanium dioxide nanoparticles (TiO2 NPs) induce liver injury, possibly due to oxidative stress and inflammation. Ellagic acid (EA) is a dietary polyphenol extracted from natural sources and possesses antioxidant and anti-inflammatory properties. Nonetheless, the efficacy of EA in mitigating liver injury induced by TiO2 NPs remains to be elucidated. METHODS Primary hepatocytes and L02 cells were cultured with 45 μM EA and 10 μg/ml TiO2 NPs. Mice were orally administered TiO2 NPs (150 mg kg-1) and EA (25/50/100 mg kg-1) for eight weeks. sulforaphane (SFN) as a positive control to evaluate the inhibitory effect of EA on TiO2 NP-induced liver injury (SFN 10 mg kg-1). RNA sequencing (RNA-seq) was employed to elucidate the mechanisms underlying oxidative stress, inflammation, and liver fibrosis. RESULTS We assessed the impact of EA on cytotoxicity, oxidative stress, inflammation, and fibrosis in both cells and mice exposed to TiO2 NPs for an extended period. Our findings indicated that EA had a protective effect on TiO2 NP-exposed hepatocytes, reducing cytotoxicity, oxidative stress, and inflammation. Furthermore, EA treatment markedly reduced serum aminotransferase levels in mice exposed to TiO2 NPs. Furthermore, EA treatment notably reduced hepatic stress response, inflammation, and fibrosis in mice. The treatment of EA demonstrates non-inferiority compared to SFN. The protective effects of EA were attributed to the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), EA promoted the translocation and phosphorylation of Nrf2, as indicated by the finding that Nfe2l2 shRNA and inhibition of Nrf2 by ML385 reversed the EA-induced hepatoprotective effects in TiO2 NP-exposed hepatocytes and mice. CONCLUSION EA significantly mitigated liver injury induced by TiO2 NPs. Importantly, we identified that the nuclear translocation and phosphorylation of Nrf2 are the primary mechanisms through which EA alleviates liver injury resulting from exposure to TiO2 NPs. As a natural activator of Nrf2, EA emerges as a promising therapeutic candidate for treating TiO2 NPs-induced liver injury, further enhancing our understanding of its potential as a hepatoprotective agent and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China; Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China; General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, 318001, PR China
| | - Zhiqing Hao
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, 318001, PR China
| | - Jing Xie
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, 110000, PR China
| | - Liman Ma
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, 110000, PR China
| | - Weiwei Zhang
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, 318001, PR China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China
| | - Lihua Li
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China.
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China.
| |
Collapse
|
6
|
Gao F, Du Y, Liu H, Ding H, Zhang W, Li Z, Shi B. Maternal supplementation with konjac glucomannan and κ-carrageenan promotes sow performance and benefits the gut barrier in offspring. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:272-286. [PMID: 39640556 PMCID: PMC11617309 DOI: 10.1016/j.aninu.2024.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
This research aims to investigate the effects of dietary konjac glucomannan and κ-carrageenan (SF) on sow performance and suckling piglet gut barrier. Thirty-four sows in late gestation (parity 2-5) were selected at random and grouped into two treatments. The control group (Con group; n = 17) was fed the basal diet; the SF group was fed the same diet supplemented with 0.25% konjac glucomannan + 0.25% κ-carrageenan (SF group; n = 17). The results showed that sows fed the SF diet had a higher feed intake during lactation than the Con group (P < 0.05), and the levels of neuropeptide tyrosine (NPY) (P = 0.006) and acetylcholine enzyme (AChE) (P < 0.05) significantly increased. The fecal microbial analysis indicated that the SF diet had a higher abundance of Subdoligranulum, Holdemanella, and Succinivibrio at the genus level, and the acetate level was significantly increased (P < 0.05). Moreover, SF lowered the level of interleukin-6 (IL-6) in milk (P < 0.05). Regarding suckling piglets, maternal supplementation with SF reduced jejunal IL-6 protein levels in suckling piglets (P < 0.05). In the colon of the piglet, the SF group up-regulated protein levels of occludin (P < 0.05), and the nuclear factor erythroid 2-related factor 2 (Nrf2) (0.05 ≤ P < 0.1), and claudin 4 (CLDN4) (0.05 ≤ P < 0.1) protein levels tended to be up-regulated. Consequently, supplementation of SF in sow diets positively affects lactation feed intake and maternal microflora. Furthermore, the maternal effect improves the jejunum and colon barriers of suckling piglets.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
7
|
Aroche R, Gao G, Li Y, Zhang Y, Rodríguez R, Martínez Y, Li X. Effect of Anacardium occidentale Leaf Powder on Growth Performance, Diarrhea Incidence, Blood Biochemistry, and Intestinal Traits in Weaned Piglets. Animals (Basel) 2024; 14:3382. [PMID: 39682348 DOI: 10.3390/ani14233382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
To evaluate the phytobiotic effect of Anacardium occidentale leaf powder (AOLP) on growth performance, diarrhea incidence, blood biochemistry, and intestinal traits, seventy-two weaned piglets were randomly distributed into four groups (six replicates/group and three pigs/replicate) for 28 days, receiving a control diet (T0) or being supplemented with 5 (T1), 10 (T2), or 15 (T3) g/kg of AOLP. The diets did not affect the growth performance (p > 0.05); however, the AOLP groups had a decreased diarrhea incidence and malondialdehyde concentration (p < 0.05; 28 days). However, the AOLP groups had increased immunoglobulins (G and M) and villus heights (p < 0.05) in the duodenum. Likewise, T3 improved the number of goblet cells in the villi and the whole intestine (p < 0.01), the Mucin2 area in the jejunum and ileum (p < 0.05), occludin gene expression in the jejunum (p < 0.01), and acetic and valeric acid production (p < 0.05). Microbial diversity at the genus level was not different (p > 0.05); however, T3 increased the abundance of the Lactobacillus genus. These findings suggest that dietary supplementation with AOLP improved intestinal health by increasing antioxidant, immune, anti-inflammatory, and antidiarrheal activity in the weaned piglets.
Collapse
Affiliation(s)
- Roisbel Aroche
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal Husbandry, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Román Rodríguez
- Animal Production Study Center, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba
| | - Yordan Martínez
- Faculty of Veterinary Medicine, University of Fondwa, Léogâne 6210, Haiti
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
9
|
Ma J, Li T, Lin L, Lu Y, Chen X, Li S, Wei C, Du C, Yin F, Cao G, Gan S. High-concentrate diet supplemented with hydrolysable tannin improves the slaughter performance, intestinal antioxidant ability and barrier function of fattening lambs. Front Vet Sci 2024; 11:1464314. [PMID: 39529852 PMCID: PMC11551998 DOI: 10.3389/fvets.2024.1464314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The objective of current experiment was to study the potential influence of hydrolysable tannin supplementation on slaughter performance, meat quality, intestinal digestive enzyme activity, antioxidant ability and barrier function in fattening lambs. In total, 36 male Hu sheep lambs with similar body weight (15.83 ± 0.48 kg) and days in age (55 ± 2 d) were randomly assigned to one of three groups of 12 animals each: control without tannin (CON) and tannin supplementation groups (TA1, 3 g/d per lamb; TA2, 6 g/d per lamb). All the lambs were reared in individual hutches, and the experiment lasted for 60 d. On d 61, 8 lambs from each group were randomly selected to slaughter. Results showed that the serum diamine oxidase and lipopolysaccharide contents of TA2 group were higher (p < 0.05) than those of CON group. Compared with CON group, the carcass weight and intramuscular fat content of lambs in TA1 group were increased (p < 0.05) and the meat shear force was decreased (p < 0.05). The trypsin activity in the jejunum and ileum of TA1 group was higher (p < 0.05) than that of CON and TA2 groups. Also, tannin supplementation significantly increased (p < 0.05) the level of jejunal and ileal total antioxidant capacity and reduced (p < 0.05) the jejunal malondialdehyde concentration in lambs. The jejunum and ileum of TA1 lambs showed reduced (p < 0.05) tumor necrosis factor-alpha and increased (p < 0.05) interleukin-10 mRNA levels compared with CON lambs. In the jejunum, the secretory immunoglobulin A content of TA1 group was higher (p < 0.05) than that of CON and TA2 groups. Lambs supplemented with tannin at the level of 3 g/d increased (p < 0.05) the gene expressions of claudin-1, claudin-4 and zonula occludens-1 in the jejunum when compared to those of CON and TA2 groups. In summary, tannin supplementation at the level of 3 g/d per animal can improve the production performance and intestinal function of fattening lambs fed a high-concentrate diet.
Collapse
Affiliation(s)
- Jian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Tao Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Lu Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuezhang Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sibing Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Chen Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Chunmei Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Guang Cao
- Tie Qi Li Shi Feed Co., Ltd., Chengdu, China
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
10
|
Li X, Zheng K, Chen H, Li W. Ginsenoside Re Regulates Oxidative Stress through the PI3K/Akt/Nrf2 Signaling Pathway in Mice with Scopolamine-Induced Memory Impairments. Curr Issues Mol Biol 2024; 46:11359-11374. [PMID: 39451557 PMCID: PMC11506191 DOI: 10.3390/cimb46100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
While Ginsenoside Re has been shown to protect the central nervous system, reports of its effects on memory in the model of scopolamine-induced memory impairment are rare. The aim of this study was to investigate the effects of Ginsenoside Re on scopolamine (SCOP)-induced memory damage and the mechanism of action. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days and with or without Ginsenoside Re for 14 days. As evidenced by behavioral studies (escape latency and cross platform position), brain tissue morphology, and oxidative stress indicators after Ginsenoside Re treatment, the memory damage caused by SCOP was significantly ameliorated. Further mechanism research indicated that Ginsenoside Re inhibited cell apoptosis by regulating the PI3K/Akt/Nrf2 pathway, thereby exerting a cognitive impairment improvement effect. This research suggests that Ginsenoside Re could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | | | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
11
|
Agar G, Yagci Ergul S, Yuce M, Arslan Yuksel E, Aydin M, Taspinar MS. Ellagic acid alleviates aluminum and/or drought stress through morpho-physiochemical adjustments and stress-related gene expression in Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59521-59532. [PMID: 39358657 DOI: 10.1007/s11356-024-35185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al3+) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al3+) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al3+ and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 μg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl3, 60 μM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, H2O2 content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 μg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al3+ stresses, thereby increasing the seedlings' adaptability to these stresses.
Collapse
Affiliation(s)
- Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Semra Yagci Ergul
- Faculty of Medicine, Department of Medicinal Genetics, Kafkas University, 36000, Kars, Turkey
| | - Merve Yuce
- Faculty of Agriculture, Department of Horticulture, Ataturk University, 25240, Erzurum, Turkey
| | - Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
12
|
Wu X, Cao Y, Liu Y, Zheng J. A New Strategy for Dietary Nutrition to Improve Intestinal Homeostasis in Diarrheal Irritable Bowel Syndrome: A Perspective on Intestinal Flora and Intestinal Epithelial Interaction. Nutrients 2024; 16:3192. [PMID: 39339792 PMCID: PMC11435304 DOI: 10.3390/nu16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although a reasonable diet is essential for promoting human health, precise nutritional regulation presents a challenge for different physiological conditions. Irritable Bowel Syndrome (IBS) is characterized by recurrent abdominal pain and abnormal bowel habits, and diarrheal IBS (IBS-D) is the most common, seriously affecting patients' quality of life. Therefore, the implementation of precise nutritional interventions for IBS-D has become an urgent challenge in the fields of nutrition and food science. IBS-D intestinal homeostatic imbalance involves intestinal flora disorganization and impaired intestinal epithelial barrier function. A familiar interaction is evident between intestinal flora and intestinal epithelial cells (IECs), which together maintain intestinal homeostasis and health. Dietary patterns, such as the Mediterranean diet, have been shown to regulate gut flora, which in turn improves the body's health by influencing the immune system, the hormonal system, and other metabolic pathways. METHODS This review summarized the relationship between intestinal flora, IECs, and IBS-D. It analyzed the mechanism behind IBS-D intestinal homeostatic imbalance by examining the interactions between intestinal flora and IECs, and proposed a precise dietary nutrient intervention strategy. RESULTS AND CONCLUSION This increases the understanding of the IBS-D-targeted regulation pathways and provides guidance for designing related nutritional intervention strategies.
Collapse
Affiliation(s)
- Xinyu Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Yilong Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
Wen X, Tang S, Wan F, Zhong R, Chen L, Zhang H. The PI3K/Akt-Nrf2 Signaling Pathway and Mitophagy Synergistically Mediate Hydroxytyrosol to Alleviate Intestinal Oxidative Damage. Int J Biol Sci 2024; 20:4258-4276. [PMID: 39247828 PMCID: PMC11379072 DOI: 10.7150/ijbs.97263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Oxidative stress is a major pathogenic factor in many intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The Nrf2 signaling pathway and mitophagy can reduce reactive oxygen species (ROS) and alleviate oxidative stress, but their relationship is unclear. Hydroxytyrosol (HT), a polyphenolic compound abundant in olive oil, has strong antioxidant activity and may help treat these diseases. We used pigs as a model to investigate HT's effect on intestinal oxidative damage and its mechanisms. Diquat (DQ) induced oxidative stress and impaired intestinal barrier function, which HT mitigated. Mechanistic studies in IPEC-J2 cells showed that HT protected against oxidative damage by activating the PI3K/Akt-Nrf2 signaling pathway and promoting mitophagy. Our study highlighted the synergistic relationship between Nrf2 and mitophagy in mediating HT's antioxidant effects. Inhibition studies confirmed that disrupting either pathway compromised HT's protective effects. Maintaining redox balance through Nrf2 and mitophagy is important for eliminating excess ROS. Nrf2 increases antioxidant enzymes to clear existing ROS, while mitophagy removes damaged mitochondria and reduces ROS generation. This study demonstrates that these pathways collaboratively modulate the antioxidant effects of HT, with neither being dispensable. Targeting Nrf2 and mitophagy could be a promising strategy for treating oxidative stress-related intestinal diseases, with HT as a potential treatment.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
14
|
Singai C, Pitchakarn P, Taya S, Phannasorn W, Wongpoomchai R, Wongnoppavich A. Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model. Pharmaceuticals (Basel) 2024; 17:818. [PMID: 39065670 PMCID: PMC11280025 DOI: 10.3390/ph17070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Humans are frequently exposed to various carcinogens capable of inducing cancer in multiple organs. Phyllanthus emblica (P. emblica) is known for its strong antioxidant properties and potential in cancer prevention. However, its effectiveness against combined carcinogens remains relatively unexplored. This study aimed to assess the chemopreventive potential of the ethanolic extract of P. emblica fruits against preneoplastic lesions in the liver and colon using a rat model. Rats were administered with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) to induce hepato- and colon carcinogenesis, respectively. The ethanolic extract of P. emblica fruit at 100 and 500 mg/kg bw significantly reduced the number of preneoplastic lesions in the liver by 74.7% and 55.6%, respectively, and in the colon by 39.2% and 40.8%, respectively. Similarly, the extract decreased the size of preneoplastic lesions in the liver by 75.2% (100 mg/kg bw) and 70.6% (500 mg/kg bw). Furthermore, the extract significantly reduced the cell proliferation marker in the liver by 70.3% (100 mg/kg bw) and 61.54% (500 mg/kg bw), and in the colon by 62.7% (100 mg/kg bw) and 60.5% (500 mg/kg bw). The ethanolic extract also enhanced liver antioxidant enzyme activities and demonstrated free radical scavenging in DPPH, ABTS, and FRAP assays. Additionally, the dichloromethane fraction of P. emblica showed significant cancer prevention potential by reducing intracellular ROS and NO production by 61.7% and 35.4%, respectively, in RAW 264.7 macrophages. It also exhibited antimutagenic effects with a reduction of 54.0% against aflatoxin B1 and 52.3% against 2-amino-3,4-dimethylimidazo[4,5-f]quinoline-induced mutagenesis in Salmonella typhimurium. Finally, this study highlights the chemopreventive activity of P. emblica fruit extract against the initiation of early-stage carcinogenic lesions in the liver and colon in rats treated with dual carcinogens.
Collapse
Affiliation(s)
- Chonikarn Singai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (P.P.); (W.P.); (R.W.)
| |
Collapse
|
15
|
Zhang H, Xiang X, Wang C, Li T, Xiao X, He L. Different effects of acute and chronic oxidative stress on the intestinal flora and gut-liver axis in weaned piglets. Front Microbiol 2024; 15:1414486. [PMID: 38952442 PMCID: PMC11215049 DOI: 10.3389/fmicb.2024.1414486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oxidative stress plays a pivotal role in modulating the balance of intestinal flora and the gut-liver axis, while also serving as a key determinant of the growth potential of weaned piglets. However, few studies have subdivided and compared acute and chronic oxidative stress. Methods In this study, an intestinal model of acute oxidative stress in weaned piglets using paraquat (PQ) and a chronic oxidative stress model using D-galactosa in weaned piglets were conducted. And we further systematically compare their effects. Results Both acute and chronic oxidative stress models impaired intestinal barrier function and liver function. Chronic stress caused by D-galactose can result in severe redox dysregulation, while acute stress caused by paraquat can lead to inflammation and liver damage. Additionally, the components involved in the CAR pathway were expressed differently. Chronic or acute oxidative stress can reduce the diversity and composition of intestinal flora. In the PQ group, the richness of Mogibacterium and Denitratisoma improved, but in the D-gal group, the richness of Catenisphaera and Syntrophococcus increased. Discussion Not only does this research deepen our understanding of the effects of acute and chronic oxidative stress on intestinal functions, but it also characterizes characteristic changes in the gut flora, potentially identifying novel therapeutic targets and opening new avenues for future research.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Xiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xuping Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
16
|
Wang F, Cheng Y, Yin L, Liu S, Li X, Xie M, Li J, Chen J, Fu C. Dietary supplementation with ellagic acid improves the growth performance, meat quality, and metabolomics profile of yellow-feathered broiler chickens. Poult Sci 2024; 103:103700. [PMID: 38631231 PMCID: PMC11036095 DOI: 10.1016/j.psj.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The aim of this research was to explore the effects of ellagic acid (EA) on growth performance, meat quality, and metabolomics profile of broiler chickens. 240 healthy yellow-feathered broilers were randomly divided into 4 groups (6 replicates/group and 10 broilers /replicate): 1) a standard diet (CON); 2) CON+0.01% EA; 3) CON+0.02% EA; 4) CON+0.04% EA. Compared with the CON group, dietary 0.02% EA increased linearly and quadratically the ADG and lowered F/G ratio from 29 to 56 d and from 1 to 56 d of age (P < 0.05). The EA groups had higher spleen index and showed linear and quadratic improve thymus index (P < 0.05). A total of 0.02% EA linearly and quadratically increased the leg muscle percentage and quadratically increased the breast muscle percentage (P < 0.05). Compared to the control diet, 0.02% EA decreased quadratically the L* and increased a* of breast muscle at 45 min postslaughter (P < 0.05), and quadratically decreased (P < 0.05) the b* and increased linearly and quadratically (P < 0.05) drip loss. Additionally, EA improved linearly and quadratically (P < 0.05) serum total protein concentration and reduced linearly and quadratically (P < 0.05) serum blood urea nitrogen concentration. A total of 0.02% EA quadratically increased catalase activity and decreased malondialdehyde concentration in breast muscle compared with the control diet (P < 0.05). 0.02% and 0.04% EA could linearly and quadratically increase (P < 0.05) the concentrations of histidine, leucine and essential amino acids (EAA), 0.02% EA could linearly and quadratically increase (P < 0.05) the concentrations of threonine, glutamate, and flavored amino acids in breast muscle. 0.02% EA linearly and quadratically improved the C20:3n6, C22:6n3, polyunsaturated fatty acid (PUFA) concentrations, and the ratio of PUFA to saturated fatty acids (SFA), but reduced the C16:0 and the SFA concentrations in breast muscle than the CON group (P < 0.05). The EA diet linearly increased (P = 0.035) and quadratically tended (P = 0.068) to regulate the C18:2n6c concentration of breast muscle. Metabolomics showed that alanine metabolism, aspartate and glutamate metabolism, arginine and proline metabolism, taurine and hypotaurine metabolism, and glycerophospholipid metabolism were the most differentially abundant. These results showed that EA supported moderate positive effects on growth performance, meat quality, and metabolomics profile of broilers.
Collapse
Affiliation(s)
- Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinrui Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Meizhu Xie
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiayang Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
17
|
Wang N, Wang C, Qi M, Lin X, Zha A, Tan B, Yin Y, Wang J. Phosphatidylethanolamine Improves Postnatal Growth Retardation by Regulating Mucus Secretion of Intestinal Goblet Cells in Piglets. Animals (Basel) 2024; 14:1193. [PMID: 38672341 PMCID: PMC11047706 DOI: 10.3390/ani14081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to their body weight (BW 2.79 ± 0.50 kg or 1.88 ± 0.40 kg) at 7 days old, CON-NBW, PE-NBW, CON-PGR, and PE-PGR. PE was supplemented to NBW piglets and PGR piglets during lactation and post-weaning periods. Compared with the NBW piglets, the growth performance of PGR piglets was lower, while PE improved the poor growth performance. PGR piglets showed injured intestinal morphology, as evidenced by the reduced ratio of villus height to crypt depth (VH/CD) and goblet cell numbers in the jejunum and ileum. PE recovered the intestinal barrier injury by increasing VH/CD and goblet cell numbers. The decreased MUC2 mRNA and protein expressions were observed in the small intestine of PGR piglets, and PE remarkably increased the expression of MUC2. Mechanistically, PE increased the goblet cell differentiation promoting gene spdef mRNA levels and reduced the mRNA expressions involved in endoplasmic reticulum stress in the jejunal and ileal mucosa of PGR piglets. Overall, we found that PE alleviated growth retardation by regulating intestinal health and generalized its application in neonates.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Andong Zha
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yulong Yin
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
18
|
Cheng Y, Liu S, Wang F, Wang T, Yin L, Chen J, Fu C. Effects of Dietary Terminalia chebula Extract on Growth Performance, Immune Function, Antioxidant Capacity, and Intestinal Health of Broilers. Animals (Basel) 2024; 14:746. [PMID: 38473130 DOI: 10.3390/ani14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Terminalia chebula extract (TCE) has many physiological functions and is potentially helpful in maintaining poultry health, but its specific effect on the growth of broilers is not yet known. This research investigated the effects of dietary Terminalia chebula extract (TCE) supplementation on growth performance, immune function, antioxidant capacity, and intestinal health in yellow-feathered broilers. A total of 288 one-day-old yellow-feathered broilers were divided into four treatment groups (72 broilers/group), each with six replicates of 12 broilers. The broilers were given a basal diet of corn-soybean meal supplemented with 0 (control), 200, 400, and 600 mg/kg TCE for 56 d. The results demonstrated that, compared with the basal diet, the addition of TCE significantly increased (linear and quadratic, p < 0.05) the final body weight and overall weight gain and performance and decreased (linear and quadratic, p < 0.05) the feed-to-gain ratio in the overall period. Dietary TCE increased (linear, p < 0.05) the levels of IgM, IL-4, and IL-10 and decreased (linear and quadratic, p < 0.05) the level of IL-6 in the serum. Dietary TCE increased (linear and quadratic, p < 0.05) the levels of IL-2 and IL-4, decreased (linear and quadratic, p < 0.05) the level of IL-1β, and decreased (linear, p < 0.05) the level of IL-6 in the liver. Dietary TCE increased (linear and quadratic, p < 0.05) the level of IgM and IL-10, increased (linear, p < 0.05) the level of IgG, and decreased (linear and quadratic, p < 0.05) the levels of IL-1β and IL-6 in the spleen. Supplementation with TCE linearly and quadratically increased (p < 0.05) the catalase, superoxide dismutase, glutathione peroxidase, and total antioxidant capacity activities while decreasing (p < 0.05) the malonic dialdehyde concentrations in the serum, liver, and spleen. TCE-containing diets for broilers resulted in a higher (linear and quadratic, p < 0.05) villus height, a higher (linear and quadratic, p < 0.05) ratio of villus height to crypt depth, and a lower (linear and quadratic, p < 0.05) crypt depth compared with the basal diet. TCE significantly increased (linear, p < 0.05) the acetic and butyric acid concentrations and decreased (quadratic, p < 0.05) the isovaleric acid concentration. Bacteroidaceae and Bacteroides, which regulate the richness and diversity of microorganisms, were more abundant and contained when TCE was added to the diet. In conclusion, these findings demonstrate that supplementing broilers with TCE could boost their immune function, antioxidant capacity, and gut health, improving their growth performance; they could also provide a reference for future research on TCE.
Collapse
Affiliation(s)
- Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tao Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
19
|
Trezza A, Geminiani M, Cutrera G, Dreassi E, Frusciante L, Lamponi S, Spiga O, Santucci A. A Drug Discovery Approach to a Reveal Novel Antioxidant Natural Source: The Case of Chestnut Burr Biomass. Int J Mol Sci 2024; 25:2517. [PMID: 38473765 DOI: 10.3390/ijms25052517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, many environmental and energy-related problems are threatening the future of our planet. In October 2022, the Worldmeter recorded the world population as 7.9 billion people, estimating that there will be an increase of 2 billion by 2057. The rapid growth of the population and the continuous increase in needs are causing worrying conditions, such as pollution, climate change, global warming, waste disposal, and natural resource reduction. Looking for novel and innovative methods to overcome these global troubles is a must for our common welfare. The circular bioeconomy represents a promising strategy to alleviate the current conditions using biomass-like natural wastes to replace commercial products that have a negative effect on our ecological footprint. Applying the circular bioeconomy concept, we propose an integrated in silico and in vitro approach to identify antioxidant bioactive compounds extracted from chestnut burrs (an agroforest waste) and their potential biological targets. Our study provides a novel and robust strategy developed within the circular bioeconomy concept aimed at target and drug discovery for a wide range of diseases. Our study could open new frontiers in the circular bioeconomy related to target and drug discovery, offering new ideas for sustainable scientific research aimed at identifying novel therapeutical strategies.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
- SienabioACTIVE, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Giuseppe Cutrera
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Luisa Frusciante
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
- SienabioACTIVE, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
- SienabioACTIVE, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
- SienabioACTIVE, University of Siena, Via A. Moro, 53100 Siena, Italy
| |
Collapse
|
20
|
Song Z, Deng C, Chen Q, Zhao S, Li P, Wu T, Hou Y, Yi D. Protective effects and mechanisms of ellagic acid on intestinal injury in piglets infected with porcine epidemic diarrhea virus. Front Immunol 2024; 15:1323866. [PMID: 38322259 PMCID: PMC10845347 DOI: 10.3389/fimmu.2024.1323866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The present study was conducted to decipher the protection effects of ellagic acid (EA) on piglets infected with porcine epidemic diarrhea virus (PEDV). Thirty 7-day-old piglets were randomly assigned to three treatment groups: control, PEDV, and EA + PEDV groups. After a 3-day period of adaption, piglets in the EA + PEDV group were orally administered with 20 mg/kg·BW EA during days 4-11 of the trial. On day 8, piglets were orally administered with PEDV at a dose of 106 TCID50 (50% tissue culture infectious dose) per pig. Additionally, intestinal porcine epithelial (IPEC-1) cells infected with PEDV were used to investigate the anti-PEDV effect of EA in vitro. The results showed that EA at a dose of 10-40 μmol/L increased the viability of PEDV-infected IPEC-1 cells, and EA administration mitigated intestinal edema in piglets challenged with PEDV. Further studies indicated that EA treatment significantly increased the proportion of white blood cells in blood and concentrations of IL-6, IL-1β, and IL-10 in the serum, but decreased the TNF-α content and gene expression of IL-6, IL-1β, TNF-α, and CXCL2 in the jejunum. Moreover, EA intervention considerably elevated the activity of total superoxide dismutase (T-SOD), but decreased the H2O2 concentration in the ileum of piglets. Importantly, EA suppressed the increased expression of antiviral-related genes and proteins (including MXI, ISG15, HSP70, and p-IRF7) induced by PEDV challenge in the jejunum. Furthermore, PEDV infection increased the protein abundance of p-JAK2 and p-STAT3, which were further enhanced by EA supplementation. In conclusion, our results revealed that EA could promote the restoration of intestinal homeostasis by regulating the interferon pathway that was interrelated with the activation of JAK2/STAT3 signaling. These findings provide theoretical basis for the use of EA as a therapy targeting PEDV infection in piglets.
Collapse
Affiliation(s)
- Zhuan Song
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Cuifang Deng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Qinyin Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shengnan Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
- R&D Department, Hubei Horwath Biotechnology Co., Ltd, Xianning, Hubei, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Jiang A, Liu Z, Lv X, Zhou C, Ran T, Tan Z. Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. BIOLOGY 2024; 13:28. [PMID: 38248459 PMCID: PMC10812986 DOI: 10.3390/biology13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
The overuse and misuse of antibiotics in the livestock and poultry industry has led to the development of multi-drug resistance in animal pathogens, and antibiotic resistance genes (ARGs) in bacteria transfer from animals to humans through the consumption of animal products, posing a serious threat to human health. Therefore, the use of antibiotics in livestock production has been strictly controlled. As a result, bacteriophages have attracted increasing research interest as antibiotic alternatives, since they are natural invaders of bacteria. Numerous studies have shown that dietary bacteriophage supplementation could regulate intestinal microbial composition, enhance mucosal immunity and the physical barrier function of the intestinal tract, and play an important role in maintaining intestinal microecological stability and normal body development of animals. The effect of bacteriophages used in animals is influenced by factors such as species, dose, and duration. However, as a category of mobile genetic elements, the high frequency of gene exchange of bacteriophages also poses risks of transmitting ARGs among bacteria. Hence, we summarized the mechanism and efficacy of bacteriophage therapy, and highlighted the feasibility and challenges of bacteriophage utilization in farm animal production, aiming to provide a reference for the safe and effective application of bacteriophages as an antibiotic alternative in livestock and poultry.
Collapse
Affiliation(s)
- Aoyu Jiang
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaokang Lv
- College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China;
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
22
|
Cai L, Gao G, Yin C, Bai R, Li Y, Sun W, Pi Y, Jiang X, Li X. The Effects of Dietary Silybin Supplementation on the Growth Performance and Regulation of Intestinal Oxidative Injury and Microflora Dysbiosis in Weaned Piglets. Antioxidants (Basel) 2023; 12:1975. [PMID: 38001828 PMCID: PMC10669228 DOI: 10.3390/antiox12111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is the major incentive for intestinal dysfunction in weaned piglets, which usually leads to growth retardation or even death. Silybin has caught extensive attention due to its antioxidant properties. Herein, we investigated the effect of dietary silybin supplementation on growth performance and determined its protective effect on paraquat (PQ)-induced intestinal oxidative damage and microflora dysbiosis in weaned piglets. In trial 1, a total of one hundred twenty healthy weaned piglets were randomly assigned into five treatments with six replicate pens per treatment and four piglets per pen, where they were fed basal diets supplemented with silybin at 0, 50, 100, 200, or 400 mg/kg for 42 days. In trial 2, a total of 24 piglets were randomly allocated to two dietary treatments with 12 replicates per treatment and 1 piglet per pen: a basal diet or adding 400 mg/kg silybin to a basal diet. One-half piglets in each treatment were given an intraperitoneal injection of paraquat (4 mg/kg of body weight) or sterile saline on day 18. All piglets were euthanized on day 21 for sample collection. The results showed that dietary supplementation with 400 mg/kg silybin resulted in a lower feed conversion ratio, diarrhea incidence, and greater antioxidant capacity in weaned piglets. Dietary silybin enhanced intestinal antioxidant capacity and mitochondrial function in oxidative stress piglets induced by PQ. Silybin inhibited mitochondria-associated endogenous apoptotic procedures and then improved the intestinal barrier function and morphology of PQ-challenged piglets. Moreover, silybin improved intestinal microbiota dysbiosis induced by the PQ challenge by enriching short-chain fatty-acid-producing bacteria, which augmented the production of acetate and propionate. Collectively, these findings indicated that dietary silybin supplementation linearly decreased feed conversion ratio and reduced diarrhea incidence in normal conditions, and effectively alleviated oxidative stress-induced mitochondrial dysfunction, intestinal damage, and microflora dysbiosis in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (G.G.); (C.Y.); (R.B.); (W.S.); (Y.P.); (X.J.)
| | | | | | | | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (G.G.); (C.Y.); (R.B.); (W.S.); (Y.P.); (X.J.)
| |
Collapse
|
23
|
Barghchi H, Milkarizi N, Belyani S, Norouzian Ostad A, Askari VR, Rajabzadeh F, Goshayeshi L, Ghelichi Kheyrabadi SY, Razavidarmian M, Dehnavi Z, Sobhani SR, Nematy M. Pomegranate (Punica granatum L.) peel extract ameliorates metabolic syndrome risk factors in patients with non-alcoholic fatty liver disease: a randomized double-blind clinical trial. Nutr J 2023; 22:40. [PMID: 37605174 PMCID: PMC10464300 DOI: 10.1186/s12937-023-00869-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome (MS)-related liver disorder that has an increasing prevalence. Thus, the aim of our study is to evaluate the effects of pomegranate peel extract (PP) supplementation on hepatic status and metabolic syndrome risk factors. METHODS In phase one, the hydro-alcoholic extraction of the peel of 750 kg of pomegranate (Punica granatum L.) was performed by the soaking method. Then, in phase two, NAFLD patients received 1500 mg of placebo (n = 37) or pomegranate peel capsules (n = 39) with a 500-kcal deficit diet for 8 weeks. Gastrointestinal intolerance, dietary intake, lipid and glycemic profiles, systolic and diastolic blood pressure, body composition, insulin resistance indexes, and elastography-evaluated NAFLD changes were followed. RESULTS The mean age of participants was 43.1 ± 8.6 years (51.3% female). Following the intervention, the mean body weight (mean changes: -5.10 ± 2.30 kg), waist circumference (-7.57 ± 2.97 cm), body mass index (-1.82 ± 0.85 kg/m2), body fat index (-1.49 ± 0.86), and trunk fat (- 3.93 ± 3.07%), systolic (-0.63 ± 0.29 cmHg) and diastolic (-0.39 ± 0.19 cmHg) blood pressure, total cholesterol (-10.51 ± 0.77 mg/dl), triglyceride (-16.02 ± 1.7 mg/dl), low-density lipoprotein cholesterol (-9.33 ± 6.66 mg/dl; all P < 0.001), fat free mass (- 0.92 ± 0.90 kg; P < 0.003), and fasting blood sugar (-5.28 ± 1.36 mg/dl; P = 0.02) decreased significantly in PP in contrast to the placebo group in the raw model and when adjusted for confounders. Also, high-density lipoprotein cholesterol (5.10 ± 0.36 mg/dl), liver steatosis and stiffness (- 0.30 ± 0.17 and - 0.72 ± 0.35 kPa, respectively, all P < 0.001) improved in the PP group. However, fasting insulin (P = 0.81) and homeostatic model assessment for insulin resistance (HOMA-IR) (P = 0.93) were not significantly different when comparing two groups during the study in the raw and even adjusted models. CONCLUSION In conclusion, 1500 mg pomegranate peel extract along with a weight-loss diet improved metabolic syndrome risk factors and reduced hepatic steatosis in patients with NAFLD after 8 weeks.
Collapse
Affiliation(s)
- Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Milkarizi
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Belyani
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Andisheh Norouzian Ostad
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnood Rajabzadeh
- Department of Radiology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maryam Razavidarmian
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Zahra Dehnavi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Nematy
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Li C, Liu M, Deng L, Luo D, Ma R, Lu Q. Oxyberberine ameliorates TNBS-induced colitis in rats through suppressing inflammation and oxidative stress via Keap1/Nrf2/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154899. [PMID: 37247589 DOI: 10.1016/j.phymed.2023.154899] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, unspecific inflammatory bowel disorder lacking effective therapeutic targets and radical drugs. Oxyberberine (OBB), a novel intestinal flora-elicited oxidative metabolite of berberine (BBR), has been revealed to exhibit diverse pharmacological properties. PURPOSE In this follow-up study, we attempted to shed light on the possible therapeutic effect and latent mechanism of OBB on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-evoked UC in rats. METHODS UC rats were established via a gentle enema of TNBS. Rats were sacrificed after intragastric administration of drugs for seven days. The weight reduction, disease activity index, macroscopic and histological colonic alterations were assessed. Further investigation on molecular mechanisms was conducted by ELISA, qRT-PCR, immunohistochemistry, or Western blot. RESULTS OBB treatment remarkably decreased the weight loss, macroscopic scores, and colonal weight/length ratio, as well as mitigated the colonic pathological deterioration and MPO vitality in colitis rats, achieving a superior protective effect to BBR. Additionally, OBB modulated the disequilibrium between pro- and anti-inflammatory factors by promoting the production of IL-13 and IL-4, and lowering the contents of TNF-α, IL-2, IL-8, and IL-22. Furthermore, OBB pretreatment dramatically ameliorated oxidative stress via enhancing antioxidant defense genes expressions (including HO-1, GCLM, GCLC, and NQO-1), thereby increasing SOD and GSH, and decreasing MDA and ROS activities. Furthermore, OBB strikingly restrained the translocation of NF-κB p65 and phosphorylation of IκBα, promoted HO-1 expression, Keap1 degradation and Nrf2 nuclear translocation. CONCLUSION The study firstly indicated that OBB had a superior therapeutic effect than BBR against TNBS-elicited colitis in rats. The protective effect of OBB might be closely related to the modulation of Keap1/Nrf2/NF-κB-mediated inflammatory response and oxidant stress. The evidences highlight the potentiality of OBB as a prospective candidate for the amelioration of colitis.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Meigui Liu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Li Deng
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Dandan Luo
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
25
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
26
|
Qin W, Yu Z, Li Z, Liu H, Li W, Zhao J, Ren Y, Ma L. Dietary Berberine and Ellagic Acid Supplementation Improve Growth Performance and Intestinal Damage by Regulating the Structural Function of Gut Microbiota and SCFAs in Weaned Piglets. Microorganisms 2023; 11:1254. [PMID: 37317228 DOI: 10.3390/microorganisms11051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Early weaning is an effective method for improving the utilization rate of sows in intensive pig farms. However, weaning stress induces diarrhea and intestinal damage in piglets. Berberine (BBR) is known for its anti-diarrhea properties and ellagic acid (EA) is known for its antioxidant properties, however, whether their combination improves diarrhea and intestinal damage in piglets has not been studied, and the mechanism remains unclear. To explore the combined effects in this experiment, a total of 63 weaned piglets (Landrace × Yorkshire) were divided into three groups at 21 days. Piglets in the Ctrl group were treated with a basal diet and 2 mL saline orally, while those in the BE group were treated with a basal diet supplemented with 10 mg/kg (BW) BBR, 10 mg/kg (BW) EA, and 2 mL saline orally. Piglets in the FBE group were treated with a basal diet and 2 mL fecal microbiota suspension from the BE group orally, respectively, for 14 days. Compared with the Ctrl group, dietary supplementation with BE improved growth performance by increasing the average daily gain and average daily food intake and reducing the fecal score in weaned piglets. Dietary supplementation with BE also improved intestinal morphology and cell apoptosis by increasing the ratio of villus height to crypt depth and decreasing the average optical density of apoptotic cells; meanwhile, improvements also involved attenuating oxidative stress and intestinal barrier dysfunction by increasing the total antioxidant capacity, glutathione, and catalase, and upregulating the mRNA expressions of Occludin, Claudin-1, and ZO-1. Interestingly, the oral administration of a fecal microbiota suspension to piglets fed BE had similar effects to those of the BE group. According to 16S rDNA sequencing analysis, dietary supplementation with BE altered the composition of the microbiota, including firmicutes, bacteroidetes, lactobacillus, phascolarctobacterium, and parabacteroides, and increased the metabolites of propionate and butyrate. In addition, Spearman analysis revealed that improvements in growth performance and intestinal damage were significantly correlated with differential bacteria and short-chain fatty acids (SCFAs). In brief, dietary supplementation with BE improved the growth performance and intestinal damage by altering the gut microbiota composition and SCFAs in weaned piglets.
Collapse
Affiliation(s)
- Wenxia Qin
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhendong Yu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhechang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hengfeng Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianan Zhao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Ren
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Libao Ma
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
AL-hoshary DM, Zalzala MH. Mucoprotective effect of ellagic acid in 5 fluorouracil-induced intestinal mucositis model. J Med Life 2023; 16:712-718. [PMID: 37520490 PMCID: PMC10375349 DOI: 10.25122/jml-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal mucositis (IM) is a common side effect of several anticancer medications, including 5-fluorouracil (5-FU), and can lead to treatment disruptions and compromised outcomes. IM has severe clinical effects such as diarrhea, erythematous mucosal lesions, and the development of ulcers accompanied by excruciating pain. This study aimed to evaluate the mucoprotective effects of ellagic acid on 5-FU-induced IM in mice. Mice were administered normal saline intraperitoneally for six days, followed by intraperitoneal injection of 5-FU for four days at a dose of 50 mg per kilogram. Ellagic acid was orally administered to the mice in groups III and IV in two doses (5 mg and 10 mg), with a one-hour time separation from 5-FU for ten days. At the end of the experiment, small intestine tissue was collected to measure the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and inflammatory cytokines (IL-6, IL-B, TNF) using ELISA assay. Pre-treatment with ellagic acid led to a significant decrease in pro-inflammatory cytokines and improved antioxidant enzyme levels compared to the 5-FU group. Histopathological analysis demonstrated the mucoprotective effect of ellagic acid against 5-FU-induced intestinal changes, including villi atrophy, damage to stem cells, infiltration of inflammatory cells in the mucosal layer, edema, damage to muscular mucosa, and decreased oxidative stress production, such as MDA. These results suggest that ellagic acid may be a potential candidate for treating IM induced by antineoplastic drugs.
Collapse
Affiliation(s)
- Dareen Mahmood AL-hoshary
- Al-Kut Hospital for Gynecology Obstetrics and Pediatrics, Ministry of Health, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
28
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
29
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
30
|
Ghasemi SZ, Beigoli S, Memarzia A, Behrouz S, Gholamnezhad Z, Darroudi M, Amin F, Boskabady MH. Paraquat-induced systemic inflammation and oxidative stress in rats improved by Curcuma longa ethanolic extract, curcumin and a PPAR agonist. Toxicon 2023; 227:107090. [PMID: 36965712 DOI: 10.1016/j.toxicon.2023.107090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The effect of Curcuma longa (Cl) ethanolic extract, nano-curcumin (Cu) and a PPARγ activator, pioglitazone on inhaled paraquat (PQ)-induced systemic inflammation and oxidative stress was examined in the present study. Control rats were exposed to normal saline and PQ groups to 27 and 54 mg/m3 (PQ-L and PQ-H) aerosols. Nine other PQ-H groups were treated with Curcuma longa (Cl, 150 and 600 mg/kg/day), nano-curcumin (Cu, 2 and 8 mg/kg/day), pioglitazone (Pio, 5 and 10 mg/kg), low dose of Pio + Cl and Cu and dexamethasone (0.03 mg/kg/day) for 16 days after PQ exposure period (n = 8). Total and differential WBC counts, malondialdehyde (MDA) and TNF-α levels were increased but thiol, catalase (CAT), superoxide dismutase (SOD), IL-10 and IFN-γ levels were decreased in the blood in the both PQ groups (p < 0.05 to p < 0.001). Treatment with Dexa and both doses of Cl, Cu, and Pio improved all measured variables compared to the PQ-H group (p < 0.05 to p < 0.001). The improvements of most variables in the treated group with low dose of Pio + Cl and Cu were higher than the effects of three agents alone. Systemic inflammation and oxidative stress induced by inhaled PQ were improved by Cl, Cu and Pio. In addition, a synergic effect between Pio with those of Cl and Cu was shown, suggesting PPARγ mediated effects of the plant and its derivative Cu.
Collapse
Affiliation(s)
- Seyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Arghavan Memarzia
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
31
|
Mahmoudi Z, Kalantar H, Mansouri E, Mohammadi E, Khodayar MJ. Dimethyl fumarate attenuates paraquat-induced pulmonary oxidative stress, inflammation and fibrosis in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105336. [PMID: 36740344 DOI: 10.1016/j.pestbp.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) is the most important cationic bipyridyl herbicide in the agricultural industry, which is very toxic to humans and animals and causes disruption in many organs, mainly in the lungs. Dimethyl fumarate (DMF) is an immune-modulating drug used in the treatment of multiple sclerosis and psoriasis shows antioxidant, anti-inflammatory, and antifibrotic effects. In this study, the ameliorative effects of DMF (10, 30 and 100 mg/kg, orally) on PQ (30 mg/kg) model of lung damage were evaluated in male mice. DMF was given daily for 7 days and PQ was administrated in the fourth day in a single dose. On the eighth day, the animals were sacrificed, and their lung tissue were removed. The results indicated that DMF can ameliorate PQ-induced the significant increase in lung index, hydroxyproline, as well as TBARS, TGF-β, NF-κB and decrease in the amount of total thiol, catalase, glutathione peroxidase, superoxide dismutase, Nrf-2, and INF-γ. The histopathological results confirmed indicated findings. The results showed that the protective effect of DMF on PQ-induced toxicity is mediated through antioxidant, anti-inflammatory and antifibrotic activities.
Collapse
Affiliation(s)
- Zohreh Mahmoudi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Centerx, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elaheh Mohammadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
Li J, Huang X, He L, Li C, Jing H, Lin J, Ma C, Li X. Effect of ellagic acid on body weight, nutrient digestibility, fecal microbiota, and urolithin A metabolism in Thoroughbred horses. J Anim Sci 2023; 101:skad232. [PMID: 37422771 PMCID: PMC10612130 DOI: 10.1093/jas/skad232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
This study aimed to investigate the effects of ellagic acid (EA) supplementation on body weight (BW), nutrient digestibility, fecal microbiota, blood biochemical indices, and urolithin A metabolism in 1-yr-old Thoroughbred horses. A group of 18 1-yr-old Thoroughbred horses, with an average weight of 339.00 ± 30.11 kg, were randomly allocated into three groups of six horses each (three males and three females). The control group (n = 6) received only the basal diet, whereas test groups I (n = 6) and II (n = 6) were fed the basal diet supplemented with 15 mg/kg BW/d and 30 mg/kg BW/d of EA, respectively, for 40-d. The results showed that test group I and II horses had a significant increase in total weight gain by 49.47% and 62.74%, respectively, compared to the control group. The digestibility of various components in the diets of the test group horses was improved, including dry matter, organic matter, gross energy, neutral detergent fiber, acid detergent fiber, and calcium. Additionally, the digestibility of crude protein and phosphorus (P) in test group II horses increased significantly by 10.96% and 33.56% (P < 0.05), respectively. Moreover, EA supplementation significantly increased the fecal abundance of Firmicutes, Bacteroidetes (P < 0.05), Fibrobacterota, p-251-o5, Desemzia incerta (P < 0.05), and Fibrobacter sp. (P < 0.05), while reducing the abundance of Proteobacteria, Pseudomonadaceae, Pseudomonas, and Cupriavidus pauculus (P < 0.05 or P < 0.01). Fecal samples from test group II showed 89.47%, 100%, and 86.15% increases in the concentrations of acetic acid, valeric acid, and total volatile fatty acids, respectively. In addition, the plasma levels of total protein, and globulin increased significantly in test groups I (7.88% and 11.35%, respectively) and II (13.44% and 16.07%, respectively) compared to those in the control group (P < 0.05). The concentration of urolithin A in fecal and urine samples was positively correlated with increasing doses of EA. These findings suggest that supplemental feeding of EA improved nutrient digestibility, blood biochemical indices, and fecal microbiota in 1-yr-old Thoroughbred horses, promoting growth and development.
Collapse
Affiliation(s)
- Jiahao Li
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xinxin Huang
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Linjiao He
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chao Li
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Hongxin Jing
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Jianwei Lin
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chaoyu Ma
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
- College of Animal Science, Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| |
Collapse
|
33
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
34
|
Wang F, Chen J, Yin Y, Yang M, Xiao Y, Cheng Y, Yin L, Fu C. The effects of dietary ellagic acid supplementation on growth performance, immune response, antioxidant activity, digestive enzyme activities, and intestinal functions in yellow-feathered broilers. J Anim Sci 2022; 100:skac301. [PMID: 36074562 PMCID: PMC9721341 DOI: 10.1093/jas/skac301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation with ellagic acid (EA) on the performance, immune function, antioxidant activity, digestive enzyme activities, and intestinal functions in yellow-feathered broilers. In total, 288 healthy yellow-feathered broilers with an average body weight of 39 ± 0.24 g were randomly divided into four treatment groups. Broilers were given a corn-soybean meal basal diet supplemented with 0 (control group), 100, 200, or 400 mg/kg EA. In the finisher period and the overall period, the inclusion of 100, 200, and 400 mg/kg EA increased the average daily gain (P < 0.05), and the inclusion of 200 or 400 mg/kg EA decreased the feed/gain ratio compared with the control group (P < 0.05). The best immune activity (immunoglobulin G [IgG] and immunoglobulin M [IgM] concentrations) in serum was shown in the 200 mg/kg EA group (P < 0.05). Broilers fed with 200 or 400 mg/kg EA-containing diets exhibited higher serum catalase and glutathione peroxidase activities (P < 0.05) than control broilers. The inclusion of 200 mg/kg EA in the broiler diets increased intestinal chymotrypsin, pepsin, and lipase activities (P < 0.05). Broilers fed 200 mg/kg EA-containing diets had higher villus height in the jejunum and ileum, a higher ratio between villus height and crypt depth in the jejunum, and a deeper crypt in the duodenum compared to control broilers (P < 0.05). EA reduced the diamine oxidase activity and D-lactate concentration in serum. Furthermore, in birds fed EA-containing diets, the abundance of Rikenella and norank_f_norank_o_Clostridia_UCG-014 in cecum were decreased compared with control birds (P < 0.05). Moreover, in birds fed EA-containing diets, the levels of acetate, butyrate, and total short-chain fatty acids in the cecum were higher (P < 0.05) than those in control birds. These findings indicated that dietary EA had ameliorative effects on antioxidant capability, digestive enzyme activity, immune function, and intestinal functions, which led to strengthened growth performance.
Collapse
Affiliation(s)
- Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mei Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yintao Xiao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
35
|
Xu X, Wei Y, Hua H, Zhu H, Xiao K, Zhao J, Liu Y. Glycine Alleviated Intestinal Injury by Inhibiting Ferroptosis in Piglets Challenged with Diquat. Animals (Basel) 2022; 12:ani12223071. [PMID: 36428298 PMCID: PMC9687050 DOI: 10.3390/ani12223071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The purpose of this research was to examine the impact of glycine on intestinal injury caused by oxidative stress in piglets. A 2 × 2 factorial experiment with diets (basic diet vs. 1% glycine diet) and oxidative stress (saline vs. diquat) was conducted on 32 weanling piglets. On day 21, all piglets received an injection of either saline or diquat. After 7 days, all pigs were slaughtered and intestinal samples were collected. Dietary glycine supplementation improved intestinal mucosal morphology, increased the activities of disaccharidases and enhanced intestinal mucosal antioxidant capacity, while regulating the expression of ferroptosis mediators in the piglets under oxidative stress. These findings suggested that dietary glycine supplementation improved the morphology and function of the intestinal mucosa, which was involved in regulating antioxidant capacity and ferroptosis.
Collapse
Affiliation(s)
- Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongwei Hua
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: ; Tel.: +86-027-83956175
| |
Collapse
|
36
|
Jin H, Che S, Wu K, Wu M. Ellagic acid prevents gut damage via ameliorating microbe-associated intestinal lymphocyte imbalance. Food Funct 2022; 13:9822-9831. [PMID: 36040795 DOI: 10.1039/d2fo01512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves a sustained microbial-mediated immune response following intestinal stress. Although administration of antibiotics can be an effective therapy, the misuse of antibiotics may risk unknown drug-resistant bacteria. In this study, piglets pretreated with ellagic acid (EA) and Ampicillin (AMP) for 21 days, and were injected intraperitoneally with paraquat (PQ) on 14 and 18 days. We found piglets lost most of their gut microbes in the AMP group, protected from subsequent intestinal damage caused by gut oxidative stress. Hence, we identified some gut microbes that may play a critical role in mediating cellular responses following cytokine stimulation in PQ-induced stress. EA preprocessing exhibited the same performance as AMP. Pretreatment of EA reduced Streptococcus abundance in the gut. Particularly, EA modulated intestinal lymphocyte distribution, reduced the frequency of CD79a+ cells, and alleviated the upward migration of CD3+ cells to the apex of the intestinal villi in the intestinal epithelium. Additionally, the intestinal immune response had been known associated closely with the abundance of Streptococcus in the gut. Thus, we concluded that EA has the potential to replace antibiotics to prevent microbial-mediated immune responses in the gut, and EA can be applied as a supplement candidate to alleviate the development of inflammation caused by intestinal stress.
Collapse
Affiliation(s)
- Huimin Jin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Siyan Che
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Kunfu Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
37
|
García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103960. [PMID: 35995378 DOI: 10.1016/j.etap.2022.103960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and inflammation are two possible mechanisms related to nephrotoxicity caused by environmental pollutants. Ellagic acid, a powerful antioxidant phytochemical, may have great relevance in mitigating pollutant-induced nephrotoxicity and preventing the progression of kidney disease. This review discusses the latest findings on the protective effects of ellagic acid, its metabolic derivatives, the urolithins, against kidney toxicity caused by heavy metals, pesticides, mycotoxins, and organic air pollutants. We describe the chelating, antioxidant, anti-inflammatory, antifibrotic, antiautophagic, and antiapoptotic properties of ellagic acid to attenuate nephrotoxicity. Furthermore, we present the molecular targets and signaling pathways that are regulated by these antioxidants, and suggest some others that should be explored. Nevertheless, the number of reports is still limited to establish the efficacy of ellagic acid against kidney damage induced by environmental pollutants. Therefore, additional preclinical studies on this topic are required, as well as the development of well-designed clinical trials.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Elisabeth Armada
- Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
38
|
Moccia F, Liberti D, Giovando S, Caddeo C, Monti DM, Panzella L, Napolitano A. Chestnut Wood Mud as a Source of Ellagic Acid for Dermo-Cosmetic Applications. Antioxidants (Basel) 2022; 11:1681. [PMID: 36139755 PMCID: PMC9495433 DOI: 10.3390/antiox11091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ellagic acid (EA) has long been recognized as a very active antioxidant, anti-inflammatory, and antimicrobial agent. However, its low bioavailability has often hampered its applications in health-related fields. Here, we report a phospholipid vesicle-based controlled release system for EA, involving the exploitation of chestnut wood mud (CWM), an industrial by-product from chestnut tannin production, as a largely available and low-cost source of this compound. Two kinds of CWM with different particle size distributions, indicated as CWM-A and CWM-B (<100 and 32 µm, respectively), containing 5 ± 1% w/w EA, were incorporated into transfersomes. The latter were small in size (~100 nm), homogeneously dispersed, and negatively charged. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated up to three-fold improvement in the antioxidant properties of CWM upon incorporation into transfersomes. The kinetics of EA released under simulated physiological conditions were evaluated by UV-Vis spectroscopy and HPLC analysis. The best results were obtained with CWM-B (100% of EA gradually released after 37 days at pH 7.4). A stepwise increase in the antioxidant properties of the released material was also observed. Cell-based experiments confirmed the efficacy of CWM-B transfersomes as antioxidant agents in contrasting photodamage.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Davide Liberti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, I-12080 San Michele Mondovì, Italy
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale 72, I-09124 Cagliari, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
39
|
Caban M, Lewandowska U. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
Ellagic Acid Improves Antioxidant Capacity and Intestinal Barrier Function of Heat-Stressed Broilers via Regulating Gut Microbiota. Animals (Basel) 2022; 12:ani12091180. [PMID: 35565605 PMCID: PMC9131128 DOI: 10.3390/ani12091180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) has been revealed to damage the antioxidant system and intestinal barrier function, which greatly threatens poultry production. The present study investigated the effects of dietary ellagic acid (EA) on the antioxidant system, gut barrier function, and gut microbiota of heat-stressed broilers. Arbor Acres 14-day-old broilers numbering 360 were randomly divided into six groups, including one negative control group (NC) and five experimental groups. The broilers in the NC group were supplemented with a basal diet at a normal temperature (23 ± 2 °C). The broilers in the experimental groups were supplemented with basal diets containing EA at different doses (0, 75, 150, 300, and 600 mg/kg) at HS temperature (35 ± 2 °C). The experiment lasted for 4 weeks. Results showed that dietary EA reduced the corticosterone (CORT), LPS, and diamine oxidase (DAO) levels in the serum of heat-stressed broilers. Additionally, dietary EA improved the antioxidant enzyme activity and mRNA levels of Nrf2/HO-1 in the ileum of heat-stressed broilers. The relative abundances of Streptococcus, Ruminococcus_torques, Rothia, Neisseria, Actinomyces, and Lautropia in the cecum were significantly reduced by the EA supplementation in a dose-dependent manner. Notably, the LPS, DAO, and MDA in the serum were revealed to be positively correlated with the relative abundances of Rothia, Neisseria, Actinomyces, and Lautropia, while the GSH-px, SOD, and CAT levels in the serum were negatively correlated with the relative abundances of Ruminococcus_torques, Rothia, Neisseria, Actinomyces, Streptococcus, and Lautropia. Taken together, dietary EA improved the antioxidant capacity, intestinal barrier function, and alleviated heat-stressed injuries probably via regulating gut microbiota.
Collapse
|
41
|
Lu ZY, Feng L, Jiang WD, Wu P, Liu Y, Jin XW, Ren HM, Kuang SY, Li SW, Tang L, Zhang L, Mi HF, Zhou XQ. An Antioxidant Supplement Function Exploration: Rescue of Intestinal Structure Injury by Mannan Oligosaccharides after Aeromonas hydrophila Infection in Grass Carp ( Ctenopharyngodon idella). Antioxidants (Basel) 2022; 11:antiox11050806. [PMID: 35624670 PMCID: PMC9137958 DOI: 10.3390/antiox11050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Mannan oligosaccharides (MOS) are a type of functional oligosaccharide which have received increased attention because of their beneficial effects on fish intestinal health. However, intestinal structural integrity is a necessary prerequisite for intestinal health. This study focused on exploring the protective effects of dietary MOS supplementation on the grass carp’s (Ctenopharyngodon idella) intestinal structural integrity (including tight junction (TJ) and adherent junction (AJ)) and its related signalling molecule mechanism. A total of 540 grass carp (215.85 ± 0.30 g) were fed six diets containing graded levels of dietary MOS supplementation (0, 200, 400, 600, 800 and 1000 mg/kg) for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila for 14 days. We used ELISA, spectrophotometry, transmission electron microscope, immunohistochemistry, qRT-PCR and Western blotting to determine the effect of dietary MOS supplementation on intestinal structural integrity and antioxidant capacity. The results revealed that dietary MOS supplementation protected the microvillus of the intestine; reduced serum diamine oxidase and d-lactate levels (p < 0.05); enhanced intestinal total antioxidant capacity (p < 0.01); up-regulated most intestinal TJ and AJ mRNA levels; and decreased GTP-RhoA protein levels (p < 0.01). In addition, we also found several interesting results suggesting that MOS supplementation has no effects on ZO-2 and Claudin-15b. Overall, these findings suggested that dietary MOS supplementation could protect intestinal ultrastructure, reduce intestinal mucosal permeability and maintain intestinal structural integrity via inhibiting MLCK and RhoA/ROCK signalling pathways.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (S.-W.L.); (L.T.)
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (S.-W.L.); (L.T.)
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (S.-W.L.); (L.T.)
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu 610041, China; (L.Z.); (H.-F.M.)
| | - Hai-Feng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu 610041, China; (L.Z.); (H.-F.M.)
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|